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Figure 7: Different granularities of graphs derived from a session, where the violet edges, blue edges,
and green edges correspond to the global collaborations, shortcuts, and higher-level heterogeneous
connections, respectively.

A Limitations393

There are three limitations to our current proposed method and evaluation. First, our method separately394

processes and retrieves patterns for each attribute type. We do not merge all attributes in a candidate395

pool because we aim for our method to easily generalize to real recommendation systems with396

hundreds of attribute types and category hierarchies. The current implementation supports adding a397

new attribute type to a model as long as its embeddings align with the embeddings of other attributes.398

Second, we conducted experiments based on "clean" session data. Most E-commerce platforms do399

not have truly clean data on product attributes, so attribute data, in general, is very sparse and full of400

invalid values. We performed human-centric attribute regularization to drop products without valid401

attribute values, which may create a gap compared to a real industrial system. Third, the evaluation402

does not consider the same products with different identifiers. Therefore, evaluating results (especially403

MRR) cannot accurately reflect the performance. To better reflect the real performance with error404

tolerance, a larger K is suggested. The current comparison is still fair for all algorithms, and we405

address this synonym problem in attribute estimation in § 5.4, where we merge attribute values based406

on semantics and syntax.407

B Transition Graph Density408

The graph structure is crucial for neural networks to capture explicit transitions and implicit connec-409

tions. A local session records the history of a user’s clicks or purchases, which is usually sparse. In410

contrast, the global collaborative graph could be extremely dense because each pair of items may have411

a potential connection. From this perspective, the density indicates the explicit information provided412

from session data. On the other hand, different graph topologies and densities also present different413

focuses and challenges. The sparse local transition graph emphasizes current intents, while the global414

collaboration indicates broader interests and revenues. Graph neural networks excel at capturing local415

features, but a large number of neighbors can overshadow important connections with less significant416

ones. Considering that previous methods have focused on different granularities individually, we417

summarize them in Figure 7 and compare them in terms of optimization interpretations1.418

• Local session graphs correspond to item transitions within a session, where edges are created419

between two consecutively clicked/purchased items. The density is usually sparse (slightly greater420

than 1.0), allowing exploration and global collaboration to be learned through model parame-421

ters instead of explicit connections. Therefore, generalizing to unseen click patterns becomes422

challenging.423

• Global transition graphs record all collaborations. In a real industrial system, the density is usually424

beyond one hundred or even one thousand. Ideally, any session can benefit from this global425

collaborative information, including multi-hop connections. However, optimizing graph neural426

1Graphs are typically considered undirected in practical algorithms.
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networks to learn such topologies (due to oversmoothing) and building a large model for real-time427

inference (due to latency and streaming processing) pose challenges.428

• Shortcut graphs aim to avoid constructing global graphs and make session learning more efficient.429

They were proposed by LESSR [1] to address information loss in graph convolutions. Specifically,430

they allow latent items to be aware of all previous clicks, resembling shortcuts for multi-hop431

neighbors in the directed local session graph. However, they lack the extensive exploration432

capabilities of the global transition graph and suffer from oversmoothing issues due to dense433

connections.434

• Heterogeneous graphs strike a balance between shortcuts and local adjacency. Nodes with different435

numbers of items are categorized into different groups, and transition edges capture varying levels436

of spatial continuity. From a high-level perspective, this graph is sparser than the local session437

graph, resulting in faster convergence for optimization. However, the propagation of high-order438

information introduces additional processing costs and the risk of overfitting.439

• Patterns, especially attribute patterns, should be the most efficient features for recommendations440

in a large candidate item pool. Each pattern can be considered a higher-grained heterogeneous441

graph. However, pattern filtering can significantly eliminate noise influence, not to mention the442

benefits gained from offline indexing. Besides, the partial match of patterns can provide the intent443

information from other sessions, making the learning and prediction more reliable and steady.444

C Experimental Data445

C.1 Public Benchmarks446

We choose two public benchmarks for session-based recommendation evaluation: diginetica 2 is447

CIKM Cup 2016 that contains the browser logs and anonymized transactions; Tmall 3 comes from a448

competition in IJCAI-15 which collects anonymous users’ shopping logs on the Tmall online website.449

We acquire attributes from the original data and drop items without attributes or with invalid values.450

Therefore, the performance of baselines may not be exactly same as the reported numbers in the451

original papers.452

C.2 E-commerce Data Collection453

We collect E-commerce data from our log systems in two months. We follow the same procedure to454

clean and process session data in beauty, books, and electronics domains4:455

I We focus on successful purchases so that we only keep sessions ending with “purchase” actions.456

457

II To make sure previous clicks can reflect the purchase intent, we drop actions 20 minutes ago.458

459

III We filter out items with missing attributes (i.e., books without publishers, authors, or genre, and460

electronics without colors and brands).461

462

IV We adopt the 20-core setting to finalize the item sets, in which items appear on at least 20463

different days.464

465

V Only sessions whose length is no greater than 50 are preserved.466

467

VI We retrieve item attributes in our attribute databases.468

VII For GNN models that requires the global transition graph from training data, we maintain 12469

neighbors based on the co-occurrence, which is consistent with GCE-GNN [21].470

2https://competitions.codalab.org/competitions/11161
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
4The sampled data scales and distributions are different in real systems due to out-of-domain items filtering.
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Table 6: Statistics of datasets based on timestamps.

Public Industrial (E-commerce)
diginetica Tmall Beauty Books Electronics

#User 57,623 7,576 2.6 M 3.2 M 10.2 M
#Item 43,074 39,768 39.2 K 94.8 K 244.7 K
#Click 993,163 438,315 27.2 M 38.8 M 115.6 M
Avg. Len. 4.850 6.649 10.325 11.912 11.249
#Train 630,789 303,181 19.6 M 28.2 M 84.1 M
#Valid 78,708 33,735 2.4 M 3.5 M 10.5 M
#Test 78,907 35,481 2.5 M 3.8 M 10.6 M

#Attribute category : 995 category : 821
brand : 4,304

category : 359
color : 1,101
brand : 4,359
size : 1,883

category : 18
publisher : 2,751
author : 27,651
genre : 2,634

type : 123
category : 881
color : 2,096

brand : 24,196

#Pattern category : 1,866 category : 33,582
brand : 2,497

category : 970
color : 4,059
brand : 254
size : 1,091

category : 24
publisher : 4,370

author : 1,399
genre : 12,535

type : 9,289
category : 13,991
color : 146,402
brand : 14,043

Density

Local: 0.886
Global: 11.329
Shortcut: 2.512

Heterogeneous: 0.543
Pattern: 1.023

Local: 1.249
Global: 10.222
Shortcut: 4.983

Heterogeneous: 0.707
Pattern: 1.165

Local: 4.510
Global: 70.504

Shortcut: 29.827
Heterogeneous: 3.412

Pattern: 1.095

Local: 3.554
Global: 99.389

Shortcut: 26.649
Heterogeneous: 2.333

Pattern: 1.085

Local: 2.910
Global: 128.041
Shortcut: 19.865

Heterogeneous: 2.049
Pattern: 1.189

C.3 Data Split471

We follow previous settings that split training/validation/testing data based on timestamps. For472

diginetica, we gather the last 8-14 days as validation, the last 7 days as testing, and remaining as473

training. For Tmall, we use the last 101-200 seconds as validation, the last 100 seconds as testing,474

and remaining as training. For our industrial E-commerce data (i.e., Beauty, Books, Electronics), we475

select the last 6-10 days as validation, the last 5 days as testing, and remaining as training.476

C.4 Data Statistics477

Table 6 summarizes the statistics of the experimental datasets based on timestamps. The density is478

calculated based on undirected graphs, which would be doubled during graph convolution in practice.479

Local density, as used in SR-GNN and GC-SAN, corresponds to the average density of local session480

graphs in E-commerce sessions. On the other hand, global density, as used in GCE-GNN, refers to481

the density of the global collaborative graph obtained by connecting all adjacent items appearing482

in all sessions. Shortcut density, as used in LESSR, is the density resulting from connecting all483

items in a single session as a complete graph. Heterogeneous density, as used in MSGIFSR, refers484

to the average density of the heterogeneous graphs obtained by regarding the consecutive adjacent485

two nodes as a fine-grained intent unit. Lastly, pattern density, as used in FAPAT, is the density486

of the acquired frequent and compact patterns. From Table 6, it is evident that leveraging patterns487

is the most effective way of characterizing user intents because other graph topologies vary with488

data sources and scales, making it difficult to generalize and provide stable performance. Besides,489

patterns can be preprocessed as indicies to aid recommendations, making them more practical in490

industrial scenarios. Moreover, it is easy to update attribute patterns dynamically, whereas other graph491

structures are more closely coupled with input sessions and are more sensitive to tiny variations.492

D Baselines493

We compare our method with following baselines:494

Sequence-based methods495

• FPMC [16] learns the representation of session via Markov-chain based methods.496

• GRU4Rec [6] is the first RNN-based approach that simulates the Markov Decision Process (MDP)497

but has a better generalization.498

• NARM [9] is a attention-based RNN model to learn session embeddings.499

• STAMP [12] adopts attention mechanism between the last item to previous histories to represent500

users’ short-term interests.501
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• CSRM [19] proposes to engage an inner memory encoder and external memory network to capture502

correlations between neighborhood sessions to enrich the collaborative representations.503

• S3-Rec [31] is the first pretrained SBR model that predicts items, attributes, and segments during504

the pretraining stage.505

• M2TRec [17] is a metadata-aware multi-task Transformer model. In the original paper, the authors506

ignore item embeddings. For a fair comparison, we also regard the item ids as one of metadata.507

Graph-based methods508

• SR-GNN [22] is the first GNN-based model for the SBR task, which transforms the session data509

into a direct unweighted graph and learns the representation of the item-transitions graph.510

• GC-SAN [25] uses gated GNNs to extract local context information and then self-attention to511

obtain the global representation.512

• S2-DHCN [24] transforms the session data into hyper-graphs and line-graphs and encodes them513

via GCNs to enhance the session representations.514

• GCE-GNN [21] aggregates two levels of item embeddings from session graphs and global graphs515

with soft attention.516

• LESSR [1] preserves the edge order and constructs shortcuts to encode sessions for GNNs.517

• MSGIFSR [5] captures the user intents from multiple granularities to relieve the computational518

burden of long-dependency. In experiments, we search the best model from the level-1, level-2,519

and level-3 consecutive intent units.520

E Experimental Settings521

We fix all embeddings and hidden dimensions as 100, and the batch size is searched among {100,522

200, 500} for all methods. We also choose the number of layers/iterations (if applicable) from the523

validation performance (e.g., MRR@10). A learning scheduler with 10% linear warmup and 90%524

decay is associated with the Adam optimizer [7]. The initial learning rate is set as 1e-3, and the525

regularization weight is tuned among {1e-4, 1e-5, 1e-6}. We seek the dropout probability between526

two modules from {0.0, 0.2, 0.4}, but fix the attention dropout rate as 0.2. The number of attention527

heads is empirically set as 4. We follow the setting of GCE-GNN that the maximum one-hop neighbor528

number in GAT is 12. In the interest of fairness, we also set the maximum selected pattern number as529

12. Hyper-parameter tuning is time costly on our industrial data so that we use the best combinations530

obtained from one day transactions. We implement our methods and run experiments with Python531

and PyTorch over 8 x A100 NVIDIA GPUs.532

F Experimental Results533

Due to the space limit, we only report some results in the main content. More comprehensive534

comparisons are shown in Tables 7-11, where standard deviations are enclosed in brackets. The535

best and second-best results are respectively highlighted in bold and underlined. Methods that use536

attributes are marked with ‡, and * indicates the p-value < 0.0001 in t-test.537

15



Table 7: Performance evaluation for next-item prediction on diginetica.

Model diginetica
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 31.57(0.04)* 17.40(0.01)* 13.08(0.02)* 43.19(0.05)* 20.33(0.03)* 13.88(0.03)*
GRU4Rec 36.77(0.14)* 20.71(0.05)* 15.80(0.03)* 49.68(0.06)* 23.97(0.03)* 16.70(0.03)*
NARM 35.98(0.10)* 20.18(0.06)* 15.36(0.06)* 48.89(0.12)* 23.44(0.06)* 16.26(0.06)*
STAMP 33.59(0.15)* 18.89(0.18)* 14.41(0.19)* 45.87(0.15)* 22.00(0.18)* 15.26(0.19)*
CSRM 33.97(0.08)* 19.43(0.03)* 14.98(0.03)* 45.83(0.02)* 22.42(0.02)* 15.80(0.02)*
S3-Rec‡ 33.48(0.13)* 18.58(0.09)* 14.04(0.10)* 45.97(0.08)* 21.74(0.09)* 14.90(0.10)*
M2TRec‡ 29.67(0.43)* 16.30(0.24)* 12.23(0.18)* 41.23(0.63)* 19.22(0.29)* 13.02(0.20)*
SR-GNN 35.21(0.02)* 19.68(0.04)* 14.94(0.04)* 47.99(0.04)* 22.90(0.04)* 15.82(0.04)*
GC-SAN 35.25(0.09)* 19.72(0.04)* 14.97(0.03)* 47.87(0.09)* 22.90(0.04)* 15.85(0.03)*
S2-DHCN 30.76(0.07)* 17.04(0.14)* 12.86(0.16)* 42.39(0.07)* 19.98(0.13)* 13.66(0.16)*
GCE-GNN 36.32(0.09)* 20.77(0.07)* 16.02(0.07)* 48.67(1.12)* 23.89(0.23)* 16.87(0.03)*
LESSR 33.68(0.05)* 18.71(0.03)* 14.14(0.03)* 46.23(0.11)* 21.88(0.05)* 15.01(0.03)*
MSGIFSR 34.74(0.09)* 19.43(0.06)* 14.76(0.07)* 46.23(0.11)* 21.88(0.05)* 15.01(0.03)*
FAPAT‡ 37.42(0.10) 21.31(0.03) 16.39(0.04) 50.41(0.15) 24.59(0.06) 17.29(0.04)
Improv. 3.03% 2.60% 2.31% 1.46% 2.59% 2.49%

Table 8: Performance evaluation for next-item prediction on Tmall.

Model Tmall
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 13.71(0.16)* 9.02(0.02)* 7.56(0.03)* 16.44(0.23)* 9.71(0.04)* 7.74(0.02)
GRU4Rec 18.82(0.17)* 12.28(0.11)* 10.25(0.09)* 22.68(0.21)* 13.25(0.12)* 10.51(0.10)*
NARM 22.74(0.20)* 15.46(0.12)* 13.19(0.10)* 26.73(0.26)* 16.47(0.13)* 13.47(0.10)*
STAMP 24.32(0.31)* 16.55(0.29)* 14.12(0.29)* 28.40(0.35)* 17.58(0.30)* 14.41(0.29)*
CSRM 25.13(0.19)* 18.56(0.18)* 16.48(0.18)* 27.94(0.15)* 19.27(0.17)* 16.68(0.18)*
S3-Rec‡ 18.24(0.11)* 12.30(0.07)* 10.46(0.06)* 22.31(0.17)* 13.32(0.08)* 10.74(0.06)*
M2TRec‡ 11.42(0.21)* 7.56(0.06)* 6.36(0.11)* 13.75(0.35)* 8.15(0.04)* 6.52(0.10)*
SR-GNN 18.21(0.51)* 12.11(0.32)* 10.20(0.28)* 21.34(0.49)* 12.91(0.31)* 10.42(0.28)*
GC-SAN 19.29(0.14)* 12.80(0.07)* 10.78(0.13)* 23.18(0.23)* 13.78(0.04)* 11.05(0.12)*
S2-DHCN 22.00(0.36)* 13.36(0.21)* 10.68(0.17)* 27.23(0.33)* 14.69(0.20)* 11.05(0.17)*
GCE-GNN 28.33(0.13)* 20.01(0.12)* 17.32(0.13)* 30.24(0.16)* 20.50(0.13)* 17.45(0.13)*
LESSR 20.99(0.26)* 14.64(0.18)* 12.13(0.19)* 25.92(0.23)* 13.96(0.22)* 10.50(0.23)*
MSGIFSR 23.18(0.19)* 15.19(0.11)* 12.69(0.10)* 27.78(0.25)* 16.35(0.11)* 13.01(0.09)*
FAPAT‡ 32.45(0.21) 22.02(0.15) 18.72(0.13) 36.18(0.21) 22.97(0.14) 18.99(0.13)
Improv. 14.19% 10.04% 8.08% 19.64% 12.05% 8.83%

Table 9: Performance evaluation for next-item prediction on Beauty.

Model Beauty
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 72.00 57.20 52.42 75.91 58.19 52.70
GRU4Rec 73.95 58.19 53.13 78.54 59.36 53.45
NARM 88.09 70.44 64.68 91.50 71.31 64.93
STAMP 80.08 63.76 58.47 83.84 64.72 58.73
CSRM 89.74 75.28 70.56 92.61 76.01 70.77
S3-Rec‡ 89.64 75.56 70.99 92.53 76.30 71.19
M2TRec‡ 80.13 65.97 61.65 83.66 66.87 61.65
SR-GNN 88.69 70.42 64.44 91.74 71.20 64.65
GC-SAN 86.67 70.80 64.71 88.98 72.50 65.97
S2-DHCN 7.25 5.38 4.80 8.87 5.79 4.91
GCE-GNN 89.34 73.15 67.80 91.29 73.65 67.94
LESSR 89.95 71.29 65.18 92.98 72.06 65.40
MSGIFSR 90.18 73.62 65.18 92.50 74.21 65.65
FAPAT‡ 92.72 76.29 71.09 94.10 76.87 71.24
Improv. 2.82% 0.97% 0.14% 1.20% 0.75% 0.07%
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Table 10: Performance evaluation for next-item prediction on Books.

Model Books
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 36.51 24.32 20.49 41.90 25.69 20.87
GRU4Rec 47.21 31.86 27.02 53.55 33.47 27.46
NARM 76.09 54.22 47.13 80.83 55.43 47.36
STAMP 61.49 42.13 35.95 67.46 43.65 36.37
CSRM 78.69 56.70 49.54 82.88 57.77 49.83
S3-Rec‡ 75.00 58.54 53.23 79.45 59.67 53.55
M2TRec‡ 32.56 22.58 24.98 35.39 25.70 22.78
SR-GNN 66.55 47.55 41.32 69.77 48.37 41.55
GC-SAN 72.56 54.92 49.25 75.73 56.05 50.14
S2-DHCN 4.69 3.42 3.03 5.60 3.65 3.09
GCE-GNN 77.61 57.60 51.00 80.03 58.22 51.17
LESSR 73.72 53.86 47.36 82.31 54.77 47.61
MSGIFSR 72.93 52.23 45.66 76.33 53.09 45.66
FAPAT‡ 81.62 61.08 54.39 85.12 61.97 54.64
Improv. 3.72% 4.34% 2.18% 2.70% 3.85% 2.04%

Table 11: Performance evaluation for next-item prediction on Electronics.

Model Electronics
Hits@10 NDCG@10 MRR@10 Hits@20 NDCG@20 MRR@20

FPMC 37.87 26.91 23.42 42.07 27.97 23.71
GRU4Rec 58.46 40.69 35.02 64.42 42.21 35.44
NARM 61.10 41.20 32.05 77.36 44.56 33.75
STAMP 59.30 42.04 36.53 67.94 45.07 36.97
CSRM 62.28 44.35 38.59 67.47 45.67 38.96
S3-Rec‡ 74.36 56.03 50.16 79.63 57.37 50.53
M2TRec‡ 57.32 44.84 40.85 61.70 45.95 41.15
SR-GNN 74.86 54.30 47.66 79.66 55.52 48.00
GC-SAN 72.76 53.37 45.98 77.34 46.34 49.91
S2-DHCN 4.18 2.65 2.18 5.08 2.88 2.24
GCE-GNN 72.93 53.74 47.59 78.49 55.15 47.98
LESSR 72.91 50.46 43.26 78.78 51.96 43.67
MSGIFSR 73.56 53.83 47.77 77.45 54.73 48.02
FAPAT‡ 78.36 56.81 49.80 82.81 57.94 50.12
Improv. 4.68% 1.39% -0.07% 3.95% 0.99% -0.81%
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