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ABSTRACT
Reconstructing 3D scenes from multi-view images is challenging,
especially in adverse conditions. We propose a novel event-based
intrinsic decomposition framework that leverages events and im-
ages for stable decomposition under extreme scenarios. Our method
is based on two observations: event cameras maintain good imag-
ing quality, and events from different viewpoints exhibit similarity
in diffuse regions while varying in specular regions. We establish
an event-based reflectance model and introduce an event-based
warping method to extract specular clues. Our two-part framework
constructs a radiance field and decomposes the scene into normal,
material, and lighting. Experimental results demonstrate superior
performance compared to state-of-the-art methods. Our contribu-
tions include an event-based reflectance model, event warping-
based consistency learning, and a framework for event-based in-
trinsic decomposition.

CCS CONCEPTS
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the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
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1 INTRODUCTION
Intrinsic decomposition from multi-view images is a fundamental
task, that enables a range of downstream applications including
view synthesis [5, 7, 62, 71], relighting [2, 5, 7, 21, 24, 39, 62, 73], ob-
ject insertion [4, 19, 73], and digital heritage preservation [58]. Yet,
present methodologies [5, 6, 32, 41, 51, 62, 75, 78, 83, 84] presuppose
that the input images are sharp and well-exposed.

During the execution of downstream tasks, practitioners en-
counter various and demanding environments. These may involve
scenarios such as reconstructing murals [64] in low-light caves,
capturing scenes affected by severe camera shake-induced blur,
or dealing with a high dynamic range that leads to over-exposed
images. Under these conditions, the compromised image quality
impedes the effectiveness of conventional methods, which struggle
to discern precise cues for intrinsic decomposition, such as detailed
gradient information and color distribution.
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Figure 1: Demonstration of two primary challenges posed
by event-guided techniques. (Top) The domain gap between
predictions from event-guided image deblurring and ground
truth.While existingmethods [69] enhance clarity in blurred
inputs, they often introduce significant color shifts that can
impact intrinsic decomposition results. (Bottom) Multi-view
inconsistency arises from frame-by-frame event-guidedHDR
reconstruction [74]. The method neglects 3D consistency
during HDR recovery, focusing solely on time-related event
information. This lack of 3D consistency increase the ill-
posedness of intrinsic decomposition and might severely
compromise performance.

Event cameras [16], with their high dynamic range and high
temporal resolution capabilities, outperform traditional cameras in
maintaining quality imaging under adverse conditions. The grow-
ing ubiquity of hybrid camera technology [10, 68], which integrates
both events and images, paves the way for leveraging event in-
formation to substantially improve image quality. However, using
event-guided methods [33, 35, 74] to enhance the input images
does not yield satisfactory results (shown in Fig. 1). Firstly, most of
these methods are data-driven, and when the test data has a domain
gap with the training data, it can easily affect the results. Secondly,
these methods typically process images on a frame-by-frame basis,
which results in a loss of 3D consistency across multi-views [77].

To achieve this, we exploit the two primary attributes of events:
1) Event camera still maintains good imaging quality in these ex-
treme scenarios1; 2) Events generated from different viewpoints

1Event camera is capable of capturing color information [57].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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are relatively similar in diffuse regions, while in specular regions,
they vary with changes in viewpoint. Based on the first point, we
established an event-based reflectance model that captures the re-
lationship between geometry, materials, lighting, and events in a
3D scene. Besides, with the second point, we introduce an event-
based warping method that extracts specular-related clues from
events to mitigate the impact of specular reflection on the intrinsic
decomposition task.

To the end, based on the proposed reflectancemodel and specular-
related clues from events, we propose an Event-based Intrinsic
Decomposition method (Event-ID) taking the inputs of both events
and images. In specific, we employ four separate Multilayer Percep-
trons (MLPs) to represent the geometry, the surface normals, the
material properties of the surface, and the scene lighting. Besides,
we additionally modeling the specular variation on the changing
of events to enable the specular-aware method, for recovering the
challenge geometry and base color information on over-saturated
specular region. Our method achieves state-of-the-art results under
low-light conditions, overexposure, and when the input image is
blurry. Compared to other methods, our approach can perform
stable intrinsic decomposition even under extreme conditions. The
main contributions of this paper can be summarized as follows:

(1) We build an event-based reflectance model that establishes
the relationship between the geometry, materials, lighting,
and events within a 3d scene.

(2) Observing the multi-view consistency of events, we extract
specular-related clues from events and apply these clues to
assist in intrinsic decomposition.

(3) Leveraging the event-based reflectance model and specular-
related clues derived from events, we propose a framework
for intrinsic decomposition using events, which enables re-
lighting under extreme conditions.

2 RELATEDWORKS
Intrinsic decomposition from multi-view images. There

are several works [4, 26, 37, 43, 52, 59, 80] on extracting scene
geometry, materials, and lighting from multi-view images. Here,
we focus on introducing the efforts related to neural representa-
tion [5, 6, 32, 41, 51, 62, 75, 78, 83, 84]. NeRFactor [83] recovers
an object’s shape and reflectance from multi-view images under a
single unknown lighting condition. TensoIR [32] model secondary
shading effects (like shadows and indirect lighting). PhySG [81]
and NeILF++ [78] obtain surface normal by optimizing the Signed
Distance Field (SDF). Building upon the foundation of NeILF [75],
NeILF++ [78] incorporates inter-object reflections, yielding more
accurate geometric information. GS-IR [41] employs 3D Gaussian
Splatting for the estimation of scene geometry, surface material,
and environmental illumination.

These methods typically require input images to be clear and
well-exposed, resulting in subpar performance in scenarios where
the image quality is compromised. Our approach capitalizes on the
high temporal resolution and high dynamic range of events, ensur-
ing stable performance even in challenging lighting conditions.

Warping-based Consistency Learning. Warping-based con-
sistency learning is commonly employed in multi-view stereo [65,
70, 72, 79], as well as in neural implicit surface learning [13, 15, 20],

for the purpose of 3D reconstruction. It harnesses the power of inter-
image correspondences through differentiable warping operations
to enhance the reconstruction process. NeuralWarp [13] applies to
warp to points sampled along a ray towards source images for RGB
value extraction. Geo-Neus [15] warps grayscale patches around
the anticipated surface points to adjacent images, ensuring multi-
view geometric consistency. Ref-NeuS [20] proposes leveraging an
anomaly detection framework to compute an explicit reflection
score, utilizing multi-view contextual information to accurately
identify and localize reflective surfaces within the scene. When the
imaging quality of the image degrades, the performance of these
methods tends to diminish.

Current warping methods based on events are predominantly
used for optical flow estimation [17, 18, 61, 85], motion estima-
tion [1, 11, 34, 85], and event alignment [18, 23, 63]. These meth-
ods focus on 2D warping and alignment, without addressing the
alignment of 3D scenes. Moreover, these warping techniques are
grounded in contrast maximization approaches [18, 63], which all
rely on the assumption of photometric consistency and fail to con-
sider the specularities present within the events. In contrast, our
method exploits the inconsistency of events between diffuse and
specular regions to extract specular-related information from 3D
scenes. Compared to image-based methods, my approach remains
robust and yields stable results even in scenarios with poor image
quality.

Events for geometry, lighting, and material estimation.
Event cameras, characterized by their high temporal resolution
and high dynamic range, have been primarily utilized in previous
research for depth estimation within scenes [18, 27, 48, 53, 85].
Additionally, there are efforts focused on reconstructing the three-
dimensional shape of objects [3]. [22, 49] takes advantage of the
high temporal resolution of event cameras by combining polariza-
tion information with events to estimate shape. Within the field
of lighting estimation using event cameras, [12] exploits the high
temporal resolution characteristic of events to capture the bright-
ness changes of objects at the instant the light is switched on, in
order to estimate the distance of the light source. To date, there
has not been work on utilizing event cameras to estimate material
properties.

To the best of our knowledge, we are the first to use event cam-
eras for the estimation of geometry, materials, and lighting simul-
taneously.

Events for neural radiance fields. Recent research [31, 36,
42, 44, 54, 57] has sought to integrate events with Neural Radi-
ance Fields (NeRF) to improve neural radiance fields reconstruction.
Given that event cameras only capture changes in intensity rather
than absolute values, methods [31, 42, 57] that exclusively depend
on events as inputs require the manual assignment of a background
intensity value. This approach could potentially lead to inaccuracies
in the intensity of the reconstructed scene. In response to this issue,
other techniques [36, 44, 54] employ both images and events as
inputs.

Although existing research has primarily focused on extract-
ing radiance and geometric details from 3D scenes, they largely
overlook the reconstruction of material properties and lighting
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conditions. Our method stands out by reconstructing the geom-
etry from events while concurrently capturing detailed material
attributes and lighting nuances.

3 MODELING
In this section, we present our event-based intrinsic decomposi-
tion framework. Section 3.1 describes the events-based reflectance
model, which captures the relationship between events and the
geometry, materials, and lighting in a 3D scene. In Section 3.2, we
explain how to extract specular-related information from events
and how this information can be utilized in the intrinsic decompo-
sition task. Finally, Section 3.3 provides a detailed description of
our event-based intrinsic decomposition framework.

3.1 Events-based Reflectance Model
Event generationmodel. An event 𝑒 = (u, 𝑡, 𝑝) at pixel position

u = (𝑢, 𝑣) and time 𝑡 with polarity 𝑝 ∈ {−1, +1} is generated when
the logarithmic change of brightness 𝐼 since the last event at the
pixel x and time 𝑡 −∆t exceeds a threshold Θ (Θ > 0) and the event
𝑒 can be represented [55] as:

𝑒 (u, 𝑡) =
⌊

ln(I(u, t)) − ln(I(u, t − ∆t))
Θ

⌋
. (1)

Event-based reflectance model. From Equation (1), we can
find that an event represents a change in brightness caused by
the movement of the viewpoint in world space2 within time Δ𝑡 .
As shown in Figure 2, We assume that at time 𝑡 , an event camera
captures the brightness of point x𝑡 in the 3D scene at pixel u, and
at time 𝑡 − Δ𝑡 , the brightness at pixel u (image space) corresponds
to the brightness of point x𝑡−Δ𝑡 in the 3D scene (world space). The
event-based reflectance model can be described as:

𝑒 (u, 𝑡) =
⌊

ln(L(𝜔 t
o, xt)) − ln(L(𝜔 t−∆t

o , xt−∆t))
Θ

⌋
, (2)

𝐿(𝜔𝑡
𝑜 , x) =

∫
Ω
𝑓 (𝜔𝑡

𝑜 , 𝜔𝑖 , x)𝐿𝑖 (𝜔𝑖 , x) (𝜔𝑖 · n)𝑑𝜔𝑖 , (3)

where 𝜔𝑡
𝑜 is the viewing direction of the outgoing light at time 𝑡 ,

n is the surface normal, 𝐿𝑖 is the incident light from direction 𝜔𝑖 ,
and 𝑓 is the Bidirectional Reflectance Distribution Function [46]
(BRDF) properties of the surface point x.

For traditional images, there is a one-to-one correspondence
between points in image space and points in world space. This
means a pixel value represents the result of a physically-based
rendering [56] process at a specific location in the 3D scene, taking
into account the geometry, material, and lighting at that position.
However, for event cameras, since an event describes a change in
brightness, a position in image space corresponds to two points in
world space. That is, a single event value is related to the physically-
based rendering results of two different locations in the 3D scene,
influenced by their respective geometry, material, and lighting
conditions.

2In a static scene, this change in brightness is solely caused by the camera’s motion.
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Figure 2: Illustration of events-based reflectance model. In
image space, the generation of an event 𝑒 (u, 𝑡) represents
a change in brightness from position x𝑡−𝜃𝑡 to position x𝑡
in world space. The color at a position x in world space is
determined by the surface normal n𝑥 , the BRDF properties
𝑓𝑥 , and the incident light 𝐿𝑖 at that position x.

3.2 Event Clues for Intrinsic Decomposition
In 3D scenes, the diffuse component of objects exhibits the property
of photometric consistency across different viewpoints, while the
specular regions are view-dependent [29, 45, 86]. By leveraging
this characteristic, it is possible to separate the diffuse and specular
regions, which facilitates intrinsic decomposition [14, 38, 76].

Image-based methods often employ patch warping techniques
to project image patches from different viewpoints onto the same
viewpoint [13, 15, 20]. By computing the similarity between these
warped patches, it is possible to determine whether a specular re-
gion exists at that particular viewpoint. However, when the quality
of the images deteriorates (such as underexposure, overexposure,
or blur), this warping approach [13, 15, 20] becomes ineffective.
The degradation in image quality can lead to inaccuracies in the
patch warping process, making it challenging to reliably compare
the warped patches and identify specular regions. Consequently,
the effectiveness of these image-based methods diminishes as the
quality of the input images decreases (shown in Figure 3).

Compared to traditional cameras, event cameras offer unique
advantages such as high dynamic range and high temporal resolu-
tion. These characteristics enable event cameras to maintain good
image quality even in extreme lighting conditions and rapid motion
scenarios where traditional cameras may struggle. Therefore, in
extreme situations where traditional image-based methods may fail
due to underexposure, overexposure, or motion blur, events provide
a robust alternative for acquiring reliable specular clues (shown in
Figure 3).

Event-based warping . As described in Section 3.1, for images,
the brightness of each pixel corresponds one-to-one with a point
in the world coordinates. However, an event represents the change
in brightness of a pixel between time 𝑡 and time 𝑡 − Δ𝑡 , which
corresponds to two adjacent positions in the world space (shown
in Figure 4). Due to the different imaging principles of images
and events, warping methods designed for images cannot be di-
rectly applied to events. For event-based warping, when projecting
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Image Blur Over-expourse Low-light Events

Figure 3: Illustration of specular reflection confidence in dif-
ferent scenes: (Top). Visualization of images / events from
different scenes; (Bottom). The corresponding specular re-
flection confidence.

events from different viewpoints onto the same reference view, it
is necessary to determine whether the two points in world space
corresponding to the events from the source view are the same as
the events in the reference view.

Because events are asynchronous and sparse, to reduce compu-
tational load, we slice the events along the temporal dimension,
with events within the same slice sharing the same time. Since a
single event carries too little information, to increase the effective
information, we perform warping on pixel patches rather than on
single pixel points.

Given a reference view event slice 𝐸ref and a series of source
view event slices {𝐸𝑖src}, our objective is to warp the source view
event slices to the reference view. Shown in Figure 4, each event
slice is associated with two positions in the world space, which we
denote as p{A,B} . And these two positions have corresponding nor-
mal n{A,B} , rotation matrix R{A,B} , and translation vector t{A,B} .
Like [15], the point 𝑥 in the pixel patch 𝑞ref of reference event slice
𝐸ref is related to the corresponding point 𝑥 ′ in the pixel patch 𝑞𝑖src
of the source event slice 𝐸𝑖src via the plane-induced homography
𝐻 [25]:

𝑥 = HA𝑥
′, 𝑥 = HB𝑥

′, (4)

H𝑖 = K

(
Rsrc
𝑖 (Rref

𝑖 )𝑇 +
Rsrc
𝑖

((Rsrc
𝑖

)𝑇 𝑡 src
𝑖

− (Rref
𝑖

)𝑇 𝑡 ref
𝑖

)n𝑇
𝑖

n𝑇
𝑖
p𝑖

)
K−1,

(5)
where 𝑖 ∈ {𝐴, 𝐵}, K donates the internal calibration matrix. We
determine the validity of the source view event patch by calculating
the distance between the center positions of the projections of two
patches:

|HA𝑥center −HB𝑥center | <
𝑠

2
, (6)

where we set patch size 𝑠 to 11. Figure 4 illustrates the correspon-
dence of the same positions in world space as viewed from different
perspectives.

Measuring the similarity between event patches. When mea-
suring the similarity between image patches, previous works [15]
convert RGB images to grayscale images and then use Normal-
ized Cross Correlation (NCC) to assess the similarity between two
grayscale image patches. However, since events are sparse, discrete
values with polarity (+1, -1), and subject to noise, directly applying

Event-based  Projection Image-based  Projection

View point 1 

A B A

View point 1 View point 2 View point 2 

�1 − ��1

�1

�2 − ��2

�2

Close View

Im
ag

e
Ev

en
ts

Figure 4: (Top). Illustration of the differences between event-
based projection and image-based projection: For events, for
two small adjacent areas A and B on the surface, the projec-
tion of A and B on the event camera is a small pixel patch
over the time interval from 𝑡 −Δ𝑡 to 𝑡 . In contrast, for images,
for a small area A on the surface, the projection of A on the
image is a small pixel patch; (Bottom). The correspondence
of the same world space location on event slices and images
from different viewpoints.

NCC to event patches may not be effective. To address this, we
propose to accumulate events within a certain time interval and
normalize the accumulated event patch. The specific steps are as
follows:

𝐸 = |
∑

Δ𝑡 𝑒

𝑘
|, (7)

where
∑

Δ𝑡 𝑒 represents the accumulated events within the specified
time interval Δ𝑡 , 𝑘 is an empirically determined constant and we
set 𝑘 to 10. To mitigate the impact of noise in events on similarity
measurement, we incorporate noise modeling when computing the
NCC.

𝑁𝐶𝐶 (𝑥,𝑦) = Cov(𝑥 + N(𝜇, 𝜎), 𝑦 + N(𝜇, 𝜎))√︁
Var(𝑥 + N(𝜇, 𝜎)) · Var(𝑦 + N(𝜇, 𝜎))

, (8)

whereN is a normal distribution with a mean 𝜇 of 0 and a standard
deviation 𝜎 of 0.01.

Events clues. Based on the event-based warping and the metric
for measuring similarity, we can obtain the similarity between the
event patch of the reference view and a series of event patches from
source views. Similar to [20], we believe that only the local region
of the partial event patch contains specular reflections. Therefore,
we use the variance of these similarities as the confidence measure
for specular reflection,

𝑀𝑠 = Var({1 − 𝑁𝐶𝐶 (𝐸ref , 𝐸
𝑖
src)}), (9)

The specular reflection confidence obtained from the events can
serve as a clue for specular highlights, which helps mitigate the
impact of specular reflections on intrinsic decomposition. Specifi-
cally, this confidence can be used as a soft mask, applied to the loss
function to reduce the influence of specular regions. Compared to
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image-based approaches, event-based methods demonstrate stable
performance even in extreme scenarios (shown in Figure 3).

3.3 Event-based Intrinsic Decomposition
The overview of our method is illustrated in Figure 5. We parameter-
ize the 3D scene into four fields: the scene geometry is described by
a signed distance field G; surface normal is described by a normal
field N ; material properties of the surface are described by a BRDF
field B; and the lighting of the scene is described by a light field S.
We optimize these four fields using both events and images.

Scene geometry. Following [78, 81], we represent the scene
geometry as a Signed Distance Field (SDF). We obtain the posi-
tion x of the object’s surface points from this field, as well as the
corresponding normal nsdf and radiance Rvol.

G : x → {d,nsdf ,Rvol}, (10)

where d represents the signed distance from the point x to the clos-
est surface. Similar to [66], this field is optimized using a volume
rendering technique. Due to the poor image quality in extreme
scenarios, events tend to yield better imaging results compared to
traditional images. Similar to [57], we utilize events as a supervi-
sory signal to guide the optimization process, ensuring that the
background color in the volume rendering closely matches the back-
ground color observed in the images. The loss Lvol can be written
as,

Lvol = | |𝑀colorΘ
∑︁
Δ𝑡

𝑒u −𝑀color𝐸u | |2, (11)

𝐸u = ln(Rvol (u, t)) − ln(Rvol (u, t − ∆t)), (12)
where Rvol is the color output of volume rendering3, 𝑀color is
described in [57], which is used to map the color information of
the events onto the three RGB channels.

Surface normals of the scene. The surface normals within a
3D scene can be formulated as a normal field, which is encoded by
a multi-layer perceptron (MLP). This MLP takes a point location x
as input and outputs a surface normal n.

N : x → n, (13)

We use the normal nvol output by G as the supervisory signal and
loss Lnormal can be written as,

Lnormal = | |𝑀𝑠n −𝑀𝑠nsdf | |2, (14)

where𝑀𝑠 is described by Equation (9).

Material properties of the surface. Following [75, 78], the
material properties of the surface can be formulated as a BRDF
field, which is encoded by a MLP. This MLP takes a point location
x as input and outputs a base color b, a roughness 𝑟 and a metallic
𝑚.

B : x → {b, 𝑟 ,𝑚}, (15)
We use a simplified Disney principled BRDF [8] parameterization.
The BRDF 𝑓 in Equation (3) can be computed as,

𝑓 (𝜔𝑜 , 𝜔𝑖 ,n) = 𝑓𝑑 + 𝑓𝑠 (𝜔𝑜 , 𝜔𝑖 ,n), (16)

𝑓𝑑 =
1 −𝑚

𝜋
· b, (17)

3More details are provided in the supplementary material.

𝑓𝑠 (𝜔𝑜 , 𝜔𝑖 ,n) =
𝐷 (ℎ; 𝑟 ) · 𝐹 (𝜔𝑜 , ℎ; b,𝑚) ·𝐺 (𝜔𝑖 , 𝜔𝑜 , ℎ; 𝑟 )

4 · (n · 𝜔𝑖 ) · (n · 𝜔𝑜 )
, (18)

where 𝑓𝑑 is diffuse term, 𝑓𝑠 is specular term, ℎ is the half vector
between the incident direction 𝜔𝑖 and the viewing direction 𝜔𝑜 . D,
F, and G refer to the normal distribution function, the Fresnel term,
and the geometry term respectively4. The loss Lbase_color can be
written as,

Lbase_color = | |𝑀𝑠
b

| |b| |2
−𝑀𝑠

Rvol
| |Rvol | |2

| |2, (19)

Lighting of the scene. Like [75, 78], the incoming lights in the
scene can be formulated as a neural incident light field, which is
recorded by aMLP. TheMLP takes a point location x and a direction
𝜔𝑖 as inputs, and returns an incident light L𝑖 ,

S : {x, 𝜔𝑖 } → L𝑖 , (20)

Event-based surface rendering equation. Due to events be-
ing sparse and asynchronous, and containing noise, to improve
efficiency and reduce the impact of noise, we employ the same
slicing method as in section 3.2 for surface rendering. The surface
rendering equation for events established in section 3.1 can be
reformulated as follows,

𝐸u = ln(I(u, t)) − ln(I(u, t − ∆t)), (21)

where I(u, 𝑡) is described by Equation (3). And the 𝐸u can be su-
pervisd by events generated at u, the loss Lsurf is,

Lsurf = | |𝑀color𝐸u −𝑀colorΘ
∑︁
Δ𝑡

𝑒u | |1 . (22)

Since Equation (21) represents a differential relationship, we use
the radiance Rvol output from the first stage as an additional super-
visory signal to constrain radiance I(u, 𝑡).

Lsurf_vol = | |I(u, 𝑡) − Rvol (u, 𝑡) | |1 . (23)

Optimization strategy. Like [78], our strategy is divided into
two distinct optimization stages for those fields. Initially, we employ
a combination of events and images to optimize the scene’s geo-
metric field G. Following this, we enter the second stage, wherein
G is freezed, allowing us to focus on the simultaneous optimization
of the normal field N , the BRDF field B, and the light field S.

4 EXPERIMENTS
In this section, we evaluate our proposed method using both syn-
thetic and real-world datasets. We conduct ablation studies to vali-
date the effectiveness of each module.

4.1 Datasets and Metric
Synthetic data. To compensate for the absence of a dataset

comprising events, images (including overexposed, blurred, and
low-light), base color GT, and normal GT.We augment the synthetic
dataset from NeRF synthetic dataset [47] by extending it with seven
synthetic scenes, i.e., chair, drums, ficus, hotdog, lego, materials,
and mic. First, we utilize Blender [50] to synthesize 1000 continuous
HDR images, and composite events using the same method as [74].
4We adopt similar implementation of D, F, and G as in previous works [75, 78] and
details are provided in the supplementary material.
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Figure 5: The overview of our method. The first part uses events and images to reconstruct a geometry field G. The second part
involves freezing the geometry field and using information from the geometry field along with events to reconstruct three
fields: Lighting field S, Nomral field N and BRDF field B.

We uniformly sample 100 HDR images and adjust the exposure
via method [30] to synthesize overexposed images. By employing
method [40], we reduce the exposure and add noise to the images
to synthesize underexposed images (low-light). Using method [54],
we synthesized blurred images.

In addition to the aforementioned training data, we have also
synthesized 200 testing images from different viewpoints than the
training data, along with the corresponding ground truth for base
color and normals. In summary, our synthetic dataset contains
images under four different conditions, as well as the corresponding
events. We will evaluate our results and SOTA methods on these
three datasets.

Real-world data. To test our approach’s robustness, we col-
lected real data using the DAVIS 346C sensor [57] from three scenes,
capturing 16-second monocular videos (each video is about 16 sec-
onds and 500 frames) with events and frames. Frame poses were
estimated using COLMAP [60]. Although the poses may not be
perfectly accurate due to potential blurring, they were sufficiently
estimated for our purposes. We uniformly selected 100 images to
serve as the training data. Additionally, we randomly selected 100
images for testing.

Metric. Our evaluation encompasses normal quality (measured
by MAE [9]), novel view synthesis, and base color (measured by
PSNR [28], SSIM [28], and LPIPS [82])

4.2 Comparison with State-of-the-Art Methods
Due to significant differences in the scenes compared to those used
in previous methods, some methods did not work in our scenarios.
In the main text, we primarily focus on comparing state-of-the-art
(SOTA) neural field-based intrinsic decomposition methods GD-
IR [41] and its integration with other methods. The results of other
methods will be presented in the supplementary materials.
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Figure 6: Qualitative comparison on our synthetic dataset.
We visualize the estimated normal, base color results of our
method and SOTA methods on three scenes (From top to
bottom, they are blurred, and low-light, and overexposed
respectively). In these three scenarios, X represents methods
WZ23 [69] , WY21 [67] , and YH23 [74] respectively.
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The results of the SOTA methods. Table 1 provides a quanti-
tative comparison of synthetic data, highlighting that our approach
maintains stable performance even under conditions of input im-
age degradation. This resilience is attributed to the high temporal
resolution and dynamic range benefits afforded by events.

Figure 6 displays the visualization results under three different
types of image degradation. The degradation of images leads to
inconsistencies in multi-view information, making it challenging
for the network to extract useful information. However, our method
circumvents the issues associated with image degradation by ex-
tracting scene information directly from events, thereby avoiding
the pitfalls of degraded image quality.

The results of the combination of SOTA methods. To ensure
a fair comparison given that our method simultaneously inputs
events and images, we selected three event-guided methods to
enhance images degraded by different factors: YH23 [74] for cor-
recting overexposure 5, WZ23 [69] for deblurring, and WY21 [67]
for enhancing low-light images. This approach allows us to evalu-
ate the effectiveness of our framework against specialized methods
tailored to address specific types of image degradation. Addition-
ally, we compared methods that combine event-based NeRF method
LL23 [42] with GS-IR [41]6. These approaches are similar to ours,
as they both extract valuable information from events and consider
the consistency across multiple viewpoints.

Table 1 displays the quantitative results of the combined meth-
ods. It becomes clear that merely combining events with images
straightforwardly fails to capitalize on the unique advantages of
events effectively. This inefficiency stems from the event-enhanced
method of applying modifications on a frame-by-frame basis, which
leads to the loss of multi-view consistency in the enhanced images.
Additionally, the methods that combine event-based NeRF with
GS-IR [41] perform better than those that simply use events to
enhance images. This improvement is due to event-based NeRF’s
ability to extract scene information from events while maintain-
ing multi-view consistency. However, this approach only utilizes
event information during the reconstruction of the 3D scene and
does not fully exploit it during the decomposition phase. In con-
trast, our method makes full use of event information in both the
3D scene reconstruction and decomposition stages, resulting in
superior outcomes.

Figure 7 showcases the visual results, clearly illustrating that
our method achieves the best performance.

The results of real-world data. Figure 8 presents the results
on real-world data which, unlike synthetic data, are constrained
by device capabilities, resulting in images with a resolution of only
346x260 and significantly poorer image quality. Despite the low
quality of the images, our results still outperform comparative
methods. For the results of the remaining real-world data, please
refer to the supplementary materials.

4.3 Ablation Studies
To validate the effectiveness and necessity of the components of
our method, we compare it with its two variants:

5We use HDR images as the input for the intrinsic decomposition method.
6The images output by LL23 [42] are used as input for GS-IR [41].
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Figure 7: Qualitative comparison on synthetic dataset. We
visualize the estimated normal, base color, roughness and
metallic of our Event-ID and baseline methods. (From top to
bottom: scenes with blur, low light, and overexposure.)

• Variant A:Without event surface rendering loss Lsurf .
• Variant B:Without specular-related cues𝑀𝑠 .

Table 2 presents the quantitative results for different variants. It
is clear that removing any component of our method results in
decreased performance.
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Table 1: Quantitative comparison on synthetic dataset.

Conditions Methods Normal Base Color Novel View
MAE(◦) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Over-exposure GS-IR [41] 28.1769 15.3427 0.8498 0.1675 18.5523 0.9156 0.0901
GS-IR [41]+YH23 [74] 28.2794 15.7839 0.8558 0.1594 15.1489 0.8822 0.1259

Low light GS-IR [41] 44.7076 16.2018 0.8461 0.1745 16.3147 0.8875 0.1120
GS-IR [41]+WY21 [67] 33.0106 15.3934 0.8273 0.1748 23.4842 0.8987 0.1066

Blur GS-IR [41] 35.5682 15.6107 0.8588 0.1832 22.6323 0.8916 0.1196
GS-IR [41]+WZ23 [69] 28.9436 15.5308 0.8452 0.1727 23.5555 0.9026 0.0943
GS-IR [41]+LL23 [42] 27.3428 17.1431 0.8403 0.1694 22.1696 0.8993 0.0899

Ours 20.1804 20.4238 0.8930 0.1140 25.3671 0.9222 0.0726
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Figure 8: Qualitative comparison on real-world dataset in low-
light scene. We visualize the estimated based color, normal,
and input of our Event-ID and GS-IR [41].

Table 2: Quantitative comparison of ablation study on syn-
thetic dataset.

Variants Normal Base Color Novel View
MAE(◦) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Lsurf 26.0321 18.4492 0.8669 0.1261 23.9775 0.9076 0.0921
w/o𝑀𝑠 23.7485 19.0964 0.8653 0.1194 24.8082 0.9147 0.0720
Ours 20.1804 20.4238 0.8930 0.1140 25.3671 0.9222 0.0726

Effectiveness of the clues from events. To verify the effective-
ness of the specular-related cues obtained from events, we remove
the𝑀𝑠 from the loss Lnormal and Lbase_color as a part of our com-
parative experiment. Figure 9 and Figure 10 respectively show the
results on base color estimation and normal estimation. It can be
observed that utilizing specular-related clues to separate specular
highlights is beneficial for the reconstruction of base color and
normals in specular regions. The reason is that for base color, the
specular regions reflect the color of the light source rather than the
color of the object itself. Masking out the pixels in the specular posi-
tions is tantamount to reducing the input of incorrect information,
allowing the network to be undisturbed by specular information.
As for normal estimation, the normal is constrained by the output
of the first part, and the normal output from the first stage is in-
accurate in the specular areas due to not considering the effect of
specular reflections. Lowering the weight of the normals in these
regions also equates to reducing the input of incorrect information.
Therefore, in the experimental results with𝑀𝑠 , the highlighted box
areas exhibit a relatively smooth surface of normal.

Input Image w/ �� w/o ��

Figure 9: Visualization of ablation study on the effectiveness
of specular-related clues (𝑀𝑠 ) to base color estimation. The
placement of the boxes highlights the differences between
the two outcomes.

Input Image w/ �� w/o ��Normal GT

Figure 10: Visualization of ablation study on the effective-
ness of specular-related clues (𝑀𝑠 ) to normal estimation. The
placement of the boxes highlights the differences between
the two outcomes.

5 CONCLUSION & LIMITATIONS
In conclusion, our research presents a intrinsic decomposition
framework that effectively harnesses event-based data to overcome
the limitations of conventional imaging under adverse conditions.
By integrating an event-based reflectance model with specular-
related event clues, we have enabled robust 3D scene reconstruc-
tion and intrinsic decomposition in challenging scenarios such as
low-light, blur, and overexposure. Our method not only maintains
consistency across multiple viewpoints but also improves upon the
reliability of intrinsic decomposition, paving the way for practical
applications in fields requiring precise scene interpretation and
manipulation. This work signifies a considerable advancement in
the utilization of event cameras for complex imaging tasks and sets
the stage for future explorations in the domain.

Limitations. Our method does not model shadows, and the
current resolution of event cameras limits the application of this
technique. However, these issues do not hinder the exploration of
this scientific question, and we believe that with advancements
in event camera technology and its commercial development, the
resolution and imaging quality of event cameras will improve.
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