
A Appendix

We provide additional results including visualizations of the learned deformations, comparisons to
CMR [9] and UCMR [10], qualitative results on a collection of different objects and technical details
about the training procedure.

B Method details

Architecture We use the encoder-decoder architecture presented in [9, 10]. Every image is encoded
using an ImageNet pre-trained ResNet18 to a latent feature map z ∈ R4×4×256. A flattened version
of z is processed with one linear layer with output channels equal to N × 3 to get the predictions for
points u and visibility v. We apply the sigmoid function to the visibility predictions v to enforce a
numerical range [0,1]. Our models are trained using Adam optimizer with learning rate equal to 1e-4.

Equivariance Equivariance loss samples random affine transformations Ts(·) from a predefined
range. In detail, scale is sampled from the range [0.7, 1.2], vertical translation is up to 38 pixels and
we also apply 2D rotation up to 40 degrees. For camera equivariance the image is simply flipped
horizontally and given as input to the network to estimate the pose. We set the camera equivariance
loss weight to 0.1 to ensure similar numerical range with the 2D point equivariance component.

Implementation We implemented TTP using PyTorch framework. All models were trained using
a single NVidia 2080Ti with 12 GB of memory and a full experiment requires around 48 hours of
computational time. TTP takes one average 0.149 seconds to reconstruct a single image using 4
iterations and 0.071 seconds using one iteration.

C Closed Form Solution of Quadratic Deformation Problem

In this section we provide the closed form solution of the deformation step. The problem we solve is
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where y ∈ R
2 and ω ∈ R

2×K . The stationary point of (8) can be found by solving the following
linear system:
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The closed form solution can be further simplified using matrix representations. Assuming a lexico-
graphic ordering of matrix ωi we formulate the matrix Ω with size 2N×K. The matrix X ∈ R

2N×2N

is a diagonal matrix where each element of the diagonal corresponds to the visibility vi. A lexico-
graphic ordering is also applied to vectors yi to retrieve the stacked vector Υ ∈ R

2N . Using the
formulated matrices the problem is solved with

ct+1 = (ΩTXΩ+ γI)−1ΩTXΥ. (10)

Backpropagation through the matrix inversion of Eq. (10) is supported by all modern automatic
differentiation frameworks.
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D More results

D.1 Comparisons on CUB

In Figure 5 we provide comparisons against prior work on common training supervision. It is
apparent that our method is capable of correctly deforming the template mesh to produce bending
and turning the body and head of the birds. In nearly all results, UCMR lacks a texture prediction
that follows closely the depicted object for example in Row 5 and 6. Our method produces accurate
3D reconstructions both in terms of mesh deformation, pose estimation and texture.

In Figure 6 we provide comparisons against UCMR [10] and TTP trained without keypoints. All
results of UCMR were computed using the publicly available code and pre-trained models for birds.
It is visible that UCMR will often fail to predict either a correct scale or a rotation even in trivial
input images like first column of Row 1. On the other hand, our method accurately estimates camera
pose due to the proposed framework of computing jointly the camera pose and deformation using
correspondences. In Figure 7 we provide comparisons of TTP where one model is trained with
keypoints while the other is not. Semantic keypoints allow for more diverse deformations, however
both methods will accurately predict the underlying pose.

D.2 Basis visualization

We visualize some basis components of a trained TTP method in Figure 8 from a side and a top
viewpoint. The basis components exhibit interesting deformations like head or tail bending and
enlargement. The linear weighted combination of all the components is the building stone of our
method to achieve accurate mesh deformations.
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Figure 7: Comparison of TTP trained with and without keypoint supervision. We observe
that TTP performs equally well on camera pose estimation with and without keypoint supervision.
However, keypoint supervision allows for more accurate mesh deformation.
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Figure 8: Basis Visualization: We visualize basis components T +Bi of a trained TTP experiment
for CUB dataset. For each component we visualize a side and a top view.
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Figure 9: Pascal3D+ results We show predictions of our TTP method for test set images. For each
input image we visualize the 3D shape from the predicted camera, the textured shape and a new view.
The last row represent failure case where the texture of non-visible side exhibits artifacts.
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