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A DETAILS OF STATIC REGRESSION EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the polynomial regression task.

Model architecture We employ Encoder, CAVIA, and CoDA as the baselines. All models use
the same multi-layer perceptron (MLP) for fy and are trained with the same data batches for fair
comparisons.

For brevity, we refer to a multi-layer perceptron (MLP) with hidden dimensions ni, no, ... n; for
each layer and hidden activation act, as MLP(n1, no, ..., n;; act). We refer to a cross multi-head
attention block (Vaswani et al., 2017) with A heads and = hidden dimensions as X .MHA(h X x).

Table A.1: Polynomial regression model architectures

fo Inner step K | Inner step size o

‘ Context encoder / ‘ .

parameter generator

Encoder | MLP(2,32)MLP(1,32)-X.MHA(4x32) | MLP(1+32, 64, 32, 1;LeakyReLU) - - -
CAVIA - MLP(1432, 64, 32, 1;LeakyReLU) 5 1 -
CoDA W : Rlel — RI9I MLP(1, 64, 32, 1:LeakyReLU) 500 0.001 -
FOCA | - | MLP(1+32, 64, 32, 1;LeakyReLU) | 100 \ 0.001 | 0.1

Table A.1 summarizes the network architectures. The green colored values indicate the dimension
of context ¢. For CAVIA, we also perform hyperparameter search to optimize K. We found that
CAVIA with K > 5 underperforms, as compared to ' = 5. For CoDA, we set the dimension of
context as 2 (i.e., |¢| = 2), following the default setting of Kirchmeyer et al. (2022).

Training details We train all models with mini-batches of 256 polynomials for 4,048 epochs using

Adam (Kingma & Ba, 2015) with an initial learning rate of 0.001. The learning rate is scheduled by
the cosine annealing method (Loshchilov & Hutter, 2017).

B DETAILS OF MASS SPRING (MS) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the mass-spring systems.
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Figure A.1: Target mass-spring system. The models require to adapt to the change of spring constants
(k1, k2, ks) and masses (1m1, mz2).

We consider a frictionless three-spring two-mass system shown in Fig. A.1 with mass positions x;
and xo governed by the following second-order ODE:

A2z k1 + ko ko
5 == T1+ —T2
de mq mq (A 1)
dQl'g k‘g + ]fg T kQ '
= - T —
dt2 mo 2 mao !

where K is a coefficient matrix with spring constants (k1, k2, k3) and masses (m1, ms).
Data generation For training data generation, we generate 128 mass-spring systems whose pa-

rameters (K1, ka2, k3, m1, mso) are sampled from 2/(0.75,1.25)° and numerically solve the mass-
spring systems with Runge—Kutta 45 for 7' = 10 seconds with At = 0.15 second time intervals.
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Model architecture For fy, we employ the 1D-CNN model from Brandstetter et al. (2021), which
stacks a MLP, 1D-CNN, and consistency decoder (Brandstetter et al., 2021) with the bundling pa-
rameter /N = 25. For brevity, we refer to a 1D-CNN layer with x input channels, y output channels,
and filter size w as Conv(x, y, w), a consistency decoder as C.Dec, and the bi-directional GRU (Cho
et al., 2014) with hidden dimension x as GRU(x).

Table A.2: Mass-spring prediction model architectures

Jo

MLP(4 x25+64, 64, 32, 4x25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec
CAVIA — MLP(4x25+64, 64, 32, 4x25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec
CoDA W : Rlel — RI°I MLP(4x25, 64, 32, 4x25;LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4.,4,1)-C.Dec

FOCA | — | MLP(4x25+64, 64, 32, 4x25:LeakyReLU)-Conv(4, 4, 8)-LeakyReLU-Conv(4,4,1)-C.Dec

Context encoder /
parameter generator

Encoder | GRU(64)-MLP(64, 64)

Table A.2 summarizes the network architectures. The green colored values indicate the dimension
of context ¢. We set the inner step K and step size « as 100/1 and 0.001/1 for FOCA and CAVIA,
respectively, and 7 as 0.1. For CoDA, we set the dimension of context as 2 (i.e., |c| = 2), following
the default setting of Kirchmeyer et al. (2022).

Training details We train all models with mini-batches of size 512 for 1,000 epochs using Adam
(Kingma & Ba, 2015) with the initial learning rate of 0.001 and pushforward regularization (Brand-
stetter et al., 2021). We use the past observations from the previous 2N to N steps as the input of
the adaptation process.

Evaluation setting For in-training evaluations, we generate 2,048 mass-spring systems whose pa-
rameters (ky, ko, k3, m1, mo) are sampled from 2/(0.75,1.25)° and numerically solve mass-spring
system with Runge—Kutta 45 with 7' = 5.0 and At = 0.01. For out-of-training evaluations,
we generate 2,048 mass-spring systems whose parameters (k1, ko, k3, m1,m2) are sampled from
1(0.60,0.75)5 U U(1.25,1.35)° for T = 5.0 with At = 0.01. All models take the first and sec-
ond 0.25 seconds of observation for the task adaptation and predict 4.5 seconds future states via the
model rollout.

Additional results We provide the visualization of the model generalization errors to the change
of m1, mo on the mass-spring systems, as shown in Fig. A.2.
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Figure A.2: In/out-of-distribution losses (in RMSE) on MS. Two parameters of MS (m1, m2) are generated
from [0.25, 1.25]% while the other two parameters are fixed to 0.75. The orange box indicates the boundaries
of the training parameter distribution.

C DETAILS OF LOTKA-VOLTERRA (LV) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the Lokta-Volterra systems (Lotka, 1910).
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Figure A.3: In/out-of-distribution losses (in RMSE) on LV. Two parameters of LV (3, ) are generated from

[0.25,1.25]? while the other two parameters are fixed to 0.5. The orange box indicates the boundaries of the
training parameter distribution.

The Lokta-Volterra system describes the interaction between a prey-predator pair in an ecosystem,
formalized into the following ODE:

dx
priaiet Bxy,
(A2)
dy _ o
at Y=Y

where x,y are respectively the quantity of the prey and the predator and «, 3,7,  define how two
species interact.

Data generation For training data generation, we generate 128 Lokta-Volterra systems whose
parameters (a,d) = (0.5,0.5) and (3,7) ~ U(0.5,1.0)? following Kirchmeyer et al. (2022). We
then numerically solve the systems with Runge—Kutta 45 for 77 = 50.0 seconds with At = 0.5
second time intervals.

Model architecture We employ the same network architectures of the MS experiments except
with a different input dimensions of 2 and bundling parameter N = 20.

Training details We train all models with mini-batches of size 128 for 5,000 epochs. Other details
are kept the same as mass-spring experiments.

Evaluation setting For in-training evaluations, we generate 2,048 Lokta-Volterra systems sim-
ilarly to the training data generation. For out-of-training evaluations, we generate 2,048 Lokta-
Volterra systems whose parameters (a, §) = (0.5,0.5) and (8,v) ~ 1(0.25,0.5)2 UU(1.0,1.25)?
for T' = 50.0 with At = 0.5. All models take the first and second 10.0 seconds of observation for
the task adaptation and predict 30.0 seconds future states via the model rollout.

D DETAILS OF GLYCOLYTIC OSCILLATOR (GO) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for the glycolytic oscillators (Daniels & Nemenman, 2015).
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The glycolytic oscillators describe yeast glycolysis dynamics with the following ODE:

dsi _ . k1515
a0 1+ (1/K0)SE
ng . k:1515’6

ﬁ = W — k‘QSQ(N - Ss) - k65255

ds

% = kgSg(A — SG) - k4S4SS - 5(54 - S7) (A-3)
ds

d7t5 = ko Sa(N — S5) — k45455 — k6 S2S5

ng - k15156

ﬁ — 2W + 2]@‘353(A S(j) k5S6

ds

(T: = ¢k(Sy — S7) — kS,

where S1, 52,53, 54, S5, .56, 57 (states) represent the concentrations of 7 biochemical species and
Jo, k1, ko, k3, ka, ks, ke, K1,q, N, A, Kk, and k are the parameters of the glycolytic oscillators.

Data generation For training data generation, we generate 128 glycolytic oscillators with the fixed
parameters Jy = 2.5, ko = 6,ks = 16,ky = 100, k5 = 1.28, kg = 12, =4, N =1, A =4,k =
13,74 = 0.1 and k = 1.8 by sampling integer k1 ~ U(80,100) and K; ~ 1/(0.5,1.0). We adopt
the values or ranges of the parameters from Kirchmeyer et al. (2022). We then numerically solve the
systems with Runge—Kutta 45 for 7" = 5.0 seconds with At = 0.05 second time intervals.

Model architecture We employ the same network architectures of the MS experiments except
with a different input dimensions of 7 and bundling parameter N = 10. For CoDA, we set the
context dimension as 3.

Training details We train all models with mini-batches of size 512 for 5,000 epochs. Other details
are kept the same as mass-spring experiments.

Evaluation setting For in-training evaluations, we generate 2,048 glycolytic oscillators similarly
to the training data generation. For out-of-training evaluations, we generate 2,048 glycolytic oscil-
lators whose parameters k1 ~ U(75,80) U U(100,105) and K; ~ 1£(0.45,0.5) U U(1.00,1.05)
and (Jo, ko, ks, k4, ks, ks, ke, q, N, A, k, 9, k) = (2.5,6,16,100,1.28,12,4,1,4,13,0.1,1.8) for
T = 5.0 with At = 0.05. All models take the first and second 0.5 seconds of observation for the
task adaptation and predict 4.5 seconds future states via the model rollout.

Additional results We provide the visualization of the model generalization errors to the change
of k1, K1 on the glycolytic oscillators, as shown in Fig. A 4.
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Figure A.4: In/out-of-distribution losses (in RMSE) on GO. The orange box indicates the boundaries of the
training parameter distribution.
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Figure A.5: Out-of-distribution generalization on the Navier-Stokes equations: FOCA is trained with viscosity
v € [8x107%,1.2 x 107%] and tested with » = 6 x 10™*. The model can reconstruct states even after long
autoregressive rollouts in unseen conditions.
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E DETAILS OF NAVIER-STOKES (NS) EXPERIMENTS

In this section, we provide the model architectures, training process, and additional experimental
results for modeling the 2D Navier-Stokes equations (Stokes, 1851).

The Navier-Stokes equations describe the dynamics of incompressible flows with a two-dimensional
PDE. In vorticity form they can be written as:

6—w:—va—H/Aw—!-f

ot A4
Vv =0 (A4)
w=V Xwv

where v is the velocity field and w is the vorticity, v is the viscosity, and f is a forcing term. The
domain is subject to periodic boundary conditions.

Data generation We generate trajectories with a temporal resolution of At = 1 and a time horizon
of t = 10. The space is discretized on a 32 x 32 grid and we set f(z,y) = 0.1(sin(27(z +
y)) + cos(2m(x + y))), where x,y are coordinates on the discretized domain (Yin et al., 2021).
For training data, similarly to Kirchmeyer et al. (2022), we consider 5 training environments with
ve{8-1074,9-107%,1.0-1073,1.1- 1073,1.2 - 10~3} respectively. Each environment contains
a total of 100 different initial conditions for a total of 500 training sequences.

Model architecture For this experiment, we employ the Fourier Neural Operator (FNO) (Li et al.,
2021). Thanks to their layers in the spectral domain and frequency mode pruning, frequency domain
models have been proven to be well suited to model complex dynamical systems characterized by a
multitude of natural frequencies (Pathak et al., 2022; Poli et al., 2022). We employ an FNO model
with 4 spectral convolution layers, hidden layers with width 10, and frequency mode pruning set to
the 12 highest frequencies. Temporal bundling is set to N = 1. We set the context dimension of
CoDA to 3. For models whose input includes the context, i.e. Encoder, CAVIA and FOCA, we keep
the same context dimension |¢| = 64 as in the previous experiments; the inferred context passes
through a linear layer and resized to the grid size of 32 x 32 as an additional input channel of the
FNO.

Training details We train all models with mini-batches of size 16 for 100 epochs. Other details
are kept the same as in the mass-spring experiments.

Evaluation setting For in-training adaptation, we consider 4 environments with viscosity v €
{8.5-1074,9.5-1074,1.05-1073,1.15- 10~3} while for out-of-distribution adaptation we generate
data from 4 environments with unseen ranges of viscosity, i.e. v € {7.0-107%,7.5-1074,1.25 -
1072,1.30 - 10~3}. Each adaptation environment is generated out of 30 different initial conditions.
All the models take as input the first two steps (i.e. the first 2 seconds) and predict the rest of the
sequence with autoregressive rollouts.
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Additional results We provide in Fig. A.5 an additional qualitative visualization showing the
out-of-distribution generalization on the Navier-Stokes equations. FOCA is trained with viscosity
v € [8x107%,1.2 x 107?%] and tested with v = 6 x 10~*, demonstrating its adaptation capability
in challenging and unseen settings.
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