
A APPENDIX

A.1 METRICS FOR COMPARISON

We evaluate the quality of counterfactuals by the metrics taken from literature: 1) time - time re-
quired to find a counterfactual for a query sample. Time is one of the most significant strengths of
our method. We use the time spent to generate a counterfactual explanation for a query sample on
average. Our approach is particularly fast compared to other methods because generating a CE re-
quires a search through a relatively lower dimension and projection through the decoder for no more
than a fixed number of interpolated points (search stops when criteria are met). By comparison, iter-
ative search based on gradients or perturbing in the input space can be quite expensive if the search
distance is large, the learning rate is low, or the mutable dimensions are high. We do not include the
time of training the autoencoder with Gaussian mixture latent space due to the fact that this training
time is not trivial. It is a one-time cost and is not related to the scalability of CEs generation for a
query sample. Ideally, our method triumphs even more, when the query sample is high dimensional.
2) validity - the percentage of success in generating counterfactuals cross the decision boundary.
The goal for generating counterfactuals is that they are counterfactuals, which requires them to be
classified as the target class. We evaluate validity by including the pre-trained classifier in the algo-
rithm. Since linear search is performed with the classifier is ended when certain criteria are met for
the classifier. We could see, in general, that the performance of this dimension for the three methods
is satisfying since all three methods employ the classifier as the end search criteria. 3) proximity -
a measure of distance from query sample to counterfactual in latent space. Proximity is used as a
constraint to promote the performance of counterfactual generation (?). This metric measures how
close a counterfactual is to the query sample it is generated from. Usually, this measure is calculated
by the L2 norm in the input space. 4) sparsity - a measure of features changed. Sparsity is a common
metric in the counterfactual literature (?). Sparsity is a measure of how sparse the change vector is.
We calculate the L1 norm of the change vector in input space. 5) reconstruction loss - a measure of
the CE being close to data manifold (?). We can measure the closeness of a CE to its original dataset
by passing a counterfactual through the autoencoder and measuring its reconstruction loss. During
the training process of the autoencoder, we try to minimize the reconstruction loss. Intuitively, a
sample with a smaller loss should be more in-sample and closer to the original data distribution. An
unseen sample should have a larger reconstruction loss concerning the autoencoder.

A.2 ALGORITHMS OF GDL

In GDL, instead of updating parameters of DNN which is commonly applied, we update the input
query sample and the latent projection of the query sample correspondingly until it cross the decision
boundary and the tolerance is satisfied.

Algorithm 1 Gradient Descent Latent Space

Require: ψ and ϕ the initial parameters of Encoder and Decoder; f classifier; xb the query sample;
tol tolerance; p probability of target counterfactual class (0.5 for decision boundary)

1: zb ← ψ(x)
2: zt ← zb
3: zt

+←▽zt(T − f(ϕ(z)))2
4: xt ← ϕ(zt)
5: if |f(xt)− T | < tol and f(xt) > p then
6: xcf = ϕ(zt)
7: return xcf
8: end if

A.3 DETAILS OF AUTOENCODERS AND CLASSIFER

We tabulate the detailed structures of autoencoders and classifiers during experiment in Section ??.
For tabular datasets, to avoid break the differentiation of (T − f(ϕ(z)))2, instead of argmax for
decoder output, we apply temperature annealing softmax to have a sharper reconstructed sample
where we set t = 0.5.

1



Table 1: The network structure of MNIST classifier

Input 28*28
Linear 28*28-128, ReLu
Linear 128-64, ReLu
Linear 64-32, ReLu
Linear 32-1, Sigmoid

Table 2: The network structure of Adult income autoencoder

Encoder Decoder
Input(1,28,28) Linear(25,128), Relu
Conv2d(1,8,2), stride 1, ReLu Linear(128, 29*29*32), unflatten
Conv2d(8,16,2), stride 1, BatchNorm2d 16,ReLu convtranspose2d(32,16,2),stride 1, batchnorm2d 16, ReLu
Conv2d(16,32,2), stride 1, Leaky ReLu, flatten convtranspose2d(16,8,2),stride 1, batchnorm2d 8, ReLu
Linear(22912, 128), ReLu, convtranspose2d(8,1,2), stride 1, sigmoid
Linear(128,15) output(1,28,28)

The structure of Encoderu is similar to Encoder but with the last layer of 25 nodes.

Table 3: The network structure of Adult income classifier

Input x(cont in 6 + cat in 16/one-hot encoding)
Linear 21-10, ReLu
Linear 10-4, ReLu
Linear 4-2, ReLu
Linear 2-1, Sigmoid

Table 4: The network structure of Adult income autoencoder

Encoder Decoder
Input x(cont in 6/min-max + cat in 16/one-hot encoding) Linear 3-6, LeakyReLu
Linear 21-12, LeakyReLu Linear 6-12, LeakyReLu
Linear 12-24, LeakyRelu Linear 12-24, LeakyReLu
Linear 24-12, LeakyReLu Linear 24-5, Tanh Linear 24-16, softmax
Linear 12-6, LeakyReLu cont output 5 cat output 16
Linear 6-3

A.4 PCA OF LATENT SPACE

A.5 FURTHER THOUGHTS ABOUT THE COMPARISON RESULTS

We could see that our method performs better on three dimensions above: counterfactual generation
time, validity and reconstruction loss due to its design. We design the architecture based on our
three desiderata and in the end, through the experiment, we show that the desiderata are achieved.
Our method performs linear interpolation in the latent space instead of optimization in the original
space, it has the highest validity, and also because the linear interpolation happens in latent space,
we cannot guarantee the sparsity and proximity in the original space, which is stated in Section ??.
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(a) MNIST dataset

(b) Adult dataset (c) Lending Club dataset

Figure 1: PCA of the base and target class in latent space
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