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APPENDIX

A PROOFS

A.1 PROOF OF SECTION 2

Proof of Theorem 1. Based on Assumption 2, E [π (q;y) | z, q] is continuous in z. For any given z
and q, Ě [π (q;y) | z, q] =

∑n
i=1 wi(z, q)π(q;yi), this function is not necessary continuous in z,

but we know that π(q;yi) is bounded and the weight wi(z, q) is bounded by 1 for ∀i ∈ [n]. There-
fore, we can obtain the conclusion that the supremum of

∣∣E [π (q;y) | z, q]− Ě [π (q;y) | z, q]
∣∣

over q ∈ Q exists. To obtain the final results, we need the following lemma.

Lemma 1 Suppose Assumption 2 holds, then we have
|E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌]| ≤ 2 sup

q∈Q

∣∣E [π (q;y) | z, q]− Ě [π (q;y) | z, q]
∣∣ .

Proof of Lemma 1. We know that
q∗ ∈ argmax

q∈Q
E [π (q;y) | z, q] ,

and
q̌ ∈ argmax

q∈Q
Ě [π (q;y) | z, q] .

Then we have
|E [π (q∗;y) | z, q∗]︸ ︷︷ ︸

(a)

− Ě [π (q̌;y) | z, q̌]︸ ︷︷ ︸
(b)

|

≤
{ ∣∣E [π (q̌;y) | z, q̌]− Ě [π (q̌;y) | z, q̌]

∣∣ if (a) ≤ (b)∣∣E [π (q∗;y) | z, q∗]− Ě [π (q∗;y) | z, q∗]
∣∣ if (a) > (b)

≤ sup
q∈Q

∣∣E [π (q;y) | z, q]− Ě [π (q;y) | z, q]
∣∣ ,

(18)

thus we can obtain that
|E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌]|
≤
∣∣E [π (q∗;y) | z, q∗]− Ě [π (q̌;y) | z, q̌]

∣∣+ ∣∣Ě [π (q̌;y) | z, q̌]− E [π (q̌;y) | z, q̌]
∣∣

≤ 2 sup
q∈Q

∣∣E [π (q;y) | z, q]− Ě [π (q;y) | z, q]
∣∣ , (19)

where the second inequality follows from (A.1), that complete the proof of Lemma 1. □

Consequently, we can obtain the following inequality:
|E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌]|
≤ 2 sup

q∈Q

∣∣E [π (q;y) | z, q]− Ě [π (q;y) | z, q]
∣∣

≤ 2 sup
q2∈Q

sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ . (20)

In the second inequality, we take the supremum over the decision q twice: q1 and q2. Here, q1 only
affects the distribution of the uncertainty y, and q2 influences the utility function π. The RHS of
(20) is always an upper bound for the RHS of (19), as q1 = q2 is a special case for this uniform gap.

Lemma 2 Suppose Assumption 1 and 2 holds, and the historical observations are i.i.d., then we
have

P

{
sup

(z,q1)∈A

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ ≥ δ

}

≤
(
4
√
p+ bL2l

δ

)p+b

exp

{
−2ng2

(
δ

4L2

)2p+2b
}

+ 2

(
25

p+ b

)
exp

{
−
(
kδ2

8σ2
1

− 2(p+ b) log n

)}
,

(21)
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for any δ ≥ 2L2

(
k−1
ng

)1/(p+b)

and n > 2(p+ b), where l is a constant that depends on ℓp-norm.

Lemma 3 Suppose Assumption 1 and 2 holds, for any given (z, q1),
sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ is 2L1-lipschtiz continuous in q2.

Proof of Lemma 3: For any q2, q′
2 ∈ Q:∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]

∣∣
−
∣∣E [π (q′

2;y) | z, q1]− Ě [π (q′
2;y) | z, q1]

∣∣
≤ |E[π(q2;y)− π(q′

2;y) | z, q1]|+
∣∣Ě[π(q2;y)− π(q′

2;y) | z, q]
∣∣

≤ |E[L(y) |q2 − q′
2| | z, q1]|+

n∑
i=1

wi(z, q)[π(q2;yi)− π(q′
2;yi)]

≤ L1 |q2 − q′
2|+

n∑
i=1

wi(z, q)[π(q2;yi)− π(q′
2;yi)]

≤ 2L1 |q2 − q′
2| ,

(22)

where the third and fourth inequalities follow from the L1 lipschtiz continuous of π(q;Y ) in q for
any y ∈ Y and the definition of Ě [π (q;y) | z, q]. Then we take the supremum over both sides of
(22), we can obtain that

sup
q∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣

≤ sup
q∈Q

∣∣E [π (q′
2;y) | z, q1]− Ě [π (q′

2;y) | z, q1]
∣∣+ 2L1 |q2 − q′

2| .

That completes the proof of Lemma 3. □

Lemma 4 Suppose Q is compact with diameter B, then we have that

P
{
sup
q2∈Q

sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ > δ

}
≤
(
4lBL1

δ

)p

sup
q2∈Q

P
{
sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ > δ

2

}
.

The proof of Lemma 4 is same as Lemma 10 in Bertsimas & McCord (2019). Based on the above
results, we have

P {|E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌]| > δ}

≤ P
{
2 sup
q2∈Q

sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ > δ

}
≤
(
8lBL1

δ

)p

sup
q2∈Q

P
{
sup
q1∈Q

∣∣E [π (q2;y) | z, q1]− Ě [π (q2;y) | z, q1]
∣∣ > δ

4

}
≤
(
8lBL1

δ

)p(
16
√
p+ bL2l

δ

)p+b

exp

{
−2ng2

(
δ

16L2

)2p+2b
}

+ 2

(
8lBL1

δ

)p(
25

p+ b

)
exp

{
−
(

kδ2

128σ2
− 2(p+ b) log n

)}
,

(23)

where the first inequality follows from (20), the second inequality follows from Lemma 4, and the
last inequality follows from Lemma 2. From this results we can deduce that to satisfy the RHS of
(23) smaller or equal to α, we need that

δ ≥
(
n2g2

)− 1
2p+2b 16L2

(
2p+ b

2p+ 2b
log n+ C2

) 1
2p+2b

15
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δ ≥ 8
√
2σn− γ

2

(√
4p+ 4b+ γp

2
log n+ C4

)
,

we set C1 ≜ 16L2

(
2g2
)− 1

2p+2b , C2 = log 2
δ + log 8lBL1

(
16

√
b+ pL2l

)b+p
+

log

(
(2g2)

1
2p+2b

16L2 log 2
δ

)2p+b

, C3 = 8
√
2σ, C4 =

√
log 4

α+
√
log 25(8lBL1)

p

p+b +

√
p

(
log 1

8
√
2σ
√

log 4
α

)+

,

That completes the proof of Theorem 1. □

Proof of Theorem 2. We know that both E [π (q;y) | x, q] and E [π (q;y) | z, q] are continuous in
q, q∗ ∈ argmaxq E [π (q;y) | z, q] and q⋆ ∈ argmaxq E [π (q;y) | x, q]. Then we have that

E [π (q⋆;y) | x, q⋆]− E [π (q∗;y) | z, q∗]

≤ sup
q∈Q

|E [π (q;y) | x, q]− E [π (q;y) | z, q]| . (24)

Moreover, we have

R2(x, z) = E [π (q⋆;y) | x, q⋆]− E [π (q̌;y) | x, q̌]
= E [π (q∗;y) | z, q∗]− E [π (q̌;y) | z, q̌]
+ E [π (q⋆;y) | x, q⋆]− E [π (q∗;y) | z, q∗]

+ E [π (q̌;y) | z, q̌]− E [π (q̌;y) | x, q̌]
= R1(z) + E [π (q⋆;y) | x, q⋆]− E [π (q∗;y) | z, q∗]

+ E [π (q̌;y) | z, q̌]− E [π (q̌;y) | x, q̌]
≤ R1(z) + sup

q
|E [π (q;y) | x, q]− E [π (q;y) | z, q]|

+ sup
q

|E [π (q;y) | x, q]− E [π (q;y) | z, q]|

= R1(z) + 2 sup
q

|E [π (q;y) | x, q]− E [π (q;y) | z, q]| ,

where the inequality follows from (24). If we further have b = m, then x and z have the same
dimension, based on the Lipschitz continuous, we have that

R2(x, z) ≤ R1(z) + 2 sup
q

|E [π (q;y) | x, q]− E [π (q;y) | z, q]|

≤ R1(z) + 2L2 ∥x− z∥ .

That completes the proof. □

A.2 PROOF OF SECTION 4

Proof of Theorem 3. Following the same analysis in the proof of Theorem 2 , we have

R3(x, x̂) = E [π (q⋆;y) | x, q⋆]− E [π (q̂;y) | x, q̂]
= E

[
π
(
q♯;y

)
| x̂, q♯

]
− E [π (q̂;y) | x̂, q̂]

+ E [π (q⋆;y) | x, q⋆]− E
[
π
(
q♯;y

)
| x̂, q♯

]
+ E [π (q̂;y) | x̂, q̂]− E [π (q̂;y) | x, q̂]
= R1(x̂) + E [π (q⋆;y) | x, q⋆]− E [π (q̂;y) | x̂, q̂]
+ E [π (q̂;y) | x̂, q̂]− E [π (q̂;y) | x, q̂]
≤ R1(x̂) + sup

q
|E [π (q;y) | x, q]− E [π (q;y) | x̂, q]|

+ sup
q

|E [π (q;y) | x, q]− E [π (q;y) | x̂, q]|

= R1(x̂) + 2 sup
q

|E [π (q;y) | x, q]− E [π (q;y) | x̂, q]|

≤ R1(x̂) + 2L2∥x− x̂∥.
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As for the second part, we have that with probability at least 1− c2 exp{−c3 logm}:

∥x̂− x∥2

≤c′1
∥X − X̂∥2F

n+ 1

=c′1
∥A− Â∥2F

n+ 1

≤c′1c
′
2

α2
sp(A)σ2

2

K2e−4η∥A∥max

rm logm

|Ω|
∥A∥2Fm

≤c′1c
′
2

α2
sp(A)σ2

2

K2e−4η∥A∥max

rm2 logm

|Ω|
∥A∥2F ,

where the first inequality follows from Assumption 4, the first equality follows from that the loading
matrix V is an identity matrix, the second inequality follows from corollary 1 in Gunasekar et al.
(2014). Consequently, we have that with probability at least 1− c2 exp{−c3 logm}:

2L2∥x̂− x∥

≤ 2L2

√
c′1c

′
2

αsp(A)σ2

Ke−2η∥A∥max

√
rm2 logm

|Ω|
∥A∥F

≤ 2L2

√
c′1c

′
2

αsp(A)σ2σmax(A)

Ke−2η∥A∥max

√
r3m2 logm

|Ω|
,

where the inequality follows from that ∥ · ∥F ≤ r∥ · ∥. We set c4 ≜
2L2

√
c′1c

′
2

K and ζm,r ≜
c4αsp(A)σmax(A)σ2

e−2η∥A∥max

√
r3m2 logm

|Ω| for simplicity. As for the first part R1(x̂), we can draw the con-
clusion that with probability at least 1 − α where 0 < α < 1, we have that R1(x̂) ≤ ξα,p,m.
Therefore, we have

P {R3(x, x̂) > ξα,p,m + ζm,r}
≤ P {R1(x̂) > ξα,p,m}+ P {2L2∥x− x̂∥ > ζm,r}
≤ α+ c3 exp{−c4 logm}.

Thus we have that with probability at least 1−α− c3 exp{−c4 logm}, R3(x, x̂) ≤ ξα,p,m + ζm,r.
That completes the proof. □

Proof of Theorem 4. From the proof of Theorem 4, we know that R3(x, x̂) ≤ R1(x̂)+2L2∥x−x̂∥.
As for the first part R1(x̂), we can draw the conclusion that with probability at least 1 − α where
0 < α < 1, we have that R1(x̂) ≤ ξα,p,m. For the second part, we have

2L2∥x− x̂∥ = 2L2

√
∥x− x̂∥2

≤ 2L2

√
c′1

infB∈Or
∥X̂ −XB∥2F
n+ 1

≤ 2L2

√
c′1

2∥ sin∠(X, X̂)∥2F
n+ 1

≤ 2L2

√
c′1

2r2∥ sin∠(X, X̂)∥2
n+ 1

=
√
8c′1L2r

∥ sin∠(X, X̂)∥√
n+ 1

≤
√
8c′1L2r

∥Â−A∥F

σmin(Â)√
n+ 1
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≤
√
8c′1L2r

√
n+ 1

√
c′1c

′
2
c4αsp(A)σ2σmax(A)

e−2η∥A∥max

√
r3b2 log b

|Ω|
√
n+ 1σmin(Â)

=

√
8c′1c

′
1c

′
2L2

c4αsp(A)σ2σmax(A)

e−2η∥A∥max

√
r5b2 log b

|Ω|

σmin(Â)
,

where the first inequality follows from Assumption 4, the second inequality follows from the prop-
erty of sin∠ such that infB∈Or ∥X̂−XB∥F ≤

√
2∥ sin∠(X, X̂)∥F , the fourth inequality follows

from the Wedin’s sin∠ theorem, and the last inequality follows from corollary 1 in Gunasekar et al.
(2014). We set c5 ≜

√
8c′1c

′
1c

′
2L2c4, the RHS of (25) can be simplified as c5ζb,r

σmin(Â)
. Note that the

estimated rank r̂ is often large enough to ensure the equivalence of (11) and (12), thus the smallest
singular value of Â is bounded above 0. By setting φb,r ≜ c5rζb,r

σmin(Â)
, we complete the proof. □

B PROBLEM EXAMPLES

The proposed decision framework in this paper applies to a variety of optimization problems. We
present two examples in the following.

Example 1. Joint inventory and pricing control. In this problem, uncertainty y represents prod-
uct demand, and the decision vector is q = (q1, q2) where q1 is the price, which influences the
uncertainty, and q2 is the inventory, which is independent of the demand. The utility function is
π(q; y) = (q1−c)q2−q1(q2−y)+ where c is the unit cost. The data size is then {zi, q1i, yi}i=1,...,n.
The PI-model for this problem is:

max
q∈Q

E
[
(q1 − c)q2 − q1(q2 − y(q1))+ | z

]
,

then the PMFI-model can be formulated as:

max
q1∈Q1,q2∈Q2

Ê
[
(q1 − c)q2 − q1(q2 − y)+ | x̂, q1

]
=

n∑
i=1

wi(x̂, q1)[(q1 − c)q2 − q1(q2 − yi)
+].

Example 2. Advertising and personalized interest rates optimization. In this problem, the uncer-
tainty y is the indicator for whether or not the consumer applied for the loan. The decision vector
is q = (q1, q2) where q1 denotes the advertising content and q2 is the interest rate offered. The
historical dataset is then {zi, qi, yi}i=1,...,n. The PI-model for this problem is:

max
q∈Q

E
[
q21y(q1)=1

]
,

then the PMFI-mdoel can be formulated as:

max
(q1,q2)∈Q

Ê [q21y=1 | x̂, q] =
n∑

i=1

wi(x̂, q)[q2 · 1yi=1].

Example 3. Personalized pricing problem. The DMs decide a price q for customer with random
valuation v. Then the uncertainty y is whether the customer will purchase the product, i.e. y ≜ 1q≤v.
The historical dataset is then {zi, qi, yi}i=1,...,n. The PI-model for this problem is:

max
q∈Q

E [q · y(q)] ,

then the PMFI-mdoel can be formulated as:

max
q∈Q

Ê [q21y=1 | x̂, q] =
n∑

i=1

wi(x̂, q)qyi.

It is important to note that the above examples are merely illustrative; our proposed decision frame-
work is applicable to all decision problems where confounding effects may exist. By estimating the
confounders matrix using matrix completion methods, we believe this process can be integrated with
other data-driven decision-making approaches. Additionally, our framework can also be applied in
scenarios where decisions do not affect uncertainty.
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C INFORMATION ON DATASET

C.1 SYNTHETIC DATA

We set Q1 ≜ {2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0}, m = 5, and X ∈ R(n+1)×5 to be the con-
founders matrix, where Xi,1 ∼ U [−1, 1], Xi,2, Xi,3 ∼ N (0, 1), and Xi,4, Xi,5 ∼ U [0, 1] for
i = 1, ..., n. Let a = (1, 2, 2, 2, 2)⊤, and ti ≜ Xi,:a then the historical price is q1i = 2.5 if
ti ∈ [−9,−6), q1i = 3.0 if ti ∈ [−6,−3), q1i = 3.5 if ti ∈ [−3, 0), q1i = 4.0 if ti ∈ [0, 2),
q1i = 4.5 if ti ∈ [2, 4), q1i = 5.0 if ti ∈ [4, 6), q1i = 5.5 if ti ∈ [6, 9), q1i = 6.0 if ti ∈ [9, 12). The
historical demand is generated by

yi = max
{
0, b0 + b1 · q1i + b2 · xi1 + x2

i2 + xi3 + xi4 + xi5 · ϵ
}
,

where b0 = 300, b1 = −35, b2 = 200, and ϵ ∼ N (0, 1). The dimension of proxy features is set
to be b = {5, 10, 50, 100, 500, 800}, each entry Vk,j for k ∈ [5] and j ∈ [b] in the loading matrix
V ∈ R5×b is generated by the normal distribution N (0, 1). Let A ≜ XV , then with probability
0.1, the proxy feature Zi,j for i ∈ [n + 1] and k ∈ [b] is missing, i.e., Zi,j =NaN, and with
probability 0.9, the proxy feature Zi,j is generated by zij ∼ N (Ai,j , 5).

C.2 REAL-WORLD DATA

Our real dataset is sourced from our collaborative partner, AEON, which is one of the largest retail
companies in Japan. Our original dataset consists of a total of 171,709 sales records from four
stores, covering the period from August 1st to August 31st, 2023. The original dataset includes
712 features, such as product category, weather-related, sales-related, price-related, discount-related
features, among others. For the current experiment, we have selected the sales data of products with
prices ranging from 0 to 5 from one store for the week of August 1st to August 7th for preprocessing
and experimentation.

The first dataset comprises 2,866 products, each characterized by sales volume, price, and 438 proxy
features. We employ an 80-20 train-test split, with 2,293 products for training and 573 ones for
testing. We filter products with prices in the range of [4, 6]. We observe that product prices cluster
around the values of 4, 4.5, 5, 5.5, and 6. Consequently, we assume that the feasible domain for
prices is Q = {4, 4.5, 5, 5.5, 6}. In the test set, we utilize the random forest method to construct
demand at different price levels. Table 2 provides an example of the dataset with partial proxy
features.

Table 2: Sample of dataset with partial proxy features

demand price section article class merch type cost in sell unit weather wind speed ...
16 6 134 344 34401 1 2.39 1 2 ...

Figure 6 displays the optimal order quantities and corresponding actual demands under the PMFI-
model when using a kNN weight function. Although the decisions are slightly inferior to those
made under the PMFI-model with an RF weight function, this method still provides accurate demand
predictions and results in good decision-making.
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Figure 6: Comparison of optimal order quantities in PMFI-kNN model vs. Actual demand
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Figure 7: Out-of-sample profit across varying proxy feature dimensions and methods

Figure 7 shows the out-of-sample performance of various methods across different feature dimen-
sions. We find that our proposed method achieves the highest out-of-sample average profit while
maintaining a smaller profit variance.

Figure 8 illustrates the in-sample performance of different methods. While the FSTO framework
and DDPI models exhibit strong in-sample performance, their out-of-sample performance is poor,
indicating an issue with overfitting. Our model addresses this overfitting problem by inferring con-
founders
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Figure 8: In-sample profit across varying methods (b=438)

We also conducted experiments using data from another store during the period of August 8th to
August 14th. The second dataset comprises 2,874 products, each characterized by sales volume,
price, and 438 proxy features. We employ an 80-20 train-test split, with 2,299 products for training
and 575 ones for testing.

Table 3 compares the performance of the proposed method against other methods on a new dataset.
The results are consistent with the findings presented in the main text, where our method demon-
strates superior performance. Figure 9 illustrates the optimal order quantities and corresponding
actual demands under the PMFI-RF model, indicating that our decision framework maintains high
decision accuracy across different datasets. Therefore, the proposed method not only performs well
relative to other methods across various datasets but also exhibits high decision accuracy, thereby
confirming its robustness.
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Table 3: Out-of-sample performance comparison on the second dataset

Method Out-of-sample profit Decision accuracy
(MSE)

FPTO-OLS 17.38 773.65
FPTO-LASSO 19.64 515.62
FPTO-RF 26.16 478.86
FPTO-kNN 20.43 381.42
FPTO-DNNs 25.05 471.31

LASSO-RF 25.12 432.69
LASSO-kNN 24.44 358.38
KNOCKOFF-RF 22.88 471.75
KNOCKOFF-kNN 21.73 369.10

DDPI-RF 23.05 654.57
DDPI-kNN 19.52 401.41

PCA-RF 27.19 341.53
PCA-kNN 21.48 362.97
BNN-RF 25.00 415.61
BNN-kNN 19.17 402.16
VAEs-RF 19.97 370.06
VAEs-kNN 10.37 500.98

PMFI-RF 33.74 168.60
PMFI-kNN 24.70 318.35
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Figure 9: Comparison of optimal order quantities in PMFI-RF model vs. Actual demand on the
second dataset

D DETAILED EXAMPLE

Confounders: In pricing decisions, features such as product quality, design style, and brand reputa-
tion concurrently influence both the pricing decision and the unknown demand for the product.

Proxy of confounders: In pricing problems, confounders such as weather conditions can be easily
observed, whereas confounders like brand image are more challenging to quantify. DMs might use
features such as customer ratings as proxies for brand image.

Unconfoundedness: In the context of pricing problems, Assumption 1 implies that the proxy fea-
tures include all factors that simultaneously affect both pricing and demand. Therefore, conditional
on the proxy features z, the confounding between price decisions and demand is isolated, they can
be considered as if randomly generated.

To provide more intuition, suppose one is interested in the effect of a treatment on a certain disease.
In this case, the uncertainty y represents whether a patient recovers from the disease, q represents
whether a patient is prescribed the treatment, and z represents the covariate variables of a patient
such as age and gender. Assumption 1 then requires that the data satisfies the following: condi-
tioned on the patient’s covariate information, whether to prescribe the treatment for a patient must
be independent of the hypothetical recovery outcome.
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