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ABSTRACT

Diffusion models have recently been successfully applied to a wide range of
robotics applications for learning complex multi-modal behaviors from data.
However, prior works have mostly been confined to single-robot and small-scale
environments due to the high sample complexity of learning multi-robot diffu-
sion models. In this paper, we propose a method for generating collision-free
multi-robot trajectories that conform to underlying data distributions while us-
ing only single-robot data. Our algorithm, Multi-robot Multi-model planning
Diffusion (MMD), does so by combining learned diffusion models with classi-
cal search-based techniques—generating data-driven motions under collision con-
straints. Scaling further, we show how to compose multiple diffusion models to
plan in large environments where a single diffusion model fails to generalize well.
We demonstrate the effectiveness of our approach in planning for dozens of robots
in a variety of simulated scenarios motivated by logistics environments.

1 INTRODUCTION

Multi-robot motion planning (MRMP) is a fundamental challenge in many real-world applications
where teams of robots have to work in close proximity to each other to complete their tasks. In
automated warehouses, for example, hundreds of mobile robots and robotic manipulators need to
coordinate with each other to transport and exchange items while avoiding collisions. Learning mo-
tions from demonstrations can oftentimes allow robots to complete tasks they couldn’t otherwise,
like navigating a region in a pattern frequently followed by human workers; however, it is un-
clear how to best incorporate demonstrations in MRMP. In fact, MRMP at its simplest form, where
robots are only concerned with finding short trajectories between start and goal configurations, is
already known to be computationally intractable (Hopcroft & Wilfong, 1986)—significantly harder
than single-agent motion planning due to the complexity of mutual interactions between robots.
Attempting to simplify the problem, various approximate formulations have been proposed in the
literature. For example, a popular approach is to formulate the problem as a multi-agent path find-
ing problem (MAPF) (Stern et al., 2019) by discretizing space and time. While the latest MAPF
planners (Li et al., 2021; Okumura, 2024) can compute near-optimal plans and scale to hundreds of
agents, they make strong assumptions, such as constant velocities and rectilinear movements that
limit their real-world application and reduce their ability to generate complex behaviors learned
from demonstrations.

In single-agent motion planning, methods that learn to plan from data (Xiao et al., 2022) have been
widely used to circumvent similar limitations resulting from inaccurate models (Vemula et al., 2021),
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partial observability (Choudhury et al., 2018) and slow planning (Sohn et al., 2015; Qureshi et al.,
2020). More recently, diffusion models (DM) have emerged as the generative model of choice for
learning visuomotor manipulation policies from demonstrations (Chi et al., 2024), motion plan-
ning (Carvalho et al., 2023), and reinforcement learning (Janner et al., 2022). However, there has
been relatively little work on extending these ideas to multi-robot motion planning. This is due to
the twin challenges of generating high quality multi-agent data and the curse of dimensionality, i.e.,
significantly higher sample complexity of learning multi-robot models.

In this paper, we propose a data-efficient and scalable multi-robot diffusion planning algorithm,
Multi-robot Multi-model planning Diffusion (MMD), that addresses both these challenges by com-
bining constraint-based MAPF planners with diffusion models. Importantly, our approach calls
for learning only single-robot diffusion models, which does away with the difficulty of obtaining
multi-robot interaction data and breaks the curse of dimensionality. MMD generates collision-free
trajectories by constraining single-robot diffusion models using our novel spatio-temporal guid-
ing functions and choosing constraint placement via strategies inspired by MAPF algorithms. Our
contributions in this paper are threefold: (1) We propose a novel data-efficient framework for multi-
robot diffusion planning inspired by constraint-based search algorithms. (2) We provide a com-
parative analysis of the performance of five MMD algorithms, each based on a different MAPF
algorithm, shedding light on their applicability to coordinating robots leveraging diffusion mod-
els for planning. (3) We show that we can scale our approach to arbitrarily large and diverse
maps by learning and composing multiple diffusion models for each robot. Our experimental re-
sults from varied motion planning problems in simulated scenarios motivated by logistics environ-
ments suggest that our approach scales favorably with both the number of agents and the size of
the environment when compared to alternatives. Video demonstrations and code are available at
https://multi-robot-diffusion.github.io/.

2 PRELIMINARY

In this section we define the MRMP problem and provide relevant background on constraint-based
MAPF algorithms and on planning with diffusion models. Sec. 3 elaborates on how we combine
these concepts to coordinate numerous robots that plan with diffusion models.

2.1 MULTI-ROBOT MOTION PLANNING (MRMP)

Given n robotsRi, MRMP seeks a set of collision-free trajectories, one for each robot, that optimize
a given objective function. Let Si be the state space of a single robot and a state be si := [qi, q̇i]⊺ ∈
Si where qi and q̇i are the configuration and velocity of the robot. Each robot has an assigned
start state sistart ∈ Si and binary termination (goal) condition T i : Si → {0, 1}. An MRMP
solution is a multi-robot trajectory τ = {τ 1, · · · τn}, where τ i : [0, T i] → Si represents the
trajectory of robot Ri over the time interval [0, T i], with T i being the terminal time. In practice,
we uniformly discretize the time horizon into H time steps and optimize over a sequence of states
τ i = {si1, si2, ..., siH}. Subscripts, e.g., τ i

t, indicate indexing into a trajectory. Each trajectory τ i

must avoid collisions between robots and with obstacles in the environment. In MRMP, robots share
a workspaceW (i.e.,W ⊆ R3 for general robots andW ⊆ R2 for robots on the plane) and occupy
some volume or area withinW , which we denote asRi(q

i) ⊆ W for robotRi in configuration qi.

The usual MRMP objective is to minimize the sum of the single-robot costs (e.g., the cumulative
motion) across all robots. General cost functions can be defined on the trajectories, and the ob-
jective then becomes J (τ ) = 1

n

∑n
i=1 cost(τ i). When learning from data, we are interested in

data adherence, i.e., the trajectories should match the underlying trajectory distribution. We define
costdata(τ ) = 1

n

∑n
i=1 costdata(τ

i) to quantify how well, on average, trajectories in τ follow their
underlying data distribution. This metric is task-specific; we provide some examples in Sec. 4.

2.2 MULTI-AGENT PATH FINDING (MAPF)

The MAPF problem, a simpler form of MRMP, seeks the shortest collision-free paths Π =
{π1,π2, · · ·πn} for n agents on a graph. This graph approximates their configuration space, with
vertices corresponding to configurations and edges to transitions. Each path πi = {qi

1, · · ·qi
H} is a

trajectory without velocity that need not be dynamically feasible. In MAPF studies, constraint-based
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algorithms have become popular due to their simplicity and scalability. These algorithms are effec-
tive, in part, because they avoid the complexity of the multi-agent configuration space by delegating
planning to single-agent planners and avoid collision via constraints. For instance, if a configuration
qi forRi leads to a collision at time (or interval) t, this can be prevented by applying the constraint
set C = {⟨Ri,q

i, t⟩} to the path πi, thereby preventing the configuration from being used at that
time. Several MAPF algorithms, including Prioritized Planning (PP) (Erdmann & Lozano-Perez,
1987) and Conflict-Based Search (CBS) (Sharon et al., 2015), use this mechanism to force single-
agent planning queries to avoid states that would lead to collisions. We detail these methods in Sec.
3 and explain how, despite traditionally being used for MAPF, their principles can be applied to
coordinating robots in continuous space that generate data-driven trajectories via diffusion models.

2.3 PLANNING WITH DIFFUSION MODELS

Motion planning diffusion models are generative models that learn a denoising process to recover
a dynamically-feasible trajectory from noise (Carvalho et al., 2023; Janner et al., 2022). Given a
dataset of multi-modal trajectories, diffusion models aim to generate new trajectories that follow
the underlying distribution of the data. Additionally, these trajectories may be conditioned on a task
objectiveO, for example, goal condition and collision avoidance. Specifically, given a task objective
O, motion planning diffusion models aim to sample from the posterior distribution of trajectories:

argmax
τ i

log p(τ i|O) = argmin
τ i

(
J (τ i)− log p(τ i)

)
(1)

The first term of the objective, J (τ i), can be interpreted as a standard motion planning objective
(Carvalho et al., 2023), in which we try to minimize a cost function (or, equivalently, maximize
a reward function). The second term, log p(τ i), is the prior corresponding to the data adherence
discussed in Sec. 2.1.

Diffusion models are a type of score-based model (Song et al., 2021), where the focus is on learn-
ing the score function (the gradient of the data distribution’s log-probability) rather than learning
the probability distribution directly. The score function is learned using denoising score matching,
a technique for learning to estimate the score by gradually denoising noisy samples. The diffu-
sion inference process consists of a K-step denoising process that takes a noisy trajectory Kτ i and
recovers a feasible trajectory 0τ i, which also follows the data distribution. We use the notation
0τ i,1 τ i, · · · ,K τ i to denote the evolution of the trajectory in the diffusion process. To generate a
trajectory 0τ i from a noise trajectory Kτ i ∼ N (0, I), we use Langevin dynamics sampling (Ho
et al., 2020), an iterative process that is a type of Markov Chain Monte Carlo method. At each
denoising step k ∈ {K, . . . , 1}, a trajectory-space mean µi

k−1 is sampled from the network µθ:

µi
k−1 = µθ(

kτ i) (2)
Now, with the variance prescribed by a deterministic schedule {βk | k ∈ {K, · · · , 1}}, the next
trajectory in the denoising sequence is sampled from the following distribution:

k−1τ i ∼ N
(
µi
k−1 + ηβk−1∇τJ (µi

k−1)︸ ︷︷ ︸
Guidance

, βk−1

)
(3)

The term ∇τJ (µi
k−1) is the gradient of additional trajectory-space objectives (described in Eq.

1) imposed on the generation process. This term, also called guidance, can include multiple
weighted cost components, each optimizing for a different objective. For instance, we can have
J = λobjJobj+λsmoothJsmooth to penalize trajectories in collision with objects via Jobj and to encour-
age the trajectory to be dynamically feasible via Jsmooth. We denote the trajectory generation process
queried with a start state sistart, goal condition T i, and costraint set C (Sec. 3.1) as f i

θ(s
i
start, T i, C).

3 METHOD

We present Multi-robot Multi-model planning Diffusion (MMD), an algorithm for flexibly scaling
diffusion planning to multiple robots and long horizons using only single-robot data. MMD im-
poses constraints on diffusion models to generate collision-free trajectories, addressing three main
questions: how, when, and where to impose them. First, we discuss integrating spatio-temporal
constraints into the diffusion denoising process through guiding functions. Next, we introduce five
MMD algorithms, each inspired by a MAPF algorithm regarding constraint placement and timing.
Finally, we demonstrate how to sequence multiple models for long-horizon planning.
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Algorithm 1: MMD-CBS sketch. Colored lines
are only in MMD-PP, MMD-ECBS
Input: Starts, goal conditions, and single-robot

diffusion models
{
sistart, T i, f i

θ

}n

i=1

Output: Trajectories τ =
{
τ i

}n

i=1

Nroot ← new CT node; Nroot.C
i ← ∅ ∀i ∈ {1, · · ·n}

for i ∈ {1, · · · , n} do
Ci

strong, C
i
weak ← ∅, ∅ // Empty constraints set.

Ci
strong ← {⟨Ri, Nroot.τ ⟩} // Avoid other robots.

Ci
weak ← {⟨Ri, Nroot.τ ⟩} // Penalize collisions.

Nroot.τ
i ← f i

θ(s
i
start, T i, Ci

strong ∪ Ci
weak)

end
return Nroot.τ
CT← {Nroot} // Initialize CT.
while CT ̸= ∅ do

N ← argmin
N′∈CT

numConflicts(N ′.τ )

Remove N from CT
if N.τ conflict-free then

return N.τ // Return if collision free.
end
p, t,Ri,Rj ← getOneConflict(N.τ )
for k ∈ {i, j} // Split N ; constrain conflicting robots. do

N ′ ← N.copy
N ′.Ck ← Ck ∪ {⟨Rk, Sr(p), t⟩}
Ck

weak ← {Rk, ⟨N ′.τ ⟩} // Penalize collisions.

N ′.τ k ← fk
θ (s

k
start, T k, N ′.Ck∪Ck

weak)
CT← CT ∪{N ′}

end
end

(a) Two robots aim to switch positions. Blindly
generated single-robot trajectories collide.

(b) The diffusion denoising process for
the left robot in (a), under a temporally-
activated constraint (in red), yields multi-
modal trajectories.

(c) Collision-free solution.

Figure 1: An illustration of how MMD-
CBS generates collision-free trajectories
with constrained diffusion models.

3.1 CONSTRAINTS IN DIFFUSION MODELS

An intuitive and effective constraint for multi-robot motion planning in robotics is the sphere con-
straint 1 (Li et al., 2019; Shaoul et al., 2024b). It is defined by a point p ∈ W and restricts robots
from being closer to p than a radius r ∈ R at a certain time range t := [t−∆t, t+∆t]. The sphere
constraint can be imposed as a soft-constraint on a diffusion model by incorporating it in its guiding
function J (·). This can be done by adding a cost term Jc that repels the robots from the sphere’s
center point p. Let kτ i be the generated trajectory for Ri at step k of the diffusion denoising pro-
cess, and ⟨Ri, Sr(p), t⟩ be a sphere constraint centered at p with radius r over time interval t. The
guidance cost term forRi can be defined as:

Jc(
kτ i

t) :=
∑
t∈t

max
(
ϵ · r − d

(
Ri(

kτ i
t), p

)
, 0
)

(4)

with d
(
Ri(

kτ i
t), p

)
as the distance from point p toRi at kτ i

t, and ϵ ≥ 1 a padding factor.

3.2 CONSTRAINING STRATEGIES

To determine when and where to apply constraints on diffusion models, MMD draws on MAPF
strategies like CBS and PP. We propose five MMD variants, each inspired by a state-of-the-art search
algorithm. Alg. 1 provides a summary of these methods and we elaborate upon them here 2.

1The sphere constraint generalizes the MAPF vertex constraint, as it constrains robots from visiting the
point of collision itself instead of a single colliding configuration corresponding to a vertex in a graph. In
MAPF, the point of collision and the graph vertex coincide.

2In MMD, we use the search or prioritization logic found in MAPF algorithms for placing “strong” con-
straints on diffusion models, while all other aspects of MMD are more loosely inspired by MAPF algorithms.
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MMD-PP. Prioritized Planning sequentially plans paths for robots Ri ∀ i ∈ {1, . . . n}. This or-
dering of robots is treated as a priority ordering in that, on each call, robot Ri must generate a
path πi that avoids all Rj that previously planned. Robot Ri does so by respecting the constraints
C := {⟨Ri,q

i, t⟩ | Ri(q
i) ∩ Rj(π

j
t ) ̸= ∅ ∀t}. To translate this approach to trajectory gener-

ation with diffusion models, MMD-PP represents robot volumes using spheres, as is common in
robotics, and uses the sphere representation of higher-priority robots as sphere soft-constraints for
lower-priority robots. Specifically, let a high-priority robot Rj be modeled with Mj spheres and
pjm and rjm be the position and radius of the mth sphere at time t. Then, lower-priority robot Ri

generates a trajectory under the constraint set {⟨Ri, Srjm
(pjm), t⟩ | m ∈ {1, · · ·Mj}, j ≺ i}, where

≺ indicates priority precedence. In Alg. 1, ⟨Ri, τ ⟩ means that all trajectories ofRj ̸=i in τ must be
similarly avoided.

MMD-CBS. CBS is a popular MAPF solver that combines “low-level” planners for individual
agents with a “high-level” constraint tree (CT) to resolve conflicts (i.e., collisions). The algorithm
initiates by creating the root node Nroot in the CT, planning paths for each agent independently, and
storing these paths in Nroot.Π. CBS repeatedly extracts nodes N from the CT and inspects N.Π for
conflicts. If no conflicts exist, the algorithm terminates, returning N.Π. Otherwise, CBS selects a
conflict time t where agentsRi andRj collide at positions qi = πi

t and qj = πj
t in N.Π. CBS then

splits node N into two new CT nodes, Ni and Nj , each inheriting the (initially empty) constraint
set N.C and paths N.Π from N , and incorporating a new constraint for preventing the respective
agent from occupying the conflict position at time t. For example, Ni.C ← N.C ∪ {⟨Ri,q

i, t⟩} for
Ri. Paths for Ri and Rj are then replanned using low-level planners under the updated constraints
in Ni.C and Nj .C. The new CT nodes, with updated paths in Ni.Π and Nj .Π, are added to the
CT. MMD-CBS follows the general CBS structure. It keeps a CT of nodes N , each with trajectories
N.τ , and uses motion planning diffusion models as low-level planners. The algorithm identifies a
collision point p for each conflict and resolves it by imposing sphere soft-constraints centered at p
on affected robots (see Fig. 1 for an illustration and Sec. A.4 for parameter values).

MMD-ECBS. Enhanced-CBS (ECBS) (Barer et al., 2014) informs CBS low-level planners of the
paths of other robots in the same CT node and steers the search towards solutions that are more likely
to be collision-free. To emulate this in diffusion-based trajectory generation, MMD-ECBS imposes
two types of soft constraints: “weak” and “strong.” For each robot Rj with a trajectory in the CT
node N , a weak soft-constraint that forbids Ri from colliding with any other Rj with τ j ∈ N.τ is
imposed. This is done in a similar way to MMD-PP but with a lower penalty value (Sec. A.4). The
strong constraints are the same as those in MMD-CBS, resolving previously observed conflicts.

Reusing Experience in CBS. Recent studies indicate that leveraging previous single-robot solutions
to guide replanning enhances the efficiency of CBS (Shaoul et al., 2024a). This is primarily because
the motion planning problem between a CT node and its successors is nearly identical, with the only
difference being a single constraint, making planning from scratch wasteful. This can be utilized in
MMD replanning by initially adding noise to the stored trajectory for a limited number of steps (3 in
our experiments; regular inference uses 25 steps) and then denoising with the new soft-constraints.
This approach, in the context of single-robot planning, was first proposed in Janner et al. (2022)
and further refined in Zhou et al. (2024). Adding this functionality to MMD-CBS and MMD-ECBS
yields our two final MMD algorithms, MMD-xCBS and MMD-xECBS, respectively. Both reuse
previous solutions to inform replanning and are otherwise unchanged.

3.3 SEQUENCING DIFFUSION MODELS FOR LONG HORIZON PLANNING

Diffusion models have shown notable success in learning trajectory distributions within specific con-
texts. However, they face challenges in modeling complex trajectory distributions and generalizing
to diverse contexts (e.g., significantly different obstacle layouts). We propose utilizing an ensemble
of local diffusion models for each robot to facilitate varying-context planning. Each local model is
trained to capture a particular motion pattern, i.e., a trajectory distribution generated by a hidden
cost function defined by a specific task dataset. For example, near a conveyor belt, we can define
a motion pattern requiring robots to pass through either the top corridor right-to-left, or the bottom
corridor left-to-right. By sequentially combining multiple local models, each corresponding to a
local map segment, we enable long-horizon single-robot planning that is easier to learn, generalizes
well to different contexts, and scales effectively to large maps.
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(a) Empty map. (b) Data adherence in the
Empty map.

(c) Highways map. (d) Data adherence in the
Highways map.

Figure 2: A comparison between MMD and “composite” diffusion models that generate trajectories
for all agents at once. We observed consistent performance from MMD but a sharp decrease for the
baseline, unable to produce valid solutions for 9 agents (denoted as zero adherence score). Since
MMD uses the same single-agent model for all robots in these experiments, it is straightforward to
keep increasing the number of agents without needing any retraining or new datasets.

During online planning, given a specific single-robot task Oi (which includes the start state and
the termination condition), we can query the task-relevant local diffusion models to generate a full-
horizon motion plan. Motivated by Mishra et al. (2023), this is done by sampling from the local
models in parallel, while incorporating a cross-conditioning term that constrains the local trajectories
to connect seamlessly. Let τ i,l be a local trajectory sampled from a local probability distribution pl.
The goal of the single-robot planner is to sample from the posterior distribution of trajectories:

argmax
τ i

log p(τ i|O) = argmax
τ i,1,...,τ i,L

log p(τ i,1, . . . , τ i,L|O) (5a)

subject to τ i,l
1 = τ i,l−1

Hl−1
,∀l = 1, . . . , L (5b)

Following Eq. 1, the new objective becomes:

argmin
τ i,1,...,τ i,L

(
J (τ i,1, . . . , τ i,L)−

L∑
l=1

log p(τ i,l)

)
(6)

In practice, MMD ensures proper sequencing of the L local diffusion models by introducing con-
straints requiring the last state of the trajectory from model l to be equal to the first state from model
l+1 (see Eq. 5b) and treating generation of local trajectories as inpainting (Lugmayr et al., 2022). 3

4 EXPERIMENTAL ANALYSIS

We tested MMD’s efficacy in learning multi-robot trajectories on increasingly complex maps with
varying numbers of holonomic ground robots in a simulated warehouse, modeling robots as 2D
disks. Our goals were to (i) compare our approach with common methods for integrating data into
multi-robot trajectory generation, (ii) identify the most effective constraining strategies with MMD,
and (iii) evaluate MMD’s scalability. Each experiment with n robots begins by randomly picking
start and goal states on a map for various algorithms to compute valid trajectories τ (or MAPF
paths Π) between. We evaluated the methods by success rate, the percentage of problems solved
with no collision within a time limit, and data adherence, the average alignment of τ i ∈ τ with
the dataset motion patterns. Data adherence uses a map-specific function costdata(τ

i), scoring 1 for
perfect conformity and lower otherwise. Our evaluation maps, datasets, and adherence functions are
summarized here with simple illustrations and more details are in the appendix.

3Another option is to add a guidance term penalizing discontinuity. This approach is more flexible as it can
optimize for connection points that are learned as well (e.g., via classifier guidance on the connection itself).
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Drop-Region map (Fig. 3c) simulates package drop-off chutes. Motion demonstra-
tions are trajectories between random states that include a pause at one of sixteen
drop-off regions—next to any chute edge midpoint. Adherence is met for τ i, i.e.,
costdata(τ

i) = 1, if it includes such a pause. Otherwise, it is zero.

Conveyor map (Fig. 3b) features narrow passages with directional motion require-
ments. Demonstrations connect random states with trajectories that pass along the top
corridor to the left, or through the bottom corridor to the right. Trajectory τ i adheres
to data if it similarly passes through either corridor before reaching its goal.
Highways map (Fig. 3a), requires counter-clockwise movement around a central
obstacle—a pattern shown in its associated data. This map can be seen as a modu-
lar building block for larger multi-robot environments with its required motion pat-
tern promoting easier coordination. Adherence is met for τ i if its cumulative motion
within the map is counter-clockwise.

Empty map (Fig. 2a) is our simplest. Robots are scored highly if they move in straight
lines and gradually worse the more they deviate. Demonstrations are of straight line
motions.

Larger Maps (Fig. 5). In our larger scale experiments (Sec. 4.3) trajectories are
computed within 2 × 2 and 3 × 3 maps composed of smaller, local maps. Required
motions are dictated by spanned local maps, and the overall adherence is the average
adherence per local map.

4.1 DECOUPLING SCALES MULTI-ROBOT DIFFUSION PLANNING

An appealing approach for learning multi-robot trajectory generation is by obtaining multi-robot
trajectory datasets and training a single model to jointly generate trajectories for all robots. To test
this approach, we evaluated MPD-Composite, a state-of-the-art motion planning diffusion model
(MPD) (Carvalho et al., 2023) that we trained on multi-robot data we collected in two maps: Empty
and Highways. We created three models: for 3, 6, and 9 robots. Each model was also given an
additional guidance term that penalized collisions between robots. Across 300 tests, 50 for each
map and group size, we compared MPD-Composite to MMD-xECBS (referred to as MMD). See
Fig. 2 for results. The composite model achieved perfect success rates and high data adherence
scores with 3 robots but struggled as the number of robots increased to 6. No valid trajectories
were generated in any test with 9 agents using MPD-Composite in either map. In contrast, MMD
solved all 300 problems successfully and further scaled to 40 agents in additional random tests, also
producing trajectories with high data adherence scores and no collisions.

4.2 MMD OUTPERFORMS MAPF WITH LEARNED COST MAPS

From a search-based planning viewpoint, a compelling way to integrate motion data into multi-robot
planning is by reducing MRMP to MAPF and forming cost maps to direct algorithms like ECBS
(Cohen et al., 2016). This sacrifices dynamic feasibility, limiting solutions to a fixed graph, but can
still offer a desirable homotopy class and be assessed for data compliance. Our second experiment
set evaluates this method’s potential to produce data-compliant motions (see Fig. 3). We created
180 motion planning problems, 10 per group size across three maps, and assessed two search-based
methods: A*Data-ECBS and A*-ECBS. The former plans single-robot paths using A* (Nilsson,
1982) with statistical cost maps, where edge costs are lower if map dataset trajectories frequently
visit those areas. The latter uses uniform costs (i.e., has no knowledge of the data) and is reported
only to provide context for A*Data-ECBS’s performance.

Integrating motion data into statistical cost maps shows mixed results: it improves Highways map
performance by 35% over A*-ECBS but reduces success rates. In other maps, it finds collision-
free paths but struggles with complex motion distributions. MMD methods, by contrast, effectively
generate trajectories with high data adherence and often high success rates. As shown in A.2.1 and
Table 2, planning time and solution quality correlate: when A*Data-ECBS matches MMD’s data
adherence, their planning times align, but faster A*Data-ECBS solutions come at the cost of lower
quality. We believe there is significant potential to improve the computational efficiency of MMD
through parallelization. However, we have left such optimizations for future work.
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(a) Highways map.

(b) Conveyor map.

(c) Drop-Region map.

Figure 3: Analysis of success rates and data adherence scores, in randomly generated planning
queries, of all MMD instantiations and a MAPF method with and without a learned cost map. The
left column shows our test maps, the middle column compares success rates across 10 trials per
robot count, and the right column presents the average data adherence scores.

4.2.1 ANALYZING MMD CONSTRAINING STRATEGIES.

Further analysis reveals a trend familiar from the MAPF literature. MMD-CBS struggles with scal-
ability, MMD-ECBS significantly outperforms it, and accelerated versions further improve perfor-
mance. MMD-PP finds efficiency in requiring only one inference pass per robot, however, because
the constraints on diffusion models are soft, trajectory generation queries are not guaranteed to
completely avoid higher-priority robots, and as such MMD-PP may fail to produce collision-free
solutions. This is reflected in lower success rates in congested maps. In contrast, CBS-based MMD
methods only failed by exceeding our 60-second runtime limit. MMD-xECBS outperformd other
MMD algorithms in success rates and matched MMD-ECBS in data adherence.

To test MMD’s MRMP solving ability without regard to data adherence, we created two free-space
experiments focusing on robot interactions (Fig. 4). In the circle setup, robots move between oppo-
site points on a circle, likely colliding at the center. In the weave setup (inspired by Tajbakhsh et al.
(2024)), robots begin on opposite points of a square, aiming to switch places. CBS-based meth-
ods were challenged in circle since incrementally constraining the center region is time-consuming.
MMD-PP’s stronger constraints navigated around congestion and solved more problems, however,
occasionally failed to produce valid solutions. In weave, where navigating around congestion is
more difficult, CBS-based methods generated collision-free trajectories more effectively.

4.3 SEQUENCED DIFFUSION MODELS FOR LONG-HORIZON PLANNING

We present a feasibility study on expanding MMD algorithms to larger maps using the sequencing
method described in Sec. 3.3. This technique assembles smaller local maps, each associated with a
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(a) Circle setup.

(b) Weave setup.

Figure 4: Scalability tests in high-congestion free-space MRMP. Circle (top row) asks robots to
swap positions between opposite points on the perimeter. Weave (below), asks robots to exchange
positions along uniformly spaced boundary points. Length is zero for failed problems (MMD-PP
failures were due to yielding invalid solutions, and other methods failed by exceeding 240 seconds).

diffusion model, to collectively generate long-horizon, data-driven trajectories. In our experiments,
we tested three MMD methods—MMD-PP, MMD-ECBS, and MMD-xECBS—in 120 trajectory
generation tests, allowing a relaxed 240-second time frame. A standout feature of the sequencing
method is its ability to create trajectories that follow a task-skeleton: passing through a series of local
maps within the larger global map. For this purpose, our experiments assign a random sequence of
three tasks per robot (a sequence of local maps), and randomly selects start and goal states within
the first and last local maps in the sequence. The results (Fig. 5) show MMD-xECBS scaling to long
planning horizons without compromising data adherence. This demonstrates MMD’s capability
to efficiently produce multi-robot trajectories in large environments by utilizing diffusion models
trained with easily gathered data from small, local maps.

5 RELATED WORK

Multi-Robot Motion Planning. Many MRMP algorithms (Sanchez & Latombe, 2002; Solovey
et al., 2016) approach the problem by treating it as a coupled system – applying sampling-based
planners such as PRM (Kavraki et al., 1996) and RRT (Karaman & Frazzoli, 2011) to the composite
configuration space of all robots. While this approach guarantees probabilistic completeness, it
struggles to scale with the number of robots due to the exponential growth of the configuration space.
Given the PSPACE-hardness of MRMP (Hopcroft & Wilfong, 1986), many practical algorithms
introduce approximations to make the planning problem more tractable. Some of the most successful
MRMP methods transform the problem into a multi-agent path finding (MAPF) problem (Stern
et al., 2019) through state and time discretization (Li et al., 2019; Hönig et al., 2018).
Decoupled algorithms like prioritized planning (Erdmann & Lozano-Perez, 1987) and Leroy et al.
(1999) generate robot motions one after another, fixing each plan and regarding them as dynamic
obstacles in subsequent planning iterations. This allows them to quickly find solutions for large
numbers of robots, but sometimes fail to find any solution even if one exists, i.e., they are often
incomplete. Seeking to balance theoretical guarantees with practical efficiency, hybrid algorithms
like CBS (Sharon et al., 2015) and its variants (Barer et al., 2014; Li et al., 2021) decouple the
MRMP into two levels – high-level, in which they resolve conflicts between robots, and low-level,
in which they plan motion for each robot independently. A* and its derivatives are the de facto
standard for motion planning for navigation, serving as the low-level search algorithm in many of
these state-of-the-art approaches, as they are efficient, complete, and bounded sub-optimal.

9
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(a) 2× 2 map.

(b) 3× 3 map.

Figure 5: Experimental setup and results for scaling MMD to larger environments and longer plan-
ning horizons. MMD still relies on single agent data in small, local maps and does not require
training of new networks for this scale-up. We evaluate three MMD variants across two large maps
made of tiled local maps to cover a significantly larger area.

Planning with Diffusion Models. Lately, there has been a surge of interest in applying diffusion
models (Sohl-Dickstein et al., 2015) to solve sequential decision making tasks, including planning
and reinforcement learning (Ubukata et al., 2024). Diffuser (Janner et al., 2022) first proposed the
idea of using diffusion models for trajectory planning and showed how classifier-guided sampling
and image inpainting can be used for adaptation at test time. Recent works have used diffusion
models as priors for single-robot motion planning (Carvalho et al., 2023), for learning visuomotor
policies (Chi et al., 2024), and for offline decision-making (Ajay et al., 2023). Most of these have
been limited to single-agent planning with two notable exceptions. Jiang et al. (2023) learns a joint
motion distribution for multi-agent motion prediction and concurrent work by Mishra et al. (2024)
uses spatial-temporal factor graphs to compose modular generative models for solving long-horizon
bimanual tasks. By contrast, we focus on generating kinodynamically feasible and collision-free
trajectories for dozens of robots and complex environments without learning a joint distribution.

6 CONCLUSION

In this paper, we present MMD, a multi-robot motion planner that learns to generate smooth
collision-free trajectories for dozens of robots in complex environments. Our key contribution is
showing how single robot diffusion models can be effectively combined with search algorithms to
generate data-driven multi-robot trajectories. By learning only single-robot diffusion models, MMD
simplifies data requirements and breaks the curse of dimensionality plaguing approaches that learn
from multi-robot data. Additionally, by learning generative models of robot trajectories, MMD over-
comes many of the limitations of popular model-based MAPF algorithms, such as state discretiza-
tion, known cost function, and constant velocities. We believe MMD opens up exciting avenues for
future work on combining the strengths of search algorithms and diffusion planning.

Limitations. We are excited about the potential of MMD to push forward multi-robot coordination
and collaboration and offer a few avenues for future work. First is combining MMD with decen-
tralized and windowed multi-robot planning algorithms, like Gaussian Belief Propagation (GBP)
(Patwardhan et al., 2023), whose collision avoidance signals could be incorporated into single-robot
diffusion guidance functions. We discuss this research direction in Sec. A.1.1. Second, we believe
that the CBS-based MMD methods can be greatly accelerated, mostly through parallelization of the
high-level search. Finally, we believe the frontier of MRMP lies in collaboration. Currently, MMD
focuses on coordinating robots, seeking to produce collision-free data-driven trajectories. Carrying
out collaborative tasks is an interesting next step.

10



Published as a conference paper at ICLR 2025

7 REPRODUCIBILITY

We aspire for MMD to be easily used and extended by researchers and practitioners. To this end, we
make our source code for all MMD algorithms, scripts for data generation, training, and evaluation,
and evaluation maps publicly available at https://github.com/yoraish/mmd. This code,
along with the parameter values detailed in Sec. A.4, is sufficient for reproducing the experiments
and results presented in this paper. To run our code “out of the box,” without dataset generation or
training, we provide pre-trained models and datasets detailed in Sec. 4 with detailed instructions. For
hardware and software dependencies, we specify the exact versions of libraries and tools required in
our repository and also detail our hardware setup in Sec. A.4.
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A APPENDIX

These additional materials come to add auxiliary details on our algorithms and their implementation,
alongside providing further experimental evidence that we omitted from the main text. We begin
with an additional discussion on our algorithmic framework, move on to provide additional results,
and conclude with implementation and baseline details.

A.1 ADDITIONAL ALGORITHMIC DISCUSSION

In this section, we expand on a few key ways in which MMD-PP and MMD-CBS improve on their
classical counterparts. These were lightly touched on in the main text. We outline them in more
detail here.

CT Node Ordering in CBS. Traditionally, MAPF algorithms aim to find the shortest paths from
starts to goals. Therefore, in CBS, the high-level nodes N popped from the CT are the ones of
least cost. In our case, where the data-driven objective function scoring trajectories is generally not
available in practice, we instead aim to quickly find solutions that are collision-free, delegating the
task of finding high-quality solutions to the diffusion models. To this end, the MMD CBS strategies
choose CT nodes with the least number of conflicts to explore first, as they are more likely to lead
to collision-free solutions quickly. This is similar to the algorithm GCBS-H outlined in Barer et al.
(2014). Resembling their outcomes, we also observed a significant runtime improvement between
prioritizing CT nodes based on their geometric quality and their collision count.

Batch Trajectory Generation. Planning with diffusion models has the added benefit of being able
to generate a diverse set of solutions with a single inference pass (Carvalho et al., 2023). MMD
makes use of this property. In contrast to the original CBS, where CT nodes N store a single path
for each robot within N.Π, MMD stores trajectory batches for each robot Ri within N.τ . That is,
N.τ i may be a set of B ∈ Z>0 trajectories, with B being a batch size. MMD-PP follows similarly,
storing a batch of trajectories for each robot. When planning for Ri, MMD generates a batch of
trajectories under the currently active constraint set N.Ci (see Fig. 1). Once the batch is generated,
MMD iterates over the new resulting trajectories N.τ i and marks the one with the least collisions
as the representative trajectory for Ri. In MMD-PP this trajectory is used to define the placement
of soft-constraints in following iterations and will be part of the solution. In MMD-ECBS, weak
soft-constraints will similarly be added. All MMD CBS-based algorithms use representative trajec-
tories to compute the number of conflicts within CT nodes. When a conflict-free CT node is found
(e.g., there are no collisions between representative trajectories), MMD returns the representative
trajectories of N.τ as the solution.

A.1.1 BEYOND FULL-HORIZON PLANNING

In this work, we focus on scenarios where it is possible to carry out centralized planning. That is,
a single algorithm generates full-horizon trajectories for all robots, and robots later execute these
trajectories. This formulation is common in robotics and the planning community more broadly,
however, it has some limitations. For example, this setup requires that the motion of all moving
obstacles be known a priori, that all robots be able to carry out their trajectories as prescribed, and
that time for offline planning be available. In the real world, such information or resources may
not always be available (e.g., when robots operate next to humans). In this section, we provide a
brief introduction to another class of multi-robot planning algorithms—decentralized and windowed
algorithms—that address some of these challenges. We also explore an exciting avenue for future
work: combining these algorithms with MMD to mitigate the limitations of each approach.

The structure of decentralized and windowed multi-robot planning algorithms differs fundamentally
from full-horizon planning algorithms in that they break the “plan-then-act” paradigm (Patwardhan
et al., 2023; Van Den Berg et al., 2011; Okumura et al., 2019). While full-horizon planners first
generate a set of trajectories for all robots and then robots execute them as prescribed, windowed
algorithms instead ask each robot to plan a short trajectory for itself, execute it, observe the new
state of the world, and repeat. This setup gives up on global optimality in favor of allowing faster
planning cycles and decentralized computation. In that, it removes the reliance on a central planner
that implicitly also assumes perfect communication between robots. Instead, planned trajectories
are communicated and negotiated between neighboring robots. We believe that MMD could benefit
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Empty Map Highways Map
n Method S↑ D↑ T↓ A↓ n Method S↑ D↑ T↓ A↓

3 MMD 100% 0.999 3.4 0.002 3 MMD 100% 0.96 3.3 0.042
MPD-C 100% 1.000 2.1 0.010 MPD-C 100% 0.98 2.1 0.032

6 MMD 100% 0.995 7.0 0.002 6 MMD 98% 0.97 6.9 0.045
MPD-C 62% 0.331 2.2 0.142 MPD-C 0% - - -

9 MMD 100% 0.991 11.1 0.002 9 MMD 96% 0.97 10.7 0.043
MPD-C 0% - - - MPD-C 0% - - -

Table 1: Comparison of methods by number of agents in the Empty environment (left) and the
Highways environment (right). S is the success rate (%), D the data adherence score (see Sec. 4), T
is the average planning time (seconds), and A is average acceleration (length units/s2), a proxy for
smoothness. Despite being computationally efficient, the composite baseline struggles to maintain
high data adherence scores. Here, MMD is MMD-xECBS.

from this structure, as it enables adaptation to dynamic environments and reduces the combinatorial
complexity of MAPF algorithms by which our proposed MMD algorithms are inspired. However,
the best approach for adapting MMD to decentralized and windowed settings remains unclear.

One algorithm that could shed light on how to step towards decentralized and windowed data-driven
trajectory generation with MMD is Gaussian Belief Propagation Planner (GBP) (Patwardhan et al.,
2023). This planner is a recently proposed decentralized and windowed algorithm for multi-robot
planning that frames short-horizon planning as inference. A particular similarity between GBP and
MMD is the way single-robot plans influence each other to achieve collision-free multi-robot plans.
In both MMD and GBP, soft constraints are imposed on single-robot time-discretized trajectories
(either full-horizon or a short-horizon window) to guide their trajectory generation processes towards
favorable regions in trajectory space (e.g., collision-free, respecting dynamics, etc.). Given this
similarity, it is reasonable to believe that by incorporating signals from GBP’s factor graph into
MMD’s guidance functions, MMD could be adapted to the decentralized and windowed setting.

A.2 EXPERIMENTAL EVALUATION: ADDITIONAL RESULTS

We provide additional quantitative and qualitative results for our first two experiment sets, outlined
in Table 1, Table 2, and Fig. 6. Discussions of these experimental results are included.

A.2.1 ADDITIONAL QUANTITATIVE RESUTLS

Our manuscript mainly evaluated algorithms based on their performance in terms of success rate
and data adherence (Fig. 2, Fig. 3, and Fig. 5). While these metrics are sufficient to capture MMD’s
ability to consistently produce trajectories that follow an underlying motion data distribution, one
may also be interested in solutions’ smoothness and the wall-clock time it takes to generate those.
To this end, we include results for the average acceleration per robot (column A in Table 1 and Table
2), as a proxy for smoothness, and the runtime for trajectory generation (column T).

Average Acceleration Per Robot. Despite showing little information, since the composite base-
line quickly failed to produce valid trajectories, Table 1 offers valuable insights nonetheless. The
A column provides a glance into the reason for composite-model’s failure. Consistent with our ob-
servations, we notice that the average acceleration per robot in the 6-robot case is drastically higher
for the composite model than for MMD. This behavior, visually, translates to trajectories including
small loops and sharp turns. See Fig. 6 for an example. We have trained MPD-Composite to conver-
gence using our datasets (Sec. A.6) and performed additional tuning, however, its generated motions
struggled to capture the smooth, dynamically feasible transitions as the number of robots grew to 9.
MMD, however, produced better and larger-scale trajectories. Table 1 shows MMD keeping low av-
erage accelerations per robot. In larger teams of robots, we notice the acceleration remaining mostly
constant within each map even when the number of robots grows. This shows that robots produce
similar motions within each map regardless of congestion levels—a sign of consistency that we seek
as the number of robots scales.

Trajectory Generation Runtime. While the composite models enjoy an invariance to the number of
robots, as those only require a single inference pass for multi-robot trajectory generation, this is not
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Highways Map Conveyor Map Drop-Region Map
n Method S↑ D↑ T↓ A↓ S↑ D↑ T↓ A↓ S↑ D↑ T↓ A↓

3

MMD-xECBS 100% 0.93 3.6 0.04 100% 0.87 3.9 0.10 100% 1.00 3.7 0.05
MMD-ECBS 100% 0.93 3.5 0.04 100% 0.87 4.5 0.09 100% 1.00 3.8 0.05

MMD-PP 100% 0.93 4.3 0.04 100% 0.80 4.2 0.09 100% 0.97 4.2 0.05
MMD-CBS 100% 0.93 4.0 0.04 100% 0.93 5.7 0.10 100% 1.00 6.7 0.06
MMD-xCBS 100% 0.93 3.6 0.04 100% 0.93 4.3 0.11 100% 1.00 4.5 0.07

A*Data-ECBS 100% 0.87 3.4 - 100% 0.03 0.2 - 100% 0.27 0.2 -
A*-ECBS 100% 0.57 0.1 - 100% 0.00 0.5 - 100% 0.27 0.2 -

6

MMD-xECBS 100% 1.00 7.0 0.05 100% 0.95 9.3 0.11 100% 0.90 7.7 0.06
MMD-ECBS 100% 1.00 7.3 0.05 100% 0.92 13.2 0.09 100% 0.95 8.4 0.05

MMD-PP 100% 0.98 8.9 0.04 70% 0.90 8.7 0.09 100% 0.93 8.4 0.05
MMD-CBS 100% 1.00 14.2 0.05 100% 0.93 18.9 0.10 100% 1.00 16.7 0.06
MMD-xCBS 100% 1.00 10.2 0.05 100% 0.95 11.0 0.14 100% 0.97 12.1 0.08

A*Data-ECBS 100% 0.88 4.5 - 100% 0.17 1.1 - 100% 0.13 0.9 -
A*-ECBS 100% 0.55 0.7 - 100% 0.05 2.4 - 100% 0.12 1.1 -

9

MMD-xECBS 100% 0.97 12.7 0.05 100% 0.93 14.6 0.11 100% 0.94 12.9 0.06
MMD-ECBS 100% 0.97 15.0 0.05 100% 0.92 19.6 0.09 100% 0.96 15.5 0.06

MMD-PP 90% 0.96 13.5 0.05 30% 1.00 12.4 0.10 60% 0.93 12.3 0.06
MMD-CBS 100% 0.96 43.8 0.05 60% 0.94 46.6 0.11 50% 0.93 47.5 0.08
MMD-xCBS 100% 0.96 29.8 0.05 100% 0.94 32.8 0.20 70% 0.92 39.1 0.11

A*Data-ECBS 100% 0.88 14.0 - 100% 0.10 2.7 - 100% 0.22 1.3 -
A*-ECBS 100% 0.51 3.4 - 100% 0.06 3.4 - 100% 0.19 0.8 -

12

MMD-xECBS 100% 0.99 15.8 0.04 100% 0.94 23.1 0.13 100% 0.87 22.9 0.07
MMD-ECBS 100% 0.99 17.6 0.04 100% 0.95 28.4 0.10 100% 0.88 29.6 0.06

MMD-PP 80% 0.99 18.4 0.05 30% 0.86 16.9 0.10 0% - - -
MMD-CBS 0% - - - 0% - - - 0% - - -
MMD-xCBS 30% 0.97 54.6 0.05 10% 1.00 53.5 0.19 0% - - -

A*Data-ECBS 80% 0.83 19.7 - 100% 0.14 3.8 - 100% 0.22 4.0 -
A*-ECBS 100% 0.52 6.0 - 100% 0.03 4.0 - 100% 0.23 4.4 -

15

MMD-xECBS 100% 0.97 24.3 0.05 90% 0.96 38.3 0.14 100% 0.80 35.7 0.07
MMD-ECBS 100% 0.97 29.3 0.05 80% 0.97 43.7 0.10 60% 0.86 43.0 0.06

MMD-PP 60% 0.99 23.2 0.05 0% - - - 0% - - -
MMD-CBS 0% - - - 0% - - - 0% - - -
MMD-xCBS 0% - - - 0% - - - 0% - - -

A*Data-ECBS 50% 0.85 32.0 - 100% 0.11 14.4 - 100% 0.24 7.7 -
A*-ECBS 100% 0.47 10.5 - 100% 0.04 13.4 - 100% 0.21 9.3 -

20

MMD-xECBS 100% 0.96 46.1 0.05 0% - - - 0% - - -
MMD-ECBS 60% 0.97 51.8 0.05 0% - - - 0% - - -

MMD-PP 0% - - - 0% - - - 0% - - -
MMD-CBS 0% - - - 0% - - - 0% - - -
MMD-xCBS 0% - - - 0% - - - 0% - - -

A*Data-ECBS 22% 0.82 43.5 - 100% 0.11 15.6 - 100% 0.23 15.7 -
A*-ECBS 80% 0.46 21.6 - 100% 0.05 21.0 - 100% 0.22 16.5 -

Table 2: Additional results for a subset of our MMD and MAPF evaluation. Table columns are
similar to Table 1. We omit acceleration information from the MAPF methods as those plan on a
grid graph and assume constant velocities.

the case for MMD. For once, all MMD algorithms begin with the sequential process of generating
trajectories for all robots one at a time. The time for this operation, of course, scales linearly with
the number of robots. As mentioned in our conclusion, the MMD CBS-based methods are naturally
parallelized. Since the runtime of these methods is tightly related to the number of CT nodes created,
which could be evaluated in parallel, doing so may drastically reduce runtimes. We leave this to
future work.

MAPF Baseline Runtime. The trends of our timing results for the MAPF baselines shown in Table
2 are inconsistent across maps. Interestingly, the planning time for A*Data-ECBS in the Highways
map was significantly higher than that of A*-ECBS. This comes with the added benefit of the pro-
duced paths better adhering to data. In the other two maps, which have more challenging underlying
motion data distributions, the difference between A*Data-ECBS and A*-ECBS was insignificant,
though so were the data adherence scores. It is unclear to us how to effectively incorporate demon-
strations from data into MAPF solvers without compromising their ability to scale.

A.3 ADDITIONAL QUALITATIVE RESULTS

To better capture the behavior of the various trajectory generators discussed in this paper, Fig. 6
shows a series of images of generated trajectories in two problems. We keep the number of robots
low for clarity. Videos are available in our supplementary materials as well.
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Figure 6: Visual examples of trajectories generated by MMD-xECBS, MMD-PP, MPD-Composite,
and A*Data-ECBS in tests within the Empty and Highways maps. The top two rows show test cases
with 3 robots, and the bottom two rows with 6. All planning problems follow the circle setup (Sec.
4.2) with radius 0.6 for the Highways map and 0.8 for the Empty map.

A.4 IMPLEMENTATION DETAILS

We implemented all of our algorithms in Python and ran our experiments on a laptop with an In-
tel Core i9-12900H CPU, 32GB RAM (5.2GHz), and Nvidia GeForce RTX 3080Ti Laptop GPU
(16 GB). We based our diffusion planning implementation on the official code of Carvalho et al.
(2023) and used an exponential variance schedule. The guidance function cost components we used
were Jsmooth to encourage dynamically feasible trajectory generation with GPMP, Jobj for obstacle
avoidance (both from Carvalho et al. (2023)), and Jc for constraint satisfaction. We set the weights
λsmooth = 8e−2, λobj = 2e−2, and λc = 2e−1 for strong soft-constraints and λc = 2e−2 for weak
soft-constraints.

In our experiments, the size of each local map was 2× 2 units, and the diameter of each disk robot
was 0.1 units. The radius for CBS sphere constraints was the disk robot radius multiplied by a
margin, resulting in a radius value of 0.12 units, and the time interval ∆t was 0.08 seconds (2 time
steps).
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A.5 EXPERIMENTAL EVALUATION: ADDITIONAL DETAILS

This section provides details about our experimental setup, namely the data adherence scoring func-
tion costdata(τ

i) that we used to evaluate trajectories τ i in each map. We also include details on our
baseline implementations.

A.5.1 DATA ADHERENCE FUNCTIONS

As discussed in Sec. 4, each of our local maps has an associated motion pattern for robots to follow
when those move within it. This motion pattern is reflected in the trajectory dataset associated
with each map. Sec. 4 briefly outlined the data adherence score functions for each map, and we
provide more specific definitions here. We also include more details on our larger maps, including
the structure of their local maps, illustrations (Fig. 7), and their adherence scores are computation
method.

Drop-Region map (Fig. 3c) simulates package drop-off chutes. Adherence is met for τ i, i.e.,
costdata(τ

i) = 1, if the trajectory spends at least 25% of its duration, consecutively, in a region of
radius 0.15 centered 0.15 units off the midpoint of each of the 16 chutes.

Conveyor map (Fig. 3b) features narrow passages with directional motion requirements. Trajectory
τ i adheres to data if it includes a section that enters the top corridor from the right and leaves it from
the left, or vice versa for the bottom corridor. There is no restriction on robots transitioning through
the corridors in reverse, and no restriction on start or goal states being within the corridors. This
requires robots to reason about traversal ordering.

Highways map (Fig. 3a), requires counter-clockwise movement around a central obstacle. The
origin of the map is at the middle of the centeral obstacle. For each state transition of a trajectory
τ i, from τ i

t to τ i
t+1, the angle between the vectors pointing from the origin to qi

t+1 and to qi
t is

computed. qi
t is the associated configuration at τ i

t. We define adherence to be met for τ i if its
cumulative angle is positive, i.e., counter-clockwise.

Empty map (Fig. 2a) is our simplest. Trajectories τ i, which have H time steps, are scored based
on the fraction of their steps that lie within a margin of a straight-line interpolation between a initial
and final configurations qi

1,q
i
H in τ i. Specifically, let l be the distance between the first and last

configurations in τ i, and let m be the number of trajectory configurations whose distance to the line
qi
H − qi

1 is less than l
10 . We define costdata(τ

i) := m
H .

2× 2 map (Fig. 5a) is our first instance of a larger map, composed by four local maps (from top
left going clockwise): Empty, Conveyor, Highways, and Highways. In these larger maps, each robot
is given a start and goal configuration, as well as a sequence of local maps to traverse. We can
see this sequence as a form of a task-level plan. The trajectory for a robot Ri is generated with a
single forward pass by sequencing local diffusion models, as described in Sec. 3.3. The resulting
trajectory τ i can be seen as a concatenation of L local trajectories τ i,1, . . . , τ i,L, one for each
local map. Since robots must adhere to the motion pattern prescribed by each local map they move
through, we compute the total data-adherence score for a trajectory to be the average adherence

across all its traversed local maps, i.e., costdata(τ
i) =

1

L

∑L
l=1 costdata(τ

i,l).

3× 3 map (Fig. 5b) is our second instance of a larger map, composed by the local maps (in row-
major): Empty, Conveyor, Drop-Region, Highways, Highways, Highways, Conveyor, Drop-Region,
Empty. Data adherence in all larger maps is computed similarly to the 2× 2 map described above.

To mimic real-world scenarios, we have staggered the start times of robots in our large scale experi-
ments in Sec. 4.3. There, robots began moving 10 time steps apart. Robots in motion were required
to avoid static robots. Those may be stopped in high-density regions, potentially causing congestion.

A.6 BASELINE DETAILS

Our experiments include two families of baselines: composite models and MAPF methods. Both
baselines attempt to produce trajectories (or paths) that distribute according to an underlying motion
pattern that is reflected in a dataset. This section comes to provide additional details regarding these
baseline methods.
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(a) Empty map. (b) Conveyor map. (c) Highways map. (d) Drop-Region map.

(e) 2× 2 map. (f) 3× 3 map.

Figure 7: Illustrations of our different maps. In the top row, we show an example trajectory that
follows the data distribution prescribed by maps’ underlying motion patterns. Below, we include
illustrations of our 2 × 2 and 3 × 3 maps and outline the boundary between their local maps for
better clarity. The larger maps include visualizations of single-robot trajectories generated by MMD
with a perfect data-adherence score.

Composite Models. Training composite models requires two components. The first is a dataset
of multi-robot motions, and the second is a model that can be trained to generate trajectories that
resemble those in the data. Given that obtaining multi-robot motion datasets is generally intractable
as it requires solving an MRMP problem for each datapoint, in this paper we focus on single-robot
data and construct our multi-robot datasets from collision-free subsets of our single-robot datasets.
It is worth noting that given that our multi-robot datasets were composed of single-robot data, the
conclusions from our results is that it is difficult to learn multi-robot trajectory generation from
composed single-robot data, and not that it is a uniquely challenging task in the general case. See
Sec. 4.1 for a description of our composite models.

MAPF Baselines. Our MAPF baselines, termed A*Data-ECBS and A*-ECBS, are both similar
algorithmically and only differ in the edge costs they use for single-robot graphs. We will start
with describing the algorithms and then give additional details for cost map creation. The low-level
planners used in these baselines are A* with a focal list mechanism, also known as A∗

ϵ (Pearl & Kim,
1982). We set the focal list bound to 1.5 and did not allow for re-expansions in our implementation.
On the high-level search, we prioritized CT nodes strictly based on their conflict count to match the
strategy in MMD. All robots in our experiments travelled on a 4-connected regular grid graph with
step size of 0.1, and were allowed to move up, down, left, right, or wait on each time step, with each
action incurring a unit cost in A*-ECBS. It is worth noting that the robots in our experiments are
not point-robots, and so robot-robot collision checking is needed to find conflicts (e.g., two robots
traversing different edges between t and t′ may still cause an edge conflict). This affected runtime.
To encode dataset demonstrations in A*Data-ECBS, we created cost maps for each evaluation map
as discussed in Sec. 4.2. To do so in a given map, we iterate over all its dataset entries, and follow
each trajectory, keeping track of which discretized cells (centered at states s) it visited. For each
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cell that the trajectory visited, we find the first trajectory state outside of its center s, call it s′, and
increment a count for the outgoing graph (directed) edge from s that aligns best with the line between
s and s′. Eventually, we assign directed edge costs of 1+ 10

m with m being the number of trajectories
that incremented this edge or 1 if none have. Our A*Data-ECBS and A*-ECBS implementation was
done in Python.

A.7 TRAINING AND DATASET GENERATION DETAILS

In this section, we give a brief overview of our data generation and network training processes. We
note that our code for generating data, training models, and multi-robot motion planning with MMD
is publicly available, and we encourage readers to consult it for exact implementation details.

Dataset Generation: In this work, each (local) map is associated with a dataset of trajectories.
There, each data point is one, single-robot, trajectory from a random collision-free start configura-
tion to a random collision-free goal configuration. The trajectory connecting the start and goal is
discretized uniformly to 64 points such that the time between consecutive trajectory configurations
is constant. Each configuration on a trajectory is complemented with velocity information too. Im-
portantly, each dataset trajectory respects the motion pattern dictated by the map within which it is
embedded. For example, trajectories in the Empty map will be straight lines, and in the Conveyor
map trajectories will all pass through either of the conveyor passages. See Fig. 7 for illustrations of
similar trajectories to those found in our datasets. To create the datasets, we endow each map with a
motion pattern function that, given start and goal configurations, generates the critical motions that
are associated with adhering to a map’s underlying motion pattern. We call these motions skill sub-
paths. For instance, in the Conveyor map, a skill sub-path will be a short sequence of configurations
moving a robot throughout one of the corridors in the map. Given a skill sub-path, we create the
final dataset trajectory by connecting the start configuration to the beginning of the skill sub-path,
the end of the skill sub-path to the goal configurations (both with RRT-Connect (Kuffner & LaValle,
2000)), and finally smooth the resulting trajectory with a B-spline and an optimizer. This process is
heavily inspired by the methodology used by Carvalho et al. (2023).

Training procedure: The motion planning diffusion models that we use in this work generate
single-robot trajectories. Therefore, during training time, they are not required to reason about other
robots. This allows us to use previously established training methodologies for motion planning
diffusion models directly. In our work, we follow the same training procedure outlined in Carvalho
et al. (2023), though other options can be used as well.

A.8 RECOMMENDATIONS FOR PRACTITIONERS

We have presented five MMD variants in this paper alongside other approaches to multi-robot mo-
tion planning under learned motion distributions. Our experience with these algorithms has shed
light on some of their practical strengths and weaknesses, which could be of interest to practitioners
who wish to deploy or extend MMD. To this end, we offer a short set of recommendations regarding
which MMD algorithms perform best in different scenarios. First, in situations with a relatively
small number of robots, the differences between the MMD variants are less pronounced, as all of
them solve problems relatively well. This is mostly owed to the capabilities of diffusion planning
models since, in those cases, coordination is relatively easy. In such cases, we recommend using one
of the CBS-based MMD algorithms since those will guarantee that a solution will be collision-free
(and will normally find a solution within a short time). Among the CBS-based MMD algorithms,
MMD-xECBS proved to be the best choice, as it is more efficient than the other CBS-based MMD
variants and can find solutions with a similar quality.

When the number of robots increases, we can distinguish between two types of scenarios: those that
are relatively free and those that are cluttered. Free scenarios are those in which the robots can easily
move around each other. The reason for this could be because there are not many obstacles in the
environment (e.g., our Empty map) or because the underlying learned motion patterns help avoid
congestion (e.g., our Highways map). Cluttered scenarios are the opposite, where the robots are
forced to move close to each other, either by the environment or by the learned motion patterns. In
free scenarios, we recommend considering MMD-PP, as it is the fastest algorithm and can effectively
find collision-free solutions. However, in cluttered scenarios, we recommend using MMD-xECBS
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since its search over constraint-configurations showed promise in handling congestion, performing
better than MMD-PP.
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