
Spatially Sparse Inference for Generative Image Editing352

Supplementary Material353

A Additional Implementation Details354

For all models, we use block size 6 for 3⇥3 convolutions and block size 4 for 1⇥1 convolutions. For355

DDIM [1] and Progressive Distillation [12], we pre-compute and reuse the statistics of the original356

image for all group normalization layers [84]. For GAN Compression [3], we pre-compute and357

reuse the statistics of the original image for all instance normalization layers [82] whose resolution358

is higher than 16⇥ 32.359

B Kernel Fusion360
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Figure 6: Visualization of kernel fusion in DDIM [1] ResBlock [88]. We omit the element-wise operations
for simplicity and follow the notations in Section 3. As the kernel sizes of the convolution in the shortcut
branch and main branch are different, their reduced active block indices are different (Indices and Shortcut

Indices). To reduce the tensor copying overheads in Scatter, we fuse Scatter and the following Gather into
Scatter-Gather and fuse the Scatter in the shortcut, main branch and residual addition into Scatter with
Block Residual. We pre-compute an additional Scatter Map for the Scatter-Gather kernel.

As mentioned in Section 3.2, we fuse Scatter and the following Gather into a Scatter-Gather361

operator and also fuse Scatter in the shortcut, main branch and residual addition together. The362

detailed fusion pattern is shown in Figure 6. For simplicity, we omit the element-wise operations363

(e.g., Nonlinearity and Scale+Shift). Below we include more implementation details of each364

fusion design.365

Scatter-Gather fusion. When a Scatter is directly followed by a Gather, we could fuse these366

two operators into a Scatter-Gather to avoid copying the original activation Fl(A
original
l ). We367

pre-built a Scatter Map to indicate the index mapping from the Fl output to the previous Scatter368

output, and directly gather the active blocks from the Fl output and original activation Fl(A
original
l )369

with it. Note that the pre-computation is cheap and only needs to be once for each resolution.370

Shortcut Scatter fusion. The 1 ⇥ 1 convolution in the shortcut branch consumes much less371

computation than the convolutions in the main branch, therefore the overheads of Gather and372

Scatter weigh more in the shortcut branch. We fuse the Scatter in the shortcut branch and main373

branch along with residual addition together into Scatter with Block Residual to reduce these374

overheads. Specifically, we first scatter Fl+1 output in the pre-computed Fl+1(A
original
l )+Fs(A

original
l )375
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Groudtruth Original (Inpainted) Edited Groudtruth Image Groudtruth Semantic Map Edited Semantic Map

(a) LSUN-Church (b) Cityscapes

Figure 7: Several examples of our synthetic editing dataset on (a) LSUN Church and (b) Cityscapes. On LSUN
Church, we view the inpainted image as the original image and generate the editing by quantizing color at
the corresponding regions. On Cityscapes, we generate the editing by pasting some foreground objects to the
ground-truth semantic maps.

(a) LSUN Church. (b) Cityscapes.

Figure 8: Detailed editing ratio distribution of our synthetic datasets.

and add the original residual Fs(A
original
l ) only at the scattered locations correspondingly according376

to Indices. Then we calibrate the final output with Fs output by adding the residual difference377

Fs(Aedited
l )� Fs(A

original
l ) at the scattered locations inplace according to Shortcut Indices.378

C Benchmark Datasets379

We elaborate more details on how we build the synthetic editing dataset.380

LSUN Church. Figure 7(a) shows some examples of our synthetic editing on LSUN Church. The381

average edited area of the whole dataset is 13.1%. The detailed distribution is shown in Figure 8a.382

Cityscapes. We collect 27 foreground object semantic masks from the validation set. The objects383

include 4 bicycles, 1 motorcycle, 7 cars, 6 trucks, 3 buses, 5 persons, and 1 train. Figure 9 shows384

some visualization of the collected semantic masks. We generate the editing by randomly pasting385

one of these objects to the ground-truth semantic maps with augmentation. The augmentation386

includes random horizontal flip, resize (scale factor in [0.8, 1.2]), translation ([�32, 32] for height and387

[�64, 64] for width). To make the synthetic editing more reasonable, when the scale factor is larger388

than 1, the height translation can only be positive, otherwise, it can only be negative. Figure 7(b)389
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Figure 9: Several examples of our collected foreground object semantic masks.
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GauGAN:
281GMACs mIoU: 62.4

Ours (Dilation=1)
46.6GMACs (6.04×) mIoU: 62.1

GAN Comp.
31.2GMACs (9.01×) mIoU: 61.5
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Ours (Dilation=5)
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Ours (Dilation=10)
74.7GMACs (3.77×) mIoU: 62.0

Ours (Dilation=20)
96.9GMACs (2.90×) mIoU: 62.2

Figure 10: Visualization results of different dilation sizes on GauGAN. Although without mIoU improvement,
increasing the dilation could smoothly blend the boundary between the edited region and unedited regions to
improve the image quality slightly. Specifically, the shadow boundary of the added car fades when dilation
increases. However, it will incur more computations.

shows some editing examples. The average editing area of the entire dataset is 4.77%. The detailed390

distribution is shown in Figure 8b.391

D Additional Results392

Dilation hyper-parameter. We show the results of our method with different dilation sizes on393

GauGAN in Figure 10. Increasing the dilation brings more computations but also slightly improves the394

image quality. Specifically, the shadow boundary of the added car fades when increasing the dilation.395

We choose dilation 1 as the image quality is almost the same as 20 while delivering the best speed.396

Large editing. In Table 4 and Figure 11, we show the results of large editing (⇠ 35%) using our397

method. Specifically, we could achieve at most 1.7⇥ speedup on DDIM, 1.5⇥ speedup on PD256398

and 1.7⇥ speedup on GauGAN without losing visual fidelity. Furthermore, in many practical cases,399

users can decompose a large edit into several small edits. Our method could incrementally update the400

results instantly when the edit is being created.401

Sequential editing. In Figure 12, we show the results of sequential editing with our method.402

Specifically, One-time Pre-computation performs as well as the Full Model, demonstrating that our403

method can be applied to multiple sequential editing with only one-time pre-computation in most404

cases. Moreover, for extremely large edited regions, we could use SIGE to incrementally update405

the pre-computed features (Incremental Pre-computation) and condition the later editing on the406

recomputed one. Its results are also as good as the full model. Therefore, our method could well407

address the sequential editing.408

Additional visualization. In Figure 13, we show additional synthetic editing visual results of409

DDIM [1] and Progressive Distillation [12] on LSUN Church [10]. In Figure 14, we show additional410

synthetic editing visual results of GauGAN on Cityscapes [11].411

E License & Computation Resources412

Here we show all the licenses of our used assets. The model DDIM [1], Progressive Distillation [12],413

GauGAN [2] and GAN Compression [3] is under MIT license, Apache license, Creative Commons414

license and BSD license, respectively. SDEdit is under MIT license. The license of Cityscapes [11]415

is here. LSUN Church [10] does not have explicit license.416
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Model Editing Size Method
MACs 3090 2080Ti Intel Core i9-10920X Apple M1 Pro

Value Ratio Value Ratio Value Ratio Value Ratio Value Ratio

DDIM
– Original 248G – 37.5ms – 54.6ms – 609ms – 12.9s –

32.9% Ours 115G 2.2⇥ 26.0ms 1.4⇥ 36.9ms 1.5⇥ 449ms 1.4⇥ 7.53s 1.7⇥

PD256
– Original 119G – 35.1ms – 51.2ms – 388ms – 6.18s –

32.9% Ours 64.3G 1.9⇥ 25.3ms 1.4⇥ 35.1ms 1.5⇥ 334ms 1.2⇥ 4.47s 1.4⇥

GauGAN

–
Original 281G – 45.4ms – 49.5ms – 682ms – 14.1s –

GAN Compression 31.2G 9.0⇥ 17.0ms 2.7⇥ 25.0ms 2.0⇥ 333ms 2.1⇥ 2.11s 6.7⇥

38.7%
Ours 148G 1.9⇥ 27.9ms 1.6⇥ 41.7ms 1.2⇥ 512ms 1.3⇥ 8.37s 1.7⇥

GAN Comp.+Ours 18.3G 15⇥ 15.3ms 3.0⇥ 22.2ms 2.2⇥ 169ms 4.0⇥ 1.25s 11⇥

Table 4: Measured latency speedup of large editing on different devices. The detailed editing examples are
shown in Figure 11. Our method could reduce up to 2.2⇥ MACs, and 1.4⇥, 1.5⇥, 1.4⇥ and 1.7⇥ latency on
NVIDIA RTX 3090, 2080Ti, Intel Core i9-10920X and M1 Pro. With GAN Compression, we could further
speedup GauGAN by 4.0⇥ on Intel Core-i9 and 11⇥ on Apple M1 Pro.

Original 34.2% Editing DDIM: 249G MACs Ours: 119G (2.1×)

DDIM: 249G MACs

PD: 66.9G MACs Ours: 46.1G (1.5×)

Ours: 115G (2.2×)32.9% EditingOriginal PD: 66.9G MACs Ours: 44.6G (1.5×)

Original 38.7% Editing

GauGAN: 281G MACs Ours: 148G (1.9×)

GAN Comp.: 31.2G (9.0×) GAN Comp.+Ours: 18.3G (15×)

Figure 11: Qualitative results of our method under large editing. Our method could still well preserve the visual
fidelity of the original model without losing global context while reducing the computation by 1.5 ⇠ 1.9⇥.

Since our method does not involve any model training, all our generated results are obtained on a417

single NVIDIA RTX 3090, which only takes 1 ⇠ 2 hours to process all the test images (⇠ 7, 000 in418

total) including both the original models and our method. We measure the model latency on NVIDIA419

RTX 3090, 2080Ti, Intel Core i9-10920X CPU, and Apple M1 Pro.420

F Discussion421

Limitations. As discussed in Section 4.2, our method needs some additional memory to store the422

original activations, even though this only increases the peak GPU memory usage slightly. It may not423

work on some memory-constrained devices, especially for the diffusion models (e.g., DDIM [1] and424

Progressive Distillation [12]), since our method requires storing activations of all iteration steps.425

Our engine has limited speedup on convolution with low resolution. When the input resolution is low,426

the sparse block size needs to be even smaller to get a good sparsity, such as 1 or 2. However, such427

extremely small block sizes have worse memory locality and will result in low hardware efficiency.428

Besides, we sometimes observe noticeable boundary between the edited region and unedited region429

in our generated samples of GauGAN [2]. This is because, for GauGAN model, the unedited region430

will also change slightly when we perform normal inference. However, since our method does not431

update the unedited region, there may be some color gaps between the edited and unedited region,432

even though the semantic is coherent. Dilating the difference mask would help reduce the gap.433

Societal impact. In this paper, we investigate how to update user editing locally without losing434

global coherence to enable smoother interaction with the generative models. In real-world scenarios,435

people could use an interactive interface to edit an image, and our method could provide a quick436

and high-quality preview for their editing, which eases the process of visual content creation and437

saves energy.438

However, our method can also be utilized by some malicious users to generate fake content, deceive439

people, and spread misinformation, which may lead to potential negative social impacts. Following440

previous work [9], we will also explicitly specify the usage permission of our engine with proper441

licenses.442

4



Original 34.2% Editing 40.8% Editing 49.0% Editing

Full Model

One-time
Pre-computation

Incremental
Pre-computation

Figure 12: Sequential editing results with SIGE. Full Model means the results with the full model. One-time

Pre-computation means we only pre-compute the original image features for all the editing steps. Incremental

Pre-computation means we incrementally update the pre-computed features with SIGE before the next editing
step. The image quality of all methods are quite similar.
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Figure 13: More visualization results on LSUN Church of DDIM [1] and Progressive Distillation. Prune 40%:
Uniformly pruning 40% weights of the model without fine-tuning. Patch: Cropping the smallest image patch
that covers all the edited region of the model input and blend the model output back to the original output image.
Our method achieves lower FID with less MACs for both DDIM and progressive distillation.
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