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Abstract

Cyclical step-sizes are becoming increasingly popular in the optimization of deep1

learning problems. Motivated by recent observations on the spectral gaps of2

Hessians in machine learning, we show that these step-size schedules offer a3

simple way to exploit them. More precisely, we develop a convergence rate4

analysis for quadratic objectives that provides optimal parameters and shows that5

cyclical learning rates can improve upon traditional lower complexity bounds.6

We further propose a systematic approach to design optimal first order methods7

for quadratic minimization with a given spectral structure. Finally, we provide a8

local convergence rate analysis beyond quadratic minimization for the proposed9

methods and illustrate our findings through benchmarks on least squares and10

logistic regression problems.11

1 Introduction12

One of the most iconic methods in first order optimization is gradient descent with momentum, also13

known as the heavy ball method [Polyak, 1964]. This method enjoys widespread popularity both in14

its original formulation and in a stochastic variant that replaces the gradient by a stochastic estimate,15

a method that is behind many of the recent breakthroughs in deep learning [Sutskever et al., 2013].16

A variant of the stochastic heavy ball where the step-sizes are chosen in cyclical order has recently17

come to the forefront of machine learning research, showing state-of-the art results on different deep18

learning benchmarks [Loshchilov and Hutter, 2017, Smith, 2017]. Inspired by this empirical success,19

we aim to study the convergence of the heavy ball algorithm where step-sizes h0, h1, . . . are not fixed20

or decreasing but instead chosen in cyclical order:21

Algorithm 1: Cyclical heavy ball HBK(h0, . . . , hK−1;m)

Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
x1 = x0 −

h0

1 +m
∇f(x0)

for t = 1, 2, . . . do xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

The heavy ball method with constant step-sizes enjoys a mature theory, where it is known for example22

to achieve optimal black-box worst-case complexity of quadratic convex optimization [Nemirovsky,23

1992]. In stark contrast, little is known about the the convergence of the above variant with cyclical24

step-sizes. Our main motivating question is25

Do cyclical step-sizes improve convergence of heavy ball?26
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Our main contribution provides a positive answer to this question and, more importantly, quantifies27

the speedup under different assumptions. In particular, we show that for quadratic problems, whenever28

Hessian’s spectrum belongs to two or more disjoint intervals, the heavy ball method with cyclical step-29

sizes achieves a faster worst-case convergence rate. Recent works have shown that this assumption on30

the spectrum is quite natural and occurs in many machine learning problems, including deep neural31

networks [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. More precisely,32

we list our main contributions below.33

• In sections 3 and 4, we provide a tight convergence rate analysis of the cyclical heavy ball method34

(Theorems 3.1 and 3.2 for two step-sizes, and Theorem 4.8 for the general case). This analysis35

highlights a regime under which this method achieves a faster worst-case rate than the accelerated36

rate of heavy ball, a phenomenon we refer to as super-acceleration. Theorem 5.1 extends the (local)37

convergence rate analysis results to non-quadratic objectives.38

• As a byproduct of the convergence-rate analysis, we obtain an explicit expression for the optimal39

parameters in in the case of cycles of length two (Algorithm 2) and an implicit expression in terms40

of a system of K equations in the general case.41

• Section 6 presents numerical benchmarks illustrating the improved convergence of the cyclical42

approach on 4 problems involving quadratic and logistic losses on both synthetic and a handwritten43

digits recognition dataset.44

• Finally, we conclude in Section 7 with a discussion of this work’s limitations.45

2 Notation and Problem Setting46

Throughout the paper, we consider the problem of minimizing quadratic functions of the form47

min
x∈Rd

f(x) , with f ∈ CΛ ,
{
f : f(x) = 1

2 (x− x ∗)TH(x− x∗) + f∗, Sp(H) ⊆ Λ
}
, (OPT)

where CΛ is the class of quadratic functions whose spectrum Sp(H) is localized in Λ ⊆ [µ,L] ⊆ R>0.48

We discuss more general settings beyond quadratic minimization in Section 5.49

The condition Λ ⊆ [µ,L] implies all quadratic functions under consideration are L-smooth and50

µ-strongly convex. For this function class, we define κ, the (inverse) condition number, and ρ, the51

ratio between the center of Λ and its radius, as52

κ , µ
L , ρ , L+µ

L−µ =
(

1+κ
1−κ

)
. (1)

Finally, for a method solving (OPT) that generates a sequence of iterates {xt}, we define its worst-case53

rate rt and its asymptotic rate factor τ as54

rt , sup
x0∈Rd, f∈CΛ

‖xt − x∗‖
‖x0 − x∗‖

, 1− τ , lim sup
t→∞

t
√
rt . (2)

3 Super-acceleration with Cyclical Step-sizes55

Algorithm 2: Cyclical (K = 2) heavy ball with with optimal parameters
Input: Initialization x0, µ1 < L1 < µ2 < L2 (where L1 − µ1 = L2 − µ2)

Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
, m =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)2

x1 = x0 − 1
L1
∇f(x0)

for t = 1, 2, . . . do
ht = 1+m

L1
(if t is even), ht = 1+m

µ2
(if t is odd)

xt+1 = xt − ht∇f(xt) +m(xt − xt−1)

end
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Figure 1: Hessian eigenvalue histogram for
a quadratic objective on MNIST. The outlier
eigenvalue at L2 generates a non-zero rela-
tive gap R = 0.77. Under these conditions,
the 2-cycle heavy ball method has a faster
asymptotic rate than the single-cycle one (see
Section 3.1).

In this section we develop one of our main contri-56

butions, a convergence rate analysis of the cyclical57

heavy ball method with cycles of length 2. This analy-58

sis crucially depends on the location of the Hessian’s59

eigenvalues; we assume that these are contained in a60

set Λ that is the union of 2 intervals of the same size61

Λ = [µ1, L1]∪[µ2, L2] , L1−µ1 = L2−µ2. (3)

By symmetry, this set is alternatively described by62

µ , µ1, L , L2 and R ,
µ2 −L1

L2 − µ1
, (4)

where R is the relative length of the gap µ2 −L163

with respect to the diameter L2 − µ1 (see Figure 1).64

This parametrization will reveal very convenient as65

the relative gap will play a crucial role in the conver-66

gence rate analysis. Note also that the gap assumption67

comes without loss of generality, as we allow R = 0.68

Through a correspondence between optimization69

methods and polynomials that we expand upon in70

Section 4, we can derive a worst-case analysis for the cyclical heavy ball method. The outcome of71

this analysis is in the following theorem, that provides the asymptotic convergence rate of Algorithm72

1 for cycles of length two. All proofs of results in this section can be found in Appendix D.3.73

Theorem 3.1 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and h0, h1, m ≥ 0. The asymptotic rate74

factor of Algorithm 1 with cycles of length two is75

1− τ =


√
m if σsup ≤ 1,
√
m
(
σsup +

√
σ2

sup − 1
) 1

2

if σsup ∈
(

1, 1+m2

2m

)
,

≥ 1 (no convergence) if 1+m2

2m ≤ σsup,

(5)

76

with σsup = sup
λ∈

{
µ1,L1,µ2,L2,

h0+h1
2h0h1

}
∩Λ

∣∣∣2(1 +m− λh0
2
√
m

)(
1 +m− λh1

2
√
m

)
− 1
∣∣∣ . (6)

This theorem gives the convergence rate for all triplets (m,h0, h1). By evaluating this expression77

over a grid of step-sizes, Figure 2 shows how the rate changes as a function of both step-sizes:
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Figure 2: Asymptotic rate of cyclical (K = 2) heavy ball in terms of its step-sizes h0, h1 across 3
different values of the relative gap R. In the left plot, the relative gap is zero, and so the step-sizes
with smallest rate coincide (h0 = h1). For non-zero values of R (center and right), the optimal
method instead alternates between two different step-sizes. In all plots the momentum parameter m
is set according to Algorithm 2.
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From the asymptotic rate expression of Theorem 3.1 we can optimize over the parameters (h0, h1,m)79

to obtain the method with smallest convergence rate. This leads to our other main contribution of this80

section, the asymptotically optimal Algorithm 2. This algorithm enjoys the following rate:81

Corollary 3.2. The worst-case (asymptotic) rates rAlg. 2
t and 1− τAlg. 2 of Algorithm 2 over CΛ are82

rAlg. 2
t =

(
1 + t

√
ρ2−1
ρ2−R2

)(√
ρ2−R2−

√
ρ2−1√

1−R2

)t
, 1− τAlg. 2 =

√
ρ2 −R2 −

√
ρ2 − 1

√
1−R2

for t even.

3.1 Comparison with Polyak Heavy Ball83

In the absence of eigenvalue gap (R = 0 and Λ = [µ,L]), Algorithm 2 reduces to Polyak heavy84

ball (PHB) [Polyak, 1964], whose worst-case rate is detailed in Appendix B. Since the asymptotic rate85

of Algorithm 2 is monotonically decreasing in R, it is always better or equal than PHB. Furthermore,86

in the ill-conditioned regime (small κ), the comparison is particularly simple: the optimal 2-cycle87

algorithm has a
√

1−R2 relative improvement over PHB, as provided by the next proposition.88

A more thorough comparison for different support sets Λ is discussed in Table 1.89

Proposition 3.3. Let R ∈ [0, 1). The rate factors of respectively Algorithm 2 and PHB verify90

1− τAlg. 2 =
κ→0

1− 2
√
κ√

1−R2
+ o(
√
κ) , 1− τPHB =

κ→0
1− 2

√
κ+ o(

√
κ) . (7)

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+R(L− µ)] ∪ [L−R(L− µ), L] 2
√
κ√

1−R2
(1−R2)−

1
2

R = 1−
√
κ/2 [µ, µ+

√
µL
4 ] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ−

1
4

R = 1− 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(
√
κ)

Table 1: Case study of the convergence of Algorithm 2 as a function of R, in the regime κ→ 0. The
first line corresponds to the regime where R is independent of κ, and we observe a constant gain
w.r.t. PHB. The second line considers a setting in which R depends on

√
κ, that is, the two intervals

in Λ are relatively small. The asymptotic rate reads (1− 2 4
√
κ)t, beating the classical (1− 2

√
κ)t

lower bound, unimprovable when R = 0. Finally, in the third line, R depends on κ, the two intervals
in Λ are so small that the convergence becomes O(1), i.e., is independent of κ.

4 A constructive Approach: Minimax Polynomials91

This section presents a generic framework (Algorithm 3) that allows designing optimal momentum92

and step-size cycles for given sets Λ and cycle length K.93

Algorithm 3: Optimal momentum method with cyclical step-sizes
Input: Eigenvalue localization Λ, cycle length K, initialization x0.
Preprocessing:

1. Find the polynomial σΛ
K such that it satisfies (16).

2. Set step-sizes {hi}i=0,...,K−1 and momentum m that satisfy resp. equations (21) and (22).

Set x1 = x0 −
h0

1 +m
∇f(x0)

for t = 1, 2, . . . do
xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

We first recall classical results that link optimal first order methods on quadratics and Chebyshev94

polynomials. Then, we generalize the approach by showing that optimal methods can be viewed as95

4



combinations of Chebyshev polynomials, and minimax polynomials σΛ
K of degree K over the set Λ.96

Finally, we show how to recover the step-size schedule from σΛ
K .97

4.1 First Order Methods on Quadratics and Polynomials98

A key property that we will use extensively in the analysis is the following link between first order99

methods and polynomials (see [Hestenes and Stiefel, 1952]).100

Proposition 4.1. Let f ∈ CΛ. The iterates xt satisfy101

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (8)
where x0 is the initial approximation of x∗, if and only if there exists a sequence of polynomials102

(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and P0 of103

degree 0 (hence the degree of Pt is at most t), such that104

∀ t xt − x∗ = Pt(H)(x0 − x∗), Pt(0) = 1 . (9)

Example 4.2 (Gradient descent). Consider the gradient descent algorithm with fixed step-size h,105

applied to problem (OPT). Then, after unrolling the update, we have106

xt+1−x∗ = xt−x∗ − h∇f(xt) = xt−x∗ − hH(xt − x∗) = (I − hH)t+1(x0 − x∗) . (10)
In this case, the polynomial associated to gradient descent is Pt(λ) = (1− hλ)t.107

The above proposition can be used to obtain worst-case rates for first order methods by bounding108

their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in (9) leads to109

‖xt − x∗‖ ≤ sup
λ∈Λ
|Pt(λ)| ‖x0 − x∗‖ =⇒ rt = sup

λ∈Λ
|Pt(λ)|, where P (0) = 1 . (11)

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed as the110

problem of finding the polynomial with smallest value on the eigenvalue support Λ, subject to the111

normalization condition Pt(0) = 1. Such polynomials are referred to as minimax. Throughout the112

paper, we use this polynomial-based approach to find methods with optimal rates.113

An important property of minimax polynomials is their equioscillation on Λ (see Theorem C.1 and114

its proof for a formal statement).115

Definition 4.3. (Equioscillation) A polynomial Pt equioscillates on Λ if it verifies Pt(0) = 1 and116

there exist λ0 < λ1 < . . . < λt ∈ Λ such that117

Pt(λi) = (−1)i max
λ∈Λ
|Pt(Λ)| . (12)

Example 4.4 (Λ is an interval). The t-th order Chebyshev polynomials of the first kind Tt satisfy118

the equioscillation property on [−1, 1]. It follows that minimax polynomials on Λ = [µ,L] can be119

obtained by composing the Chebyshev polynomial Tt with the linear transformation σΛ
1 :120

Tt
(
σΛ

1 (λ)
)

Tt
(
σΛ

1 (0)
) = arg min

P∈Rt[X],P (0)=1

sup
λ∈Λ
|P (λ)| , with σΛ

1 (λ) =
L+ µ

L− µ
− 2

L− µ
λ , (13)

where σΛ
1 maps the interval [µ, L] to [−1, 1]. The optimization method associated with this minimax121

polynomial is the Chebyshev semi-terative method [Flanders and Shortley, 1950, Golub and Varga,122

1961] (described also in Appendix B.1). This method achieves the lower complexity bound for123

smooth strongly convex quadratic minimization, see for instance [Nemirovsky, 1995, Chapter 12] or124

[Nemirovsky, 1992, Nesterov, 2003].125

The next proposition provides the main results in this subsection, which is key for obtaining Algo-126

rithm 2. It characterizes the even degree minimax polynomial in the setting of Section 3, that is,127

when Λ is the union of 2 intervals of same size. In this case, the minimax solution is also based on128

Chebyshev polynomials, but composed with a degree-two polynomial σΛ
2 .129

Proposition 4.5. Let Λ = [µ1, L1] ∪ [µ2, L2] be an union of two intervals of the same size130

(L1−µ1 = L2−µ2) and letm be as defined in Algorithm 2. Then the minimax polynomial (solution131

to (12)) is, for all t = 2n, n ∈ N+
0 ,132

Tn
(
σΛ

2 (λ)
)

Tn
(
σΛ

2 (0)
) = arg min

P∈Rt[X],
P (0)=1

sup
λ∈Λ
|P (λ)| , with σΛ

2 (λ) = 2

(
1 +m

2
√
m

)2(
1− λ

L1

)(
1− λ

µ2

)
− 1 .
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4.2 Generalization to Longer Cycles133

The polynomial in Example 4.4 uses a linear link function σΛ
1 to map Λ to [−1, 1]. In Proposition 4.5,134

we see that a degree two link function σΛ
2 can be used to find the minimax polynomial when Λ is the135

union of two intervals. This section generalizes this approach and considers higher-order polynomials136

for σK . We start with the following parametrization, with an arbitrary polynomial σK of degree K,137

Pt(λ;σK) ,
Tn (σK(λ))

Tn (σK(0))
, ∀t = Kn, n ∈ N+

0 . (14)

As we will see in the next subsection, this parametrization allows considering cycles of step-sizes.138

Our goal now is to find the σK that obtains the fastest convergence rate possible. The next proposition139

quantifies its impact on the asymptotic rate and its proof can be found in Appendix D.1.140

Proposition 4.6. For a given σK such that supλ∈Λ|σK(λ)| = 1, the asymptotic rate factor τσK of141

the method associated to the polynomial (14) is142

1− τσK = lim
t→∞

t

√
sup
λ∈Λ
|Pt(λ;σK)| =

(
σ0 −

√
σ2

0 − 1
) 1
K

, with σ0 , σK(0) . (15)

For a fixed K, the asymptotic rate (15) is a decreasing function of σ0. This motivates the introduction143

of the “optimal” degree K polynomial σΛ
K as the one that solves144

σΛ
K , arg max

σ∈RK [X]

σ(0) s.t. sup
λ∈Λ
|σ(λ)| = 1 . (16)

Using the above definition, we recover the σΛ
1 and σΛ

2 from Example 4.4 and Proposition 4.5.145

Finding the polynomial. Finding an exact and explicit solution for the general K and Λ case146

is unfortunately out of reach, as it involves solving a potentially difficult system of K non-linear147

equations. Here we describe an approximate approach. Let σΛ
K(x) =

∑K
i=0 σix

i. We propose to148

discretize Λ into N different points {λj}, then solve the linear problem149

max
σi

σ0 s.t. −1 ≤
∑K
i=0 σiλ

i
j ≤ 1, ∀j = 1, . . . , N . (17)

To check the optimality, it suffices to verify that the polynomial σΛ
K satisfies the equioscillation150

property (Definition 4.3), as depicted in Figure 3.151

Remark 4.7 (Relationship between optimal and minimax polynomials). For later reference, we note152

that the optimal polynomial σΛ
K is equivalent to finding a minimax polynomial on Λ and to rescale it.153

More precisely, σΛ
K is optimal if and only if σΛ

K/σ
Λ
K(0) is minimax.154

4.3 Cyclical Heavy Ball and (Non-)asymptotic Rates of Convergence155

We now describe the link between σΛ
K and Algorithm 3. Using the recurrence for Chebyshev156

polynomials of the first kind in (14), we have ∀t = Kn, n ∈ N+
0 ,157

Tn+1(σΛ
K(λ))

Tn+1(σΛ
K(0))

= 2σΛ
K(λ)

[
Tn(σΛ

K(λ))

Tn(σΛ
K(0))

] [
Tn(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=an

−
[
Tn−1(σΛ

K(λ))

Tn−1(σΛ
K(0))

] [
Tn−1(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=bn

.

It still remains to find an algorithm associated with this polynomial. To obtain one in the form of158

Algorithm 1, one can use the stationary behavior of the recurrence. From [Scieur and Pedregosa,159

2020], the coefficients an and bn converge as n→∞ to their fixed-points a∞ and b∞. We therefore160

consider here an asymptotic polynomial P̄t(λ;σΛ
K), whose recurrence satisfies161

P̄t(λ;σΛ
K) = 2a∞σ

Λ
K(λ)P̄t−K(λ;σΛ

K)− b∞P̄t−2K(λ;σΛ
K) . (18)

Similarly to K = 1, where this limit recursion corresponds to PHB, this recursion corresponds to162

an instance of Algorithm 3 (see Proposition 4.9 below), further motivating the cyclical heavy ball163

algorithm.164

The following theorem is the main result of this section and characterizes the convergence rate of165

Algorithm 1 for arbitrary momentum and step-size sequences {hi}i∈J1,KK. By optimizing over these166

parameters, we obtain a method associated to (18), whose rate is described in Proposition 4.9. All167

proofs can be found in Appendix D.2.168
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Figure 3: Examples of optimal polynomials σΛ
K from (16), all of them verifying the equioscillation

property (Definition 4.3). The “?” symbol highlights the degree of σΛ
K that achieves the best

asymptotic rate τσ
Λ
K in (15) amongst all K (see Section 4.4). (Left) When Λ is an unique interval,

all 3 polynomials are equivalently optimal τσ
Λ
1 =τσ

Λ
2 =τσ

Λ
3 . (Center) When Λ is the union of two

intervals of the same size, the degree 2 polynomial is optimal τσ
Λ
2 >τσ

Λ
3 >τσ

Λ
1 . This is expected

given the result in Proposition 4.5. (Right) When Λ is the union of two unbalanced intervals, the
degree 3 polynomial instead achieves the best asymptotic rate τσ

Λ
3 >τσ

Λ
2 >τσ

Λ
1 (see Section 4.4).

Theorem 4.8. The worst-case rate of convergence of Algorithm 1 on CΛ with an arbitrary momentum169

m and an arbitrary sequence of step-sizes {hi} is170

1− τ =



√
m, if σsup ≤ 1

√
m
(
σsup +

√
σ2

sup − 1
)1/K

, if σsup ∈

(
1,

1 +mK

2 (
√
m)

K

)
≥ 1 (no convergence) if σsup ≥

1 +mK

2 (
√
m)

K

, (19)

where σsup , sup
λ∈Λ
|σ(λ; {hi},m)|, and σ(λ; {hi},m) is the K-degree polynomial171

σ(λ; {hi},m) ,
1

2
Tr

([ 1+m−hK−1λ√
m

−1

1 0

] [ 1+m−hK−2λ√
m

−1

1 0

]
. . .

[
1+m−h0λ√

m
−1

1 0

])
. (20)

Proposition 4.9. Let σ(λ; {hi},m) be the polynomial defined by (20), and σΛ
K be the optimal link172

function of degree K defined by (16). If the momentum m and the sequence of step-sizes {hi} satisfy173

σ(λ; {hi},m) = σΛ
K(λ) , (21)

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor from174

Theorem 4.8, 2) the optimal momentum parameter is175

m =
(
σ0 −

√
σ2

0 − 1
)2/K

, where σ0 = σΛ
K(0) , (22)

3) the iterates from Algo. 3 with parameters {hi} and m form a polynomial with recurrence (18),176

and 4) Algorithm 3 achieves the worst-case rate rAlg. 3
t and the asymptotic rate factor 1− τAlg. 3177

rAlg. 3
t = O

(
t
(
σ0 −

√
σ2

0 − 1
)t/K)

, 1− τAlg. 3 =
(
σ0 −

√
σ2

0 − 1
)1/K

. (23)

Solving the system (21) The system is constructed by identification of the coefficients in both178

polynomials σΛ
K and σ(λ; {hi},m), which can be solved using a naive grid-search for instance. We179

are not aware of any efficient algorithm to solve this system exactly, although it is possible to use180

iterative methods such as steepest descent or Newton’s method.181
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4.4 Best Achievables Worst-case Guarantees on CΛ182

This section discusses the (asymptotic) optimality of Algorithm 3. In Section 4.2, the polynomial183

Pt( · ;σΛ
K) was written as a composition of Chebyshev polynomials with σΛ

K , defined in (16). The184

best K is chosen as follows: we solve (16) for several values of K, then pick the smallest K among185

the minimizers of (15). However, following such steps does not guarantee that the polynomial PΛ
t,K186

is minimax, as it is not guaranteed to minimize the worst-case rate supλ∈Λ |Pt(λ)| (see (11)).187

We give here an optimality certificate, linked to a generalized version of equioscillation. In short, if188

we can find K non overlapping intervals (more formally, whose interiors are disjoint) Λi in Λ such189

that σΛ
K(Λi) = [−1, 1] then PΛ

t,K is minimax for all t = nK, n ∈ N+
0 . The detailed result is provided190

by Theorem C.2. A direct consequence of this result is the asymptotic optimality of Algorithm 3, i.e.,191

there exists no first order algorithm with a better asymptotic rate 1− τ for the function class CΛ.192

It is possible that such σΛ
K does not exist for a given Λ. A complete characterization of the set Λ for193

which there exists such σΛ
K is out of the scope of this paper. A partial answer is given in [Fischer,194

2011] when Λ is the union of two intervals. However, the problem remains open in the general case.195

5 Local Convergence for Non-Quadratic Functions196

When f is twice-differentiable, it is possible to show local convergence rates when x0 is close197

enough to x∗ [Polyak, 1964]. We give here a similar result that applies to Algorithm 1 (see proof in198

Appendix E). Those results are only local, as it is possible to find pathological counter-examples for199

which even PHB does not converge globally, for some specific initialization [Lessard et al., 2016].200

Theorem 5.1 (Local convergence). Let f : Rd 7→ R be a (potentially non-quadratic) twice continu-201

ously differentiable function, x∗ a local minimizer, and H be the Hessian of f at x∗ with Sp(H) ⊆ Λ.202

Let xt denote the result of running Algorithm 1 with parameters h1, h2, · · · , hK ,m, and let 1− τ be203

the linear convergence rate on the quadratic objective (OPT). Then we have204

∀ε > 0,∃ open set Vε : x0, x∗ ∈ Vε =⇒ ‖xt − x∗‖ = O((1− τ + ε)t)‖x0 − x∗‖. (24)

In short, when Algorithm 1 is guaranteed to converge at rate 1− τ on (OPT), then the convergence205

rate on a nonlinear functions can be arbitrary close to 1− τ when x0 is sufficiently close to x∗.206

6 Experiments207

In this section we present an empirical comparison of the cyclical heavy ball method for different208

length cycles across 4 different problems. We consider two different problems, quadratic and logistic209

regression, each applied on two datasets, the MNIST handwritten digits [Le Cun et al., 2010] and210

a synthetic dataset. The results of these experiments, together with a histogram of the Hessian’s211

eigenvalues are presented in Figure 4 (see caption for a discussion).212

Dataset description. The MNIST dataset consists of a data matrix A with 60000 images of hand-213

written digits each one with 28× 28 = 784 pixels. The synthetic dataset is generated according to214

a spiked covariance model [Johnstone, 2001], which has been shown to be an accurate model of215

covariance matrices arising for instance in spectral clustering [Couillet and Benaych-Georges, 2016]216

and deep networks [Pennington and Worah, 2017, Granziol et al., 2020]. In this model, the data217

matrix A = XZ is generated from a m× n random Gaussian matrix X and an m×m deterministic218

matrix Z. In our case, we take n = 1000,m = 1200 and Z is the identity where the first three entries219

are multiplied by 100 (this will lead to three outlier eigenvalues). We also generate an n-dimensional220

target vector b as b = Ax or b = sign(Ax) for the quadratic and logistic problem respectively.221

Objective function For each dataset, we consider a quadratic and a logistic regression problem,222

leading to 4 different problems. All problems are of the form minx∈Rp
1
n

∑n
i=1 `(A

>
i x, bi) + λ‖x‖2,223

where ` is a quadratic or logistic loss, A is the data matrix and b are the target values. We set the224

regularization parameter to λ = 10−3‖A‖2. For logistic regression, since guarantees only hold at225

a neighborhood of the solution (even for the 1-cycle algorithm), we initialize the first iterate as the226

result of 100 iteration of gradient descent. In the case of logistic regression, the Hessian eigenvalues227

are computed at the optimum.228
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Figure 4: Hessian Eigenvalue histogram (top row) and Benchmarks (bottom row). The top row shows
the Hessian eigenvalue histogram at optimum for the 4 problems consider, together with the interval
boundaries µ1 < L1 < µ2 < L2 for the two-interval split of the eigenvalue support described in
Section 3. In all cases, there’s a non-zero gap radius R. This is shown in the bottom row, where we
compare the suboptimality in terms of gradient norm as a function of the number of iterations. As
predicted by the theory, the non-zero gap radius translates into a faster convergence of the cyclical
approach, compared to PHB in all cases. The improvement is observed on both quadratic and logistic
regression problems, even through the theory for the latter is limited to local convergence.

7 Conclusion229

This work is motivated by two recent observations from the optimization practice of machine learning.230

First, cyclical step-sizes have been shown to enjoy excellent empirical convergence [Loshchilov and231

Hutter, 2017, Smith, 2017]. Second, spectral gaps are pervasive in the Hessian spectrum of deep232

learning models [Sagun et al., 2017, Papyan, 2018, Ghorbani et al., 2019, Papyan, 2019]. Based on233

the simpler context of quadratic convex minimization, we develop a convergence-rate analysis and234

optimal parameters for the heavy ball method with cyclical step-sizes. This analysis highlights the235

regimes under which cyclical step-sizes have faster rates than classical accelerated methods. Finally,236

we illustrate these findings through numerical benchmarks.237

Main Limitations. In Section 3 we gave explicit formulas for the optimal parameters in the case238

of the 2-cycle heavy ball algorithm. These formulas depend not only on extremal eigenvalues—as is239

usual for accelerated methods—but also on the spectral gap R. The gap can sometimes be computed240

after computed the top eigenvalues (e.g. top-2 eigenvalue for MNIST). However, in general, there241

is no guarantee on how many eigenvalues are needed to estimate it. Moreover, global convergence242

result rely heavily on the quadratic assumption.243

Another limitation regards long cycles. For cycles longer than 2, we have only given an implicit244

formula to set the optimal parameters (Proposition 4.9). This involves solving a set of non-linear245

equations whose complexity increases with the cycle length. That being said, cyclical step-sizes246

might significantly enhance convergence speeds both in terms of worst-case rates and empirically,247

and this work advocates that new tuning practices involving different cycle lengths might be relevant.248

Broader Impact. This work is mostly theoretical, and as such we believe it does not present direct249

societal consequences. However, the methods described in this paper can be used to train machine250

learning models which could themselves have societal consequences. For example, the deployment251

of machine learning models in decision-making has been shown to suffer from gender and racial bias252

and to amplify existing inequalities, see for instance [Hutchinson and Mitchell, 2019, Barocas et al.,253

2017, Obermeyer et al., 2019].254
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Organization of the appendix359

The appendix contains all proofs that were not presented in the main core of the paper. We also detail360

all examples, and provide some complementary elements.361

Appendix A details the existing link between first order methods and family of “residual polynomials”.362

This term refers in all the appendix to the polynomials which value in 0 is 1.363

In Appendix B, we recall some well known optimal methods for L-smooth µ-strongly convex364

quadratic minimization (i.e., when the spectrum is contained in a single interval Λ = [µ,L]). Its365

purpose is exclusively to recall well-known foundation of optimization that are those algorithms and366

their construction.367

In Appendix C, we recall the polynomial formulation of the optimal method design problem, as well368

as a fundamental property, called “equioscillation”, to characterize the solution of this problem.369

In Appendix D, we provide all proofs related to cyclic step sizes. In particular,370

• In Appendix D.1, we derive the optimal algorithm in a case where Λ is the union of 2371

intervals of the same size (See (3)). This leads to the use of alternating step-sizes. The372

resulting algorithm has a stationary form which is Algorithm 1.373

• Therefore, in Appendix D.2, we study the heavy ball with cycling step sizes (Algorithm 1).374

• In Appendix D.3 and Appendix D.4, we use our results to design methods with cycles of375

lengths K = 2 and K = 3. For those cases, we provide a more elegant formulation of the376

results.377

In Appendix E, we provide a proof of Theorem 5.1 (local behavior beyond quadratics).378

Finally, in Appendix F, we provide some information about the code we used for the experiments.379
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A Relationship between first order methods and polynomials393

In this section we prove some results on the relationship between polynomials and first order methods394

for quadratic minimization, which is the starting point for our theoretical framework. This relationship395

is classical and was exploited by Rutishauser [1959], Nemirovsky [1992, 1995]), to name a few. The396

following proposition makes this relationship precise:397

Proposition 4.1. Let f ∈ CΛ. The iterates xt satisfy398

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (8)

where x0 is the initial approximation of x∗, if and only if there exists a sequence of polynomials399

(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and P0 of400
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degree 0 (hence the degree of Pt is at most t), such that401

∀ t xt − x∗ = Pt(H)(x0 − x∗), Pt(0) = 1 . (9)

Proof. We successively prove both directions of the equivalence.402

(=⇒) Given a first order method, we can find a sequence of polynomials (Pt)t∈N such that, for a403

given quadratic function f of Hessian H and a given starting point x0, the iterates xt verify404

xt − x∗ = Pt(H)(x0 − x∗).

Moreover, The polynomials sequence (Pt)t∈N verifies the relations405

deg(Pt+1) ≤ max
k≤t

deg(Pk) + 1 and Pt(0) = 1.

406

We proceed by induction:407

Initial case. Let t = 0. Then for any first order method we have the trivial relationship408

x0 − x∗ = P0(H)(x0 − x∗) with P0 = 1.

This proves the implication for t = 0, as P0 is a degree 0 polynomial satisfying P0(0) = 1.409

Recursion. Let t ∈ N. We assume the following statement true,410

∀ k ≤ t, xk − x∗ = Pk(H)(x0 − x∗) with Pk(0) = 1.

We now prove this statement is also true for t+ 1. Since xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)},411

there exists a family (γt+1,k)k∈J0,tK such that412

xt+1 = x0 − γt+1,0∇f(x0)− · · · − γt+1,t∇f(xt). (25)

Then, by the induction hypothesis we have:413

xt+1 − x∗ = x0 − x∗ − γt+1,0H(x0 − x∗)− · · · − γt+1,tH(xt − x∗)
= x0 − x∗ − γt+1,0HP0(H)(x0 − x∗)− · · · − γt+1,tHPt(H)(x0 − x∗)
, Pt+1(H)(x0 − x∗) .

We observe that the latest polynomial has a degree at most 1 plus the highest degree of (Pk)k≤t and414

that Pt+1(0) = 1 (since Pt+1 is defined as 1 plus some polynomial multiple of the polynomial X),415

which concludes the proof.416

(⇐=): From a family of polynomials (Pt)t∈N, with417

deg(Pt+1) ≤ max
k≤t

deg(Pk) + 1 and Pt(0) = 1, (26)

we can obtain a first order method such that, for any quadratic f (and its Hessian H) and any418

starting point x0, we verify419

∀t ∈ N, xt − x∗ = Pt(H)(x0 − x∗).

420

Let the sequence (Pt)t∈N verifies (26) for all t ∈ N. Let421

d = max
t′≤t

deg(Pt′).

A gap in the sequence of degrees would stand in contradiction with our assumptions.422

Since, there is no gap in degree, for any d′ ≤ d there exists t′ ≤ t such that deg(Pt′) = d′, and423

therefore Span((Pk)k≤t) = Rd[X].424

Moreover, we know Pt+1 has a degree at most d+ 1 and Pt+1(0) = 1, so 1−Pt+1(X)
X ∈ Rd[X].425
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This proves the existence of (γt+1,k)k∈J0,tK such that426

1− Pt+1(X)

X
= γt+1,0P0(X) + · · ·+ γt+1,tPt(X). (27)

Then, defining427

xt+1 = x0 − γt+1,0∇f(x0)− · · · − γt+1,t∇f(xt) , (28)

we have428

xt+1 − x∗ = x0 − x∗ −H (γt+1,0(x0 − x∗) + · · ·+ γt+1,t(xt − x∗)) (29)
= (1−X (γt+1,0P0(X) + · · ·+ γt+1,tPt(X))) (H)(x0 − x∗) (30)
= Pt+1(H)(x0 − x∗) . (31)

Defining xt for all t according to (28) gives an algorithm that has as associated residual polynomials429

(Pt)t∈N.430

The above proposition can be used to obtain worst-case rates for first order methods by bounding431

their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in (9) leads to432

‖xt − x∗‖ ≤ sup
λ∈Λ
|Pt(λ)| ‖x0 − x∗‖ =⇒ rt = sup

λ∈Λ
|Pt(λ)|, where P (0) = 1 . (32)

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed as the433

problem of finding the residual polynomial with smallest value on the eigenvalue support Λ.434

Then, finding the fastest algorithm is equivalent of finding, for each t ≥ 0, the polynomial of degree t435

that reaches the smallest infinite norm on the set Λ. Therefore we introduce the notion of minimax436

polynomial (Definition A.1) over a set Λ as the one that reaches the smallest maximal value over Λ437

among a set of polynomial of fixed degree and P (0) = 1.438

Definition A.1 (Minimax polynomial of degree t over Λ). For any, t ≥ 0, and any relatively compact439

(i.e. bounded) set Λ ⊂ R, the minimax polynomial of degree t over Λ, written ZΛ
t , is defined as440

ZΛ
t , argmin

P∈Rt[X]

sup
λ∈Λ
|P (λ)|, subject to P (0) = 1 . (33)

B Optimal methods for strongly convex and smooth quadratic objective441

In this section, for sake of completness, we revisit some classical methods, described in e.g. [Polyak,442

1964, Goh, 2017, Pedregosa, 2020, 2021], that are optimal when the Hessian eigenvalues are contained443

in a single interval of the form Λ = [µ,L]. To make this setup explicit, we will denote the optimal444

polynomials σΛ
1 and ZΛ

t (respectively defined in Equation (16) and Equation (33)) by σ[µ,L]
1 , and445

Z
[µ,L]
t .446

As mentioned in Example 4.4, the minimax polynomial Z [µ,L]
t is447

Z
[µ,L]
t (λ) =

Tt(σ
[µ,L]
1 (λ))

Tt(σ
[µ,L]
1 (0))

,

where Tt denotes the tth Chebyshev polynomial (See e.g. Chebyshev [1853]) and σ[µ,L]
1 the affine448

function λ 7→ L+µ
L−µ −

2
L−µλ that maps [µ,L] onto [−1, 1]. This can be seen a consequence of the449

more general equioscillation discussed in Appendix C. The next section presents one method which450

has Z [µ,L]
t as associated residual polynomial. This method is known as the Chebyshev semi-iterative451

method.452
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B.1 Chebyshev semi-iterative method453

The algorithm follows the three terms pattern from Equation (13) to iteratively form ZΛ
1 , . . . , Z

Λ
t .454

Algorithm 4: Chebyshev semi-iterative method [Golub and Varga, 1961]
Input: x0

Initialize: ω0 = 2
x1 = x0 − 2

L+µ∇f(x0);

for t = 1, . . . do
ωt+1 = 1

1− 1
4 ( 1−κ

1+κ )
2
ωt

;

xt+1 = xt − 2
L+µωt∇f(xt) + (ωt − 1)(xt − xt−1) ;

end

455

Theorem B.1. The iterates produced by the Chebyshev semi-iterative method verify456

xt − x∗ =
Tt(σ

[µ,L]
1 (H))

Tt(σ
[µ,L]
1 (0))

(x0 − x∗) for all t ∈ N. (34)

Furthermore, this method enjoys a worst-case rate of the form457

‖xt − x∗‖ ≤
1

Tt(σ
[µ,L]
1 (0))

‖x0 − x∗‖ = O

((
1−
√
κ

1 +
√
κ

)t)
. (35)

Proof. Consider first an algorithm whose iterates verify (34). Then using the Cauchy-Schwartz458

inequality and known bounds of Chebyshev polynomials, we can show the following rate459

‖xt − x∗‖ ≤
sup

λ∈[µ,L]

|Tt(σ[µ,L]
1 (λ))|

Tt(σ
[µ,L]
1 (0))

‖x0 − x∗‖

=
1

Tt

(
1+κ
1−κ

)‖x0 − x∗‖ since sup
x∈[−1,1]

|Tt(x)| = 1

≤ 2

(
1−
√
κ

1 +
√
κ

)t
‖x0 − x∗‖ sinceTt(x) ≥

(
x+
√
x2 − 1

)t
2

,∀x /∈ (−1, 1) .

It remains to prove that Algorithm 4 is the one that achieves the property (34). Using the recursion460

verified by Chebyshev polynomials461

Tt+1(x) = 2xTt(x)− Tt−1(x), (36)

we have462

xt+1 − x∗ =
Tt+1(σ

[µ,L]
1 (H))

Tt+1(σ
[µ,L]
1 (0))

(x0 − x∗)

=
2σ

[µ,L]
1 (H)Tt(σ

[µ,L]
1 (H))(x0 − x∗)− Tt−1(σ

[µ,L]
1 (H))(x0 − x∗)

Tt+1(σ
[µ,L]
1 (0))

=
2σ

[µ,L]
1 (H)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt − x∗)−
Tt−1(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt−1 − x∗)

=
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(
I − 2

L+ µ
H

)
(xt − x∗)−

Tt−1(σ
[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt−1 − x∗) .
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Let’s introduce ωt ,
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

. Then ω0 = 2 and by Chebyshev recursion (Equation (36)),463

ωt − 1 =
Tt−1(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

. With this notation we can write the above identity more compactly as464

xt+1 − x∗ = ωt

(
I − 2

L+ µ
H

)
(xt − x∗)− (ωt − 1)(xt−1 − x∗)

= xt −
2

L+ µ
ωt∇f(xt) + (ωt − 1)(xt − xt−1) .

It remains to find a recursion on ωt to make its use tractable. Using one more time the Chebyshev465

recursion Equation (36),466

ω−1
t =

Tt+1(σ
[µ,L]
1 (0))

2σ
[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

=
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))− Tt−1(σ

[µ,L]
1 (0))

2σ
[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

= 1− 1

4σ
[µ,L]
1 (0)2

2σ
[µ,L]
1 (0)Tt−1(σ

[µ,L]
1 (0))

Tt(σ
[µ,L]
1 (0))

= 1− 1

4σ
[µ,L]
1 (0)2

ωt−1,

which can finally be written as467

ωt+1 =
1

1− 1
4

(
1−κ
1+κ

)2

ωt

,

and we recognize the Chebyshev semi-iterative method described in Algorithm 4.468

This method, unlike the Polyak heavy ball (PHB) method, uses a different step-size and momentum469

at each iteration. However, both are related, as taking the limit of ωt as t→∞ in Algorithm 4 we470

obtain ω∞ = 1 +m with m =
(

1−
√
κ

1+
√
κ

)2

. This correspond to the parameters of PHB.471

B.2 Polyak heavy ball method472

Algorithm 5: Polyak Heavy ball
Input: x0

Set: m =
(

1−
√
κ

1+
√
κ

)2

and h = 2(1+m)
L+µ .

x1 = x0 − h
1+m∇f(x0)

for t = 1, . . . do
xt+1 = xt − h∇f(xt) +m(xt − xt−1)

end

473

Theorem B.2. The iterates of the heavy ball algorithm verify474

xt − x∗ = Pt(H)(x0 − x∗) for all t ∈ N,

with Pt defined as475

Pt ,
(√
m
)t [ 2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ))

]
. (37)

Furthermore, this method enjoys a worst-case rate of the form476

‖xt − x∗‖ = O

(
t

(√
κ− 1√
κ+ 1

)t)
. (38)
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Proof. From the update defined in Algorithm 5, we identify477

P0(λ) = 1

P1(λ) = 1− h

1 +m
λ

Pt+1(λ) = (1 +m− hλ)Pt(λ)−mPt−1(λ).

Introducing P̃t , Pt

(
√
m)

t , we have478

P̃0(λ) = 1

P̃1(λ) =
1 +m− hλ
(1 +m)

√
m

=
2

1 +m
σ

[µ,L]
1 (λ)

P̃t+1(λ) =
(1 +m− hλ)√

m
P̃t(λ)− P̃t−1(λ)

= 2σ
[µ,L]
1 (λ)P̃t(λ)− P̃t−1(λ).

This is a second order recurrence, with 2 initializations. It allows us to identify uniquely the family479

P̃t(λ) =
2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ)). (39)

where Ut denotes the second order Tchebyshev polynomial of degree t. While both Tt and Ut verify480

the same recursion as P̃t and T0 = U0 = P̃0 = 1, the difference between T and U comes when481

T1(X) = X and U1(X) = 2X . This is how P̃t ends being a linear combination of the Tt and Ut.482

Finally,483

Pt(λ) =
(√
m
)t [ 2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ))

]
. (40)

Since by definition σ[µ,L]
1 ([µ,L]) = [−1, 1], Tt(σ

[µ,L]
1 (λ)) ≤ 1 and Ut(σ

[µ,L]
1 (λ)) ≤ t+ 1,∀t ∈ N.484

Hence, ∀λ ∈ [µ,L],485

Pt(λ) ≤
(√
m
)t [

1 +
1−m
1 +m

t

]
≤ (2
√
κt+ 1)

(
1−
√
κ

1 +
√
κ

)t
(41)

and486

‖xt − x∗‖ = O

(
t

(√
κ− 1√
κ+ 1

)t)
. (42)

487

C Minimax Polynomials and Equioscillation Property488

Appendix B dealt with optimal methods when Λ = [µ,L]. Those methods could be derived since the489

minimax polynomial (Definition A.1) Z [µ,L]
t is known.490

In this section we consider the problem of finding minimax polynomials in a more general setting.491

We provide a characterization of the minimax polynomial defined in definition A.1. For the sake of492

simplicity, we actually focus on the polynomial σΛ
t solution of (16). We can easily adapt the result to493

ZΛ
t leveraging Remark 4.7. We prove the following theorem.494

Theorem C.1. Let Pt be a degree t polynomial verifying Pt(Λ) ⊂ [−1, 1]. Then Pt is the unique495

solution σΛ
t of eq. (16) if and only if there exists a sorted family (λi)i∈J0,tK ∈

(
Λ
)t+1

(where Λ is the496

closure of Λ) such that ∀i ∈ J0, tK, Pt(λi) = (−1)i.497

The following proof is technical and requires to introduce several new notations. Hence we first498

briefly describe the intuition before giving the actual complete proof.499

(⇐=): Assume Pt “oscillates” t+1 times between 1 and−1. Since Pt has a degree t, it is completely500

determined by its values on those t+ 1 points, using the Lagrange interpolation representation. We501
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prove that Pt is optimal because any other polynomial Qt, having different values on those t + 1502

points would achieve a smaller value Qt(0) at 0.503

(=⇒): We use a proof by contraposition. We assume that Pt doesn’t oscillate t+ 1 times between 1504

and −1, and prove that Pt(0) is not optimal. To do so, we build a small perturbation εQt such that505

Pt + εQt is a polynomial of degree t, which values on Λ are all in [−1; 1], and with an higher value506

at 0.507

(Uniqueness) We reuse the Lagrange interpolation representation to justify that 2 optimal polynomials508

must “oscillate” on the same points, therefore are equal.509

Proof. We prove successively both directions:510

(⇐=): Assume ∃λ0 < λ1 < · · · < λt such that511

∀i ∈ J0, tK, Pt(λi) = (−1)i and Pt(Λ) ⊂ [−1, 1]. (43)

We aim to prove that Pt is the unique solution σΛ
t of eq. (16), that is for any other polynomial Qt of512

degree t verifying Qt(Λ) ⊂ [−1, 1], Pt(0) ≥ Qt(0).513

We introduce such a polynomial Qt of degree t and bounded in absolute value by 1 on Λ. Let’s define,514

for all i ∈ J0, tK,515

vi , Qt(λi) ∈ [−1, 1]. (44)

These t+1 values characterizeQt (of degree t), and we can decompose it over Lagrange interpolation516

polynomials. We have517

Qt =

t∑
i=0

viLλi where Lλi(X) ,
∏
j 6=i

X − λj
λi − λj

. (45)

The value at 0 can be computed as518

Qt(0) =

t∑
i=0

viLλi(0) =

t∑
i=0

vi
∏
j 6=i

λj
λj − λi

. (46)

Maximizing this linear function of (vi)i∈J0, tK over the l∞ ball B∞(1) , {(vi)i∈J0, tK,∀i,−1 ≤ vi ≤519

1} leads to, for v∗ , arg minv∈B∞(1)

∑t
i=0 vi

∏
j 6=i

λj
λj−λi ,520

v∗i = sgn

∏
j 6=i

λj
λj − λi

 = (−1)i. (47)

where sgn is the sign function (which maps 0 to 0, R<0 to −1, and R>0 to 1). Finally,521

Pt(0) ≥ Qt(0) (48)

which concludes the proof.522

(=⇒): Assume Pt alternates s < t+ 1 times between −1 and 1 on Λ. We want to show that Pt is not523

optimal in the sense described above. To do so, we construct a perturbation of Pt that increases its524

value in 0 while still satisfying the constraint Pt(Λ) ⊂ [−1, 1].525

Let’s define526

λ
(1)
0 < · · · < λ

(t0)
0 < λ

(1)
1 < · · · < λ

(t1)
1 < · · · < λ

(1)
s−1 < · · · < λ

(ts−1)
s−1 (49)

such that527

Pt(λ
(j)
i ) = (−1)i and ∀λ ∈ Λ,

(
∃(i, j)|λ = λ

(j)
i or |Pt(λ)| < 1

)
. (50)

In short,
(
λ

(j)
i

)
(i,j)

describes all the extremal points of Pt in Λ. The indices change when the sign528

changes, while the exponents are used to express the possible consecutive repetitions of the same529

value (−1 or 1).530
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Set (ri)i∈J0,sK as any set of positive numbers satisfying:531

0 < r0 < inf(Λ) < λ
(1)
0 < λ

(t0)
0 < r1 < · · · < rs < λ

(1)
s−1 < λ

(ts−1)
s−1 < sup(Λ) < rs. (51)

By definition, each interval [ri, ri+1], i ∈ J0, s− 1K, contains λ(j)
i for all j, but no other extremal532

points of Pt in Λ. Hence, Pt([ri, ri+1]∩Λ) doesn’t contain (−1)i+1. Since,
⋃
i<s,i even[ri, ri+1]∩Λ533

is compact, and by continuity of Pt, Pt
(⋃

i<s,i even[ri, ri+1] ∩ Λ
)

is compact. Therefore,534

∃ε−1 > 0|Pt

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 ⊂ [−1 + ε−1, 1]. (52)

Similarly, we obtain535

∃ε1 > 0|Pt

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 ⊂ [−1, 1− ε1]. (53)

We are now equipped to build the aforementioned perturbation. Let536

Qt(X) ,
∏

i∈J0,s−1K

(ri −X). (54)

Note that Qt has a degree s ≤ t and satisfies537

Qt

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 ⊂ R− and Qt

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 ⊂ R+. (55)

Moreover, those sets are compact , by continuity of Qt, and consequently bounded. We can therefore538

choose a small enough ε > 0 such that539

εminQt

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 > −ε−1 and εmaxQt

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 < ε1.

This leads to540

(Pt + εQt)(Λ) ⊂ [−1, 1]. (56)
And as by definition, Qt(0) > 0,541

(Pt + εQt)(0) > Pt(0). (57)

Finally (Pt + εQt) ∈ Rt[X]. This proves that Pt is not optimal.542

(Uniqueness) Here, we prove that the optimal polynomial is necessarily unique. To do so, we introduce543

2 optimal polynomials and show there must actually be identical.544

Let Pt an optimal polynomial and (λi)i∈J0,tK ∈ Λt+1 a family on which Pt interpolates alternatively545

1 and −1. Let any other feasible polynomial Qt and (vi)i∈J0,tK its values on (λi)i∈J0,tK:546

Qt =

t∑
i=0

viLλi . (58)

We have showed in the first point of this proof that the optimal values of vi are alternatively 1 and547

−1. Consequently, if Qt is also optimal,548

Qt(λi) = Pt(λi) (59)

for all i ∈ J0, tK, which characterizes polynomials of degree t. Then549

Qt = Pt (60)

which shows that the optimal polynomial is unique.550
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We now give the formal statement and the proof of the second result, used in Subsection 4.4.551

Theorem C.2. Tn(σK) is optimal for all n if and only if σK verifies the equioscillation property552

(Definition 4.3, hence σK = σΛ
K by Theorem C.1) and Λ = σ−1

K ([−1, 1]), i.e. the inverse mapping553

σ−1
K transforms the interval [−1, 1] into exactly Λ.554

Before providing the proof, we first highlight that the property555

∀λ ∈ Λ, σK(λ) ∈ [−1, 1] (61)

can equivalently be written556

Λ ⊂ σ−1
K ([−1, 1]). (62)

In other words, we are interested in the case where the reverse inclusion holds as well. This means557

that558

σK(λ) ∈ [−1, 1]⇒ λ ∈ Λ. (63)

This corresponds to a stronger form of optimality of σK : it “fully” uses the available assumption559

related to Λ, in the sense that no point can be added to Λ without breaking the condition σK(Λ) ⊂560

[−1; 1]. For example, on Figure 3, σΛ
3 does not satisfy the later property on the center graph, but561

satisfies it on the right graph. Here, we show that under this condition, Tn(σK) = Tn(σΛ
K) is optimal562

(in the sense of (16)) for all n ∈ N.563

In Section 4.4, we give another view of this condition for Tn(σK) to be optimal for all n. We can564

decompose Λ as the union of K intervals Λi such that they have disjoint interiors and they are all565

mapped to [−1, 1] by σK . Hence, σK maps Λ to [−1, 1] exactly K times.566

Proof. From Theorem C.1, Tn(σK) is optimal for all n if and only if, for all n, there exist a sorted567

family of (λi)i∈J0,nKK such that, Tn(σK(λi)) = (−1)i.568

Let n ∈ N. We observe that by definition of Tn,569

Tn(σK(λ)) = ±1 if and only if ∃j ∈ J0, nK|σK(λ) = cos
jπ

n
. (64)

We successively treat both directions: (⇐=) we assume σK oscillates and Λ = σ−1
K ([−1, 1]). We570

aim to prove that Tn(σK) is optimal for all n ∈ N.571

By equioscillation property, we know that there exists λ′i such that572

σK(λ′i) = (−1)i. (65)

By the intermediate value theorem, we know that for any i ∈ J0;KK, between the pair λ′i, λ
′
i+1, there573

exist sorted (µji )ni<j<(n+1)i such that for all j ∈ Jni+ 1; (n+ 1)i− 1K,574

σK(µji ) = cos
jπ

n
. (66)

We identify λni = λ′i and λj = µjbj/nc for all j not multiple of n. Then, for all ` ∈ J0, nKK:575

Tn(σK(λ`)) = (−1)`. (67)

By Theorem C.1, we conclude that Tn(σK) is optimal for all n ∈ N.576

(=⇒) We assume Tn(σK) is optimal for all n ∈ N. Clearly, σK is optimal (n = 1), and then577

equioscillates. We prove that moreover578

Λ = σ−1
K ([−1, 1]). (68)

On the one hand, for any j ∈ J0, nK, there exist at most K different λ that verifies σK(λ) = cos jπn579

since σK has a degree K and is not constant. Therefore, there exist at most (n + 1)K different λ580

such that ∃j ∈ J0, nK|σK(λ) = cos jπn , and by Eq.(64), there thus exist at most (n+ 1)K different λ581

such that Tn(σK(λ) = ±1.582

On the other hand, the optimality of Tn(σK) implies the existence of at least nK + 1 such λ in Λ.583
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Hence all but at most K − 1 values λ such that σK(λ) ∈ {cos jπn , j ∈ J0, nK} belong to Λ.584

This holds for all n. Therefore for n large enough, all x such that σ(x) ∈ [−1, 1] are as close as we585

want to some λ ∈ Λ. Since Λ is a closed set, then all x such that σ(x) ∈ [−1, 1] are actually in Λ.586

We conclude587

Λ ⊃ σ−1
K ([−1, 1]). (69)

588

D Cycling step-sizes589

In this appendix, we provide an analysis of momentum methods with cyclical step-sizes and derive590

some non-asymptotically optimal variants.591

D.1 Derivation of optimal algorithm with K = 2 alternating step sizes592

In this section, we consider the case where Λ is the union of 2 intervals of same size (see (3)).593

We start by introducing the following algorithm, and we will prove later that this algorithm is optimal594

(Theorem D.1)

Algorithm 6: Optimal momentum method with alternating step-sizes (K = 2)
Input: Initialization x0, µ1 < L1 < µ2 < L2 (where L1 − µ1 = L2 − µ2)

Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
, c =

√
ρ2−R2

1−R2

ω0 = 2
x1 = x0 − 1

L1
∇f(x0)

for t = 1, 2, . . . do

ωt =

(
1− 1

4c2
ωt−1

)−1

ht = ωt
L1

(if t is even), ht = ωt
µ2

(if t is odd)

xt+1 = xt − ht∇f(xt) + (ωt − 1)(xt − xt−1)

end

595

Theorem D.1. Let f ∈ CΛ and x0 ∈ Rd. Assume Λ defined as in (3). The iterates of Algorithm 6596

verifies the condition597

x2n − x∗ =
Tn(σΛ

2 (H))

Tn(σΛ
2 (0))

(x0 − x∗) (70)

and this is the optimal convergence rate over CΛ.598

Proof. We begin by showing the optimality of the algorithm. Using Proposition D.2, the polynomial599

in (70) equioscillates on Λ, which makes it optimal by Theorem C.1. By optimal, this means this is600

the optimal convergence rate any first order algorithm can reach (See (11)). We invite the reader to601

read Appendix D.3, where we study in details the properties of the alternating steps sizes strategy602

(i.e., K = 2).603

As in Appendix B.1, we derive here the constructive approach that leads us to this algorithm.604

We now start showing that the iterates of Algorithm 6 follow (70). From eq. (70), projecting onto the605

eigenspace of eigenvalue λ,606

x2n − x∗ =
Tn(σΛ

2 (λ))

Tn(σΛ
2 (0))

(x0 − x∗). (71)

22



Then, we find a recursion definition for the subsequence (x2n)n∈N. Let n ≥ 1.607

x2(n+1) − x∗ =
Tn+1(σΛ

2 (λ))

Tn+1(σΛ
2 (0))

(x0 − x∗), (72)

=
2σΛ

2 (λ)Tn(σΛ
2 (λ))− Tn−1(σΛ

2 (λ))

Tn+1(σΛ
2 (0))

(x0 − x∗), (73)

=
2σΛ

2 (λ)Tn(σΛ
2 (0))

Tn+1(σΛ
2 (0))

(x2n − x∗)−
Tn−1(σΛ

2 (0))

Tn+1(σΛ
2 (0))

(x2(n−1) − x∗). (74)

Note that if σΛ
2 (λ) were a degree 1 polynomial in λ, then we would recognize a momentum update.608

Here, σΛ
2 (λ) is actually a degree 2 polynomial in λ. We will then try to identify 2 steps of momentum.609

From here, let610

c ,
1

2

((
σK(0) +

√
σK(0)2 − 1

)1/2

+
(
σK(0)−

√
σK(0)2 − 1

)1/2
)

=

√
σK(0) + 1

2
(75)

be the unique positive real number c verifying T2(c) = 2c2 − 1 = σK(0). We end up with611

x2(n+1) − x∗ =
2σΛ

2 (λ)T2n(c)

T2(n+1)(c)
(x2n − x∗)−

T2(n−1)(c)

T2(n+1)(c)
(x2(n−1) − x∗). (76)

Note, the above equation suggests to introduce the sequence zl , Tl(c)(xl − x∗). Indeed, the above612

equality simplifies613

z2(n+1) = 2σΛ
2 (λ) z2n − z2(n−1). (77)

Let’s look for 2 steps of momentum that are together equivalent to (76). We look for an algorithm of614

the form615

∀n ≥ 0, xn+1 = xn − hn∇f(xn) +
Tn−1(c)

Tn+1(c)
(xn − xn−1) , (78)

i.e, projecting again onto the eigenspace of eigenvalue λ, we obtain616

∀n ≥ 0, xn+1 − x∗ =

(
1 +

Tn−1(c)

Tn+1(c)
− hnλ

)
(xn − x∗)−

Tn−1(c)

Tn+1(c)
(xn−1 − x∗) . (79)

Here we introduce the notation617

ωl ,

(
1 +

Tl−1(c)

Tl+1(c)

)
= 2c

Tl(c)

Tl+1(c)
, (80)

and the change of variable618

h̃l ,
hl
ωl
. (81)

We rewrite (79) in terms of the sequence z and using the sequence h̃,619

∀n ≥ 0, zn+1 = Tn+1(c)

(
1 +

Tn−1(c)

Tn+1(c)
− hnλ

)
(xn − x∗)− zn−1 (82)

=
(

2cTn(c)(1− h̃nλ)
)

(xn − x∗)− zn−1 (83)

=
(

2c(1− h̃nλ)
)
zn − zn−1. (84)

We now need to find the right sequence h̃n such that we recover eq. (77). Combining the 2 following620

z2n+1 =
(

2c(1− h̃2nλ)
)
z2n − z2n−1 (85)

z2n+2 =
(

2c(1− h̃2n+1λ)
)
z2n+1 − z2n (86)

by isolating the odd index in the second equation and plugging it in the first one, we get621

z2n+2 =

(
4c2(1− h̃2nλ)(1− h̃2n+1λ)− 1− 2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)

)
z2n −

2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
z2n−2.

(87)
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We need to identify622

2σΛ
2 (λ) = 4c2(1− h̃2nλ)(1− h̃2n+1λ)− 1− 2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
, (88)

1 =
2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
. (89)

Hence, we conclude from the second equation that h̃2n+1 = h̃2n−1 = h̃1 is independent of n. And623

the first equation then becomes624

2σΛ
2 (λ) = 4c2(1− h̃2nλ)(1− h̃1λ)− 2 (90)

leading also to h̃2n independent of n. We observe an alternating strategy of the “pseudo-step-sizes”625

h̃0 and h̃1. Finally, we must fix them to626

σΛ
2 (λ) = 2c2(1− h̃0λ)(1− h̃1λ)− 1. (91)

Note this is possible because the equation above is valid for λ = 0 for any choice of h̃0 and h̃1 and627

the polynomial σΛ
2 + 1 can be defined by its value in 0 and its roots that are exactly 1

h̃0
and 1

h̃1
. And628

from (155), those values are µ2 and L1, which gives the values h̃0 = 1
L1

and h̃1 = 1
µ2

.629

We now sum up what we have so far. Setting c, h̃0 and h̃1 as described above, the iterations630

∀n ≥ 1, xn+1 = xn −
(

1 +
Tn−1(c)

Tn+1(c)

)
h̃mod(n,2)∇f(xn) +

Tn−1(c)

Tn+1(c)
(xn − xn−1) (92)

lead to the recursion (77).631

Let define x1 = x0 − h̃0∇f(x0), and from the above632

x2 = x1 −
(

1 +
1

2c2 − 1

)
h̃1λ(x1 − x∗) +

1

2c2 − 1
(x1 − x0) (93)

x2 − x∗ =
2c2

σΛ
2 (0)

(
1− h̃1λ

)
(x1 − x∗)−

1

σΛ
2 (0)

(x0 − x∗) (94)

=
2c2

σΛ
2 (0)

(
1− h̃1λ

)(
1− h̃0λ

)
(x0 − x∗)−

1

σΛ
2 (0)

(x0 − x∗) (95)

=
σΛ

2 (λ)

σΛ
2 (0)

(x0 − x∗) (96)

z2 = σΛ
2 (λ). (97)

Finally, the sequence z2n is defined by633

z0 = 1, (98)

z1 = σΛ
2 (λ), (99)

z2(n+1) = 2σΛ
2 (λ) z2n − z2(n−1). (100)

which defines exactly Tn(σΛ
2 (λ)). We conclude x2n − x∗ =

Tn(σΛ
2 (λ))

Tn(σΛ
2 (0))

(x0 − x∗).634

We sum up the algorithm used to reach the above equality:635

x1 = x0 − h̃0∇f(x0), (101)

∀n ≥ 0, xn+1 = xn − ωnh̃n∇f(xn) + (ωn − 1) (xn − xn−1) . (102)
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with ωn =
(

1 + Tn−1(c)
Tn+1(c)

)
= 2cTn(c)

Tn+1(c) . Note the recursion636

ω−1
n =

Tn+1(c)

2cTn(c)
(103)

=
2cTn(c)− Tn−1(c)

2cTn(c)
(104)

= 1− Tn−1(c)

2cTn(c)
(105)

= 1− 1

4c2
2cTn−1(c)

Tn(c)
(106)

= 1− 1

4c2
ωn−1. (107)

Finally, the sequence ω can be computed online using the recursion637

ωn =
1

1− 1
4c2ωn−1

(108)

with ω0 = 2.638

In this appendix, as well as in Appendix B, we end up with some equality of the form639

‖xt − x∗‖ =
Tn(σK(H))

Tn(σK(0))
‖x0 − x∗‖ . (109)

The next theorem explains how to derive the rate factor from it.640

Proposition 4.6. For a given σK such that supλ∈Λ|σK(λ)| = 1, the asymptotic rate factor τσK of641

the method associated to the polynomial (14) is642

1− τσK = lim
t→∞

t

√
sup
λ∈Λ
|Pt(λ;σK)| =

(
σ0 −

√
σ2

0 − 1
) 1
K

, with σ0 , σK(0) . (15)

Proof. We observe that the rate factor of the method is upper bounded by643

t

√
sup
λ∈Λ
|ZΛ
t (λ)| = t

√√√√sup
λ∈Λ

∣∣∣∣∣Tt/K
(
σΛ
K(λ)

)
Tt/K (σ0)

∣∣∣∣∣ = t

√
1

|Tt/K (σ0) |
if sup
λ∈Λ
|σK(λ)| = 1. (110)

Since σ0 > 1, and by using the explicit formula of Chebyshev polynomials, we have that644

Tt/K (σ0) =

(
σ0 +

√
σ2

0 − 1
)t/K

+
(
σ0 −

√
σ2

0 − 1
)t/K

2
∼

t→∞

(
σ0 +

√
σ2

0 − 1
)t/K

2
. (111)

Taking the limit gives645

lim
t→∞

t

√
1

|Tt/K (σ0) |
=

(
1

σ0 +
√
σ2

0 − 1

) 1
K

=

(
σ0 −

√
σ2

0 − 1

) 1
K

. (112)

646

D.2 Derivation of heavy ball with K step sizes cycle647

In this section, we consider heavy ball algorithm with a cycle of K different step sizes. For648

convenience, we restate Algorithm 1 below.649

We first recall the convergence theorem 4.8 stated in Section 4.3.650
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Algorithm 7: Cyclical heavy ball HBK(h0, . . . , hK−1;m)

Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
x1 = x0 −

h0

1 +m
∇f(x0)

for t = 1, 2, . . . do xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

Theorem 4.8. The worst-case rate of convergence of Algorithm 1 on CΛ with an arbitrary momentum651

m and an arbitrary sequence of step-sizes {hi} is652

1− τ =



√
m, if σsup ≤ 1

√
m
(
σsup +

√
σ2

sup − 1
)1/K

, if σsup ∈

(
1,

1 +mK

2 (
√
m)

K

)
≥ 1 (no convergence) if σsup ≥

1 +mK

2 (
√
m)

K

, (19)

where σsup , sup
λ∈Λ
|σ(λ; {hi},m)|, and σ(λ; {hi},m) is the K-degree polynomial653

σ(λ; {hi},m) ,
1

2
Tr

([ 1+m−hK−1λ√
m

−1

1 0

] [ 1+m−hK−2λ√
m

−1

1 0

]
. . .

[
1+m−h0λ√

m
−1

1 0

])
. (20)

Proof. Note a first trick. Let’s define x−1 , x0 −
h0

1 +m
∇f(x0). This way, xt+1 = xt −654

hmod(t,K)∇f(xt) +m(xt − xt−1) holds for any t ≥ 0 (including t = 0).655

Now, let’s introduce the polynomials Pt defined by Proposition 4.1 as xt − x∗ = Pt(H)(x0 − x∗).656

From now, in order to highlight the K-cyclic behavior, we introduce the indexation t = nK + r, with657

r ∈ J0,K − 1K.658

We verify the following:659

P−1(λ) = 1− h0λ

1 +m
, (113)

P0(λ) = 1, (114)
∀n ≥ 0, r ∈ J0,K − 1K, PnK+r+1(λ) = (1 +m− hrλ)PnK+r(λ)−mPnK+r−1(λ). (115)

In order to get rid of the last occurrence of m in equation above, we introduce P̃t(λ) , 1

(
√
m)

tPt(λ).660

This way, the above can be written661

P̃−1(λ) =
√
m

(
1− h0λ

1 +m

)
=

2m

1 +m
σ0(λ), (116)

P̃0(λ) = 1, (117)

∀n ≥ 0, r ∈ J0,K − 1K, P̃nK+r+1(λ) =
1 +m− hrλ√

m
P̃nK+r(λ)− P̃nK+r−1(λ). (118)

In the following, we want to determine a formulation for the polynomials P̃nK . In order to do so, we662

introduce the following operator:663

A(λ) ,

1 +m− hK−1λ√
m

−1

1 0

 · · ·
1 +m− h0λ√

m
−1

1 0

 ,

(
a(λ) b(λ)
c(λ) d(λ)

)
(119)

as well as the scalar valued function664
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σ(λ; {hi},m) ,
1

2
Tr(A(λ)) . (120)

This operator comes naturally in665

(
P̃(n+1)K(λ)

P̃(n+1)K−1(λ)

)
=

1 +m− hK−1λ√
m

−1

1 0

(P̃(n+1)K−1(λ)

P̃(n+1)K−2(λ)

)
(121)

=

1 +m− hK−1λ√
m

−1

1 0

 · · ·
1 +m− h0λ√

m
−1

1 0

( P̃nK(λ)
P̃nK−1(λ)

)
(122)

= A(λ)

(
P̃nK(λ)
P̃nK−1(λ)

)
. (123)

Looking K steps at a time makes the analysis much easier as the process applying K steps is then666

homogeneous (we apply A and A doesn’t depend on the index of the iterate).667

P̃(n+1)K(λ) = a(λ)P̃nK(λ) + b(λ)P̃nK−1(λ), (124)

P̃(n+1)K−1(λ) = c(λ)P̃nK(λ) + d(λ)P̃nK−1(λ). (125)

Combining the two above equations (First one with incremented n + b(λ) times the second one - d(λ)668

times the first one) leads to669

P̃(n+2)K(λ) = (a(λ) + d(λ))P̃(n+1)K(λ)− (a(λ)d(λ)− b(λ)c(λ))P̃nK(λ) (126)

= 2σ(λ; {hi},m)P̃(n+1)K(λ)− P̃nK(λ) (127)

where the second inequality is deduced after we recognize670

a(λ) + d(λ) = Tr(A(λ)) = 2σ(λ; {hi},m) (128)

and671

a(λ)d(λ)− b(λ)c(λ) = Det(A(λ)) = 1 (129)
(A(λ) is the product of matrices of determinant 1).672

In equation (127) we recognize the recursion verified by e.g. (Tn(σ(λ; {hi},m)))n∈N, or673

(Un(σ(λ; {hi},m)))n∈N, where Tn (resp. Un) denotes the first (resp. second) type Tchebyshev674

polynomial of degree n.675

Moreover we verify the initialization676

P̃0(λ) = 1, (130)

P̃K(λ) = a(λ)P̃0(λ) + b(λ)P̃−1(λ) (131)

= a(λ) + b(λ)
m

1 +m

1 +m− h0λ√
m

. (132)

We also notice that677

Un(σ(λ; {hi},m)) +

(
b(λ)

m

1 +m

1 +m− h0λ√
m

− d(λ)

)
Un−1(σ(λ; {hi},m)) (133)

verifies the same recursion of order 2 than P̃Kn as well as the same 2 initial terms.678

Finally, we conclude679

P̃nK(λ) = Un(σ(λ; {hi},m)) +

(
b(λ)

m

1 +m

1 +m− h0λ√
m

− d(λ)

)
Un−1(σ(λ; {hi},m))

(134)

and680
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PnK(λ) =
(√
m
)nK

P̃nK(λ) . (135)

Now we have the full expression of the polynomials associated to algorithm 1. Then we can study681

it’s rate of convergence.682

Note for any r ∈ J0,K − 1K, we can have a similar expression of the form683

PnK+r(λ) =
(√
m
)nK (

Q1
r(λ)Un(σ(λ; {hi},m)) +Q2

r(λ)Un−1(σ(λ; {hi},m))
)

(136)

with Q1
r and Q2

r some fixed polynomials. This is the consequence of the fact that all sequences684

P̃nK+r(λ) verify the same recursion formula. Only initialization are different.685

In order to study the factor rate of this algorithm, let’s first introduce M an upper bound of all the686

|Qir|. For instance, let M defined as follow.687

M = max
r∈J0,K−1K,i∈{1,2}

sup
λ∈Λ
|Qir(λ)|. (137)

Then,688

‖xt − x∗‖ ≤ sup
λ∈Λ
|Pt(λ)|‖x0 − x∗‖ (138)

≤M
(√
m
)t(

sup
λ∈Λ
|Un(σ(λ; {hi},m))|+ sup

λ∈Λ
|Un−1(σ(λ; {hi},m))|

)
‖x0 − x∗‖,

(139)

with n = b tK c.689

Set σsup , sup
λ∈Λ
|σ(λ; {hi},m)|. The worst-case rate verifies690

If σsup ≤ 1, then rt ≤M
(√
m
)t

(n+ 1 + n) = O
(
t
(√
m
)t)

. (140)

If σsup > 1, then rt = O

((√
m
)t (

σsup +
√
σ2

sup − 1
)n)

. (141)

The first case analysis comes from the fact that Un is bounded by n+ 1 on [−1, 1], while the second691

cases analysis comes from the fact that Un(x) grows exponentially fast outside of [−1, 1] at a rate692

x+
√
x2 − 1.693

Then the factor rate verifies694

If σsup ≤ 1, 1− τ =
√
m. (142)

If σsup > 1, 1− τ =
√
m
(
σsup +

√
σ2

sup − 1
)1/K

. (143)

It remains to notice that
√
m
(
σsup +

√
σ2

sup − 1
)1/K

< 1 is equivalent to σsup <
1+mk

2(
√
m)

k .695

696

From this factor rate analysis, we can state Proposition 4.9 of Section 4.3.697

Proposition 4.9. Let σ(λ; {hi},m) be the polynomial defined by (20), and σΛ
K be the optimal link698

function of degree K defined by (16). If the momentum m and the sequence of step-sizes {hi} satisfy699

σ(λ; {hi},m) = σΛ
K(λ) , (21)

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor from700

Theorem 4.8, 2) the optimal momentum parameter is701

m =
(
σ0 −

√
σ2

0 − 1
)2/K

, where σ0 = σΛ
K(0) , (22)

3) the iterates from Algo. 3 with parameters {hi} and m form a polynomial with recurrence (18),702

and 4) Algorithm 3 achieves the worst-case rate rAlg. 3
t and the asymptotic rate factor 1− τAlg. 3703

rAlg. 3
t = O

(
t
(
σ0 −

√
σ2

0 − 1
)t/K)

, 1− τAlg. 3 =
(
σ0 −

√
σ2

0 − 1
)1/K

. (23)
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Proof. For now we don’t assume assumption 21 yet. Set σ0 , σ(0; {hi},m). Then, by definition (20)704

of σ(λ; {hi},m),705

σ0 =
1

2
Tr

([
1+m√
m

−1

1 0

]K)
= TK

(
1 +m

2
√
m

)
=

1 +mK

2 (
√
m)

K
. (144)

Hence, reversing this equality,706

√
m =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (145)

From Theorem 4.8, we therefore know707

If σsup ≤ 1, 1− τ =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (146)

If σsup > 1, 1− τ =

(
σ0 −

√
σ2

0 − 1

) 1
K (

σsup +
√
σ2

sup − 1
)1/K

. (147)

But, one can check that708

(
σ0 −

√
σ2

0 − 1

) 1
K (

σsup +
√
σ2

sup − 1
)1/K

≥

 σ0

σsup
−

√(
σ0

σsup

)2

− 1

 1
K

(148)

which shows that a tuning generating the polynomial σ(λ;{hi},m)
σsup

would lead to a better convergence709

rate. Hence, we should look for polynomials σ(λ; {hi},m) verifying σsup ≤ 1. And then,710

1− τ =
√
m =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (149)

which explain we aim at maximizing σ0 subject to σsup ≤ 1 ((16)).711

Finally, we proved 1): if σ(λ; {hi},m) = σΛ
K(λ), then the tuning is optimal in the sense that this is712

the one that minimizes the asymptotic rate factor among all K steps-sizes based tuning.713

From now, we assume714

σ(λ; {hi},m) = σΛ
K(λ). (150)

Therefore,715

σ0 = σΛ
K(0) (151)

and 2) is already proven above.716

3) follows directly from the definition of σΛ
K(λ).717

Finally, since σsup ≤ 1, we know718

1− τ =
√
m =

(
σ0 −

√
σ2

0 − 1

)1/K

(152)

which proves part of 4).719

To prove the expression of the worst-case rate rt, we need to apply the intermediate result (140)720

instead of Theorem 4.8.721

722

D.3 Example: alternating step sizes (K = 2)723

Proposition D.2. The strategy with 2 step sizes is optimal on the union of two intervals if and only if724

they have the same length.725
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Proof. This is a direct consequence of Theorem C.2. Indeed, it implies σΛ
2 (µ1) = σΛ

2 (L2) = 1 and726

σΛ
2 (µ2) = σΛ

2 (L1) = −1.727

This is feasible if and only if L2 − µ2 = L1 − µ1 since σΛ
2 is a degree 2 polynomial.728

Indeed, set σΛ
2 (x) = a(x−b)2+c. Then, σΛ

2 (µ1) = σΛ
2 (L2) implies a(µ1−b)2+c = a(L2−b)2+c,729

then |µ1 − b| = |L2 − b| and finally b = µ1+L2

2 . Similarly, σΛ
2 (µ2) = σΛ

2 (L1) implies b = µ2+L1

2 .730

We conclude µ1+L2

2 = µ2+L1

2 , and L2 − µ2 = L1 − µ1.731

Proposition 4.5. Let Λ = [µ1, L1] ∪ [µ2, L2] be an union of two intervals of the same size732

(L1−µ1 = L2−µ2) and letm be as defined in Algorithm 2. Then the minimax polynomial (solution733

to (12)) is, for all t = 2n, n ∈ N+
0 ,734

Tn
(
σΛ

2 (λ)
)

Tn
(
σΛ

2 (0)
) = arg min

P∈Rt[X],
P (0)=1

sup
λ∈Λ
|P (λ)| , with σΛ

2 (λ) = 2

(
1 +m

2
√
m

)2(
1− λ

L1

)(
1− λ

µ2

)
− 1 .

Proof. From Theorem C.2,735

σΛ
2 (µ1) = 1, (153)

σΛ
2 (L1) = −1, (154)

σΛ
2 (µ2) = −1, (155)

σΛ
2 (L2) = 1, (156)

and this implies that
Tn(σΛ

2 (λ))
Tn(σΛ

2 (0))
is optimal.736

In particular, L1 and µ2 are roots of σΛ
2 + 1. Therefore, we know there exists a constant c such that737

σΛ
2 (λ) = c(1− λ

L1
)(1− λ

µ2
)− 1. Moreover, evaluating this in µ1 gives σΛ

2 (µ1) = c(1− µ1

L1
)(1−738

µ1

µ2
)− 1 = 1, so739

c =
2

(1− µ1

L1
)(1− µ1

µ2
)

(157)

=
2L1µ2

(L1 − µ1)(µ2 − µ1)
(158)

= 2

(
µ1+L2

2

)2

−R2
(
L2−µ1

2

)2

1−R2

4 (L2 − µ1)2
(159)

= 2
ρ2 −R2

1−R2
. (160)

Then,740

σΛ
2 (λ) = 2

ρ2 −R2

1−R2
(1− λ

L1
)(1− λ

µ2
)− 1 (161)

which can be written741

σΛ
2 (λ) = 2

(
1 +m

2
√
m

)2(
1− λ

L1

)(
1− λ

µ2

)
− 1 (162)

with
(

1+m
2
√
m

)2

= ρ2−R2

1−R2 . Finally, m =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)2

.742

Theorem 3.1 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and h0, h1, m ≥ 0. The asymptotic rate743

factor of Algorithm 1 with cycles of length two is744

1− τ =


√
m if σsup ≤ 1,
√
m
(
σsup +

√
σ2

sup − 1
) 1

2

if σsup ∈
(

1, 1+m2

2m

)
,

≥ 1 (no convergence) if 1+m2

2m ≤ σsup,

(5)
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745

with σsup = sup
λ∈

{
µ1,L1,µ2,L2,

h0+h1
2h0h1

}
∩Λ

∣∣∣2(1 +m− λh0
2
√
m

)(
1 +m− λh1

2
√
m

)
− 1
∣∣∣ . (6)

Proof. From Theorem 4.8 applied to K = 2, we immediately have the above result with746

σsup = sup
λ∈Λ

∣∣∣∣2(1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1

∣∣∣∣ .
In order to conclude the proof, we therefore need to prove that the optimal value of |σΛ

2 | can only be747

reached on
{
µ1,L1,µ2,L2, (1 +m)h0+h1

2h0h1

}
. Indeed, σΛ

2 being convex, its maximal value can only748

be reached on {µ1,L2}. Its minimal value over R is reached on (1 + m)h0+h1

2h0h1
. Therefore, over749

Λ, the minimal value of σΛ
2 is reached on (1 + m)h0+h1

2h0h1
if the latest belongs to Λ. Otherwise, its750

minimal value is reached to the closest point in Λ to (1 +m)h0+h1

2h0h1
, namely, it can be any point of751

{µ1,L1,µ2,L2}.752

Proposition D.3 (A nice formulation of the reached polynomial in the robust region). Assuming753

σΛ
2 (λ) ≥ −1, ∀λ ∈ Λ, the polynomial associated to heavy ball algorithm with alternating step754

sizes is exactly755

P2n(λ) =
(√
m
)2n [ 2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))]
. (163)

Remark D.4. The assumption σ2(λ) ≥ −1, ∀λ ∈ Λ is verified in the robust region, and is useful756

here because the term
(

1+m−λh0

2
√
m

)(
1+m−λh0

2
√
m

)
is equal to 1+σ2(λ)

2 and must be positive to make757

the above expression well defined. Otherwise the result can hold replacing the square root with some758

complex number, but it brings no value when we derive the convergence rate from it.759

Proof. This proof reuses elements of the proof of Theorem (4.8), especially Equation (127). For sake760

of completeness and simplicity, we prove this result again directly in the special case K = 2.761

We first recall the recursion of Algorithm 1 for K = 2. For sake of simplicity, we directly projet it762

onto the eigenspace associated to the eigenvalue λ of the Hessian of the objective function.763

x2n+1 − x∗ = (1 +m− h0λ)(x2n − x∗)−m(x2n−1 − x∗).
x2n+2 − x∗ = (1 +m− h1λ)(x2n+1 − x∗)−m(x2n − x∗). (164)

Identifying xt − x∗ = Pt(λ)(x0 − x∗) and Pt(λ) = (
√
m)

t
P̃t(λ),764

P̃2n+1(λ) = 1+m−h0λ√
m

P̃2n(λ)− P̃2n−1(λ),

P̃2n+2(λ) = 1+m−h1λ√
m

P̃2n+1(λ)− P̃2n(λ).
(165)

Multiplying the first equation by 1+m−h1λ√
m

and replacing 1+m−h1λ√
m

P̃2n+1(λ) and 1+m−h1λ√
m

P̃2n−1(λ)765

accordingly to the second equation leads to766

P̃2n+2(λ) + P̃2n(λ) =
1 +m− h0λ√

m

1 +m− h1λ√
m

P̃2n(λ)−
(
P̃2n(λ) + P̃2n−2(λ)

)
(166)

which can be written as in equation (127)767

P̃2n+2(λ) =

(
1 +m− h0λ√

m

1 +m− h1λ√
m

− 2

)
P̃2n(λ)− P̃2n−2(λ). (167)

Moreover,768

x1 − x∗ = (1− h0

1+mλ)(x0 − x∗),
x2 − x∗ = (1 +m− h1λ)(x1 − x∗)−m(x0 − x∗),

(168)
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leading to the initialization769

P̃1(λ) = 1√
m

(1− h0

1+mλ)P̃0(λ),

P̃2(λ) = 1+m−h1λ√
m

P̃1(λ)− P̃0(λ).
(169)

hence,770

P̃2(λ) =

(
1

1 +m

1 +m− h0λ√
m

1 +m− h1λ√
m

− 1

)
(170)

and recall771

P̃0(λ) = 1. (171)

It remains to notice that772

2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))
(172)

verifies the same recursion as well as the same initialization for n = 0 and n = 1. This allows us to773

identify the 2 sequences of polynomials774

P̃2n(λ) =
2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))
(173)

which concludes the proof.775

776

Corollary 3.2. The worst-case (asymptotic) rates rAlg. 2
t and 1− τAlg. 2 of Algorithm 2 over CΛ are777

rAlg. 2
t =

(
1 + t

√
ρ2−1
ρ2−R2

)(√
ρ2−R2−

√
ρ2−1√

1−R2

)t
, 1− τAlg. 2 =

√
ρ2 −R2 −

√
ρ2 − 1

√
1−R2

for t even.

Proof. From Proposition 4.5, Algorithm 2’s parameter make σ(λ; {hi},m) = σΛ
2 . In particular, by778

definition,779

− 1 ≤ 2

(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1 ≤ 1. (174)

and then780

0 ≤

√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

)
≤ 1. (175)

And we know that ∀x ≤ 1, Tn(x) ≤ 1 and Un(x) ≤ n+ 1.781

Therefore, using optimal parameters, and from Proposition D.3782

P̃2n(λ) ≤ 2m

1 +m
+ (2n+ 1)

1−m
1 +m

= 1 + 2n
1−m
1 +m

. (176)

And the worst-case rate is then upper bounded783

rt =

(
1 + t

1−m
1 +m

)(√
m
)t

(177)

for all t even.784

It remains to plug m expression into the above to conclude.785
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The next theorem sums up the results of Proposition 3.3 and Table 1.786

Theorem D.5 (Asymptotic speedup of HB with alternating step sizes).787

1. Let R ∈ [0, 1) be a fixed number, then
√
m =

κ→0
1− 2

√
κ√

1−R2
+ o(
√
κ).788

2. Let789

R(κ) =
κ→0

1−
√
κ

2
+ o(
√
κ), i.e., Λ ≈ [µ, µ+

√
µL

4
] ∪ [L−

√
µL

4
, L],

then
√
m =

κ→0
1− 2 4

√
κ+ o( 4

√
κ), therefore leasing to a new square root acceleration.790

3. Let791

R(κ) =
κ→0

1− 2γκ+ o(κ), i.e., Λ ≈ [µ, (1 + γ)µ] ∪ [L− γµ, L],

then
√
m =

κ→0

√
1 +

1

γ
−
√

1

γ
+ o(κ), therefore leading to a constant complexity.792

This is summed up in the Table 2.793

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+R(L− µ)] ∪ [L−R(L− µ), L] 2
√
κ√

1−R2
(1−R2)−

1
2

R = 1−
√
κ/2 [µ, µ+

√
µL
4 ] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ−

1
4

R = 1− 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(
√
κ)

Table 2: Case study of the convergence of Algorithm 2 as a function of R, in the regime where κ→ 0.
The first line corresponds to a situation where R is independent of κ, and we observe a constant
gain w.r.t. heavy ball. The second line study a setting in which R depends on

√
κ, meaning the two

intervals in Λ are relatively small. The asymptotic rate reads (1− 2 4
√
κ)t, beating the (1− 2

√
κ)t

lower bound. Finally, in the third line, R depends on κ, the two intervals in Λ are so small that the
convergence becomes O(1), i.e., is independent of κ.

Proof.794

1. Let R ∈ [0, 1). The momentum m satisfies795

√
m =

κ→0

√
1 +O(κ)−R2 −

√
4κ+O(κ2)√

1−R2

=
κ→0

√
1−R2 +O(κ)− 2

√
κ+O(κ)√

1−R2

=
κ→0

1− 2
√
κ√

1−R2
+O(κ).

2. Let R(κ) =
κ→0

1−
√
κ

2
+ o(
√
κ). The momentum m verifies796

√
m =

√√√√( 1+κ
1−κ

)2

−R2

1−R2
−

√√√√( 1+κ
1−κ

)2

− 1

1−R2

=

√√√√( 1+κ
1−κ

)2

− 1

1−R2
+ 1−

√√√√( 1+κ
1−κ

)2

− 1

1−R2
.

33



We first focus on797 (
1+κ
1−κ

)2

− 1

1−R2
=
κ→0

4κ+O(κ2)√
κ+ o(

√
κ)

=
κ→0

4
√
κ+ o(

√
κ).

Then,798

√
m =

√√√√( 1+κ
1−κ

)2

− 1

1−R2
+ 1−

√√√√( 1+κ
1−κ

)2

− 1

1−R2

=
κ→0

√
1 + 4

√
κ+ o(

√
κ)−

√
4
√
κ+ o(

√
κ)

=
κ→0

1 + 2
√
κ+ o(

√
κ)− 2 4

√
κ+ o( 4

√
κ)

=
κ→0

1− 2 4
√
κ+ o( 4

√
κ).

3. Let R(κ) =
κ→0

1− 2γκ+ o(κ). The momentum m verifies799

√
m =

√√√√( 1+κ
1−κ

)2

−R2

1−R2
−

√√√√( 1+κ
1−κ

)2

− 1

1−R2

=

√√√√( 1+κ
1−κ

)2

− 1

1−R2
+ 1−

√√√√( 1+κ
1−κ

)2

− 1

1−R2
.

We first focus on800 (
1+κ
1−κ

)2

− 1

1−R2
=
κ→0

4κ+O(κ2)

4γκ+ o(κ)
=
κ→0

1

γ
+ o(κ).

Then,801

√
m =

√√√√( 1+κ
1−κ

)2

− 1

1−R2
+ 1−

√√√√( 1+κ
1−κ

)2

− 1

1−R2

=
κ→0

√
1 +

1

γ
+ o(κ)−

√
1

γ
+ o(κ)

=
κ→0

√
1 +

1

γ
−
√

1

γ
+ o(κ).

802

D.4 Example: 3 cycling step sizes803

Proposition D.6. The strategy with 3 step sizes is optimal on the union of two intervals if and only if804

they are of the form805 [
µ, µ+ (L− µ)

(
1

2
− R

2
+

1−R2

4

)]
∪
[
L− (L− µ)

(
1

2
− R

2
− 1−R2

4

)
, L

]
,

for some R ∈ [0, 1].806

Proof. From Theorem C.2, we know that Tn(σ3) is optimal for all n if and only if, Λ is the807

union of 3 different intervals that are mapped on [−1, 1]. Since, we are looking for Λ being the808

union of 2 intervals, we know 2 of the 3 intervals Λ is composed of share an extremity. Recall809
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Λ = [µ1, L1] ∪ [µ2, L2]. By symmetry, we can assume without loss of generality that [µ1, L1] is810

mapped to [−1, 1] twice, and [µ2, L2] once. Let’s then introduce x ∈ (µ1, L1) and say:811

σ3(µ1) = 1, (178)
σ3(x) = −1, (179)
σ3(L1) = 1, (180)
σ3(µ2) = 1, (181)
σ3(L2) = −1. (182)

Note we also know that x is a local minima of σ3, leading to σ′3(x) = 0. We now know 3 roots of812

σ3 + 1 and 3 roots of σ3 − 1, leading to:813

σ3(λ)− 1 = c(λ− µ1)(λ− L1)(λ− µ2), (183)

σ3(λ) + 1 = c(λ− x)2(λ− L2), (184)

for some non-zero constant c. Here, we want to remove the dependency in x or c. Using the two814

equalities above,815

(λ− x)2(λ− L2)− (λ− µ1)(λ− L1)(λ− µ2) =
2

c
. (185)

Matching the coefficients of the above polynomial leads to816

2x+ L2 = µ1 + L1 + µ2 (186)
and (187)

2xL2 + x2 = µ1L1 + µ1µ2 + L1µ2. (188)

We plug the expression of x we get from the first equality into the second one,817

L2(µ1 + L1 + µ2 − L2) +

(
µ1 + L1 + µ2 − L2

2

)2

= µ1L1 + µ1µ2 + L1µ2. (189)

From here, for simplicity, we define818

ri ,
Li − µi
L2 − µ1

, for i ∈ {1, 2} . (190)

Replacing L1 and µ2 by their expression using µ1, L2, r1 and r2 leads to819

r1 = 2
√
r2 − r2. (191)

The reciprocal holds and we can find x using Equation (186) or (188). Note if Equation (191) holds,820

we can directly express σ3 as the unique polynomial verifying821

σ3(µ1) = 1, (192)
σ3(L1) = 1, (193)
σ3(µ2) = 1, (194)
σ3(L2) = −1. (195)

We can therefore conclude822

σ3(λ) = 1− 2
(λ− µ1)(λ− L1)(λ− µ2)

(L2 − µ1)(L2 − L1)(L2 − µ2)
. (196)

From the new notations r1, r2, µ = µ1, L = L2, we know Tn(σΛ
3 ) is optimal for all n if and only if823

Λ = [µ, µ+ r1(L− µ)] ∪ [L− r2(L− µ), L]. (197)

Let R be824

R =
µ2 − L1

L2 − µ1
(198)
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as in the 2 step sizes setting. Here, we have R = 1 − r1 − r2 and we assume r1 = 2
√
r2 − r2.825

Combining those 2 equalities gives:826

r1 =
1

2
− R

2
+

1−R2

4
, (199)

r2 =
1

2
− R

2
− 1−R2

4
, (200)

leading to the desired result, i.e.,827

Λ = [µ, µ+ (L− µ)(
1

2
− R

2
+

1−R2

4
)] ∪ [L− (L− µ)(

1

2
− R

2
− 1−R2

4
), L].

828

Theorem D.7 (Asymptotic speedup of heavy ball when cycling over 3 step-sizes). Let R ∈ [0, 1) be829

a fixed number, then830

√
m =

κ→0
1− 2

√
κ

√
1−R2/9

1−R2
+ o(
√
κ). (201)

Proof. From Equation (145),831

√
m =

(
σ

(Λ)
3 (0)−

√
σ

(Λ)
3 (0)2 − 1

) 1
3

with σ
(Λ)
3 (0) = 1 + 2

µ1L1µ2

(L2 − µ1)(L2 − L1)(L2 − µ2)
.

Using the previous notations,832

µ = µ1, (202)
L = L2, (203)

κ =
µ

L
, (204)

ri ,
Li − µi
L2 − µ1

, for i ∈ {1, 2} , (205)

we can write σ(Λ)
3 as833

σ
(Λ)
3 (0) = 1 + 2

µ1L1µ2

(L2 − µ1)(L2 − L1)(L2 − µ2)
, (206)

= 1 + 2
κ(κ+ r1(1− κ))(1− r2(1− κ))

(1− κ)3(1− r1)r2
, (207)

=
κ→0

1 + 2κ
r1(1− r2)

(1− r1)r2,
(208)

= 1 + 2κ

(
1
2 −

R
2 + 1−R2

4

)(
1
2 + R

2 −
1−R2

4

)
(

1
2 + R

2 + 1−R2

4

) (
1
2 −

R
2 −

1−R2

4

) , (209)

= 1 + 2κ
9− 10R2 +R4

1− 2R2 +R4
, (210)

= 1 + 2κ

(
1−R2

) (
9−R2

)
(1−R2)

2 , (211)

= 1 + 2κ
9−R2

1−R2
. (212)
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Then introducing briefly ε , κ 9−R2

1−R2 →
κ→0

0,834

√
m =

(
σ

(Λ)
3 (0)−

√
σ

(Λ)
3 (0)2 − 1

) 1
3

, (213)

=
(

1 + 2ε−
√

1 + 4ε+ 4ε2 − 1
) 1

3

, (214)

=
κ→0

1− 2

3

√
ε+ o(

√
ε). (215)

Plugging ε expression into the latest gives835

√
m =

κ→0
1− 2

√
κ

√
1−R2/9

1−R2
+ o(
√
κ). (216)

836

E Beyond quadratic objective: local convergence of cycling methods837

In this section, we prove a result of local convergence of the cyclical heavy ball method out of838

quadratic setting. We first recall the Theorem 5.1 stated in Section 5:839

Theorem 5.1 (Local convergence). Let f : Rd 7→ R be a (potentially non-quadratic) twice continu-840

ously differentiable function, x∗ a local minimizer, and H be the Hessian of f at x∗ with Sp(H) ⊆ Λ.841

Let xt denote the result of running Algorithm 1 with parameters h1, h2, · · · , hK ,m, and let 1− τ be842

the linear convergence rate on the quadratic objective (OPT). Then we have843

∀ε > 0,∃ open set Vε : x0, x∗ ∈ Vε =⇒ ‖xt − x∗‖ = O((1− τ + ε)t)‖x0 − x∗‖. (24)

Proof. For any k multiple of K, consider Sk the operator applying k steps of cycling Heavy Ball on844

the iterates xt and xt−1 (note since k is a multiple ofK, Algorithm 1 consists in repeating the operator845

Sk). Namely Sk is an operator on R2d verifying Sk((xt, xt−1)) = (xt+k, xt+k−1). This operator is846

a composition of gradients of f and affine functions, and so it is continuously differentiable.847

Applying the mean value theorem along each coordinate of Sk, we have that there exists a matrix-848

valued function M(v1, v2) for all v1, v2 in the domain of Sk such that849

Sk(v1)− Sk(v2) = M(v1, v2)(v1 − v2) , (217)

where the ith rows of M(v1, v2) is the gradient of the ith output of Sk evaluated at a vector on the850

segment between v1 and v2.851

M(v1, v2) =


∇(Sk)1(w1)T

...
∇(Sk)i(wi)

T

...
∇(Sk)2d(w2d)

T

 where ∀i ∈ J1, 2dK,

{
(Sk)i denotes the ith coordinate of Sk.

wi is a point on the segment [v1, v2].

(218)

By continuity of those gradients, taking v1 and v2 sufficiently close to (x∗, x∗), M(v1, v2) can be852

chosen arbitrarily close to the Jacobian of Sk in (x∗, x∗) denoted by JS∗k .853

Since by assumption the algorithm converges on the quadratic form induced by H at the rate 1− τ ,854

we conclude that the spectral radius of JS∗k is upper bounded by 1− τ .855

From the previous point, we can find a small enough neighborhood of (x∗, x∗) such that M(v1, v2)856

has a spectral radius arbitrarily close to 1− τ , in particular smaller than 1.857

Furthermore, it’s known for any ε > 0, there exists an operator norm ‖.‖ such that ‖M(v1, v2)‖ <858

1− τ + ε. (see e.g. [Bertsekas, 1997, Proposition A.15]).859

Hence, for any ε > 0, there exists a neighborhood V of (x∗, x∗) and an operator norm ‖.‖ as860

described above such that Sk is a (1− τ + ε)-contraction on V for the norm ‖.‖.861
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This leads to convergence to the only fixed point (x∗, x∗) with a convergence rate smaller than any862

1− τ + ε.863

Moreover, the first step of the Algorithm 1 is continuous with respect to x0. Hence, for any V ∈ R2d864

neighborhood of (x∗, x∗), there exists W ∈ Rd a neighborhood of x∗, such that865

x0 ∈W =⇒ (x1, x0) ∈ V. (219)

Finally, for any ε > 0, there exists W a neighborhood of x∗ such that the Algorithm 1 converges to866

x∗ with a rate smaller than 1− τ + ε.867

868

F Experimental setup869

Benchmarks we run using a Google colab public instance with a single CPU. Producing the results870

of Figure 4 took 50 minutes with this setup. The code to reproduce this figure is attached with the871

supplementary material in the jupyter notebook benchmarks.ipynb .872
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