
A Proof of Theorem 3.2

Theorem A.1. The vocabulary V constructed by Algorithm 1 exhibits the following advantageous
properties.

(i) Monotonicity: The frequency of the non-single-atom fragments in V decreases monotoni-
cally, namely, ∀Fi,Fj ∈ V, c(Fi) ≤ c(Fj), if i ≥ j.

(ii) Significance: Each fragment F in V is a principal subgraph.

(iii) Completeness: For any principal subgraph S arising in the dataset, there always exists a
fragment F in V satisfying S ⊆ F , c(S) = c(F), when V has collected all fragments with
frequency no less than c(S).

Proof. Prior to the proof, we first present a clear observation of the created vocabulary V:

Proposition A.2. Given any F ,F ′ ∈ V, for any their instances arising on an arbitrary molecule
during the extraction process, either they are not spatially intersected F ∩ F ′ = ∅, or they contain
each other: F ⊆ F ′ or F ′ ⊆ F .

Now we prove each claim in the above theorem.

(i) Monotonicity. We prove it by contradiction. Suppose that there exist Fi1 ,Fi2 ∈ V, i1 > i2, and
c(Fi1) > c(Fi2). According to Proposition A.2, we have either Fi1 ⊆ Fi2 or Fi1 ∩Fi2 = ∅ on each
molecular. If it is the former case, then Fi1 should be firstly extracted and then merged with other
fragments to yield Fi2 which means i1 < i2, conflicting with the assumption. If it is the latter case,
since c(Fi1) > c(Fi2) implying that Fi1 is first extracted, also conflicting with the assumption we
set. Hence, the claim is proved.

(ii) Significance. It is proved by contradiction as well. For any fragment F ∈ V on a certain molecule,
suppose we have a subgraph S satisfying S ∩ F ≠ ∅, c(S) > c(F), and S ⊈ F . Then we must find
two connected nodes v1 and v2, where v1 belongs to S but not F : v1 ∈ S, v1 /∈ F , and v2 belongs to
both subgraphs: v2 ∈ S ∩ F . Let us construct a new subgraph with two nodes S ′ = {v1, v2, e12}
where e12 is the edge connecting v1 and v2. Obviously, c(S ′) ≥ c(S) > c(F), implying that S ′ has
been included into the vocabulary V before F is generated. However, by its definition, S ′ ∩ F ̸= ∅,
S ′ ⊈ F , and F ⊈ S which makes a contradiction with Proposition A.2. Thus, the assumption fails,
and the claim is proved.

(iii) Completeness. Without loss of generality, we suppose S contains at least two nodes. We choose
an arbitrary node from S, then we expand it during the vocabulary conduction via Algorithm 1. We
keep merging this node with the fragments in V to produce Ft at each iteration t until the following
cases happen: 1) Ft = S, which directly leads to the conclusion of the claim; 2) it is the first time
we merge the current fragment Ft−1 ⊊ S with an external fragment F ′ ⊈ S to yield Ft. Now,
we solely discuss the second case. On one hand, if c(Ft) > c(S), we can always find a subgraph
consisting of two connected nodes from F ′ and Ft−1, respectively, and this subgraph contains at
least one node not in S and has a larger frequency than S , which conflicts with the condition that S is
a principal subgraph. On the other hand, if c(Ft) < c(S), we can always find a node in S but not
in Ft−1 merged with with Ft−1 to generate a fragment with a larger frequency than F ′, which also
conflicts with the implementation rule of Algorithm 1 since F ′ is of the largest frequency among
all potential merging choices with Ft−1. Hence, we only have c(Ft) = c(S), based on which, we
can always merge Ft with the remaining part of S at later iterations to make Ft ⊇ S while keeping
c(Ft) = c(S). The proof is concluded.

B Effects of Different Sizes of Vocabulary

In Table 7 and Table 8, we also provide the results for (constrained) property optimizationof PS-VAE
with N = 100, 300, 500, 700 for more direct illustration.

We observe that the best values of N for the above two tasks are 300 and 500, respectively, both
of which are consistent with the optimal points by the trade-off curves in Figure 6 of Section 5. It
suggests that in practice we can tune the value of N by the method proposed in Section 5.

15

Table 7: Comparison of the top-3 property scores found by PS-VAE with different vocabulary size.

N Penalized logP QED
1st 2nd 3rd 1st 2nd 3rd

100 10.30 10.06 9.96 0.9480 0.9478 0.9478
300 13.95 13.83 13.65 0.9483 0.9482 0.9482
500 12.57 12.24 12.21 0.9483 0.9482 0.9480
700 8.41 8.20 8.10 0.9482 0.9481 0.9480

Table 8: Mean (standard deviation) on improvement in constrained property optimization of PS-VAE
with different vocabulary size.

N δ = 0.2 δ = 0.4 δ = 0.6
Improvement Success Improvement Success Improvement Success

100 5.17±1.66 99.5% 3.65±1.30 95.9% 2.30±1.04 79.1%
300 5.42±2.30 99.4% 3.70±1.54 94.4% 2.31±1.12 75.2%
500 6.42±1.86 99.9% 4.19±1.30 98.9% 2.52±1.12 90.3%
700 4.93±1.81 99.6% 3.61±1.37 93.8% 2.26±1.13 72.8%

C Subgraph-Level Decomposition Algorithm

Algorithm 2 presents the pseudo code for the subgraph-level decomposition of molecules. The
algorithm takes the atom-level molecular graph, the vocabulary of principal subgraphs, and their
frequencies of occurrence recorded during the principal subgraph extraction process as input. Then
the algorithm iteratively merges the two neighboring principal subgraphs whose union has the highest
recorded frequency of occurrence in the vocabulary until all possible unions of two neighboring
principal subgraphs are not in the vocabulary. We provide further illustrations for the mechanism of
“MergeSubGraph” as follows. It takes as input each molecular G and the selected top-1 fragment F .
If G contains F , then we will merge the two adjacent nodes in G that comprise F into a new node F .

Algorithm 2 Subgraph-Level Decomposition
Input: A graph G that decomposed into atoms, the set V of learned principal subgraphs, and the
counter C of learned principal subgraphs.
Output: A new representation G′ of G that consists of principal subgraphs in V.
G′ ← G;
while True do
freq ← −1; F ← None;
for ⟨Fi,Fj , Eij⟩ in G′ do
F ′ ← Merge(⟨Fi,Fj , Eij⟩); {Merge neighboring fragments into a new fragment.}
s← GraphToSMILES(F ′); {Convert a graph to SMILES representation.}
if s in V and C[s] > freq then
freq ← C[s];
F ← F ′;

end if
end for
if freq == −1 then

break;
else
G′ ← MergeSubGraph(G′,F); {Update the graph representation.}

end if
end while

16

D Inference Algorithm for Bond Completion

Algorithm 3 shows the pseudo code of our inference algorithm. We first predict the bonds between
all possible pairs of atoms in which the two atoms are in different fragments and sort them by the
confidence level given by the model from high to low. Then for each bond with a confidence level
higher than the predefined threshold δth, which is 0.5 in our experiments, we add it into the molecular
graph if it passes the valence check and cycle check. The valence check ensures the given bond will
not violate valence rules. The cycle check ensures the given bond will not form unstable rings with
nodes less than 5 or more than 6.

Algorithm 3 Inference Algorithm for Bond Completion
Input: An incomplete molecular graph G composed of fragments where inter-fragment bonds are
absent, the predicted bond type for all possible inter-fragment connections B and the map to their
confidence level C, the threshold for confidence level δth
Output: A valid molecular graph G′
G′ ← G;
B ← SortByConfidence(B, C); {Sort the bonds by their confidence level from high to low.}
for buv in B do

if C[buv] < δth then
continue; {Discard edges with confidence level lower than the threshold.}

end if
if valence_check(buv) and cycle_check(buv) then
G′ ← AddEdge(G′,buv);{Add edges that pass valence and cycle check to G′}

end if
end for
G′ ← MaxConnectedComponent(G′); {Find the maximal connected component in G′}

E Complexity Analysis

Principal Subgraph Extraction The GraphToSMILES function is implemented with CAN-
GEN [41] algorithm, which tackles the conversion from molecular graph to SMILES with a com-
plexity of O(n2 log n), where n denotes the number of atoms in a molecule. The SMILESToGraph
function constructs a molecular graph from a given SMILES with O(n) complexity. Particularly
for small molecules, the largest number of atoms n is restricted by the molecular weight, hence we
can practically assume these two functions have constant running time. Since the number of two
neighboring fragments equals the number of inter-fragment connections in the subgraph-level graph,
the complexity is O(NMe), where N is the predefined size of vocabulary, M denotes the number of
molecules in the dataset, and e denotes the maximal number of inter-fragment connections in a single
molecule. The number of inter-fragment connections decreases rapidly in the first few iterations,
therefore the time cost for each iteration decreases rapidly. It cost 6 hours to perform 500 iterations
on 250,000 molecules in the ZINC250K dataset with 4 CPU cores.

Subgraph-Level Decomposition Given an arbitrary molecule, the worst case is that each iteration
adds one atom to one existing fragment until the molecule is finally merged into a single fragment. In
this case, the algorithm runs for |V| iterations. Therefore, the complexity is O(|V|) where V includes
all the atoms in the molecule.

F Runtime Cost

We train JT-VAE, GraphAF, and our PS-VAE on a machine with 1 NVIDIA GeForce RTX 2080Ti
GPU and 32 CPU cores to compare their efficiency of training and inference. All models are trained
over a fixed number of epochs (i.e. 6) and then generate 10,000 molecules. As shown in Table 9, our
model achieves significant improvements in efficiency due to subgraph-based two-step generation.
With principal subgraphs as building blocks, the number of steps required to generate a molecule
is significantly decreased compared to the atom-level models like GraphAF. Moreover, since the
two-step generation approach separates the generation of principal subgraphs and the assembling
of them into two stages, it formalizes the bond completion as a link prediction task and avoids the

17

exhausting enumeration of all possible combinations adopted by JT-VAE. Therefore, our model
achieves tremendous improvement in computational efficiency over these baselines.

Table 9: Runtime cost for JT-VAE, GraphAF and our PS-VAE on the ZINC250K dataset. Inference
time is measured with the generation of 10,000 molecules. Avg Step denotes the average number of
steps each model requires to generate a molecule.

Model Training Inference Avg Step

JT-VAE 24 hours 20 hours 15.50
GCPN 14 hours 20 hours 38.21

GraphAF 7 hours 10 hours 56.88
HierVAE 10.9 hours 1.2 hours 36.94

PS-VAE (ours) 1.2 hours 0.3 hour 6.84

G Experiment Details

Model and Training Hyperparameters We present the choice of model parameters in Table 10
and training parameters in Table 11. We represent an atom with three features: atom embedding,
fragment embedding and position embedding. Atom embedding is a trainable vector of size eatom for
each type of atoms. Similarly, fragment embedding is a trainable vector of size efragment for each type
of fragment. Positions indicate the order of generation of fragments. For property optimization tasks,
we jointly train a 2-layer MLP from the latent variable to predict property scores. For GuacaMol
goal-directed benchmarks, the predictor is trained after the training of the VAE models. The training
loss is represented as L = α ·Lrec +(1−α) ·Lprop +β ·DKL where α balances the reconstruction loss
and prediction loss. For β, we adopt a warm-up method that increase it by βstage every fixed number
of steps to a maximum of βmax. We found a β higher than 0.01 often causes KL vanishing problem
and greatly harm the performance. Our model and the baselines are trained on the ZINC250K dataset
with the same train / valid / test split as in Kusner et al. [23].

Table 10: Parameters in the principal subgraph variational auto-encoder

Model Param Description Value

Common
eatom Dimension of embeddings of atoms. 50

efragment Dimension of embeddings of fragments. 100

epos
Dimension of embeddings of postions.
The max position is set to be 50. 50

Encoder
dh Dimension of the node representations hv 300
dG The final representaion of graphs are projected to dG . 400
dz Dimension of the latent variable. 56
t Number of iterations of GIN. 4

Decoder dGRU Hidden size of GRU. 200
Predictor dp Dimension of the hidden layer of MLP. 200

Table 11: Training hyperparameters

Param Description Value
lr Learning rate 0.001
α Weight for balancing reconstruction loss and predictor loss 0.1
βinit Initial weight of KL Divergence 0
βmax Max weight of KL Divergence 0.01

klwarmup The number of steps for one stage up in β 1000
βstage Increase of β every stage 0.002

Property Optimization We use gradient ascending to search in the continuous space of latent
variable. For simplicity, we set a target score and optimize the mean square error between the score
given by the predictor and the target score just as in the training process. The optimization stops

18

if the mean square error does not drop for 3 iterations or it has been iterated to the maxstep. We
normalize the Penalized logP in the training set to [0, 1] according to the statistics of ZINC250K.
By setting a target value higher than 1 the model is supposed to find molecules with better property
than the molecules in the training set. To acquire the best performance, we perform a grid search
with lr ∈ {0.001, 0.01, 0.1, 1, 2}, maxstep ∈ {20, 40, 60, 80, 100} and target ∈ {1, 2, 3, 4}. For
optimization of QED, we choose lr = 0.01,maxstep = 100, target = 2. For optimization of
Penalized logP, we choose lr = 0.1,maxstep = 100, target = 2.

(a) Penalized logP optimization (b) QED optimization (c) Constrained optimization of Penal-
ized logP

Figure 7: Samples of property optimization and constrained property optimization. In (c) the first and
the second columns are the original and modified molecules labeled with their Penalized logP.

Constrained Property Optimization We use the same method as property optimization to optimize
the latent variable. We also perform a grid search with lr ∈ {0.1, 0.01} and target ∈ {2, 3}. We
select lr = 0.1,maxstep = 80 and target = 2. For decoding, we first initialize the generation with
a submol sampled from the original molecule by teacher forcing. We follow Shi et al. [39] to first
sample a BFS order of all atoms and then randomly drop out the last m atoms with m up to 5. We
collect all latent variables which have better predicted scores than the previous iteration and decode
each of them 5 times, namely up to 400 molecules. Then we choose the one with the highest property
score from the molecules that meet the similarity constraint. For the baseline GA [1], we adjust the
number of iterations to 5 and the size of population to 80, namely traversing up to 400 molecules, for
fair comparison.

GuacaMol Goal-directed Benchmarks After pretraining of our PS-VAE, we train an 2-layer MLP
on the latent variable to predict all the properties in the benchmark. Then we do gradient ascending
to search high-scoring molecules in the latent space as in the task of property optimization. We set
lr = 0.01,maxstep = 100, target = 2. For iterative baselines (i.e. GA, MARS), we restrict the
number of candidates they can explore to the same number as our PS-VAE does so that all methods
are compared under the same searching efficiency.

H Fused Rings Generation

We conduct an additional experiment to validate the ability of PS-VAE to generate molecules with
fused rings (cycles with shared edges), because at first thought it seems difficult for PS-VAE to handle
these molecules due to the non-overlapping nature of principal subgraphs in a decomposed molecule.
We train atom-level and subgraph-level PS-VAEs on all 4,431 structures consisting of fused rings
from ZINC250K. Then we sample 1,000 molecules from the latent space to calculate the proportion
of molecules with fused rings. The results are 94.5% and 97.2% for the atom-level model and the
subgraph-level model, respectively. The experiment demonstrates that the introduction of principal
subgraphs as building blocks will not hinder the generation of molecules with fused rings.

I Data Efficiency

Since the principal subgraphs are common subgraphs in the molecular graphs, they should be
relatively stable with respect to the scale of training set. To validate this assumption, we choose

19

Figure 8: Decomposition of three molecules with fused rings (cycles that share edges).

subsets of different ratios to the training set for training to observe the trend of the coverage of Top
100 principal subgraphs in the vocabularies as well as the model performance on the average score
of the distribution-learning benchmarks. As illustrated in Figure 9, with a subset above 20% of the
training set, the constructed vocabulary covers more than 95% of the top 100 principal subgraphs in
the full training set, as well as the model performance on the distribution-learning benchmarks.

(a) Top 100 principal subgraphs coverage (b) Distribution-learning benchmarks performance

Figure 9: The coverage of top 100 principal subgraphs and the relative performance on the distribution-
learning benchmarks with respect to subsets of different ratios to the full training set.

J Discussion

Universal Granularity Adaption The concept and extraction algorithm of principal subgraphs
resemble those of subword units [38] in machine translation. Though subword units are designed
for the out-of-vocabulary problem of machine translation, they also improve the translation quality
[38]. In this work, we demonstrate the power of principal subgraphs and are curious about whether
there is a universal way to adapt atom-level models into subgraph-level counterparts to improve
their generation quality. The key challenge is to find an efficient and expressive way to encode
inter-fragment connections into feature vectors. We leave this for future work.

Searching in Continuous Space In recent years, reinforcement learning (RL) is becoming domi-
nant in the field of optimization of molecular properties [47, 39]. These RL models usually suffer
from reward sparsity when applied to multi-objective optimization [20]. However, most scenarios that
incorporate molecular property optimization have multi-objective constraints (e.g., drug discovery).
In this work, we show that with principal subgraphs, even a simple searching method like gradient
ascending can surpass RL methods on single-objective optimization. It is possible that with better
searching methods in continuous space our model can achieve competitive results on multi-objective
optimization.

K Principal Subgraph Samples

We present 50 principal subgraphs found by our extraction algorithm in Figure 10.

20

Figure 10: 50 Samples of principal subgraphs from the vocabulary with 100 principal subgraphs in
total. Each principal subgraph is labeled with its SMILES representation.

21

L More Molecule Samples

We further present 50 molecules sampled from the prior distribution in Figure 11.

Figure 11: 50 molecules sampled from the prior distribution N (0, I)

22

