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Table 1: Results based on DeepLabv3+, a CNN-based architecture.
Compared to the counterpart that is based on Transformer (Table
1 of the main manuscript), the performance drops about 10% in
average.

Method A-fog A-night A-rain A-snow CS-fog CS-rain Avg.

SO 58.9 32.0 48.1 45.7 65.9 49.8 50.1
BN adapt 36.2 28.9 37.7 36.1 60.5 55.4 47.5
TENT 59.2 31.9 48.8 46.6 64.9 53.1 50.7

1 TRANSFORMER-BASED ARCHITECTURES
ARE PREFERRED

In our experiments, we deploy Segformer-B5 [12], a Transformer-
based architecture, for segmentation TTA tasks. Compared to CNN-
based architectures, the backbone of Transformer employs fewer
BN layers. We apply DeepLabv3+ [1], a typical CNN-based archi-
tecture, on datasets ACDC [8], Cityscapes-foggy (CS-fog) [7] and
Cityscapes-rainy (CS-rain) [3]. The results are depicted in Table 1,
where we can observe an obvious drop compared to the results pre-
sented in Table 1 of the main manuscript. Thus, it is better to build
segmentation TTA architectures based on Transformer instead of
CNN. Based on the analysis of normalization updating in Section 3
of the main manuscript, it might be the attention mechanism of
Transformer that contributes to its effectiveness in segmentation
TTA.

2 MORE RESULTS REGARDING BATCH
DEPENDENCY

Since online adaptation is one of the key characteristics of TTA,
we also carry out experiments based on TENT [10] besides the
single-model and TS scheme. The results are displayed in Table 6,
further indicating that TENT is not sensitive to the temporal order
of test samples. The reason might be that fewer parameters need to
be updated in the deep architecture of TENT, compared to that in
the single-model and TS scheme.

3 MORE RESULTS UNDER LONG-TAILED
PHENOMENON

Although conventional wisdom may suggest that the performance
of majority classes surpasses that of minority classes, we observe
that this rule does not hold true in segmentation tasks. For example,
in the third plot of Figure 4, class 19 attains an IoU of 0.59, whereas
class 7 achieves an IoU of 0.52. However, it is worth noting that
the count of class 7 is 107 while the count of class 19 is 105, as
illustrated in Figure 5. In summary, a segmentation task in TTA
proves to be significantly more intricate than a classification task.
The reason might be that the long-tailed (LT) phenomenon may
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Figure 1: Comparisons between the single-model and the teacher-
student (TS) scheme under different degrees of ground-truth (GT)
pseudo-labels (%) on ACDC. As the accuracy of pseudo-labels in-
creases, the performance of the single-model experiences contin-
ual enhancement. However, the TS scheme’s performance remains
stagnant since the strategy of test-time augmentation has not been
introduced.

cause error accumulation at pixel-level and negatively affect the
training process. We provide more results on the night, rain and
snow domains within the dataset ACDC, further indicating the
complexity of LT problems in segmentation TTA. For instance,
after adaptation, the Recall of class 7 increases from 0.27 to 0.68,
while the Precision decreases from 0.78 to 0.73. An increase in
Recall alongside a decrease in Precision implies a reduction in False
Negative and an increase in False Positive. In summary, combining
with region-level solution and introducing data augmentationmight
be a potential solution to address the LT phenomenon as discussed
in Section 6.2 of the main manuscript.

4 THE EFFECT OF ATTENTION
Our work demonstrates that the attention mechanism plays a
pivotal role in a Transformer-based model, which is also shown
in Table 3 of the main manuscript. We have shown that GN and LN
do not perform well in pixel-level segmentation TTA, as displayed
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Table 2: Comparisons between the teacher-student scheme and the source-only manner on ACDC (%). “SO”/“TS” are short for source only/the
teacher-student scheme, and “PL”/“Aug” are short for pseudo-labeling/test-time augmentation, respectively.

Method PL Aug A-fog A-night A-rain A-snow Avg.

SO 68.2 39.5 59.7 57.6 56.3
SO ✓ 70.6 (+2.4) 40.0 (+0.5) 63.7 (+4.0) 59.2 (+1.6) 58.4 (+2.2)

TS ✓ ✓ 70.5 (+2.3) 39.7 (+0.2) 63.8 (+4.1) 59.2 (+1.6) 58.4 (+2.1)

Table 3: Ablation studies on ACDC-fog of data augmentation (Aug) in terms of F1 Score and mIoU (%).

Method Aug
F1 Score mIoU

head mid tail Avg. head mid tail Avg.

Pseudo labeling 89.8 82.4 82.7 85.6 82.8 71.1 69.9 74.5
✓ 89.7 (-0.1) 82.7 (+0.3) 81.6 (-1.1) 84.7 (-0.9) 82.9 (+0.1) 73.5(+2.4) 74.3(+4.4) 76.9(+2.4)
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Figure 2: Additional results based on the strategy of data augmenta-
tion in TS scheme (TS-ms). Due to this strategy, TS yields comparable
results to those of the single-model.

in Figure 1 of the main manuscript. The results demonstrate that
updating Normalization layers is not very effective in segmentation
TTA, while updating the attention mechanism is a promising and
novel direction for transformer-based models as illustrated in that
Table.

5 STATE-OF-THE-ART AND RECENT
SEGMENTATION METHODS

Weuse OneFormer [4], a typical state-of-the-art and recent segmen-
tation method, as the pre-trained model instead of SegFormer [12].
As shown in Table 4, although OneFormer shows better perfor-
mance, it still deteriorates when updating BN layers. We also adopt

SO TENT TS SO (Aug)
0

20

40

60

80

100

E
C

E

Prediction Correctness

Correct
Incorrect

Figure 3: Independently calculating the ECE for both correct and
incorrect predictions (ACDC-fog, %).

SAM [5] and find that it encounters the same problem. These results
indicate that our previous analysis is reasonable and solid.

Table 4: Results on two state-of-the-art and recent segmentation
approaches, i.e., OneFormer [4] and SAM [5].

Method A-fog A-night A-rain A-snow

OneFormer + SO 70.5 48.7 62.3 61.8
OneFormer + TENT 69.1 46.5 61.2 59.8
OneFormer + SAM + SO 74.9 50.8 64.4 65.1
OneFormer + SAM + TENT 73.8 49.6 64.5 64.1

Table 5: Comparisons between our prompt-based solution (Ours) and
other methods related to prompt. It is clear that the performance of
Ours is the best.

Method SO DePT DVPT UniPT SVDP Ours

CS (GTA) 68.6 65.1 66.3 60.2 69.1 71.1
CS (Syn) 51.1 48.2 48.6 43.3 52.2 56.1
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Figure 4: Quantitative metrics analysis (ACDC-fog). After adaptation, the IoU and F1 Score for the majority classes experience improvement.
Specifically, there is an increase in the Recall for numerous classes, while the Precision for a limited number of classes actually witnesses a
decline.
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Figure 5: The class distribution in ACDC-fog is highly imbalanced,
where the order of magnitude for classes 1 to 9 exceeds 108 while
that for classes 10 to 19 just exceeds 106.

6 MORE RESULTS OF MODEL CALIBRATION:
REFLECTING THE COMPLEXITY OF
SEGMENTATION TTA

In the real world, a decision-making system, such as an autonomous
car, should not only improve the decision accuracy but also under-
stand when they are potentially unreliable [2, 9]. Attaining an
optimal solution in practice proves elusive. Thus, we conduct ex-
periments to delve into model interpretability, aiming to unearth
the primary challenges associated with the uncertainty of segmen-
tation TTA where there lacks a comprehensive study on model
calibration.

Miscalibration arises from a misalignment between predictive
confidence and accuracy, as defined by the expected calibration
error (ECE) formalism, i.e., 𝐸𝐶𝐸 =

∑𝑚
𝑖=1

|𝐵𝑖 |
𝑁

|acc (𝐵𝑖 ) − conf (𝐵𝑖 ) |,
where m is the number of bins, 𝐵𝑖 denotes a set of samples falling
into the bin, and acc (𝐵𝑖 ) and conf (𝐵𝑖 ) are actual accuracy and
confidence averaged over the samples in the bin, respectively. As
displayed in Figure 3, the ECE arising from incorrect predictions
markedly outweighs that from correct predictions for both methods.
This disparity underscores the predominant role of mispredictions
in leading to miscalibration, and it also reinforces the argument
that over-confidence remains a paramount concern in segmentation
TTA [9].

Table 6: Comparisons under different temporal orders of images
from datasets ACDC, Cityscapes-fog and Cityscapes-rain (%, TENT).
Different random seeds (i.e., 0/9/99/999/9999) represent different
time orders. For each row of the table, the results under different
random seeds are relatively stable, representing that this approach
is not sensitive to the order of test samples.

Domain 0 9 99 999 9999

A-fog 65.8 65.6 65.6 65.6 65.5
A-night 40.5 41.0 41.1 40.9 41.0
A-rain 62.0 62.2 62.3 62.2 62.0
A-snow 57.8 57.9 57.7 57.9 57.8
CS-fog 73.8 73.8 73.7 73.8 73.8
CS-rain 66.8 66.8 66.8 66.7 66.8

7 VISUALIZATION OF SEGMENTATION TTA
RESULTS

In this Section, we will visualize the results of different segmenta-
tion TTA approaches applied on the dataset ACDC. Some of the
results are displayed in Figure 10, where it is clear that TENT [10] is
hard to differentiate between the road and the sky (marked in black
boxes). Moreover, thanks to the TS scheme and the data augmenta-
tion strategy, CoTTA [11] produces a more refined segmentation
map (shown in white boxes).

The presence of noisy pseudo-labels tends to aggravate error
accumulation and catastrophic forgetting in TTA [6, 11, 13]. How-
ever, we find the experimental results of CoTTA [11] and “SO +
aug” are extremely similar, confusing the actual impact of error
accumulation and catastrophic forgetting on segmentation TTA.
To elucidate this, we conduct a more refined visual analysis, fo-
cusing on two strategies proposed by CoTTA [11], i.e., weight-
averaged and stochastic restore, As depicted in Figure 11, we can
find that these strategies can not guarantee results improvement.
For example, in ACDC-fog (shown in the white box), “TS” correctly
identifies pixels labeled as sidewalk, although accompanied by nu-
merous misclassifications (the upper part in the box). Utilizing the
weight-averaged strategy eliminates these misclassifications, but
compromises sidewalk predictions. The subsequent application of
the stochastic restore strategy yields prediction in more complex
sidewalk areas (the left area in the box), but reintroduces prior noise.
A similar pattern is discernible across the remaining domains. In
summary, these strategies are not thoroughly effective in genuinely
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Figure 6: Quantitative metrics analysis on ACDC-night.
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Figure 7: Quantitative metrics analysis on ACDC-rain.
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Figure 8: Quantitative metrics analysis on ACDC-snow.
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Figure 9: Confusion matrix of ACDC-fog. Here, x-axis indicates the predicted labels, while y-axis represents the ground-truth labels. Moreover,
the data has been normalized to Min-Max Normalization. We can observe a substantial disparity in performance between the majority and
minority classes, underscoring the challenges inherent in segmentation TTA.

resolving the issues of error accumulation and catastrophic forget-
ting. Thus, further improvement of segmentation TTA approaches
is necessary.
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Figure 10: Qualitative comparisons of segmentation results on dataset ACDC. Compared to SO (Source Only), the black box indicates inferior
results while the white box signifies improved outcomes.
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