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This supplementary material contains additional details of Section 2.4, 3 and 4.4 and a discussion
about the broader impacts of this paper. The details include:

• Searching in the searched space. We provide the details of the two steps for vision
transformer search: (1) Supernet training without resource constraints; (2) Evolution search
under resource constraint.

• Q-K-V dimension could be smaller than the embedding dimension. We suppose the
underlying reasons might be that the feature maps of the different heads are similar in
deeper layers. We visualize the attention maps of the heads in deep layers and find they are
consistent with our assumption.

• Experimental settings. For Sec. 4.4 Vision and Vision-Language Downstream Tasks (in
the main manuscript), we provide the experimental settings in detail.

A Searching in the Searched Space
In this section, we present the details of supernet training and evolutionary algorithm. Alg. 1
elaborates the procedure of supernet training with sandwich strategy. In each iteration, we sample
the largest αmax, smallest αmin, and two random middle models α1, α2. Their weights are inherited
from the supernet’s weights WA. We compute losses using the subnets and backward the gradients.
At last, we update the corresponding weights with the fused gradients.

Alg. 2 shows the evolution search in our method. For crossover, two randomly selected candidate
architectures are picked from the top candidates firstly. Then we uniformly choose one block from
them in each layer to generate a new architecture. For mutation, a candidate mutates its depth and
embedding dimension in each stage with probability Pd and Pe firstly. Then it mutates each block
in each layer with a probability Pm to produce a new architecture. Newly produced architectures
that do not satisfy the constraints will not be added to the next generation. Specifically, we set the
size of population to 50 and the number of generation steps to 20. In each generation step, top 10
architectures are picked as the parents to generate child networks by mutation and crossover. The
mutation probability Pd, Pe and Pm are set to 0.2, 0.2 and 0.4, respectively.

B Q-K-V Dimension Could be Smaller Than the Embedding Dimension.

In Sec. 3 Analysis and Discussion, we find that Q-K-V dimension could be smaller than the
embedding dimension. We suppose the underlying reasons might be that the feature maps of the
different heads are similar in deeper layers. To verify the assumption, we feed Fig. 4(a) (in the main
manuscript) into the once-for-all supernet, and visualize the attention map in the stage 3 - block 7. As
shown in Fig. 1, the attention maps in (d), (e), (h) and (j) are very similar. Besides, the ones of (b)
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Algorithm 1 Supernet training without resource constraints

Input: Training epochs N , search space A, supernet N , initial supernet weights WA, train dataset
Dtrain, loss function Loss

Output: Well-trained supernet
1: for i := 1 to N do
2: for data, labels in Dtrain do
3: Sample the largest αmax, smallest αmin, and two random middle models α1, α2 from

the space A
4: Obtain the corresponding weights Wαmax

,Wαmin
,Wα1

,Wα2
from WA

5: Compute the gradients ∇Wαmax ,∇Wαmin ,∇Wα1 ,∇Wα2 based on Loss, data, labels
6: Update the corresponding parts in WA
7: end for
8: end for

Algorithm 2 Evolution search under resource constraints

Input: Search space A, supernet N , supernet weights WA, population size P , resources constraints
C, number of generation iteration T , validation dataset Dval, mutation probability of depth Pd,
mutation probability of embedding dimension Pe, mutation probability of each layer Pm

Output: The most promising transformer α∗
1: G(0) := Randomly sample P architectures {α1, α2, · · ·αP } from A with the constrain C
2: while search step t ∈ (0, T ) do
3: while αi ∈ G(t) do
4: Obtain the corresponding weight Wαi

from the supernet weights WA
5: Obtain the accuracy of the subnet N (αi,Wαi) on Dval

6: end while
7: Gtopk := the top K candidates by accuracy order;
8: Gcrossover := Crossover(Gtopk,A, C)
9: Gmutation := Mutation(Gtopk, Pd, Pe, Pm,A, C)

10: G(t+1) := Gcrossover ∪Gmutation

11: end while
12: α∗ := best architecture in G(T +1) in terms of accuracy

and (j) are close to each other as well. Therefore, the self-attention module does not require a large
Q-K-V dimension (number of heads) as the embedding dimension.
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Figure 1: Attention maps of different heads in the stage 3 - block 7 of the one-step pretrained supernet.
The number of heads is 14, and the reference position is on left top, marked with +.

C Experimental settings

In this section, we provide the detailed experimental settings of our models when transferred to
downstream vision and vision-language tasks, including object detection, semantic segmentation and
visual question answering.
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Object Detection. We conduct the object detection experiments on COCO dataset [7]. We train the
model on training set (∼118k) and evaluate it on the validation set (5k). We replace the backbone
of Cascade Mask R-CNN [1] with our discovered S3-Transformer and compare its performance
with other prevalent backbones, including CNNs and handcrafted transformers, under the similar
computational cost. All the models are conducted on MMDetection [2]. Same as [8], we utilize
multi-scale training and 3x schedule (36 epochs). The initial learning rate is 1× 10−4. The optimizer
is AdamW[9] with 0.05 weight decay. The experiments are conducted on 8 Tesla V100 GPUs and
the batch size set to 16.

Semantic Segmentation. We choose ADE20K dataset [13] to test the representation power of our
model on semantic segmentation task. It is a widely used scene parsing dataset which contains
more than 20K scene-centric images and covers 150 semantic categories. The dataset is split into
20K images for training and 2K images for validation. For a fair comparison, we use the totally
same setting as Swin [8], including the framework UperNet [11] and all the hyperparameters. The
backbone is initialized with the pre-trained weights on ImageNet-1K. Specifically, since DeiT [10]
adopt absolute position embeddings, we utilize bicubic interpolation to fit a larger resolution in
segmentation task, before fine-tuning the model. We tried to add deconvolution layers to build a
hierarchical structure for DeiT but it does not increase the performance. All the models are trained
160k iterations under MMSegmentation [3] framework on 8 Tesla V100 GPUs.

Visual Question Answering. We choose VQA 2.0 [12] dataset, which contains 433K train, 214K
val and 453K test question-answer pairs for 204,721 COCO [7] images. We follow the framework
and hyperparameters of SOHO [6] without visual dictionary module, and replace the vision backbone
with the compared models. The last stage of vision backbone outputs vision tokens directly. The
image resolution is 384 × 384. The weights of vision backbone and cross-modal transformer are
initialized based on ImageNet [4] and BERT [5], respectively. We employ AdamW [9] optimizer for
40 epochs with 500 iterations warm-up, a learning rate decay by 10 times at 25th and 35th epochs,
and batch size of 2048. The initial learning rates of vision backbone and cross-transformer are
5× 10−6 and 5× 10−5, respectively. An image is paired with four texts per batch, including two
matched pairs and two unmatched pairs.

Broader Impacts and Societal Implications

This work does not have immediate societal impact, since the algorithm is only designed for finding
good vision transformer models focusing on image classification. However, it can indirectly impact
the society. For example, our work may inspire the creation of new vision transformer model and
applications with direct societal implications. Moreover, compared with other NAS methods that
require thousands of models training from scratch, our method requires much much less computation
resources, which leads to much less CO2 emission.
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