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6 OVERVIEW

This supplemental material provides, 1). In Section 7, other details
of our method in Section 3.3 of the main paper, including aspects of
details of scene geometry, details of BRDF function, and implemen-
tation details; 2). In Section 8, additional experimental results, which
include results on real scenes, and comparison with state-of-the-art
(SOTA) methods. 3). In Section 9, one downstream application of
our method: relighting.

We also provide a video that showcases our results on the test
scenes and comparisons with baseline models. We highly recom-
mend readers to check out this video supplement.

7 OTHER DETAILS OF OUR METHOD

7.1 Details of Scene Geometry

In this section, we provide a detailed description of SDF-based
volume rendering. As detailed in [2, 9], the attributes of a 3D scene,
consisting of signed distance and radiance, are parameterized by a
geometry network f and a radiance network c,

s = f(x),c=c(x,d), (24)

where d is view direction, the geometry network f maps a spatial
position x to its signed distance f(x) to the object. The SDF-based
volume rendering can be written as,

P
R(r) = Z Tiaici, (25)
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aj = max ( 0. () ) , (27)
O(x) = (1+e75%)7 L, (28)

where P is the number of sampled points along a ray, % indicates
the standard deviation of O (x). For detailed information, please
refer to NeuS [9] and Ref-NeusS [2]

7.2 Details of BRDF Function

In this section, we describe detailed implementations of our normal
distribution term D, Fresnel term F, and geometry term G. Like [10,
11], the normal distribution function D is approximated by the
Spherical Gaussian function,

1 2 1 2 (hn-
D(b;r) = S(h,—5,m, ) = — e WU (29)
r r r
The Fresnel term is given as,
F(wo, h;b,m) = Fy + (1= Fo) (1 = (wo - h)°), (30)

where Fy = 0.04(1 — m) + bm. The geometry term is approximated
by the GGX function [8],

G(wi, wo, n;7) = Ggax (wi - n)GGax (wo - M), (31)

2z
z4+r2+(1-r2)z2 '

7.3 Implementation Details

We base our implementation on [10] and [9]. We set the threshold
of event camera © to 0.3. In the reconstruction phase, train for
200,000 epochs; in the decomposition phase, train for 30,000 epochs.
During the reconstruction phase, we use Ly and L defined
in NeuS [9]. In the decomposition phase, the weights for Lg¢,
Lurf vols Lbase_color> a0d Lyormar are 1, 1,0.1, and 0.1, respectively.

Ggex(z) = (32)

8 ADDITIONAL EXPERIMENTAL RESULTS

8.1 Results on Real Scenes

We additionally demonstrate the experimental results on two real
scenes, including a blurred specular bunny and an over-exposed dif-
fuse bunny (shown in Figure 11). We can observe that our method
is able to suppress the GS-IR [5] in both cases. As for albedo esti-
mation, our Event-ID can produce smooth and clear albedo maps,
but GS-IR estimates the unpleasing albedo maps that are related to
over-exposure and blur conditions. For normal map estimation, the
proposed Event-ID reconstructs a better geometry, while GS-IR fails
and its estimated normal maps are highly affected by over-exposure
and blur conditions. These results further validate the effectiveness
of the proposed Event-ID.

8.2 Comparison with State-of-the-Art Methods

We additionally provide a comparison between the Neilf++ [11]
and the proposed Event-ID, shown in Figure 12.

Besides, we also demonstrate a further comparison between the
GS-IR [5] using event-enhanced data (with the output of LL23 [6])
and the proposed Event-ID, shown in Figure 13.

In both experiments, the proposed Event-ID produces better
albedo maps and normal maps, validating its effectiveness.

Over-fitting problem on implicit representation based meth-
ods. We should indicate that some of the existing works fail to
handle such severe scenes, as they are designed to process multi-
view information under good conditions (especially those using
implicit representation, e.g., NVDiffRec [7] (based on implicated
mesh), TensolR [4] (based on TensoRF [1])). Figure 15 shows the
under-fitting problems of those works. We find methods based on
SDF [11] and 3DGS [5] representation could tolerate such chal-
lenges. The reason might be that SDF/3DGS has a strong explicit
restriction on geometry and provides a well-constructed geometry
reconstruction (though the 3DGS is difficult to represent surface
normal [3]), which is crucial to intrinsic decomposition.
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Figure 11: Qualitative comparison on real-world data. (Top) A diffuse bunny under the over-exposure condition. (Bottom) A
specular bunny under the blur condition. We visualize the inputs, estimated base color, and estimated normal produced by our

Event-ID and GS-IR [5].
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Figure 12: Qualitative comparison on our synthetic dataset.
‘We visualize the estimated based color, normal, novel view
render and input of our Event-ID and Neilf++ [11]. (From
top to bottom, they are overexposed, blurred, and low-light
respectively)
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Figure 13: Qualitative comparison on our synthetic dataset.
We visualize the estimated based color and normal of our
Event-ID and GS-IR [5], GS-IR [5]+LL23 [6]. (From top to
bottom, they are overexposed, blurred, and low-light respec-
tively)
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Figure 14: Relighting visualization with synthetic data. (Left) the input images and events. (Right) the results of relighting with

different environment maps as inputs.

Base color Normal Novel view respectively. It can be seen, our method is capable of performing

(1]

[2]

NVDiffRev

Figure 15: Under-fitting of several implicit representations (5]
on over-exposure scene. (6]

Low-light image input Events input Relighting by ours [7]

Figure 16: Relighting visualization in real-world scenarios. [10

9 APPLICATION

Relighting. In this section, we show the relighting result of
our method in low-light environments. We replace the output of
the lighting MLP L directly with an environment map, which can
be directly used in rendering pipelines for relighting. Figure 16 and
Figure 14 display the relighting results in real and synthetic scenes,

(1]

Intrinsic Decomposition and relighting effectively, even in low-light
conditions. Please refer to our supplementary video for convincing
results.
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