
Published as a conference paper at ICLR 2024

A LIMITATIONS

It is important to acknowledge the limitations of our work. On dense-reward MuJoCo tasks, we find
that CQL is very competitive to LaMo, showing that value-based methods are still very strong in
offline RL. Besides, the auxiliary language prediction loss in LaMo has only shown its advantage
in very low-horzion tasks, e.g., Kitchen, while in other tasks, it serves the purpose of preserving
language capabilities but does not increase the performance significantly. How to better leverage
the language reasoning ability to further help offline RL is thus a future direction. Lastly, limited by
computational resources, we have not looked into utilizing larger language models (Touvron et al.,
2023a;b; Chung et al., 2022), and we hope our work could motivate the community to explore further
applications of LLMs in offline RL.

B IMPLEMENTATION DETAILS

Codebase. Our codebase is mainly based on Chen et al. (2021) (https://github.com/
kzl/decision-transformer) and Hu et al. (2023a) (https://github.com/hukz18/
DeFog) with minimal modification on implementation details of original models. All codes of
the baselines are directly from Tarasov et al. (2022) (https://github.com/tinkoff-ai/
CORL) and Seno & Imai (2022) (https://github.com/takuseno/d3rlpy). Our official
code is released at https://github.com/srzer/LaMo-2023.

Network architecture for LaMo. Except for the simplest task Hopper, where the observation space
and action space of which is of only 11 and 3 dimensions respectively, we replace linear projections
after the input with multi-layer perceptrons MR̂,Ms,Ma, and GELU (Hendrycks & Gimpel, 2016)
as the activation function. With timesteps embedding ω(t), the embeddings of R̂t, st, at are

u(xt) = W (1)
x GELU(W (0)

x xt) + ω(t), x ∈ {R̂, s, a} .
As for the Transformer, We mainly adopt the architecture of GPT-2 small model, with 124M param-
eters. The number of Transformer layers is 12, the number of attention heads is 12, and the hidden
size is 768. Specifically, for Kitchen, when training on Complete (30%) dataset and Partial
(100%) dataset, we empirically find that using GPT-2 medium2, of which the number of layers is 24
and the hidden size is 1024, could enhance the performance.

C DATASET DESCRIPTIONS

For MuJoCo and Atari, we mainly study the Medium dataset, generated by an agent trained using
the SAC (Haarnoja et al., 2018) algorithm, which was terminated prematurely. The utilization of this
dataset is aimed at minimizing variations in quality among different trajectories. The Atari datasets
are taken from d4rl-atari (https://github.com/takuseno/d4rl-atari).

For Kitchen, we conduct experiments on both the Complete and the Partial dataset. In the
Complete dataset, the robot performs all the required tasks sequentially, while the Partial
dataset is composed of undirected data and ensures that a subset of the dataset can successfully
solve the task.

For Reacher2d, which does not belong to D4RL, we train an agent of medium performance (av-
erage normalized score of 36.0 over 50 episodes) by PPO algorithm (Schulman et al., 2017), and
then generate trajectories composed of 50 episodes simulated by that agent, referred to as Medium
dataset.

To look into the low-data regime, we randomly downsample trajectories from the original dataset
for a given sample ratio.

D TASK DESCRIPTIONS

Halfcheetah (MuJoCo): The goal is to make the cheetah move forward (right) as fast as possible
by applying torque to its joints.

2https://huggingface.co/gpt2-medium

17

https://github.com/kzl/decision-transformer
https://github.com/kzl/decision-transformer
https://github.com/hukz18/DeFog
https://github.com/hukz18/DeFog
https://github.com/tinkoff-ai/CORL
https://github.com/tinkoff-ai/CORL
https://github.com/takuseno/d3rlpy
https://github.com/srzer/LaMo-2023
https://github.com/takuseno/d4rl-atari
https://huggingface.co/gpt2-medium

Published as a conference paper at ICLR 2024

Hopper (MuJoCo): The goal is to achieve forward (right) motion through controlled hops.

Walker2d (MuJoCo): The goal is to coordinate movements to achieve forward (right) direction.

Reacher2d: The goal is to move the robot’s end effector (fingertip) close to a randomly spawned
target.

For Reacher2d, We compute the average performance over the last 12.5K training steps out of a total
of 37.5K training steps with evaluations conducted every 2500 training steps.

Kitchen: The objective in each task is to interact with items to reach a specific desired configuration.

Breakout (Atari): Players control a paddle to hit a ball at a brick wall, aiming to break it down.
Players have five lives.

Qbert (Atari): The objective is to change the color of cubes on the pyramid to match the ’destina-
tion’ color by hopping on each cube while avoiding obstacles.

For Breakout, on which algorithms converge fast, we compute the average performance over the
last 10K training steps out of a total of 50K training steps with evaluations conducted every 2500
training steps.

Pong (Atari): Players compete to deflect the ball away from their goal and into the opponent’s goal
using paddles.

In Figure 8, we provide visualizations of each task.

(a) Kitchen (b) Reacher2d (c) Hopper (d) Halfcheetah

(e) Walker2d (f) Breakout (g) Qbert (h) Pong

Figure 8: Visualization of Tasks from 3 domains: Kitchen, MuJoCo, and Atari.

E TASK SCORE NORMALIZATION

Task Name Random Score Expert Score

Kitchen 0 4
Reacher2d 0 100

Hopper −20.3 3234.3
HalfCheetah −280.2 12 135.0

Walker2d 1.6 4592.3
Breakout 1.7 31.8

Qbert 163.9 13 455.0
Pong −20.7 9.3

Table 5: Scores used for normalization. Scores of each task are linearly normalized by the corre-
sponding random score and expert score.

18

Published as a conference paper at ICLR 2024

The scores we present are normalized using the formula:

normalized score =
score − random score

expert score − random score
× 100 ,

where the random scores and the expert scores are provided in Table 5, so that 100 represents the
expert score and and 0 represents the score of a random policy, following the protocols of Fu et al.
(2020) and Hafner et al. (2020).

F HYPERPARAMETERS

In Table 6 and Table 7, we list the task-specific hyperparameters and task-agnostic hyperparameters,
respectively. More details can be referred to https://github.com/srzer/LaMo-2023.

Task Name / Variable Learning Rate Weight Decay Context Length Return-to-go Training Steps

Kitchen 1× 10−4 1× 10−5 20 3, 4, 5 100K
Reacher2d 1× 10−5 1× 10−4 5 40, 76 100K

Hopper 1× 10−4 1× 10−5 20 1800, 2200, 3600 100K
HalfCheetah 1× 10−4 1× 10−5 20 6000, 8000, 12000 100K

Walker2d 1× 10−5 1× 10−4 20 2500, 4000, 5000 100K
Breakout 1× 10−3 1× 10−2 30 90, 120 50K

Qbert 1× 10−3 1× 10−5 30 14000 100K
Pong 3× 10−4 1× 10−1 30 10, 20 100K

Table 6: Task-Specific Hyperparameters.

Variable Value

Number of Transformer Layers 12
Number of MLP Layers (Kitchen & MuJoCo) 3

Number of CNN Layers (Atari) 3
Number of CNN Channels (Atari) 32, 64, 64
Dimension of CNN Kernels (Atari) 8, 4, 3

Hidden Dimension 768
LoRA Rank 16 (Kitchen & MuJoCo), 32 (Atari)
Batch Size 64 (Kitchen & MuJoCo), 128 (Atari)
Dropout 0.1

Table 7: Task-Agnostic Hyperparameters.

We follow the common practice of DT that uses multiple values as rtg, and reports the best one,
as shown in https://github.com/kzl/decision-transformer. The values we adopt
are validated by experiments. And one of the reasons is that for different sampling ratio, the best rtg
would be different.
G MORE RESULTS

Language ability test of models. With the prefix prompt Hello, my name is Tom., answers of
different models are:

• GPT-2: I’m not very funny anymore, and I’m not a comedian, and neither am I a guy. Oh, I’d
like to do some comedy so that we could work together and actually work out some pretty big

• Early-ended Pre-trained: Andriaki. = = Reception = = = Critical response = = = A number of
reviewers praised Tom McNeill’s performance, commenting that

• Random Corpus: The, was of the from on to in @ the on the to for, the, and to that =.. by of for.
on that the ’ that the

Results on datasets with varying qualities. Tables 8 and 9 present testing results when the models
are trained on datasets of different qualities, Medium-Expert and Medium-Replay. LaMo
shows competitive performance over the baselines, especially on Medium-Replay (1%) datasets.

Results on more tasks. In Tables 10 and 11, we present additional results for tasks in Atari and
MuJoCo. Specifically, in the Freeway and Asterix tasks, LaMo demonstrates significant advance-
ments over DT and Wiki-RL, effectively narrowing the performance disparity with value-based

19

https://github.com/srzer/LaMo-2023
https://github.com/kzl/decision-transformer

Published as a conference paper at ICLR 2024

Task Dataset Ratio Ours DT CQL IQL TD3+BC

Hopper Med-Replay 0.01 29.4 ± 6.3 29.3 ± 4.0 1.3 ± 1.3 16.3 ± 2.3 19.7 ± 2.1
Halfcheetah Med-Replay 0.01 14.6 ± 4.5 10.0 ± 2.6 -0.2 ± 0.2 17.8 ± 4.5 7.4 ± 2.7
Walker2d Med-Replay 0.01 28.1 ± 1.0 12.4 ± 1.3 31.3 ± 2.6 30.2 ± 1.2 11.0 ± 1.3

Average 24.0(↑40%) 17.2 10.8 21.4 12.7

Table 8: Normalized score on Medium-Replay Dataset. Blue highlight indicates the highest score,
orange highlight indicates the second-highest score.

Task Dataset Ratio Ours DT Wiki-RL CQL IQL TD3+BC BC

Hopper Med-Expert 1 109.9 ± 1.4 107.6 ± – 110.9 ± – 105.4 ± – 91.5 ± – 98.0 ± – 52.5 ± –
Halfcheetah Med-Expert 1 92.2 ± 0.7 86.8 ± – 91.8 ± – 91.6 ± – 86.7 ± – 90.7 ± – 55.2 ± –
Walker2d Med-Expert 1 108.3 ± 1.1 108.1 ± – 108.9 ± – 108.8 ± – 109.6 ± – 110.1 ± – 107.5 ± –

Average 103.5(↑3%) 100.8 103.9 101.9 95.9 99.6 71.7

Table 9: Nomalized score on Medium-Expert Dataset. Values without standard deviations are
taken from Kostrikov et al. (2022).

based methodologies. Furthermore, in the Ant task, LaMo surpasses the baseline scores, indicat-
ing a notable improvement in performance.

Task Dataset Ratio Ours DT Wiki-RL CQL BCQ NFQ

Freeway Medium 0.1 83.0 ± 1.7 70.1 ± 4.0 72.0 ± 3.9 101.2 ± 1.7 79.1 ± 6.1 56.2 ± 19.1
Asterix Medium 0.1 2.8 ± 1.0 0.7 ± 0.7 0.3 ± 0.4 4.3 ± 1.0 1.9 ± 0.5 -0.1 ± 0.0

Average 42.9(↑21%) 35.4 36.2 52.7 40.5 28.1

Table 10: More tasks in Atari. We conduct experiments and report normalize scores on another
2 games, Freeway and Asterix, in the domain of Atari, to present the remarkable improvement of
LaMo over DT and Wiki-RL.

Comparison with Diffusion-QL. In Table 12, a comparative analysis is presented between our
method (LaMo) and the recent powerful diffusion policy, Diffusion Q-learning (Diffusion-QL)
(Wang et al., 2023c), across three distinct tasks. Notably, LaMo outperforms Diffusion-QL in all
three tasks, with particularly remarkable results in the low-data regime.

Overfitting issues of CQL. In Kitchen tasks, CQL faces the issue of overfitting, causing a notable
drop in its performance, as presented in Figure 9.

Results based on top-k metric. We provide the experiment results of Kitchen using top-k metric,
which calculates the average scores over the k checkpoints with the highest testing scores. As is
shown in Table 13, LaMo still outperforms other DT-based methods and value-based methods.

Effects of the model size. In Figure 10, the influence of language model size on the performance
of LaMo is depicted. The results indicate that GPT2-small already achieves satisfactory perfor-
mance. Additionally, in specific tasks, GPT2-medium demonstrates a slight edge over GPT2-small,
showcasing incremental improvements with increased model size.

Hyperparameter tuning for baselines. As demonstrated in Figure 11, we conduct hyperparame-
ter tuning for both DT-based and value-based baselines. As for Wiki-RL, we sincerely follow the
authors’ statements in their paper (Reid et al., 2022) Section 4.1, to use the same learning hyperpa-
rameters as DT. These results verify the baselines’ performance reported in our study.

Number of parameters of our method and baselines. We have presented Table 14 listing the
trainable parameter sizes of LaMo alongside various baselines. For value-based methods, section 3
and the ablation study in section 4.5 in Tarasov et al. (2023) demonstrate that deepening the network
structure does not yield improvements, and our experiments shown in Figure 12 reveal a similar
trend for increasing the network’s width. Thus we adhere to widely accepted model sizes, which are
much smaller than Transformer-based methods. Besides, it is important to emphasize that simply
increasing the size of the Transformer will not boost the performance, as shown in the results of Reid
et al. (2022) and our ablation studies. Moreover, although our method involves a relatively large
model, the number of trainable parameters is fairly small, which is 3.5M, comparable with 7.3M

20

Published as a conference paper at ICLR 2024

Task Dataset Ratio Ours DT Wiki-RL CQL IQL TD3+BC

Ant Medium 0.1 87.8 ± 4.5 87.2 ± 4.6 70.5 ± 4.9 95.6 ± 4.9 92.2 ± 6.4 97.5 ± 5.4
Ant Medium 0.01 86.3 ± 6.2 77.8 ± 4.8 65.9 ± 6.1 76.2 ± 10.5 46.4 ± 5.5 3.4 ± 1.8
Ant Medium 0.005 90.2 ± 3.7 76.5 ± 4.9 71.3 ± 5.8 64.5 ± 6.3 65.8 ± 6.3 1.2 ± 3.4

Average 88.1(↑9%) 80.5 69.2 78.8 68.1 34.0

Table 11: More tasks in MuJoCo. We conduct experiments and report normalized scores on an-
other environment, Ant, in the domain of MuJoCo, to present the competitive performance of LaMo.

Task Dataset Ratio LaMo Diffusion-QL

Hopper Medium 0.005 57.0 13.2
Hopper Medium 0.01 52.0 35.7
Hopper Medium 0.1 73.7 68.4

Halfcheetah Medium 0.005 39.0 36.5
Halfcheetah Medium 0.01 40.6 34.8
Halfcheetah Medium 0.1 42.1 46.8
Walker2d Medium 0.005 66.9 32.3
Walker2d Medium 0.01 74.5 44.7
Walker2d Medium 0.1 70.4 55.2

Average 57.4 40.8

Table 12: Comparing LaMo with Diffusion-QL. We compare LaMo with the recent strong base-
line, Diffusion Q-learning (Diffusion-QL) (Wang et al., 2023c)) across 3 different tasks.

0 20 40 60 80
training steps (K)

0

10

20

30

40

Kitchen Partial (100%)

0 20 40 60 80
training steps (K)

0

5

10

15

20

25

30

35
Kitchen Partial (10%)

0 20 40 60 80
training steps (K)

0

5

10

15

20

25
Kitchen Partial (1%)

CQL lr=3e-4 CQL lr=3e-3 CQL lr=3e-5

Figure 9: Normalized score of CQL. CQL consistently suffers from severe overfitting in Kitchen
tasks with various learning rates.

Task Dataset Ratio LaMo DT Wiki-RL CQL IQL TD3+BC BC

Kitchen Partial 1 56.4 59.8 39.9 42.5 56.3 17.1 33.8
Kitchen Complete 1 73.3 60.6 35 45.7 49.4 40.3 33.8

Average 64.9(↑8%) 60.2 37.5 44.1 52.8 28.7 33.8

Table 13: Normalized score of Kitchen based on the metric of top-3 performance. We present
the average normalized scores over the best 3 checkpoints in each run. The results agree with those
in D4RL (Fu et al., 2020). Blue highlight indicates the highest scores, and red numbers represent
the improvement of LaMo over DT.

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

50

60

no
rm

al
iz

ed
 s

co
re

Kitchen Partial (100%)

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

50

60

Kitchen Complete (30%)

0 20 40 60 80 100
training steps (K)

0

20

40

60

80
Kitchen Complete (50%)

LaMo (GPT2-medium) LaMo (GPT2-small)

Figure 10: Effects of GPT-2 model size. We adopt two language model backbones of different size,
GPT2-small1 and GPT2-medium2. GPT2-small already shows satisfying performance. In Kitchen
Complete (30%) and Kitchen Partial (100%), GPT2-medium slightly exceeds GPT2-small.
1 https://huggingface.co/gpt2 2 https://huggingface.co/gpt2-medium

21

https://huggingface.co/gpt2
https://huggingface.co/gpt2-medium

Published as a conference paper at ICLR 2024

0 10 20 30 40 50
10

20

30

40

50

60
Hopper Medium (1%)

DT lr=1e-4, wd=1e-4 (used)
DT lr=1e-4, wd=1e-5
DT lr=1e-3, wd=1e-4
DT lr=1e-4, wd=1e-3

0 10 20 30 40 50
10

20

30

40

50

60

70
Walker2d Medium (1%)

DT lr=1e-4, wd=1e-4 (used)
DT lr=1e-4, wd=1e-5
DT lr=1e-3, wd=1e-4
DT lr=1e-4, wd=1e-3

0 20 40 60 80 100

0

10

20

30

40

50

Kitchen Complete (30%)

DT lr=1e-4, wd=1e-4 (used)
DT lr=1e-4, wd=1e-5
DT lr=1e-3, wd=1e-4
DT lr=1e-4, wd=1e-3

0 20 40 60 80 100

0

10

20

30

40

Qbert Medium (10%)
DT lr=3e-4 (used)
DT lr=3e-3
DT lr=3e-5

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

50

60

70

80
Hopper Medium (1%)

CQL lr=3e-4 (used)
CQL lr=3e-3
CQL lr=3e-5

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

50

60

70

80
Walker2d Medium (1%)

CQL lr=3e-4 (used)
CQL lr=3e-3
CQL lr=3e-5

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

Kitchen Complete (30%)
CQL lr=3e-4 (used)
CQL lr=3e-3
CQL lr=3e-5

0 20 40 60 80 100
training steps (K)

0.0

0.2

0.4

0.6

0.8

Qbert Medium (10%)

CQL lr=6.25e-5 (used)
CQL lr=6.25e-4
CQL lr=6.25e-6

Figure 11: Baseline hyperparemeter tuning. We tune the hyperparameters of two strong baseline
methods, DT and CQL. We compare the experiment results with different learning rate (lr) and
weight decay (wd) across 3 domains, MuJoCo, Kitchen and Atari.

of Decision Transformer. So the difference of the number of parameters between Transformers and
value-based methods does not compromise the fairness of the comparisons of performance.

Algorithms Total Parameters Trainable parameters

LaMo 128M 3.5M
Wiki-RL 125M 125M

DT 7.3M 7.3M
CQL 0.41M 0.41M
IQL 0.33M 0.33M

TD3+BC 0.25M 0.25M

Table 14: Number of parameters of each algorithms. We conduct a comparative analysis of the
total parameter sizes and trainable parameter sizes of LaMo and various baseline.

0 20 40 60 80 100
training steps (K)

0

20

40

60

Hopper Medium (100%)

0 20 40 60 80 100
training steps (K)

0

20

40

60

80

Walker2d Medium (100%)

0 20 40 60 80 100
training steps (K)

0

10

20

30

40

50
Halfcheetah Medium (100%)

IQL hidden size=256 IQL hidden size=512 IQL hidden size=1024

Figure 12: Effects of the width of networks on the performance of value-based methods. We
train IQL with different hidden size across 3 different tasks, demonstrating that increasing the width
does not yield improvements.

22

Published as a conference paper at ICLR 2024

H THE SURPRISING EFFECTIVENESS OF FROZEN RANDOM WEIGHTS WITH
LORA

To show the help of the pre-trained weight of the LLM, we actively run ablation experiments. The
only difference is that the weights of the Transformer layers are randomly initialized according to
the intialization of GPT2 (Radford et al., 2019). We present the results in Table 15 and Table 16.
We observe that LoRA harnesses the potential of the pre-trained model, enabling it to outperform
DT significantly in both sparse-reward and dense-reward tasks. Besides, the pre-trained model out-
performs the randomly initialized model noticeably.

Although we do not utilize a feature-aligned functor for the two domains, language and motion
control, in LaMo’s pipeline, which could be a promising future work, we hypothesize that freezing
most parameters and training on language tasks simultaneously could potentially force the feature
alignment between two domains, and thus the general knowledge of sequential modelling could be
transferred. Besides, Aghajanyan et al. (2021)’s theoretical analysis also backs our claims, which
shows the connection between intrinsic dimension and generalization.

Task Dataset Ratio LaMo LaMo w/o. PT DT

Kitchen Partial 0.01 11.6 ± 3.0 9.8 ± 2.6 0.9 ± 0.9
Kitchen Partial 0.1 35.1 ± 5.2 24.8 ± 4.3 22.6 ± 6.8
Kitchen Partial 1 46.6 ± 5.3 43.6 ± 7.4 33.8 ± 14.5
Kitchen Complete 0.3 45.9 ± 2.9 42.4 ± 4.7 31.5 ± 4.5
Kitchen Complete 0.5 50.6 ± 6.1 56.8 ± 4.5 36.6 ± 5.1
Kitchen Complete 1 64.2 ± 5.3 51.8 ± 3.7 52.8 ± 3.7

Reacher2d Medium 0.1 12.4 ± 3.8 6.8 ± 3.6 2.3 ± 1.5
Reacher2d Medium 0.3 31.2 ± 7.6 20.2 ± 5.4 6.4 ± 2.6
Reacher2d Medium 1 33.0 ± 8.3 28.2 ± 8.4 22.8 ± 6.0

Average 36.7 31.6 23.3

Table 15: Ablation on the effectiveness of pre-training for 2 sparse-reward tasks. We replace
the pre-trained LM in LaMo with a randomly initialized model of the same structure, denoted as
LaMo w/o. PT. We compare LaMo with LaMo w/o. PT and DT. Blue highlight indicates the highest
score.

Task Dataset Ratio LaMo LaMo w/o. PT DT

Hopper Medium 0.005 57.0 ± 7.1 43.5 ± 2.8 35.8 ± 6.6
Hopper Medium 0.01 52.0 ± 4.6 46.0 ± 3.1 41.9 ± 5.2
Hopper Medium 0.1 73.7 ± 3.5 57.7 ± 2.6 57.3 ± 3.8
Hopper Medium 1 74.1 ± 5.3 64.5 ± 4.9 60.9 ± 3.3

Halfcheetah Medium 0.005 39.0 ± 1.6 39.2 ± 1.3 22.4 ± 5.2
Halfcheetah Medium 0.01 40.6 ± 1.3 40.6 ± 1.4 29.6 ± 4.8
Halfcheetah Medium 0.1 42.1 ± 0.6 41.4 ± 0.7 41.7 ± 0.8
Halfcheetah Medium 1 42.5 ± 0.4 42.8 ± 0.3 42.6 ± 0.5
Walker2d Medium 0.005 66.9 ± 5.4 57.0 ± 5.8 16.7 ± 4.8
Walker2d Medium 0.01 74.5 ± 4.7 74.2 ± 1.9 38.9 ± 9.3
Walker2d Medium 0.1 70.4 ± 4.2 70.9 ± 4.0 70.2 ± 7.5
Walker2d Medium 1 73.3 ± 3.1 69.8 ± 9.3 70.2 ± 4.3

Average 58.8 54.0 44.0

Table 16: Ablation on the effectiveness of pre-training for 3 dense-reward tasks. Blue highlight
indicates the significantly highest score.

Another interesting phenomenon is that even without pre-training, the model, with enlarged model
size, deepened embeddings and LoRA adapting techniques, could still reach higher performance
than original DT. Shen et al. (2021) observes the same results, while they use randomly initialized
frozen layers as a cheap way to deepen their model and achieve better performance, albeit their
application is in the field of natural language. Jarrett et al. (2009) also proposes Random Filter for
object detection, and it has decent performance as a feature extractor.

Although we have not looked into the effectiveness of random initialized Transformers deeply, based
on the experiment results and previous works, we hold a belief that freezing random weights with
minimal adaption is a promising approach.

23

Published as a conference paper at ICLR 2024

I EXPLORATORY FINDINGS AND ADDITIONAL DISCUSSION

I.1 LARGER LANGUAGE MODELS

In this work, we treat the size of GPT-2 as hyperparameters and observed that in most cases, they did
not exhibit significant differences in performance. Furthermore, we explore the pre-trained model
LLaMA and apply various techniques, including LLaMA adaptor (Zhang et al., 2023b), lora, and
joint training. However, we find that none of these approaches demonstrates substantial improve-
ments over the baseline. Constrained by computational resources, we are unable to delve further
into this area, but it could serve as an intriguing avenue for future research endeavors.

I.2 OTHER EMBEDDING METHODS

We have tried another embedding method, which is inspired by RT-2 (Brohan et al., 2023a). We are
intended to stimulate the power of pre-trained LM in a way that is closer to processing language.
We discretize each dimension of each vector into 512 bins after normalization and thus get the index
sequence. Indexes are understood by the model as tokens, and the corresponding embeddings of
indexes are set independently for returns-to-go, states and actions, while all of them are intialized as
pre-trained embeddings for those digit tokens.

While this approach works well in situations with 100% data availability, it exhibits poor perfor-
mance in low-data regime, even when various techniques are employed. We suspect that the limita-
tion may stem from the lack of generalizability in this method. In the future, addressing this issue
could involve exploring higher-level representation learning techniques to improve performance.

24

	Limitations
	Implementation Details
	Dataset Descriptions
	Task Descriptions
	Task Score Normalization
	Hyperparameters
	More Results
	The Surprising Effectiveness of Frozen Random Weights with LoRA
	Exploratory Findings and Additional Discussion
	Larger Language Models
	Other Embedding Methods

