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ABSTRACT
Most existing methods for text-based person retrieval focus on text-
to-image person retrieval. Nevertheless, due to the lack of dynamic
information provided by isolated frames, the performance is ham-
pered when the person is obscured or variable motion details are
missed in isolated frames. To overcome this, we propose a novel
Text-to-Video Person Retrieval (TVPR) task. Since there is no
dataset or benchmark that describes person videos with natural lan-
guage, we construct a large-scale cross-modal person video dataset
containing detailed natural language annotations, such as person’s
appearance, actions and interactions with environment, etc., termed
as Text-to-Video Person Re-identification (TVPReid) dataset. In
this paper, we introduce aMultielement Feature Guided Fragments
Learning (MFGF) strategy, which leverages the cross-modal text-
video representations to provide strong text-visual and text-motion
matching information to tackle uncertain occlusion conflicting and
variable motion details. Specifically, we establish two potential
cross-modal spaces for text and video feature collaborative learn-
ing to progressively reduce the semantic difference between text
and video. To evaluate the effectiveness of the proposed MFGF,
extensive experiments have been conducted on TVPReid dataset.
To the best of our knowledge, MFGF is the first successful attempt
to use video for text-based person retrieval task and has achieved
state-of-the-art performance on TVPReid dataset. The TVPReid
dataset will be publicly available to benefit future research.

CCS CONCEPTS
• Computing methodologies → Object identification; • Infor-
mation systems→Multimedia and multimodal retrieval.

KEYWORDS
person re-identification, cross-modal retrieval, text-to-video person
retrieval

1 INTRODUCTION
With increasing concerns about public security, text-based person
retrieval has drawn great attention from the multimedia commu-
nity. It aims to retrieve images of a specific person from a database,
which leverages natural language queries to describe the visual ap-
pearance of the target person. Previous works [19, 21, 22, 24] focus
on analyzing static pedestrians’ appearance by isolated frame. How-
ever, these isolated frames in text-to-image person retrieval cannot
provide dynamic information, resulting in inferior performance,
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especially in ambiguous situations such as obscured persons or
missing motion details. For example, as shown in Figure 1, the text
provides a precise description of the person’s appearance, while the
person in Figure 1(b) is heavily obscured by other people who hold
an umbrella, leading to failed matching. Moreover, as illustrated
in Figure 2, the text contains the details of the pedestrian motion
such as the movements with change-over-time and interaction with
surroundings, but the image-based methods fail to fully explore
available dynamic contextual clues, which neglects crucial internal
correlations among successive frames, resulting in low capability
of retrieving.

To address the mentioned problems, it is a remarkable solution
that uses videos instead of isolated frames to offer these contextual
clues. Specifically, compared to isolated frames, video provides a
series of continuous frames that contain rich spatio-temporal infor-
mation, revealing pedestrians’ appearance changes as well as their
critical motion information. As shown in Figure 1, it can be noted
that although there is a person momentarily obscured by objects, it
can still obtain the complete appearance features using contextual
information, due to uniform clothing style. Furthermore, the video
(Figure 2) also shows the pedestrian’s sequential motion even in
interactions with the environment via continuous frames. Thus,
aggregated spatio-temporal information provided by videos can
excavate discriminative and dynamic information effectively, which
auxiliary calibrates missing or misaligned body parts and naturally
break through the issues of temporary occlusion in isolated frames.

Figure 1: Text-to-video person retrieval can effectively solve
the problem of pedestrians being occluded in isolated images,
which uses the contextual information provided by the video
to make up for the missing features.

To break the limitations that appeared in the current dataset, we
introduce the Text-to-Video Person Re-identification (TVPReid)
dataset. This novel dataset is comprised of 6559 videos, with a
total size of 19.2G, which is collected from three established video-
based person re-identification datasets: PRID-2011 [10], iLIDS-VID
[20], and DukeMTMC-VideoReID [23]. Our dataset covers differ-
ent scenes, views, and camera specifications, which increases the
diversity of the video content. Mainly, each video in the dataset
corresponds to two distinct text descriptions, eventually a total
of 13118 video pedestrian description sentences are created. This
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Figure 2: The video contains information about pedestrians’ motions and interactions with people and things around them
that images cannot provide.

dataset offers an essential benchmark for the advancement of text-
to-video person retrieval. Figure 6 shows the thumbnail, which
collects a large number of high-frequency words and video samples
appearing in the TVPReid dataset.

To further solve the mentioned issues in previous works, we
propose a new task called Text-to-Video Person Retrieval(TVPR),
and present an effective Multielement Feature Guided Fragments
Learning (MFGF) strategy for robust person retrieval. In this model,
we present fragments learning to mine high-quality representations,
which use text and video fragments (such as high-frequency words
and video frames) instead of the whole text and video. Firstly, we
employ BERT [5] to extract text information. In terms of video,
we leverage the S3D model [25] and ViT [6] to learn motion rep-
resentation and visual representation within multiple successive
frames. Subsequently, we integrate the knowledge acquired by S3D
and ViT to generate a motion-enhanced representation. However,
combining visual and motion features directly leads to information
redundancy, at the same time there is a great semantic gap between
text and video, thereby making accurate matching between text
and video difficult.

Considering these challenges, we introduce a Multielement Fea-
ture Guidance Learning strategy comprising two potential cross-
modal spaces: Common space and Dual-Distilled space (𝐷2 space).
Specifically, we extract multielement features such as tips and dy-
namic movement sequences from distilled text and video infor-
mation. Moreover, these multielement features are mapped into
potential spaces for inherent essence correlations across differ-
ent modalities and filter out the redundant information through
contrastive calibration learning to guide purity feature matching
between text and video. The proposed MFGF effectively enhances
the reliability and accuracy of text-based person retrieval.

Our main contributions can be summarized as follows:

• We build a large-scale benchmark for text-to-video person
retrieval, termed as Text-to-Video Person Re-identification
(TVPReid) dataset. To the best of our knowledge, it is the
first public dataset describing personal videos in natural
language.

• A novel task Text-to-Video Person Retrieval (TVPR) is pro-
posed. Moreover, MFGF is designed to address occlusion and
missing action details from isolated frames by purity cross-
modal information and dynamic sequences, at the same time
gradually reducing the semantic difference between text and
video.

• Extensive experiments are carried out to evaluate the pro-
posed MFGF on the new person retrieval benchmark. MFGF
demonstrates its superior performance and makes a success-
ful attempt to employ video for text-based person retrieval
tasks.

2 RELATEDWORK
2.1 Joint text-video Understanding
The joint text-video understanding model is devoted to compre-
hending both textual and visual inputs, condensing their represen-
tations, and subsequently establishing connections between text
and video through joint embedding learning or alternative method-
ologies. In previous research, several text-learning models have
exhibited outstanding performance in text understanding. Notably,
Transformer [18] and the Transformer-based pre-trained language
representation models like BERT have achieved notable success
in this field. In video understanding, the most classic approach
involves utilizing CNN models to generate frame-level representa-
tions for video. Subsequently, these frame-level representations are
aggregated into video-level representations through mean pooling
or LSTM [11]. While CNN-based models have shown promising
results in obtaining video representations, they are constrained
by their high computational complexity. In contrast, Transformer-
based models offer high computational efficiency and are better
suited for video retrieval tasks. For instance, Zhang et al. [29] in-
troduce the Spatio-Temporal Transformer (STT), which leverages
spatio-temporal information to address the issue of computational
complexity.

To bridge the two modalities, a common approach is to devise
a joint embedding space to capture the shared semantic informa-
tion, as well as compute the similarity between text and video

2
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Figure 3: The overall framework of MFGF. The left is fragments learning of text and video, using powerful text and video
understanding networks to learn visual and motion information from text and video fragments. The text and video features
extracted from the left are projected into two potential spaces, and then gradually reduce the semantic difference between text
and video through visual and motion interactions between multielement features (text feature, video feature, tips, text distilled
feature, and video distilled feature)

representations. Luo et al. [15] devise three categories of similar-
ity calculators for CLIP4Clip, namely parameter-free, sequential,
and tight types, to assess the correlation between video features
extracted by ViT and text features extracted by Transformer. Calcu-
lating the similarity between two distinct modalities directly poses
considerable challenges. To address this, X-pool [8] introduces a
scaled dot product attention mechanism to compute the final sim-
ilarity score. The attention weights of the text across frames are
employed to create an aggregated video representation, thereby
bolstering the association between text and video.

2.2 Text-based Person Retrieval
Text-based Person Retrieval entails retrieving pedestrian images
based on provided textual queries. Li et al. [13] introduce a method-
ology that employs a CNN-RNN architecture to extract cross-modal
features at a global scale. Initially, VGG [17] and LSTM architectures
are utilized to learn visual-textual representations. These represen-
tations are subsequently aligned using a matching loss function.
Expanding upon this foundation, ResNet [9] and BERT architec-
tures have been incorporated for feature extraction. Additionally,
a groundbreaking cross-modal matching loss is employed to rec-
oncile global image-textual features by a unified embedding space.
With the increasing interest in CLIP[16], a surge in efforts is wit-
nessed towards its advancement. Specifically, Yan et al. [27], Jiang
et al. [12], Cao et al. [4], and Bai et al. [1] are steadfastly devoted

to harnessing the robust capabilities of CLIP to forge efficacious
mapping relationships between images and textual descriptions.

3 METHODOLOGY
In this section, we provide a detailed overview to the proposed
Multielement Feature Guided Fragments Learning (MFGF) strat-
egy, shown in Figure 3. The network comprises three primary com-
ponents: fragments learning of text, fragments learning of video,
and multielement feature guidance learning.

3.1 Fragments Learning of Text
3.1.1 Text Prompter.
The function of Text Prompter is to extract keywords from the text,
eventually composes 𝑇𝑖𝑝𝑠 (preparing for 𝐷2 space in Section 3.3.2).
We first perform distillation operations on all texts in the training
data to obtain all keywords, including verbs, nouns, and adjectives,
and then form into a set: K = {𝐾1, 𝐾2, · · · , 𝐾ℎ}, ℎ is the index of a
sample of the dataset. Subsequently, we take the union of all subsets
in K to get a Vocab Bank (VB), which is formulated as:

VB = 𝐾1 ∪ 𝐾2 ∪ 𝐾3 · · · ∪ 𝐾ℎ (1)

Assume that given a video, we integrate all its sentence descrip-
tions and then use the NLTK [14] tool to extract a set of keywords
indicated as 𝐾ℎ = {𝑘1, 𝑘2, · · · , 𝑘𝑛}, 𝑘𝑛 denotes 𝑛-th keyword in de-
scriptions of ℎ-th video. Then, performing one-hot encoding for

3
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each video to obtain the initial 𝑇𝑖𝑝𝑠 , which can be defined as :

𝑓𝑂𝑡𝑖𝑝𝑠 ∈ R𝐷𝑡𝑖𝑝𝑠 (2)

where, the dimensions 𝐷𝑡𝑖𝑝𝑠 depends on the size of the Vocab
Bank. Significantly, these keywords often reveal a series of key
movements and the appearance of pedestrians. In order to obtain
more credible 𝑇𝑖𝑝𝑠 , the importance of each keyword in the given
video also needs to be measured:

𝑤𝑛 =
𝑐𝑛

𝐶
(3)

where,𝑤𝑛 denotes the importance of 𝑛-th keyword; 𝑐𝑛 means the
number of 𝑛-th keyword appeared; and𝐶 formulates the total num-
ber of all keywords appeared. It should be noted that 𝑤𝑛 is not
changed during the training.

For the importance of all keywords in a given video, we set a
semi-defined matrix:

𝑊ℎ = {𝑤1,𝑤2, · · · ,𝑤𝑛} (4)

where, the dimension of𝑊ℎ depends on the size of 𝐷𝑡𝑖𝑝𝑠 . For all
videos in dateset, the importance can be defined as:

W = {𝑊1,𝑊2, · · · ,𝑊ℎ} ∈ Rℎ×𝐷𝑡𝑖𝑝𝑠 (5)

The final 𝑇𝑖𝑝𝑠 𝑓𝑡𝑖𝑝𝑠 ∈ R1×𝐷𝑡𝑖𝑝𝑠 of given video is obtained by
multiplying the weight𝑊ℎ and the initial 𝑇𝑖𝑝𝑠 𝑓𝑂

𝑡𝑖𝑝𝑠
:

𝑓𝑡𝑖𝑝𝑠 =𝑊ℎ ⊙ 𝑓𝑂𝑡𝑖𝑝𝑠 , 𝑓𝑡𝑖𝑝𝑠 ∈ R𝐷𝑡𝑖𝑝𝑠 (6)

For all initial 𝑇𝑖𝑝𝑠 F𝑂
𝑡𝑖𝑝𝑠

in dataset, the final 𝑇𝑖𝑝𝑠 F𝑡𝑖𝑝𝑠 can be for-
mulated as a set:

F𝑡𝑖𝑝𝑠 = W⊤F𝑂𝑡𝑖𝑝𝑠 , F𝑡𝑖𝑝𝑠 ∈ Rℎ×𝐷𝑡𝑖𝑝𝑠 (7)

3.1.2 Text Encoder.
The text encoder employs a bidirectional encoder based on Trans-
former, a pre-trained language representation model. It utilizes a
Masked LanguageModel (MLM) to train bidirectional Transformers,
thereby generating comprehensive language representations. For a
sentence consisting of𝑀 words, the input to BERT is a tokenized
sequence𝑇 = {𝑡1, 𝑡2, · · · , 𝑡𝑀 } with positional embeddings included.
Additionally, a special [CLS] token is added at the beginning of the
token sequence. We extract the output corresponding to the [CLS]
token as the final representation of the text, denoted as 𝑓𝑇𝑒𝑥𝑡 .

3.2 Fragments Learning of Video
For a video understanding model, processing all frames at the same
time will cause heavy computational costs, so we intend to learn
video representations from partial frames. These video frames serve
as fragments of the video and have visual and motion information
consistent with the whole video.

3.2.1 Visual Encoder.
The excellent performance and strong scalability of Vision Trans-
former (ViT) prompt us to study its application on video data. In
this paper, we adopt the ViT with an improved version [2] to make
it more suitable for processing video data. The subtle modifications
are reflected in the residual connection part of the block input and
the spatio-temporal attention output in the space-time transformer
blocks. Given a video, 𝐿1 frames are randomly selected to form a
video sequence 𝑉𝑉𝐸 = {𝑓 𝑟𝑎𝑚𝑒1, 𝑓 𝑟𝑎𝑚𝑒2, · · · , 𝑓 𝑟𝑎𝑚𝑒𝐿1 } as input,

𝑓 𝑟𝑎𝑚𝑒𝐿1 ∈ R𝐻×𝑊 ×3. We divide each input video frame into 𝑁
patches of size 𝑃 × 𝑃 , where 𝑁 = 𝐻𝑊 /𝑃2.

Subsequently, we use convolutional layers to process video patches
𝑋 = {𝑥1,1, 𝑥1,2, · · · , 𝑥𝐿1,𝑁 }, 𝑥𝑙,𝑛 ∈ R3×𝑃×𝑃 denotes the𝑛-th patch in
𝑙-th frame. And flatten the output to obtain the embedding sequence
𝐸𝑂
𝑣𝑖
= {𝑒𝑂1,1, 𝑒

𝑂
1,2, · · · , 𝑒

𝑂
𝐿1,𝑁

}, 𝑒𝑂
𝑙,𝑛

∈ R𝐷𝑣𝑖 means the embedding cor-
responding to 𝑥𝑙,𝑛 , where 𝐷𝑣𝑖 depends on the number of kernels in
the convolutional layer. To enable the visual encoder to learn spa-
tial and temporal knowledge, temporal and spatial embeddings are
added to each embedding of patch to obtain input token 𝑒𝑙,𝑛 ∈ R𝐷𝑣𝑖 :

𝑒𝑙,𝑛 = 𝑒𝑂
𝑙,𝑛

+ 𝐸𝑆𝑛 + 𝐸𝑇
𝑙

(8)

It should be noted that patches at different spatial positions in the
same frame have the same temporal embedding 𝐸𝑇

𝑙
∈ R𝐷𝑣𝑖 , while

the patches at the same spatial position in different frames have the
same spatial embedding 𝐸𝑆𝑛 ∈ R𝐷𝑣𝑖 . In this way, the visual encoder
can more accurately understand the contextual connection between
each block.

Furthermore, similar to the text encoder, a learnable [CLS] token
is added to the head of the token sequence and used for aggregating
to generate the final visual feature 𝑓𝑣𝑖𝑠𝑢𝑎𝑙 .

3.2.2 Motion Encoder.
Although transformer architectures such as the Visual Encoder
described above can extract spatio-temporal features, which de-
stroy the integrality of dynamic information. In order to ensure the
continuity and integrity of dynamic information, we still need to
design a scheme to make up for the lack of dynamic information.

We adopt Spatio-temporal 3D Convolutional Neural Network
(S3D) to learn stronger correlations in consecutive video frames
and capture motion details. Different from Visual Encoder, Motion
Encoder extracts 𝐿2 continuous video frames 𝑉𝑀𝐸 ∈ R𝐿2×𝐻×𝑊 ×3

as input. In the pre-processing part, we use 3D convolutional layers
to learn the dynamic information in the video frames and the dy-
namic connection between adjacent frames to initially obtain the
more conspicuous motion features 𝑓𝑂

𝑚𝑜𝑡𝑖𝑜𝑛
in video frames:

𝑓𝑂𝑚𝑜𝑡𝑖𝑜𝑛 = MaxPool(ReLU(3DConv(𝑉𝑀𝐸 ))) (9)

In order to improve computational efficiency and obtain bet-
ter accuracy, the S3D model uses a 3D convolution version that
separates temporal and spatial convolutions.

Specifically, it replaces the original standard [𝑘, 𝑘, 𝑘] 3D con-
volution with two consecutive convolutional layers, a [1, 𝑘, 𝑘] 2D
convolutional layer, and a [𝑘, 1, 1] 1D convolutional layer, respec-
tively. Where the 2D convolutional layer is used to learn spatial
knowledge, and the 1D convolutional layer is used to learn temporal
knowledge.

Separate spatio-temporal Inception blocks are stacked to deeply
learn detailed dynamic features. An Inception block receives the
output 𝑦𝑖−1 of the previous layer as input, and then needs to be
processed by spatial convolution and temporal convolution in order
to extract dynamic spatio-temporal features:

𝑦′𝑖 = TempConv(SpatConv(Conv(𝑦𝑖−1))) (10)

𝑦′′𝑖 = Conv(𝑦𝑖−1) ⊕ 𝑦′𝑖 ⊕ 𝑦
′
𝑖 ⊕ Conv(MaxPool(𝑦𝑖−1)) (11)

Here, ⊕ means the concatenate operation; Conv denotes the con-
volution with shape [1, 1, 1]; SpatConv and TempConv refer to the

4
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spatial convolution operation and the temporal convolution opera-
tion respectively; andMaxPool formulates the maximum pooling
operation. The concatenate operation is introduced here to increase
the width of the feature and the scale adaptability of the network.
In order to further sharpen the details of dynamic features, a self-
attention module is added after temporal convolution. First, we
perform an average pooling operation on the temporal and spatial
dimensions of the input features to obtain 𝑦𝑝

𝑖
= 𝑝𝑜𝑜𝑙 (𝑦′′

𝑖
) and then

perform the following operations:

𝑦𝑖 = sigmoid(𝜎𝑦𝑝
𝑖
+ 𝑏)𝑦𝑝

𝑖
(12)

where, 𝜎 and𝑏 are the initial parameters of sigmoid,𝑦𝑖 is the output
of the Inception block of the current layer, which is the input of
the next layer. We take the output of the final layer as the motion
feature 𝑓𝑚𝑜𝑡𝑖𝑜𝑛 .

3.2.3 Feature aggregation.
We use two powerful video understanding models, ViT and S3D, to
analyze visual and motion information in pedestrian videos. If only
the features extracted in the visual encoder are used for retrieval,
key motion details cannot be described due to weak dynamic in-
formation, which makes motion matching between text and video
difficult. So we need S3D to make up for this shortcoming. We first
concatenate the features extracted by the two encoders:

𝑓𝑓 𝑢𝑠𝑖𝑜𝑛 = 𝑓𝑣𝑖𝑠𝑢𝑎𝑙 ⊕ 𝑓𝑚𝑜𝑡𝑖𝑜𝑛 (13)

Here, ⊕ also refers to the concatenate operation. Then the motion
features are integrated into the visual features through the fully
connected layer to enhance the motion information in the visual
features and highlight the dynamic details:

𝑓𝑀𝐸 = FC(BN(𝑓𝑓 𝑢𝑠𝑖𝑜𝑛)) (14)

Here, 𝑓𝑀𝐸 means motion-enhanced features, BN denotes the nor-
malization operation, and FC refers to the fully connected layer.

Figure 4: ViT and S3D will repeatedly extract some visual and
motion features, which will cause redundant information.

3.3 Multielement Feature Guidance Learning
There is a semantic difference between text and video, a gap that
is difficult to bridge. In this paper, we design two potential spaces
for text and video feature collaborative learning to progressively
reduce the semantic difference between text and video by text-based
multiple-frame visual and motion interaction.

3.3.1 Common Space Learning.
In order to ensure effective interaction between text and video
features, 𝑓𝑀𝐸 and 𝑓𝑇𝑒𝑥𝑡 will be projected into the same dimen-
sional space, to learn a common feature distribution. Specifically,
we continuously adjust text and video features through contrastive
calibration learning, and close the distance between matched text
and video pairs by calculating similarity scores. The similarity score
between the video and the text is measured by calculating the cosine
similarity between the two features.

score =
𝑓𝑇𝑒𝑥𝑡 𝑓𝑀𝐸

∥ 𝑓𝑇𝑒𝑥𝑡 ∥ ∥ 𝑓𝑀𝐸 ∥
(15)

We follow the training strategy in [28] and calculate the soft-
max loss, where matched text-video pairs in the same batch are
regarded as positive samples and other text-video pairs are regarded
as negative samples. We calculate the text-to-video loss as follows :

L𝑐𝑜𝑚𝑚𝑜𝑛 = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp(score(𝑓𝑇𝑒𝑥𝑡,𝑖 , 𝑓𝑀𝐸,𝑖 )/𝜃 )∑𝐵
𝑗=1 exp(score(𝑓𝑇𝑒𝑥𝑡,𝑖 , 𝑓𝑀𝐸,𝑗 )/𝜃 )

, 𝑗 ≠ 𝑖

(16)
where𝐵 refers to Batchsize, score(𝑓𝑇𝑒𝑥𝑡,𝑖 , 𝑓𝑀𝐸,𝑗 ) refers to themethod
of calculating the similarity score between 𝑖-th text and 𝑗-th video,
and 𝜃 refers to the temperature coefficient. Through this loss func-
tion, our purpose is to learn the unified feature distribution between
text and video, thereby providing a more accurate basis for text-to-
video matching.

3.3.2 Dul-Distilled Space Learning.
Common space initially narrows the distance between matched text
and video pairs by learning the common feature distributions be-
tween text and video. However, there are still interfering redundant
information and impurities in text and video features. Redundant
information in text features comes from words that do not have the
ability to describe appearance and actions, such as prepositions. In
terms of video, one part of redundant information comes from the
feature fusion process (as shown in Figure 4), because S3D and ViT
will capture repeated visual and motion feature. The other part of
the redundant information and impurities come from the invalid
information contained in video that is irrelevant to the retrieval
target. As shown in Figure 5, the appearance information of the
main target in the video is interfered by other pedestrians. When
this redundant information appears in the video, it will be more
difficult for the model to match text-video pairs. In the Dul-Distilled
space, our purpose is to filter out invalid information in the features.

Figure 5: There may be interference factors in the video,
which will cause the extracted visual and motion feature to
be mixed with impurities that cannot match the text feature.
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The𝑇𝑖𝑝𝑠 we obtained in section 3.1.2 will be used as an indicator
to measure the quality of text and video features. First, the text and
video features need to be preprocessed. In the feature convertor,
we first use linear layers to adjust the dimensions of text and video
features to be consistent with the dimensions of 𝑇𝑖𝑝𝑠 . Then, since
𝑇𝑖𝑝𝑠 uses a special one-hot encoding method and its content reveals
the importance of each keyword, we also need to adjust the text
and video features to represent the importance of every visual and
motion detail. The converted text and video features are formulated
as follows:

𝑓 𝐷
2

𝑇𝑒𝑥𝑡 = sigmoid(BN(FC(𝑓𝑇𝑒𝑥𝑡 ))) (17)

𝑓 𝐷
2

𝑀𝐸 = sigmoid(BN(FC(𝑓𝑀𝐸 ))) (18)

Given a batch of samples, to prevent the converted text and video
features from losing their original semantic commonalities, we
calculate the similarity between text and video and optimize the
following loss:

L (T𝐷2
,V𝐷2 ) = − 1

𝐵

𝐵∑︁
𝑖=1

log
exp(score(𝑓 𝐷2

𝑇𝑒𝑥𝑡,𝑖
, 𝑓 𝐷

2

𝑀𝐸,𝑖
)/𝜃 )∑𝐵

𝑗=1 exp(score(𝑓 𝐷
2

𝑇𝑒𝑥𝑡,𝑖
, 𝑓 𝐷

2
𝑀𝐸,𝑗

)/𝜃 )
, 𝑗 ≠ 𝑖

(19)
Here, T𝐷

2
and V𝐷2

represent a batch of converted text and video
features. By calculating the above loss, our purpose is to optimize
and constrain the feature convertor to avoid losing key features
during the conversion process.

The effective key information in the text and video features are
able to be identified and distilled after the features are converted.
Since 𝑇𝑖𝑝𝑠 only contains keywords needed for retrieval, converted
text and video features need to be closer to 𝑇𝑖𝑝𝑠 to achieve the
purpose of distillation. We optimize the sum of two cross-entropy
losses to constrain the distillation process of text and video features:

L (Tips,T𝐷2
,V𝐷2 ) = BCE(Tips,T𝐷

2
) + BCE(Tips,V𝐷

2
) (20)

Here, BCE means the binary cross entropy loss function, and Tips
denotes a batch of 𝑓𝑡𝑖𝑝𝑠 correspond to the current samples.

The final loss L𝐷2 in Dul-Distilled space is formulated as:

L𝐷2 = L (T𝐷2
,V𝐷2 ) + 𝐵 × L (Tips,T𝐷2

,V𝐷2 ) (21)

3.3.3 Overall Training Objective.
Our overall training goal is weighted the sum of 𝐶𝑜𝑚𝑚𝑜𝑛 loss and
𝐷2 loss:

L𝑀𝐹𝐺𝐹 = 𝛼L𝑐𝑜𝑚𝑚𝑜𝑛 + (1 − 𝛼)L𝐷2 (22)

where 𝛼 is a learnable weight parameter. To this end, we have
obtained the final training objective of MFGF. Our goal is to learn
a unified distribution of text and video features and then mine the
internal correlation between text and video.

4 EXPERIMENTS
We first introduce our TVPReid dataset, followed by the imple-
mentation of the model. Then, we compare our results with classic
video retrieval algorithms, and finally, we conduct ablation experi-
ments to analyze the impact of different parts of the model on the
experimental results.

4.1 Dataset
We build a large-scale labeled video dataset for the text-to-video per-
son retrieval task and name it Text-to-Video Person Re-identification
(TVPReid) dataset. Our dataset includes a total of 6559 pedestrian

Figure 6: High-frequencywords and person video thumbnails
in our proposed TVPReid dataset.

videos from three existing person re-identification datasets: PRID-
2011 [10], iLIDS-VID [20], and DukeMTMC-VideoReID [23]. These
source data contain image data of different pedestrians from surveil-
lance videos. We first integrate them into the video data we need.
For image data from the same pedestrian in the same time pe-
riod from the same perspective, OpenCV [3] is used to integrate
them into a video. After integrating three complete person re-
identification datasets and eliminating highly similar data, we ob-
tained a total of 6559 unique pedestrian videos. Then we annotate
each pedestrian video with two different sentence descriptions, for
a total of 13118 sentences. The sentence description adopts a natu-
ral language style and contains rich details about the pedestrian’s
appearance, actions, and environmental elements that interact with
the pedestrian. The average sentence length of the TVPReid dataset
is 30 words, and the longest sentence contains 83 words. In compar-
ison, the average sentence length of RSTPReid [30] is 23 words, and
that of CUHK-PEDES [13] is 23.5 words. The TVPReid dataset is
divided into a training set, a validation set and a test set with a ratio
of 0.8125 : 0.0625 : 0.125, which is based on the division method
of the MSRVTT [26] dataset. Details of each sub-dataset can be
seen in Table 2. Among them, TVPReid-PRID has 2268 sentence de-
scriptions, TVPReid-iLIDs has 1200 sentence descriptions, and the
largest sub-dataset TVPReid-Duke has 9650 sentence descriptions.

4.2 Implementation Details
We randomly select 4 discrete video frames as the input of the
Visual Encoder, 16 consecutive video frames as the input of the
Motion Encoder, and each input video frame is adjusted to 224×224.
The size of each patch in Visual Encoder is set to 16 × 16. During
the training process, both sentence descriptions of each pedestrian
video are used, but only one of the descriptions is extracted dur-
ing the validation and testing sessions. The model uses Adam as
optimization and sets the learning rate to 1 × 10−4. The learning
rate setting here is slightly larger because we add learning rate
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Table 1: Results on the proposed MFGF and compared methods to the proposed dataset, while recall at R@N and median rank.

Method TVPReid-PRID TVPReid-iLIDs TVPReid-Duke
R@1 R@5 R@10 R@50 MdR R@1 R@5 R@10 R@50 MdR R@1 R@5 R@10 R@50 MdR

Frozen-in-time[2] 20.9 58.9 70.4 89.1 4.7 17.5 63.3 75.0 98.3 6.7 21.8 47.2 53.5 75.5 4.0
MMT[7] 6.8 20.15 27.70 59.19 34.0 13.3 35.0 51.6 91.6 8.5 11.8 34.8 44.7 74.7 15.0
X-pool[8] 18.64 45.09 59.19 - 7.0 8.7 23.48 35.55 - 24.5 21.8 54.8 64.7 - 4.0
Ours 32.3 76.3 85.1 100.0 2.0 30.0 71.7 91.7 100.0 4.7 35.2 62.2 84.0 90.4 3.0

Table 2: Details for three sub-datasets in our proposed dataset
TVPReid

TVPReid TVPReid-
PRID

TVPReid-
iLIDs

TVPReid-
Duke

Train 5329 921 488 3920
Validate 410 71 37 302
Test 820 142 75 603
Total 6559 1134 600 4825

warm-up and annealing to the optimizer. The learning rate grad-
ually increases to the maximum value we set during the training
process and then begins to gradually decrease in a cosine annealing
manner. The temperature hyperparameter 𝜃 in Equation 16 and
19 is set to 0.05. The dimension of Common space is 256, while
the dimension of Dul-Distilled space depends on the dimensions of
Tips extracted from different sub-datasets.

4.3 Comparisons with state-of-the-art methods
for text-video retrieval

We conduct a series of comparative experiments on the new bench-
mark dataset TVPReid to evaluate the effectiveness of MFGF. We
compare our method with several existing methods dedicated to
text-to-video retrieval. The aim is to understand the strengths and
weaknesses of our approach. The performance results of several
different methods on TVPReid are shown in Table 1. We use stan-
dard retrieval metrics, including recall of rank N (R@N) and median
ranking (MdR), where higher R@N values and lower MdR values
both mean the great and stable ability of retrieval.

It should be explained that the MMT [7] method can process
visual and audio information, but the videos in the TVPReid dataset
do not have audio, so we abandon the audio branch of MMT. From
the data in the table, we can see that our method achieves the best
performance in the recall metric, which shows that MFGF can more
accuratelymatch the correct text-video pairs in text-to-video person
retrieval. The reason why our proposed method achieves powerful
performance is that our method considers the effect of dynamic
information, which can emphasize the difference of motion details
between adjacent frames. While the mentioned models ignore the
motion details, leading to poor performance.

4.4 Ablation studies
We conduct experiments to analyze the effectiveness of different
components in our architecture. Our aim is to determine the con-
tributions of each component to the overall network.

4.4.1 Effect of Visual Encoder.
The capacity of a model to acquire valuable representations from
video data significantly influences retrieval performance. There-
fore, we implement ablation experiments on Visual Encoder to
evaluate its contribution to MFGF. We compare the results of three
pairs of experiments in Table 3: No.3 and No.7, No.4 and No.6, and
No.8 and No.9, and find that the retrieval performance of MFGF
without Visual Encoder is heavily reduced. This is because Visual
Encoder provides most of the pedestrian’s appearance features. For
pedestrians whose clothing colors are the same, MFGF needs more
detailed appearance features. So losing the learning ability provided
by Visual Encoder, MFGF will be unable to accurately distinguish
pedestrians with similar clothing, resulting in a decrease in retrieval
accuracy.

4.4.2 Effect of Motion Encoder.
In order to evaluate the effectiveness of the Motion Encoder, we
conduct experiments using the Motion Encoder and without using
the Motion Encoder. We also compare three pairs of experimental
results in Table 3: No.1 and No.3, No.2 and No.9, and No.5 and
No.6. And it can be seen from the data that after removing the
Motion Encoder, the performance of the model is also reduced.
The reason is that without the dynamic details provided by the
Motion Encoder, the model’s understanding of motion information
becomes blurred. It is difficult to learn sufficient motion details
by Visual Encoder, which will cause some key yet discriminative
features missed in the final video features. In order to make up for
this missed knowledge, we use the S3D model in Motion Encoder to
capture the details of pedestrian movements in the video. With the
support of Motion Encoder, the model greatly enhances its ability
to identify the correct pedestrian from similar pedestrians through
motion differences.

4.4.3 Effect of 𝐷2 Space Learning.
In order to evaluate the effectiveness of 𝐷2 space, we need to retain
Common space to ensure the normal operation of MFGF. It can be
seen from the results of No.3 and No.9 in Table 3 that the addition
of the 𝐷2 space improves the test results on the same sub-dataset.
This is because in 𝐷2 space, unmatched impurities in text features
and video features are gradually filtered out, and they continue
to move closer to purity features under the guidance of Tips. It
can also be seen that poor text and video features will increase the
difficulty of cross-modal matching. Therefore, it can be seen that
𝐷2 space can not only filter out redundant information in text and
video features but also learn key internal relationships in text and
videos.

4.4.4 Effect of Common Space Learning.
In the previous ablation experiment, we keep the Common space
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Table 3: R@N obtained by retaining Common Space and conducting ablation experiments on 𝐷2 Space and Motion Encoder on
the sub-dataset

No. Components TVPReid-PRID TVPReid-iLIDs TVPReid-Duke
Common
Space

𝐷2

Space
Motion
Encoder

Visual
Encoder R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

No.1 ✓ × × ✓ 21.9 46.9 57.5 78.0 18.3 43.6 55.0 68.8 23.3 48.2 54.6 75.8
No.2 ✓ ✓ × ✓ 24.6 55.8 66.4 89.3 19.6 46.7 58.3 71.6 26.5 52.1 65.3 77.9
No.3 ✓ × ✓ ✓ 27.7 57.4 76.2 92.1 23.3 56.7 75.0 90.0 32.3 55.7 74.5 80.9
No.4 × ✓ ✓ × 8.5 24.4 32.7 42.6 5.7 15.6 22.1 36.9 7.8 20.8 34.1 40.6
No.5 × ✓ × ✓ 16.6 39.7 49.4 60.3 14.2 36.6 44.2 57.1 20.8 42.1 51.4 65.5
No.6 × ✓ ✓ ✓ 20.1 41.8 52.5 66.7 18.4 44.9 55.9 70.1 21.5 43.6 51.3 69.3
No.7 ✓ × ✓ × 9.1 25.3 35.2 44.8 8.6 21.5 30.9 42.3 10.7 28.1 39.8 48.3
No.8 ✓ ✓ ✓ × 10.4 28.8 40.1 50.2 9.9 24.3 35.5 44.2 12.2 29.4 42.1 53.4
No.9 ✓ ✓ ✓ ✓ 32.3 76.3 85.1 100.0 30.0 71.7 91.7 100.0 35.2 62.2 84.0 90.4

Figure 7: The convergence process of parameter 𝛼 under dif-
ferent initialization conditions.

always present. However, we still need to test the specific role of
this potential space in the entire model architecture. For this reason,
we remove the Common space and conducted ablation experiments
on it. It is obvious from experiments No.6 and No.9 that the lack
of Common space greatly reduces the value of R@1, indicating
that the retrieval performance is heavily reduced. This is because,
without the guidance of Common Space, it will fail to learn the
inherent essence correlations between text and video, resulting in
the inability to obtain similar cross-modal feature distribution. In
order to further study the relationship between Common space
and 𝐷2 space, we use the sub-dataset TVPReid-Duke as an example
to study the convergence process of the parameter 𝛼 in Equation
22 under three different initial values. We express the change of
parameter 𝛼 during the training process in Figure 7, and three
curves in different colors correspond to three different experiments.
It can be seen from the directions of the three curves that no matter
what the initial value of parameter 𝛼 is, the degree of convergence
among them is similar. When the initial value of 𝛼 is small, it will
quickly grow to increase the proportion of Common space, which
also proves the importance of Common space in guiding the model
to learn the inherent essence correlations between text and video
in the early stages of training. Moreover, some examples of top-1
results for text-to-video person retrieval by the proposed MFGF are
shown in Figure 8.

Figure 8: Example of top-1 retrieval results by MFGF

5 CONCLUSION
In this article, we propose a new task, Text-to-Video Person Re-
trieval. Our purpose is to make up for the lack of dynamic fea-
tures and occasionally occluded details in isolated images. Since
there is no dataset or benchmark that describes person videos with
natural language, we construct a large-scale cross-modal person
video dataset, termed as Text-to-Video Person Re-identification
(TVPReid) dataset, which contains 6559 person videos, and each
video has two natural language descriptions, with a total of 13118
description sentences. The dataset will be made publicly available to
contribute to future research in this area. On this basis, we proposed
Multielement FeatureGuided Fragments Learning (MFGF) strategy
to tackle uncertain occlusion conflicting and variable motion details.
Specifically, we establish two potential cross-modal spaces for text
and video feature collaborative learning to progressively reduce
the semantic difference between text and video. Experimental re-
sults show that MFGF achieves state-of-the-art performance on the
TVPReid dataset, and it is able to effectively retrieve relevant per-
sonal videos through natural language descriptions. These results
highlight the potential of our approach in practical applications
such as video surveillance and content-based video retrieval.
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