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DreamVTON: Customizing 3D Virtual Try-on with Personalized
Diffusion Models

Anonymous Authors

Person Images Clothes Images 3D Try-on Results (Geometry / Texture)

“A woman wears a white shirt and gray skirts.” 

“A man wears an orange tank top and gray shorts.” 

“A man wears a brown shirt and green pants.” 

Figure 1: Given a set of person images, clothes images, and a text prompt, our proposed DreamVTON can generate high-quality
3D Humans, wearing customized clothes, keeping the identity and clothes style.

ABSTRACT
Image-based 3D Virtual Try-ON aims to sculpt the 3D human ac-
cording to person and clothes images, which is data-efficient (i.e.,
getting rid of expensive 3D data) but challenging. Recent text-to-3D
methods achieve remarkable improvement in high-fidelity 3D hu-
man generation, demonstrating its potential for 3D virtual try-on.
Inspired by the impressive success of personalized diffusion models
(e.g., Dreambooth and LoRA) for 2D VTON, it is straightforward to
achieve 3D VTON by integrating the personalization technique into
the diffusion-based text-to-3D framework. However, employing the

personalized module in a pre-trained diffusion model (e.g., StableD-
iffusion (SD)) would degrade the model’s capability for multi-view
or multi-domain synthesis, which is detrimental to the geometry
and texture optimization guided by Score Distillation Sampling
(SDS) loss. In this work, we propose a novel customizing 3D human
try-on model, named DreamVTON, to separately optimize the
geometry and texture of the 3D human. Specifically, a personalized
SD with multi-concept LoRA is proposed to provide the generative
prior about the specific person and clothes, while a Densepose-
guided ControlNet is exploited to guarantee consistent prior about
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body pose across various camera views. Besides, to avoid the in-
consistent multi-view priors from the personalized SD dominating
the optimization, DreamVTON introduces a template-based opti-
mization mechanism, which employs mask templates for geometry
shape learning and normal/RGB templates for geometry/texture
details learning. Furthermore, for the geometry optimization phase,
DreamVTON integrates a normal-style LoRA into personalized SD
to enhance normal map generative prior, facilitating smooth geom-
etry modeling. Extensive experiments show that DreamVTON can
generate high-quality 3D Humans with the input person, clothes
images, and text prompt, outperforming existing methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
3D Virtual Try-on, 3D Human, Personalized Diffusion Models

1 INTRODUCTION
The task of Virtual Try-ON (VTON), to transfer a clothing item
onto a specific person, has been explored a lot in recent years
due to its promising potential to revolutionize the industry of e-
commerce and fashion design. The image-based 2D solutions take
person and clothes images as inputs and achieve virtual try-on
via 2D generative models [13, 22, 48, 54]. Although the advanced
2D solutions [2, 11, 14, 20, 33, 57, 67] can synthesize compelling
results within particular viewpoint (e.g., front view), they fail to
display try-on results for arbitrary observed viewpoint, which is
commonly required in the real-world scenarios. Traditional 3D
solutions model the try-on results in the 3D space, thus providing
a more comprehensive and attractive perception of clothes fitting.
However, most of these solutions [3, 15, 17, 32, 42] rely upon the 3D
scanning equipment or labor-intensive manual annotation, making
them much resource-hungry compared with the image-based 2D
counterparts. The pros and cons of the existing 2D and 3D solutions
inspire us to rethink whether sculpting the 3D try-on human by
simply using the person and clothes images is possible.

Recently, the extraordinary success of diffusion models [46, 48,
50] for text-to-image (T2I) has largely prompted the development
of high-quality 3D content generation [8, 36, 43, 45, 52, 56], whose
optimization of the 3D representation is guided by 2D generative
priors from the pre-trained T2I diffusion model (e.g., StableDiffu-
sion(SD) [48]) by using Score Distillation Sampling (SDS) loss [43].
Previous 3D human generation works explore this diffusion-based
3D generation framework to sculpt a 3D human according to tex-
tual descriptions [7, 25, 26, 28, 30, 35, 62] or reference human im-
ages [27, 61]. Despite the significant advancement in high-quality
3D modeling, these methods can not be directly adapted to 3D
virtual try-on, because they neither take the clothing items as input
nor consider the clothing manipulation during the 3D modeling
procedure. Some diffusion-based methods have explored the poten-
tial of employing lightweight personalized modules (i.e., LoRA [24])
in SD for 2D virtual try-on. As shown in Figure 2 (a), by using sev-
eral clothes images for LoRA fine-tuning, the personalized SD can
generate photo-realistic fashion models wearing specific clothes.

Training data Results of Personalized SD

(a)

(b)

Densepose w LoRA w/o LoRA Densepose w LoRA w/o LoRA

Figure 2: (a) Try-on results of the personalized SD. (b) Visual
comparison between results of SD with and without LoRA
directly. Using LoRA directly will reduce the capability of
SD for multi-view synthesis.

Considering the benefits of 2D and 3D generation, it is straightfor-
ward to achieve 3D virtual try-on by integrating the personalized
SD with the diffusion-based 3D generation framework.

However, introducing LoRA into SD would degrade the model’s
capability for multi-view generation, since it is trained using rare
images within limited viewpoints. As shown in Figure 2 (b), for
some observed viewpoints, given the same prompt, integrating
SD with LoRA would generate wrong results or directly crash,
while SD without LoRA can generate realistic results conforming
to the input densepose [16]. The degraded ability for multi-view
synthesis results in inconsistent generative priors across various
viewpoints and further influences the 3D optimization procedure,
leading to coarse 3D geometry and blurred texture. Therefore, it is
non-trivial to integrate the personalized SD into a diffusion-based
3D generation framework for image-based 3D virtual try-on.

To target the challenges, we propose a novel diffusion-based
3D human generation framework, named DreamVTON, to sculpt
the 3D human by simply taking several person images, clothes
images, and a text prompt as inputs (see Figure 1). Specifically, our
DreamVTON inherits the advanced two-stage 3D generation frame-
work [8, 25, 27], the first stage optimizes the DMTet-based [10, 51]
3D representation, while second stage optimizes the texture. Dur-
ing the geometry and texture optimization procedures, DreamV-
TON introduces a multi-concept LoRA to provide generative priors
about the specific person and clothes. Besides, inspired by Avatar-
Verse [62], DreamVTON employs a Densepose-guided Control-
Net [63] to provide consistent priors about body pose across various
viewpoints. To avoid inconsistent generative priors from personal-
ized SD dominating the 3D optimization procedure, DreamVTON
proposes a template-based optimization mechanism, which em-
ploys mask templates for precise geometry shape learning and nor-
mal/RGB templates for precise geometry/texture details learning.
The personalized SD generates the RGB templates within several
pre-defined viewpoints, while the mask and normal templates are
derived from the RGB templates by using the off-the-shelf mask
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and normal predictors. Moreover, to enhance the 3D geometry per-
ception of the personalized SD during the geometry optimization
procedure, DreamVTON introduces a normal-style LoRA which
can facilitate the personalized SD to provide more powerful prior
about the normal map, leading to smoother geometry modeling.

Overall, the main contributions can be summarized:
• We propose a diffusion-based 3D virtual try-on framework,
named DreamVTON, which employs personalized SD with
multi-concept and normal-style LoRAs to provide powerful
generative priors for 3D human optimization.

• We jointly exploit the SDS loss and template-based optimiza-
tion mechanism for high-quality 3D human modeling.

• We further introduce a normal-style LoRA into personalized
SD for smoother geometry.

• Extensive experiments show that DreamVTON can generate
high-quality 3D try-on results, consistent with the input im-
ages, and outperform other 3D human generation methods.

2 RELATEDWORKS
2.1 2D/3D Virtual Try-on
Most Virtual Try-ON (VTON) methods [2, 14, 19, 20, 33, 55, 57, 59]
explore 2D VTON and aim to transfer an in-shop garment onto
a specific person. Generally, they employ a two-stage framework
to process garment deformation and try-on generation separately,
in which the former uses the Thin Plate Splines [5] (TPS) or flow-
based [65] network to model geometry deformation, while the
latter employs generative models like Generative Adversarial Net-
work [13] or Diffusion Model [48] to synthesize the try-on results.
TryonDiffusion [67] introduces an implicit warping mechanism and
processes clothes warping and try-on generation within a single
diffusion network. Traditional 3D VTON methods [6, 15, 17, 32, 42]
relies on the 3D scan equipment or cloth simulation to generate
geometric representations of high precision. Learning-based meth-
ods [4, 39, 40, 66] employ differentiable rendering to dress the
SMPL [37] model with desired garment mesh. M3D-VTON [64]
proposes a depth-based 3D VTON framework to lift the 2D VTON
results to 3D. Differently, we handle image-based 3D VTON by
using the powerful generative model, which can integrate the com-
plementary advantages of 2D and 3D VTON.

2.2 Diffusion-based 3D Human Generation
Diffusion-based 3D human generation methods[7, 28, 61] aim to
generate 3D humans, using text prompts or reference images as in-
put. They apply SDS-based optimization[43] to progressively gener-
ate 3D humans from initial shape often parameterized by SMPL[37].
TADA[35] and TeCH[27] deploys SMPL-X[41] expressing 3D hu-
man with more detail. Pose-aware neural human representation
imGHUM[1] used to generate the human body inDreamHuman[30].
AvatarBooth[61] employs DreamBooth[49] to inject specific iden-
tity information into SD, enhancing identity consistency in the per-
sonalized 3D human body generation process. BothDreamWaltz[26]
and AvatarVerse[62] leverage Pose ControlNet[63] to obtain de-
tailed human body models. HumanNorm [25] introduces a normal-
aligned diffusion model that allows for custom identities and poses
using normal maps in specific regions. Our DreamVTON is a pose-
aware 3D VTON pipeline that keeps face identity and clothes style.

2.3 Personalized Diffusion Model
Dreambooth[49] proposes fine-tuning the network using a small
set of subject-specific images, which learns specific objectives of
the object with a unique identifier. Textual inversion[9] achieves
efficient personalization by optimizing text embeddings, which is
used to guide the creation of personalized images during infer-
ence. SVDiff[18] introduces an innovative approach by optimizing
the singular values of weight matrices within the model. Custom
Diffusion[31] focuses on fine-tuning the key and value projection
matrices of cross-attention layers, and can jointly train for multiple
concepts or combine multiple fine-tuned models through closed-
form constrained optimization. LoRA[23] introduces novel styles or
concepts into pre-trained text-to-image models by optimizing low-
rank approximations of weight residuals. However, DreamVTON
addresses the 3D personalized challenge, enabling the generation
of diverse clothes while preserving identity.

3 METHODOLOGY
The image-based 3D Virtual Try-ON aims to sculpt the 3D digital
human using several images of a specific person and clothes items.
To achieve this, we propose DreamVTON, a personalized 3D human
generation framework (Sec. 3.1) that collaboratively employs multi-
concept LoRA and Densepose-guided ControlNet to provide the
particular generative priors for the 3D optimization procedures of
geometry and texture. To avoid the inferior generative priors from
personalized modules (i.e., multi-concept LoRA) dominating the
optimization procedure, DreamVTON employs a template-based
optimization mechanism (Sec. 3.2) to facilitate realistic geometry
and texture modeling. Besides, to further enhance the perception
of the 3D geometry, DreamVTON introduces a normal-style LoRA
(Sec. 3.3) into the personalized SD. An overview of DreamVTON is
displayed in Figure 3.

3.1 Personalized 3D Human Generation
Two-stage 3D generation framework. To efficiently model high-
quality 3D try-on digital human, our DreamVTON inherits the
advanced two-stage 3D human generation framework [8, 25, 27],
in which the 3D geometry and texture are optimized separately by
using Score Distillation Sampling (SDS) [43] to distill the generative
priors from the pre-trained Stable Diffusion (SD) [48] 𝜖𝜙 .

For geometry modeling, DreamVTON utilizes a MLP network Ψg
to parameterize the DMTet-based [10, 51] geometry representation
(𝑉𝑇 ,𝑇 ), in which Ψg is trained to predict the Signed Distance Func-
tion (SDF) value 𝑠𝑖 and the deformation offset △𝑣𝑖 for each vertex
𝑣𝑖 ∈ 𝑉𝑇 in tetrahedral grid 𝑇 . During training, DreamVTON first
employs an initialization phase to fit 𝑇 onto an A-pose SMPL [37]
mesh𝑀𝑠𝑚𝑝𝑙 , by using the following object function:

Linit
𝑔 =

∑︁
𝑝𝑖 ∈P

𝑠 (𝑝𝑖 ;Ψg) − 𝑆𝐷𝐹 (𝑝𝑖 )
2
2 , (1)

where P is a point set randomly sampled around the surface of
𝑀𝑠𝑚𝑝𝑙 , and 𝑆𝐷𝐹 (𝑝𝑖 ) is the pre-calculated SDF value. Then, DreamV-
TON employs the SDS-based optimization mechanism to sculpt the
geometry details. To be specific, DreamVTON conducts differen-
tiable rendering onto DMTet mesh to obtain a normal map n, which
will then be passed to the pre-trained SD to calculate the normal
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Renderer
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Differentiable 

Renderer
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Renderer
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Back Propagation

ℒ𝑡
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

Back Propagation

DMTet Ψ𝑔 

(𝑛𝑖 , 𝑚𝑖) (ො𝑛𝑖 , ෝ𝑚𝑖) 

ො𝑥𝑖 𝑥𝑖 

“A woman wears a white shirt and grey skirts.”

SD
SD  +   

ControlNet

Multi-concept 

LoRA

Normal-style 

LoRA
Pre-defined 

Camera
Uniformly-distributed 

Camera

(c)

(a)

(b)

Multi-concept LoRA

Normal-style LoRA

3D Human Generator

Figure 3: Overview of our DreamVTON. DreamVTON can generate realistic-looking 3D humans given person images, clothes
images, and a text prompt. We disentangle the 3D try-on into geometry and appearance learning and design a Multi-concept
LoRA and a Normal-style LoRA. Furthermore, we employ a templated-based optimization to achieve high-quality geometry
and detailed texture.

map SDS loss as follows:

LSDS
𝑔 = E

[
𝑤 (t)

(
𝜖𝜙

(
znt ; cn, t

)
− 𝜖

) 𝜕n
𝜕𝜓𝑔

𝜕znt
𝜕n

]
, (2)

where znt is the latent code of n with t-step noising, cn is the em-
bedding of normal map prompt extracted by CLIP [44], and𝜓𝑔 is
the parameters of Ψg.

For texture modeling, DreamVTON utilizes another MLP net-
work Ψt to parameterize the material model and uses the Physically-
Based Rendering derived from Fantasia3D [8] to obtain the rendered
RGB image x. During training, DreamVTON feeds x into pre-trained
SD to calculate the image SDS loss as follows:

LSDS
𝑡 = E

[
𝑤 (t)

(
𝜖𝜙

(
zxt ; cx, t

)
− 𝜖

) 𝜕x
𝜕𝜓𝑡

𝜕zxt
𝜕x

]
, (3)

where zxt is the latent code of x, cx is the embedding of image
prompt, and𝜓𝑡 is the parameters of Ψt.

Personalized SD for image-based 3D VTON. Although ex-
isting methods [25, 27] based on the above two-stage framework
can obtain high-quality 3D digital human, they can not be adapted
to image-based 3D VTON, because they are incapable of handling
clothes inputs. To address this problem, DreamVTON introduces a
multi-concept LoRA to inject the knowledge of the specific person

and clothes into pre-trained SD, which will provide the generative
priors of clothes and person for 3D optimization. The multi-concept
LoRA is trained by jointly using person images and clothes images.
Person images and clothes images separately provide the identity
and clothes information for virtual try-on. As shown in Figure 4
(a), the person images contain several person images of the same
person, while the clothes image contains in-shop clothes and fash-
ion models wearing the particular clothes. As for text prompts,
DreamVTON employs the visual-language model BLIP [34] to gen-
erate captions for each training image. During the inference stage,
the text prompt is constructed by extracting the principal concept of
each image set, such as "a woman wears a white shirt and grey skirt."
We display additional examples of the text prompts used for train-
ing and inference in the supplementary material. Besides, inspired
by AvatarVerse [62], DreamVTON exploits a Densepose-guided
ControlNet [63] to provide consistent generative priors about body
pose across various viewpoints. Therefore, by employing multi-
concept LoRA and Densepose-guided ControlNet, the pre-trained
SD item in Eq. 2 and Eq. 3 should be modified to 𝜖𝜙

(
znt ; cn, t, p

)
,

where 𝜖𝜙 refers to SD with LoRA and ControlNet, while p refers
to DensePose rendered from a SMPL mesh within current camera
pose and translation.
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Figure 4: (a) Sample of training data for multi-concept LoRA.
(b) Sample of training data for normal-style LoRA. (c) Sample
results of multi-concept LoRA and Normal-style LoRA.

3.2 Template-based 3D Optimization
Mechanism

SDS-based 3D optimization mechanism commonly samples camera
poses uniformly distributed in the 3D space, which enables the
generative model (e.g., SD) to provide generative priors from as
many viewpoints as possible, and thus facilitates comprehensive 3D
optimization. However, when employing the multi-concept LoRA
into SD, the capability of multi-view synthesis largely degrades
(as shown in Figure 2), since LoRA is trained by using rare images
within limited viewpoints. The degradation of personalized SD
in multi-view synthesis results in inconsistent generative priors
across various viewpoints, which is detrimental to 3D optimization.
Therefore, simply using the SDS loss from personalized SD would
not be an optimal optimization method for image-based 3D VTON.

To prevent inconsistent generative priors across multiple views
from dominating the optimization of 3D models, our DreamVTON
introduces a template-based optimization mechanism to facilitate
precise geometry and texture learning. Specifically, DreamVTON
first employs personalized SD (i.e., with multi-concept LoRA and
Densepose-guided ControlNet) to generate RGB results within 𝑁

pre-defined viewpoints, which can synthesize realistic results. The
generated results are regarded as the RGB templates {x̂i}𝑁𝑖=1, which
will then be passed into the off-the-shelf parsing predictor [12] and
normal map predictor [58] to obtain the mask templates {m̂i}𝑁𝑖=1
and normal templates {n̂i}𝐾𝑖=1.

During geometry learning, to guarantee DMTet is optimized into
the correct geometry shape, DreamVTON calculate Mean Square

Error (MSE) lossL𝑚𝑔 between the template masks {m̂i}𝑁𝑖=1 and their
corresponding rendered masks {mi}𝑁𝑖=1 (rendered under the same
camera poses with those of templates), which can be formulated as
follows:

L𝑚𝑔 =

𝑁∑︁
𝑖=1

∥mi − m̂i∥22 , (4)

Besides, to facilitate learning of geometry detail, DreamVTON in-
troduces reconstruction losses between {n̂i}𝑁𝑖=1 and their corre-
sponding rendered normal maps {ni}𝑁𝑖=1, which consist of a MSE
loss 𝐿𝑚𝑠𝑒𝑔 and a perceptual loss [29] 𝐿𝑝𝑒𝑟𝑔 , and can be formulated as
follows:

L𝑚𝑠𝑒𝑔 =

𝑁∑︁
𝑖=1

∥ni − n̂i∥22 , (5)

L𝑝𝑒𝑟𝑔 =

𝑁∑︁
𝑖=1

5∑︁
𝑗=1

𝜆 𝑗
𝛾 𝑗 (ni) − 𝛾 𝑗 (n̂i)


1 , (6)

where 𝛾 𝑗 denotas the 𝑗-th feature map in a pre-trained VGG [53]
network. Similarly, during texture learning, to facilitate learning of
texture detail, DreamVTON exploits the MSE loss 𝐿𝑚𝑠𝑒𝑡 and percep-
tual loss 𝐿𝑝𝑒𝑟𝑡 between {x̂i}𝑁𝑖=1 and their corresponding rendered
RGB images {xi}𝑁𝑖=1.

It is worth noting that, since the normal and RGB templates are
derived from the same generated results, the geometry and texture
details on each normal-RGB template pair (i.e., templates rendered
under the same camera pose) are strictly aligned. By using the detail-
aligned templates for geometry and texture learning, DreamVTON
is capable of generating geometry-texture consistent 3D human.

By jointly using the SDS-based and template-based optimization
mechanisms, the overall object functions for geometry and texture
optimization can be formulated as follows:

L𝑔 = LSDS
𝑔 + 𝜆𝑚𝑔 L𝑚𝑔 + 𝜆𝑚𝑠𝑒𝑔 L𝑚𝑠𝑒𝑔 + 𝜆

𝑝𝑒𝑟
𝑔 L𝑝𝑒𝑟𝑔 , (7)

L𝑡 = LSDS
𝑡 + 𝜆𝑚𝑠𝑒𝑡 L𝑚𝑠𝑒𝑡 + 𝜆

𝑝𝑒𝑟
𝑡 L𝑝𝑒𝑟𝑡 , (8)

where 𝜆∗𝑔 and 𝜆∗𝑡 are the trade-off hyperparameters.

3.3 Normal-style LoRA for Geometry Learning
During the geometry optimization stage, since DreamVTON em-
ploys the rendered normal map to calculate the SDS loss, the per-
sonalized SD is designed to provide the normal-style generative
prior for geometry optimization. However, when introducing the
multi-concept LoRA, the personalized SD’s capability for normal
map synthesis degrades a lot, since LoRA is trained by using seldom
RGB images. To address this issue, our DreamVTON introduces
normal-style LoRA into personalized SD to enhance the capability
for normal map synthesis. Specifically, the normal-style LoRA is
trained with 2,000 text-annotated normal maps, in which the nor-
mal maps are rendered from the THUman2.0 dataset [60], while the
text prompts are extracted by BLIP [34]. Once trained, the normal-
style LoRA is integrated into the personalized SD and jointly used
for geometry optimization.

As shown in Figure 4 (c), given the same prompt "a woman
wears a white shirt and grey skirt, with normal map style.", multi-
concept LoRA can only generate realistic RGB images, while normal-
style can generate results with normal map style, demonstrating
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“A man wears a blue polo shirt and black shorts.” 

Figure 5: Qualitative Comparisons. Using the same clothes images, person images, and text prompt as inputs, our method
achieves superior results.

that introducing the normal-style LoRA, could improve the the
personalized SD’s normal synthesis capability.

4 EXPERIMENTS
We first introduce the implementation details of DreamVTON
(Sec. 4.1), which contains the dataset description, training configura-
tion, camera sampling strategy, and template selection mechanism.
Then, we compare DreamVTON with existing 3D human gener-
ation methods qualitatively and quantitatively (Sec. 4.2, Sec. 4.3,
and Sec. 4.4). Finally, we conduct ablation studies to verify the
effectiveness of the proposed modules in DreamVTON (Sec. 4.5).

4.1 Implementation Details
Dataset Description. Since there is no existing dataset tailored
for the task of image-based 3D virtual try-on, we collect a new
dataset from the internet, which comprises images of 10 various
individuals and 33 clothes items (i.e., upper clothes, lower clothes,
dresses.). Specifically, most of the individual images are portrait
images and each individual contains about 10 portrait images. On
the other hand, the clothes images contain in-shop clothes and
fashion models wearing particular clothes. By matching the portrait
and clothes images, we can obtain the person-clothes pairs used for
the training of image-based 3D virtual try-on. In our experiments,
we construct 18 person-clothes pairs, which is then used in our 3D
try-on experiments. Some visual examples can be found in Figure 4.
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Training configuration. The geometry network Ψg and texture
network Ψt are trained 15000 and 3000 iterations, respectively. The
training procedure of Ψ𝑔 can be further divided into 2000 iterations
SDF initialization phase and 13000 iterations DMTet optimization
phase. During training, the batch size on each GPU is set to 1 and
both networks are trained by using AdamW [38] optimizer. The
learning rate for Ψg and Ψt are set to 1e-3 and 1e-2, respectively.
Both Ψg and Ψt are trained on 1 NVIDIA 4090 GPUs.
Camera sampling strategy. For geometry learning, at the begin-
ning of DMTet optimization, the randomly sampled cameras are
located in a position that can cover the full human body. To sculpt
the geometry details, after 1200 iterations, the cameras are posed
to positions that focus on various local regions (i.e., head, upper
body, and lower body), within which SD can provide more detailed
generative prior for geometry optimization. For texture learning,
the local cameras are employed at the beginning to enhance the
learning of texture details.
Selection of geometry/texture templates. For geometry learn-
ing, we employ eight mask templates {m̂i}8𝑖=1 and two normal
templates {n̂i}2𝑖=1 for optimization, in which {m̂i}8𝑖=1 are sampled
uniformly around the human body while {n̂i}2𝑖=1 is composed of
the front and back view normal maps. For texture learning, we
utilize three RGB templates {x̂i}3𝑖=1, which contain front and back
views of full body images and one head image. The head image is
used to enhance the texture detail around the face region.

4.2 Qualitative Results
We compare our DreamVTON with three existing 3D human gen-
eration methods, namely DreamWaltz [26], TEXTure [47], and
TeCH [27]. Since DreamWaltz and TEXTure take as input merely
the text prompt, we use the constructed text prompts (used by our
DreamVTON) for them. For TeCH, since it receives the text and
image inputs, except for the constructed text prompt, we also feed
the front-view RGB template (used by our DreamVTON) for it.
Figure 5 displays the qualitative comparison of DreamVTON with
the baselines. By simply receiving the text prompt as model input,
DreamWaltz, and TEXTeure can generate 3D humans with similar
clothes types to the input clothes images. However, they fail to
preserve the texture detail or clothes color. For example, for the
white-tshirt-grey-skirts case in the first case, they fail to generate
grey skirts. TeCH [27] takes both text and images as inputs, thus is
capable of preserving the clothes details in front view. However, it
fails to generate realistic texture in the back view and face region,
since it ignores the guidance about the back view and face. In com-
parison, DreamVTON can not only preserve the clothes information
in arbitrary view but also generate a realistic face, demonstrating
outperforms the compared methods.

4.3 Quantitative Comparison
Inspired by HumanNorm [25], we choose CLIP-similarity [44] and
FID [21] to evaluate the generated quality of the 3D try-on re-
sults, in which FID measures the realism of rendered results while
CLIP-Similarity measures the similarity between the rendered re-
sults from arbitrary viewpoint and the particular reference images.
Specifically, for each test case, we first employ the personalized SD
(Densepose-based ControlNet + Multi-concept LoRA) to generate 8

Table 1: Quantitative Comparisons in the collected datasets.

DreamWaltz TEXTure TeCH DreamVTON
FID (↓) 171.6 163.4 142.7 140.8

CLIP-similarity (↑) 0.596 0.613 0.655 0.665

Table 2: User study results about the 3D generation quality
in terms of Geometry, Texture and ID Fidelity.

Preference(↑) DreamWaltz TEXTure TeCH DreamVTON
Geometry 0.5% 18.0% 2.6% 78.8%
Texture 1.3% 1.3% 6.0% 91.5%

ID Fidelity 1.8% 1.4% 2.9% 94.0%

2D try-on results, of which the camera viewpoints are uniformly dis-
tributed around the human body. Then, we employ similar but much
denser cameras to render another 100 images from the learned 3D
try-on results. we obtain 100 rendered images from the learned 3D
try-on results. During Calculating FID, we regard the 2D generated
images as the ground truth and measure the distribution similarity
between the pseudo ground truth (i.e., 2D generated results) and
the rendered results. During calculating CLIP-similarity, we regard
the SD-generated images as reference images and calculate the
average CLIP distance between the rendered images and reference
images. As reported in Table 1, DreamVTON obtains the lowest FID
score, which indicates the images rendered by DreamVTON are
most closely aligned to the generated results of the personalized SD.
Besides, DreamVTON obtains the highest CLIP-similarity, which
further demonstrates the rendered images are more consistent with
the reference images. Both of the reported scores illustrate the
superiority of DreamVTON over existing baselines.

4.4 User Study
We evaluate our proposed DreamVTON’s performance against
other methods using the user study. As reported in Table 2, a higher
score for user evaluation indicates that humans preferred the perfor-
mance, our proposed DreamVTON outperforms all the compared
methods. In particular, our proposed DreamVTON significantly
outperforms the compared methods in terms of texture realism and
ID fidelity, with 91.5% and 94% of users, preferring to choose our
model. Regarding the quality of the geometry, 78.8% of users still
prefer to choose our method. Overall, Table 2 demonstrates the
effectiveness of our method, which outperforms the other methods
on texture, ID fidelity, and geometry, respectively. This means that
our proposed DreamVTON can generate more realistic-looking 3D
humans that are preferred by users, wearing different clothes with
accurate 3D geometry and detailed textures.

4.5 Ablation Study
We conduct ablation studies to validate the effectiveness of template-
based optimization mechanisms and normal-style LoRA for ge-
ometry and texture optimization, using visual comparison when
excluding the component.
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Figure 7: Ablation study for texture optimization.

For geometry optimization, as shown in Figure 6 , without using
normal-style LoRA or normal templates as optimization constraints,
the surface of the learned geometry is coarse with artifacts. Either
adding the normal-style LoRA or using the normal templates in
the geometry optimization procedure can smooth the geometry
surface. By jointly using normal-style LoRA and normal templates,
the geometry surface can be smoother while preserving the clothes
characteristics in the input images.

For texture optimization, as shown in Figure 7, without using
the RGB templates as optimization constraints, the learned texture
is noisy (e.g., unclear face region) and fails to preserve the char-
acteristic of inputs image (e.g., incorrect clothes color). By using
the RGB templates during optimization, DreamVTON can generate
3D humans with high-quality texture and retain the input images’
characteristics (i.e., person identity, clothes style).

5 LIMITATION
The texture detail of clothes in DreamVTON’s result is derived from
the generative priors from multi-concept LoRA. However, existing

Training Images 2D LoRA Results

Figure 8: Results of multi-concept LoRA. With complicated
logos, LoRA fails to keep logo texture completely.

LoRA fails to preserve the texture detail for complicated logos, (as
shown in Figure 8), thus preventing DreamVTON from generating
detailed textures that are completely consistent with input images.
This problem could be alleviated by balancing the personalization
and generalizability of personalized SD, which is widely explored
in the diffusion-based models.

6 CONCLUSION
Wepropose a newmethod for 3D virtual try-on task, namedDreamV-
TON, which is capable of generating the 3D human using person
images, clothes images, and a text prompt as inputs. DreamVTON
employs an SDS-based framework and disentangles the 3D try-on
task as the geometry and texture separately. Specifically, DreamV-
TON introduces a personalized SD with multi-concept LoRA and
Densepose-guided ControlNet to provide powerful pose consis-
tent priors for 3D human optimization. DreamVTON designs a
templated-based optimization mechanism for precise geometry and
texture learning to avoid the degraded multi-view priors from per-
sonalized SD. In addition, DreamVTON integrates a normal-style
LoRA into personalized SD during geometry optimization, which
further facilitates smooth and accurate geometry. Extensive exper-
iments demonstrate that our DreamVTON outperforms existing
baselines in terms of geometry and texture model, and can cus-
tomize high-quality 3D humans with diverse clothes, preserving
the person’s identity and clothes style.
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