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ABSTRACT

Discrete-state denoising diffusion models led to state-of-the-art performance in graph
generation, especially in the molecular domain. Recently, they have been transposed
to continuous time, allowing more flexibility in the reverse process and a better
trade-off between sampling efficiency and quality, though they have not yet been
applied to graphs. Here, to leverage the benefits of both approaches, we propose
COMETH, a continuous-time discrete-state graph diffusion model, tailored to the
specificities of graph data. In addition, we also successfully replaced the set of
structural features previously used in discrete graph diffusion models with a single
random-walk-based encoding, providing a simple and principled way to boost the
model’s expressive power. Empirically, we show that integrating continuous time leads
to significant improvements across various metrics over state-of-the-art discrete-state
diffusion models on a large set of molecular and non-molecular benchmark datasets.
In terms of valid, unique, and novel (VUN) samples, COMETH obtains a near-perfect
performance of 99.5% on the planar graph dataset and outperforms DIGRESS by
12.6% on the large GuacaMol dataset.

1 INTRODUCTION

Denoising diffusion models (Ho et al., 2020; Song et al., 2020) are among the most prominent and
successful classes of generative models. Intuitively, these models aim to denoise diffusion trajectories
and produce new samples by sampling noise and recursively denoising it, often outperforming competing
architectures in tasks such as image and video generation (Sohl-Dickstein et al., 2015; Yang et al., 2023).
Recently, a large set of works, e.g., Chen et al. (2023); Jo et al. (2022; 2024); Vignac et al. (2022), aimed
to leverage diffusion models for graph generation, e.g., the generation of molecular structures. One class
of such models embeds the graphs into a continuous space and adds Gaussian noise to the node features
and graph adjacency matrix (Jo et al., 2022). However, such noise destroys the graph’s sparsity, resulting
in complete, noisy graphs without meaningful structural information, making it difficult for the denoising
network to capture the structural properties of the data. Therefore, discrete-state graph diffusion models
such as DIGRESS (Vignac et al., 2022) have been proposed, exhibiting competitive performance against
their continuous-state counterparts. These models utilize a categorical corruption process (Austin et al.,
2021), making them more suited to the discrete structure of graph data.

In parallel, the above Gaussian-noise-based diffusion models have been extended to continuous time (Song
et al., 2020), i.e., relying on a continuous-time stochastic process (Capasso and Bakstein, 2021), by
formulating the forward process as a stochastic differential equation. In addition, discrete-state diffusion
models have recently been transposed to continuous time (Campbell et al., 2022; Sun et al., 2022),
relying on continuous-time Markov chains (CTMC). Unlike their discrete-time counterparts, which
define a fixed time scale during training, they allow training using a continuous-time scale and leave
the choice of the time discretization strategy for the sampling stage. Hence, incorporating continuous
time enables a more optimal balance between sampling efficiency and quality while providing greater
flexibility in designing the reverse process, as various CTMC simulation tools can be utilized Campbell
et al. (2022); Sun et al. (2022). However, extending continuous-time discrete-state diffusion models to
graphs is not straightforward. Unlike other discrete data, such as text, where all tokens share the same
support, nodes and edges in graphs have distinct attributes and must be handled separately. Furthermore,
the noise models used for other data modalities may be suboptimal for graphs (Vignac et al., 2022).

Present work Hence, to leverage the benefits of both approaches for graph generation, i.e., discrete-state
and continuous-time, we propose COMETH, a continuous-time discrete-state graph diffusion model,
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integrating graph data into a continuous diffusion model framework; see Figure 1 for an overview of
COMETH. Concretely, we

1. propose a new noise model adapted to graph specificities, featuring distinct noising processes
for nodes and edges, and we extend the marginal transitions previously proposed for graph data
to the continuous-time setting.

2. In addition, we successfully replace the set of structural features used in most previous discrete
graph diffusion models with a random-walk-based encoding. We prove that it generalizes most
of the features used in DIGRESS, hence representing a simple and elegant way to boost the
model’s expressivity and reach state-of-the-art performance.

3. Empirically, we show that integrating continuous-time into a discrete-state graph diffusion
model leads to state-of-the-art results on synthetic and established molecular benchmark
datasets across various metrics. For example, in terms of VUN samples, COMETH obtains a
near-perfect performance of 99.5% on the planar graph dataset and outperforms DIGRESS by
12.6% on the large GuacaMol dataset.

Overall, COMETH is the first graph diffusion model allowing the benefits of using a discrete-state space
and the flexibility of a continuous-time scale in the design of the sampling algorithm.

Related work Diffusion models are a prominent class of generative models successfully applied to many
data modalities, such as images, videos, or point clouds (Yang et al., 2023).

Graph generation is a well-studied task applied to various application domains, such as molecule
generation, floorplan generation, or abstract syntax tree generation (Shabani et al., 2023; Shi et al., 2019).
We can roughly categorize graph generation approaches into auto-regressive models such as Kong et al.
(2023); You et al. (2018); Zhao et al. (2024); Jang et al. (2024b) and one-shot models such as diffusion
models. The main advantage of one-shot models over auto-regressive ones is that they generate the
whole graph in a single step and do not require any complex procedure to select a node ordering. On the
other hand, auto-regressive models are more flexible regarding the size of the generated graph, which can
remain unknown beforehand, and they do not suffer from the quadratic complexity of one-shot models.

While the first diffusion models for graph generation leveraged continuous-state spaces (Niu et al., 2020),
they are now largely replaced by discrete-state diffusion models (Haefeli et al., 2022; Vignac et al.,
2022), using a discrete-time scale. However, using discrete-time constrains the sampling scheme to
a particular form called ancestral sampling, which prevents the exploration of alternative sampling
strategies that could optimize sampling time or enhance sampling quality.

Another line of research considers lifting the graphs into a continuous-state space and applying Gaussian
noise to the node and edge features matrices (Niu et al., 2020; Jo et al., 2022; 2024). Such continuous
noise allows the generation of continuous features to be handled smoothly, such as the generation of
atomic coordinates in molecular graphs (Jo et al., 2024). The above Gaussian-noise-based diffusion
models have many successful applications in computational biology (Corso et al. (2023); Yim et al.
(2023)). However, they almost exclusively consider point-cloud generation, focusing on modeling the
geometry of the molecules and ignoring structural information. In addition, some hybrid approaches also
exist that consider jointly modeling the 2D molecular graphs and their 3D geometry (Hua et al., 2024;
Le et al., 2023; Vignac et al., 2023). These models usually rely on continuous noise for the atomic
coordinates and discrete noise for the atom and edge types.

Recent works have tried to scale graph generative models in size (Bergmeister et al., 2023; Luo et al.,
2023; Qin et al., 2023). Such frameworks are often built on top of previously proposed approaches, e.g.,
SPARSEDIFF (Qin et al., 2023) is based on DIGRESS. Therefore, these scaling methods are likely to
apply to our approach.

Concurrently with our work, Xu et al. (2024) proposed a continuous-time discrete-state graph diffusion
model. While they experiment using an MPNN as the backbone with limited success, we effectively
utilize RRWP as a positional encoding. Moreover, our experimental evaluation of COMETH is
more comprehensive, as we successfully implement the predictor-corrector mechanism and include a
conditional generation experiment.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

t

t

CE loss Predict

G(0)

Compute

R̂
t,θ

(G, G̃)

τ
Sample
G(t−τ )

Figure 1: Overview of COMETH. During training, the graph transformer learns to predict the clean graph
G(0) from a noisy graph G(t). Unlike previous discrete-time diffusion models, COMETH performs
transitions at any time t ∈ [0, 1]. During sampling, the clean graph G(0) is first predicted and used to
compute the reverse rate R̂t,θ(G, G̃) as defined in eq. (2). Next, a τ -leaping step is performed to sample
G(t−τ), with the step length fixed to τ . Optionally, multiple corrector steps can be applied at t− τ ,
which experimentally improves sample quality.

2 BACKGROUND

In the following, we overview the continuous-time discrete-state diffusion framework on which COMETH
builds. We provide a complete description of this framework in Appendix A.1, providing intuitions and
technical details, and refer to Yang et al. (2023) for a general introduction to diffusion models.

Continuous-time discrete diffusion In the discrete diffusion setting, we aim at modeling a discrete
data distribution pdata(z

(0)), where z(0) ∈ Z and Z is a finite set with cardinality S := |Z|. A
continuous-time diffusion model (Campbell et al., 2022; Sun et al., 2022; Lou et al., 2023) is a stochastic
process, running from time t = 0 to t = 1. In the following, we denote the marginal distributions of the
state z(t) ∈ Z at time t by qt(z

(t)), and qt|s(z
(t) | z(s)) denotes the conditional distribution of the state

z(t) given the state z(s) ∈ Z at some time s ∈ [0, 1]. We also denote δz̃,z the Kronecker delta, which
is equal to 1 if z̃ = z and 0 otherwise. We define a forward process which gradually transforms the
marginal distribution q0(z

(0)) = pdata(z
(0)) into q1(z

(1)), that is “close” to an easy-to-sample prior
distribution pref(z

(1)), e.g., a uniform categorical distribution.

We define the forward process as a continuous-time Markov chain (CTMC). The current state z(t)

alternates between resting in the current state and transitioning to another state, where a transition rate
matrix R(t) ∈ RS×S controls the dynamics of the CTMC. Formally, the forward process is defined
through the infinitesimal transition probability from z(t) to another state z̃ ∈ Z , for a infinitesimal time
step dt between time t and t+ dt,

qt+dt|t

(
z̃
∣∣ z(t)) := δz̃,z(t) +R(t)

(
z(t), z̃

)
dt,

where R(t)(z(t), z̃) denotes the entry of R(t) that gives the rate from z(t) to z̃. Intuitively, the process is
more likely to transition to a state where R(t)(z(t), z̃) is high, and R(t) is designed so that q1(z(1))
closely approximates the prior distribution pref.

The generative process is formulated as the time reversal of the forward process, therefore interpolating
from q1(z

(1)) to pdata(z
(0)). The rate of this reverse CTMC, R̂(t), is intractable (Campbell et al., 2022)

and has to be modeled by a parametrized approximation, i.e.,

R̂t,θ(z, z̃) = R(t)(z̃, z)
∑

z(0)∈Z

qt|0
(
z̃ | z(0)

)
qt|0

(
z | z(0)

)pθ0|t(z(0) | z), for z ̸= z̃,

where pθ0|t
(
z(0) | z

)
is the denoising neural network with parameters θ.

For efficient training, the conditional distribution qt|0(z
(t) | z(0)) needs to be analytically obtained; see

Appendix A.1 for more details. As demonstrated in Campbell et al. (2022), this property is achieved
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by choosing R(t) = β(t)Rb with β(t) ∈ R being the noise schedule and Rb ∈ RS×S is a constant
base rate matrix. We can now generate samples by simulating the reverse process from t = 1 to t = 0.
Different algorithms can be employed for this purpose, such as Euler’s method (Sun et al., 2022) or
τ -leaping (Campbell et al., 2022).

3 A CONTINUOUS-TIME DISCRETE-STATE GRAPH DIFFUSION MODEL

Here, we present our COMETH framework, a continuous-time discrete-state diffusion model for
graph generation. Let Jm,nK := {m, . . . , n} ⊂ N. We denote n-order attributed graph as a pair
G := (G,X,E), where G := (V (G), E(G)) is a graph, X ∈ {0, 1}n×a, for a > 0, is a node feature
matrix, and E ∈ {0, 1}n×n×b, for b > 0, is an edge feature tensor. Note that node and edge features are
considered to be discrete and consequently encoded in a one-hot encoding. For notational convenience,
in the following, we denote the graph at time t ∈ [0, 1] by G(t), the node feature of node i ∈ V (G) at
time t by x

(t)
i ∈ J1, aK, and similarly the edge feature of edge (i, j) ∈ E(G) at time t by e

(t)
ij ∈ J1, bK.

In addition, we treat the absence of an edge as a special edge with a unique edge feature. By 1, we
denote an all-one vector of appropriate size, by I , the identity matrix of appropriate size, while 0 denotes
the all-zero matrix of appropriate size. Moreover, by a′, we denote the transpose of the vector a.

3.1 FORWARD PROCESS FACTORIZATION

Considering the graph state-space would result in a prohibitively large state, making it impossible to
construct a transition matrix. Therefore, we consider that the forward process factorizes and that the
noise propagates independently on each node and edge, enabling us to consider node and edge state
spaces separately. Formally, let G = (G,X,E) be n-order attributed graph, then we have

qt+dt|t

(
G(t+dt)

∣∣ G(t)
)
:=

n∏
i=1

qt+dt|t

(
x
(t+dt)
i

∣∣ x(t)
i

) n∏
i<j

qt+dt|t

(
e
(t+dt)
ij

∣∣ e(t)ij

)
.

The above factorization reveals a challenge not yet addressed for the continuous-time diffusion model. In
other types of discrete data, such as text, all tokens share the same support. In contrast, nodes and edges
have different attributes, and their respective sets of labels may have different sizes. We, therefore, need
to define their respective forward processes differently.

We then define a pair of rate matrices (R(t)
X ,R

(t)
E ), with R

(t)
X := β(t)RX and R

(t)
E := β(t)RE , where

β is the noise schedule and RX ∈ Rd×d,RE ∈ Re×e are base rate matrices for nodes and edges,
respectively. The two matrices differ in size and allow for controlling the dynamics of the forward
process in distinct ways for nodes and edges. Note that we followed the design choice of Campbell et al.
(2022) introduced in Section 2.

3.2 NOISE MODEL : EXTENDING MARGINAL TRANSITIONS TO CONTINUOUS TIME

Noise model Several noise models have been proposed for discrete diffusion models, including uniform
transitions, absorbing transitions (Austin et al., 2021), and marginal transitions (Vignac et al., 2022). We
propose to use a rate matrix that is analogous to the marginal transition matrix, as it is well adapted for
graph data. However, marginal transitions have not yet been utilized in the continuous-time framework.
To address this, we extend this concept by constructing the following rate matrices, i.e.,

RX = 1m′
X − I and RE = 1m′

E − I,

where mX and mE are vectors representing the marginal distributions mX and mE of node and edge
labels, i.e., they contain the frequency of the different labels in the dataset. With such a rate, the transition
rate to a particular state depends on its marginal probability. Specifically, the more common a node or
edge label is in the dataset, the higher the transition rate to that label. Consequently, this approach helps
preserve sparsity in noisy graphs by favoring transitions to the “no edge” label. Embedding this inductive
bias in the noise model simplifies the model’s task, as it no longer needs to reconstruct this sparsity
during the generative process.

Deriving an explicit expression for the forward process We now aim to understand the relationship
between the rate matrix and the endpoint of the diffusion process at t = 1, q1(G(1)). In fact, we need to
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choose pref so that q1(G) ≈ pref(G) for determining the appropriate prior distribution that aligns with
the chosen rate matrix. Ideally, we seek to use the product of distributions

∏n
i mX

∏n
i<j mE , which, as

demonstrated in Vignac et al. (2022, Theorem 4.1), is optimal within the space of distributions factorized
over nodes and edges. In the following, we explain how to design the noise schedule β to achieve this.

To better understand the relationship between the rate matrix and q1(z
(1)), we require an explicit

expression that readily links qt|0(z(t) | z(0)) to R(t). However, Campbell et al. (2022) provide the
following closed-form for the former, which does not easily allow for the direct deduction of an
appropriate prior distribution,

qt|0

(
z(t) = k

∣∣ z(0) = l
)
=

(
P exp

[
Λ

∫ t

0

β(s)ds

]
P−1

)
kl

, (1)

where Rb = PΛP−1 and exp refers to the element-wise exponential. Given Equation (1), it is not
straightforward to determine the form of q1|0(z(1) | z(0)), and, consequently, the form of q1(z(1)).

We therefore prove that this expression can be refined, offering clearer insights into the behavior of the
forward process.
Proposition 1. For a CTMC (z(t))t∈[0,1] with rate matrix R(t) = β(t)Rb and Rb = 1m′ − I , the
forward process can be written as

Q̄(t) = e−β̄(t)

I +
(
1− e−β̄(t)

)
1m′,

where (Q̄(t))ij = q(z(t) = i | z0 = j) and β̄(t) =
∫ t

0
β(s)ds.

Therefore, if we can design β̄(t) so that limt→1 e
−β̄(t)

= 0, we get that limt→1 Q̄
(t) = 1m′,

which means that z(1) is sampled from the categorical distribution m whatever the value of z(0), i.e.,
q1(z

(1)) = m. In our case, since Proposition 1 holds for every node and edge, and given that the forward
process is factorized, this would yield that q1(G(1)) =

∏n
i mX

∏n
i<j mE as desired. We provide a

more detailed explanation in Appendix A.2.

Proposed noise schedule Even though, in theory, one should set limt→1 β̄
(t) = +∞ so that

limt→1 Q̄
(t) = 1m′, it considerably restricts the space of possible noise schedules. Relying on

the exponentially decreasing behavior of the cumulative noise schedule e−β̄(t)

, one only needs to ensure
that β̄(1) is high enough so that Q̄(1) satisfyingly approximate 1m′. Campbell et al. (2022) proposed an
exponential noise schedule for categorical data. Instead, we rather followed an older heuristic, i.e. using
a cosine-shaped schedule as introduced for discrete-time models in Nichol and Dhariwal (2021). We
therefore propose to use a cosine noise schedule, where

β(t) = α
π

2
sin

(π
2
t
)

and
∫ t

0

β(s)ds = α
(
1− cos

(π
2
t
))

.

Here, α is a constant factor. Since e−β̄1

= e−α, given that α is high enough, q1(G(1)) will be close to
1m′, and we can therefore use

∏n
i mX

∏n
i<j mE as our prior distribution. We provide more intuition

on our noise schedule in Appendix B.3. Finally, noising an n-order attributed graph G = (G,X,E)
amounts to sample from the following distribution,

qt|0

(
G(t)

∣∣ G)
=

(
XQ̄

(t)
X ,EQ̄(t)

E

)
.

Since we consider only undirected graphs, we apply noise to the upper-triangular part of E and
symmetrize. Note that we apply noise to a graph in the same manner as in discrete-time models, with the
only difference being that t is no longer discrete.

3.3 PARAMETRIZATION AND OPTIMIZATION

We can formulate the approximate reverse rate for our graph generation model. We set the unidimensional
rates according to the parametrized approximation derived by Campbell et al. (2022):

R̂t,θ
X

(
x
(t)
i , x̃i

)
= R

(t)
X

(
x̃i, x

(t)
i

)∑
x0

qt|0

(
x̃i | x(0)

i

)
qt|0

(
x
(t)
i | x

(0)
i

)pθ0|t(x(0)
i | G(t)

)
, for x(t)

i ̸= x̃i, (2)
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and similarly for the edge reverse rate R̂t,θ
E

(
e
(t)
ij , ẽij

)
. We elaborate on how to use those rates to

simulate the reverse process in Section B.1. Formally, we set the overall reverse rate to

R̂t,θ(G, G̃) =
∑
i

δG\xi ,G̃\xi R̂
t,θ
X (x

(t)
i , x̃) +

∑
i<j

δ
G\eij ,G̃\eij R̂

t,θ
E (e

(t)
ij , ẽij),

where δG\xi ,G̃\xi is 1 if G and G̃ differ only on node i and 0 otherwise, and similarly δ
G\eij ,G̃\eij

for edges. The reverse rate exhibits the classic diffusion model parametrization, which relies on
predicting a clean data point G given a noisy input G(t). We, therefore, train a denoising neural network
pθ0|t(G | G

(t)) to this purpose. The outputs are normalized into probability distributions for node and
edge labels.

The model can be optimized using the continuous-time ELBO proposed in Campbell et al. (2022).
Additionally, they incorporate direct model supervision by optimizing an auxiliary objective, i.e.
the cross-entropy loss between the predicted clean graph and the ground truth G(0). However, our
preliminary experiments with this ELBO yielded poor empirical results, as detailed in appendix D.4.
Given that the ELBO and cross-entropy share the same optimum, and the cross-entropy loss alone has
been successfully applied for graphs in the discrete-time case (Vignac et al., 2022), we opted to use the
cross-entropy loss LCE as our optimization objective:

Et∼U([0,1]),pdata(G(0)),q(G(t)|G(0))

− n∑
i

log pθ0|t

(
x
(0)
i

∣∣ G(t)
)
− λ

n∑
i<j

log pθ0|t

(
e
(0)
ij | G

(t)
), (3)

where λ ∈ R+ is a scaling factor that controls the relative importance of edges and nodes in the loss. In
practice, we set λ > 1 so that the model prioritizes predicting a correct graph structure over predicting
correct node labels.

3.4 SIMPLE AND POWERFUL POSITIONAL ENCODING WITH RRWP

In all our experiments, we use the graph transformer proposed by Vignac et al. (2022); see Figure 4 in the
appendix. Relying on the fact that discrete diffusion models preserve the sparsity of noisy graphs, they
propose a large set of features to compute at each denoising step to boost the expressivity of the model.
This set includes Laplacian features, connected components features, and node- and graph-level cycle
counts. Even though this set of features has been successfully used in follow works, e.g., Vignac et al.
(2023), Qin et al. (2023), Igashov et al. (2023), no theoretical nor experimental study exists to investigate
the relevance of those particular features. In addition, a rich literature on encodings in graph learning
has been developed, e.g., LapPE (Kreuzer et al., 2021), SignNet (Lim et al., 2023), RWSE (Dwivedi
et al., 2021), SPE (Huang et al., 2023), which led us to believe that powerful encodings developed for
discriminative models should be transferred to the generative setting.

Specifically, in our experiments, we leverage the relative random-walk probabilites (RRWP) encoding,
introduced in Ma et al. (2023). Denoting A the adjacency matrix of a graph G, D the diagonal
degree matrix, and M = D−1A the degree-normalized adjacency matrix, for each pair of nodes
(i, j) ∈ V (G)2, the RRWP encoding computes

PK
ij :=

[
Iij ,Mij ,M

2
ij , . . . ,M

K−1
ij

]
, (4)

where K refers to the maximum length of the random walks. The entry PK
ii corresponds to the RWSE

encoding of node i; therefore, we leverage them as node encodings. This encoding provides an efficient
and elegant solution for boosting model expressivity and performance through a unified encoding.

In the following, we show that RRWP encoding can (approximately) determine if two nodes lie in the
same connected components, approximate the size of the largest connected component, and count small
cycles.
Theorem 2 (Informal). For n ∈ N, let Gn denote the set of n-order graphs and for a graph G ∈ Gn let
V (G) := J1, nK. Then RRWP composed with a universally approximating feed-forward neural network
can

1. determine if two vertices are in the same connected component,

6
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2. approximate the size of the largest connected component in G,

3. approximately count the number p-cycles, for p < 5, in which a node is contained.

See Appendix A.3 for the detailed formal statements. However, we can also show that RRWP encodings
cannot detect if a node is contained in a large cycle of a given graph. We say the RRWP encoding counts
the number of p-cycles for p ≥ 2 if there do not exist two graphs, one containing at least one p-cycle
while the other does not, while the RRWP encodings of the two graphs are equivalent.
Proposition 3. For p ≥ 8, the RRWP encoding does not count the number of p-cycles.

Hence, for p ≥ 8 and K ≥ 0, there exists a graph and two vertex pairs (r, s), (v, w) ∈ V (G)2 such that
(r, s) is contained in C while (v, w) is not and PK

vw = PK
rs .

Equivariance properties Since graphs are invariant to node reordering, it is essential to design methods
that capture this fundamental property of the data. Relying on the similarities between COMETH and
DIGRESS, we establish that COMETH is permutation-equivariant and that our loss is permutation-
invariant. We also establish that the τ -leaping sampling scheme and the predictor-corrector yield
exchangeable distributions, i.e., the model assigns each graph permutation the same probability. Since
those results mainly stem from proofs outlined in Vignac et al. (2022), we moved them to Appendix A.4.

4 EXPERIMENTS

We empirically evaluate COMETH on synthetic and real-world graph generation benchmarks in the
following. For all datasets, the results obtained with the raw model are denoted as COMETH, while
the results using the predictor-corrector are referred to as COMETH-PC. We sample from Cometh
using the tau-leaping algorithm as described in Campbell et al. (2022), a procedure that we detail
in Appendix B.1. We also conduct several ablation studies in Appendix D. Finally, we describe our
conditional generation setting in appendix B.2. The code will be made publicly available in the near
future to ensure reproducibility.

4.1 SYNTHETIC GRAPH GENERATION: PLANAR AND SBM

Here, we outline experiments regarding synthetic graph generation.

Datasets and metrics We first validate COMETH on two benchmarks proposed by Martinkus et al.
(2022), PLANAR and SBM. We measure four standard metrics to assess the ability of our model to
capture structural properties of the graph distributions, i.e., degree (Degree), clustering coefficient
(Cluster), orbit count(Orbit), and the eigenvalues of the graph Laplacian (Spectrum). The reported
values are the maximum mean discrepancies (MMD) between those metrics evaluated on the generated
graphs and the test set. We also report the percentage of valid, unique, and novel (VUN) samples among
the generated graphs to further assess the ability of our model to capture the properties of the targeted
distributions correctly. We provide a detailed description of the metrics in Appendix C.1.

Baselines We evaluate our model against several graph diffusion models, namely DIGRESS (Vignac
et al., 2022), GRUM (Jo et al., 2024), two autoregressive models, GRAN (Liao et al., 2019), and
GRAPHRNN (You et al., 2018), and a GAN, SPECTRE (Martinkus et al., 2022). We re-evaluated previous
state-of-the-art models over five runs, namely DIGRESS and GRUM, to provide error bars for the results.

Results See Table 1. On PLANAR, our COMETH yields very good results over all metrics, being only
outperformed by DIGRESS on Degree and Orbit, but with a much lower VUN. We observe that the
sampling quality benefits from the predictor-corrector scheme, with a near-perfect VUN score. On SBM,
we also obtain state-of-the-art results on all metrics. However, we found that the predictor-corrector did
not improve performance on this dataset.

4.2 SMALL-MOLECULE GENERATION: QM9

Here, we outline experiments regarding small-molecule generation.

Datasets and metrics To assess the ability of our method to model attributed graph distributions, we
evaluate its performance on the standard dataset QM9 (Wu et al. (2018)). Molecules are kekulized using
the RDKit library, removing hydrogen atoms. We use the same split as Vignac et al. (2022), with 100k
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Table 1: Synthetic graph generation results. We report the mean of five runs, as well as 95% confidence
intervals. We reproduced the baselines results for DIGRESS and GRUM, the rest is taken from Jo et al.
(2024). Best results are highlighted in bold.

Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

GRAPHRNN 24.5 9.0 2508 8.8 0
GRAN 3.5 1.4 1.8 1.4 0
SPECTRE 2.5 2.5 2.4 2.1 25
DIGRESS 0.8±0.0 4.1±0.3 0.5±0.0 – 76.0±0.1

GRUM 2.6±1.7 1.3±0.3 10.0±7.7 1.4±0.2 91.0±5.7

DISCO 1.2±0.5 1.3±0.5 1.7±0.7 - 83.6±2.1

COMETH 2.1±1.3 1.5±0.4 3.1±3.0 1.3±0.3 92.5±3.7

COMETH–PC 2.0±0.9 1.1±0.1 7.7±3.8 1.3±0.2 99.5±0.9

Stochastic block model

GRAPHRNN 6.9 1.7 3.1 1.0 5
GRAN 14.1 1.7 2.1 0.9 25
SPECTRE 1.9 1.6 1.6 0.9 53
DIGRESS 1.7±0.1 5.0±0.1 3.6±0.4 – 74.0±4.0

GRUM 2.6±1.0 1.5±0.0 1.8±0.4 0.9±0.2 69.0±8.5

DISCO 0.8±0.2 0.8±0.4 2.0±0.5 - 66.2±1.4

COMETH 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.3

Table 2: Molecule generation results on QM9. We report the mean of five runs, as well as 95%
confidence intervals. Best results are highlighted in bold. Baseline results are taken from Jang et al.
(2024a).

Model Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
GDSS 95.72 98.46 94.25 2.9 0.003
DIGRESS 99.01 96.34 95.39 0.25 0.001
GRAPHARM 90.25 95.26 85.97 1.22 0.002
HGGT 99.22 95.65 94.90 0.40 0.000
COMETH 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.00

molecules for training, 10k for testing, and the remaining data for the validation set. We want to stress
that this split differs from Jo et al. (2022), which uses ∼ 120k molecules for training and the rest as a
test set. We choose to use the former version of this dataset because it allows for selecting the best
checkpoints based on the evaluation of the ELBO on the validation set. We report the Validity over 10k
molecules, as evaluated by RDKit sanitization, as well as the Uniqueness, FCD, using the MOSES
benchmark, and NSPDK. Appendix C.2 provides a complete description of the metrics.

Baselines We evaluate our model against several recent graph generation models, including two diffusion
models, DIGRESS Vignac et al. (2022) and GDSS (Jo et al., 2022)), and two autoregressive models,
HGGT Jang et al. (2024a) and GRAPHARM Kong et al. (2023)).

Results We report results using 500 denoising steps for a fair comparison, as in Vignac et al. (2022).
COMETH performs very well on this simple molecular dataset, notably outperforming its discrete-
time counterpart DIGRESS in terms of valid and unique samples with similar FCD and NSPDK. We
experimentally found that the predictor-corrector does not improve performance on this dataset; therefore,
we do not report results using this sampling scheme.

4.3 MOLECULE GENERATION ON LARGE DATASETS: MOSES AND GUACAMOL

Here, we outline experiments regarding large-scale molecule generation.

Datasets and benchmarks We also evaluate our model on two much larger molecular datasets, MOSES
(Polykovskiy et al., 2020)) and GuacaMol (Brown et al., 2019). The former is a refinement of the ZINC
database and includes 1.9M molecules, with 1.6M allocated to training. The latter is derived from the
ChEMBL database and comprises 1.4M molecules, from which 1.1M are used for training. We use a
preprocessing step similar to Vignac et al. (2022) for the GuacaMol dataset, which filters molecules that
cannot be mapped from SMILES to graph and back to SMILES.
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Table 3: Molecule generation on MOSES. We report the mean of five runs, as well as 95% confidence
intervals. Best results are highlighted in bold, and second best results are underlined.

Model Class Val. ↑ Val. & Uni. ↑ VUN ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
VAE Smiles 97.7 97.5 67.8 99.7 0.57 0.58 5.9
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10
GRAPHINVENT Autoreg. 96.4 96.2 – 95.0 1.22 0.54 12.7
DIGRESS One-shot 85.7 85.7 81.4 97.1 1.19 0.52 14.8
DISCO One-shot 88.3 88.3 86.3 95.6 1.44 0.50 15.1
COMETH One-shot 87.0±0.2 86.9±0.2 83.8±0.2 97.2±0.1 1.44±0.02 0.51±0.0 15.9±0.8

COMETH–PC One-shot 90.5±0.3 90.4±0.3 83.7±0.2 99.1±0.1 1.27±0.02 0.54±0.0 16.0±0.7

Table 4: Molecule generation on GuacaMol. We report the mean of five runs, as well as 95% confidence
intervals. Conversely to MOSES, the GuacaMol benchmark reports scores, so higher is better. Best
results are highlighted in bold, and second best results are underlined.

Model Class Val.↑ Val. & Uni.↑ VUN↑ KL div↑ FCD↑
LSTM Smiles 95.9 95.9 87.4 99.1 91.3
NAGVAE One-shot 92.9 95.5 88.7 38.4 0.9
MCTS One-shot 100.0 100.0 95.4 82.2 1.5
DIGRESS One-shot 85.2 85.2 85.1 92.9 68.0
DISCO One-shot 86.6 86.6 86.5 92.6 59.7
COMETH One-shot 94.4±0.2 94.4±0.2 93.5±0.3 94.1±0.4 67.4±0.3

COMETH–PC One-shot 98.9±0.1 98.9±0.1 97.6±0.2 96.7±0.2 72.7±0.2

Both datasets come with their own metrics and baselines, which we briefly describe here. As for QM9,
we report Validity, as well as the percentage of Valid & Unique (Val. & Uni.) samples, and Valid,
Unique and Novel (VUN) samples for both datasets. We also report Filters, FCD, SNN, and Scaf
for MOSES, as well as KL div and FCD for GuacaMol. These metrics are designed to evaluate the
model’s capability to capture the chemical properties of the learned distributions. We provide a detailed
description of those metrics in Appendix C.3.

Results Similarly to previous graph generation models, COMETH does not match the performance of
molecule generation methods that incorporate domain-specific knowledge, especially SMILES-based
models (see Table 3). However, COMETH further bridges the gap between graph diffusion models and
those methods, outperforming DIGRESS in terms of validity by a large margin.

On GuacaMol (see Table 4), COMETH obtains excellent performance in terms of VUN samples, with an
impressive 12.6% improvement over DIGRESS. The LSTM model still surpasses our graph diffusion
model on the FCD metric. This may be due to the fact that we train on a subset of the original dataset,
whereas the LSTM is trained directly on SMILES.

4.4 CONDITIONAL GENERATION

Table 5: Conditional molecule generation results on QM9. We
report the mean of five runs, as well as 95% confidence intervals.

Model µ HOMO µ & HOMO

MAE ↓ Val ↑ MAE ↓ Val ↑ MAE ↓ Val ↑
DIGRESS 0.81 – 0.56 – 0.87 –
COMETH 0.67±0.02 88.8±0.5 0.32±0.01 94.1±0.8 0.58±0.01 92.5±0.7

We perform conditional generation
on QM9 following the setting of
Vignac et al. (2022). We target
two molecular properties, the dipole
moment µ and the highest oc-
cupied molecular orbital energy
(HOMO). We sample 100 proper-
ties from the test set for each exper-
iment and use them as conditioners
to generate ten molecules. We estimate the properties of the sampled molecules using the Psi4 library
(Smith et al. (2020)) and report the mean absolute error (MAE) between the estimated properties
from the generated set and the targeted properties.

We report our results against DIGRESS in Table 5. Overall, COMETH outperforms DIGRESS by large
margin, with 18%, 43%, and 33% improvements on µ, HOMO and both targets respectively. Those
performance improvements indicate the superiority of classifier-free guidance over classifier-guidance for
conditional graph generation.
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5 CONCLUSION

Here, to leverage the benefits of continuous-time and discrete-state diffusion model, we proposed
COMETH, a continuous-time discrete-state graph diffusion model, integrating graph data into a continuous
diffusion model framework. We introduced a new noise model adapted to graph specificities using
different node and edge rates and a tailored marginal distribution and noise schedule. In addition, we
successfully replaced the structural features of DIGRESS with a single encoding with provable expressivity
guarantees, removing unnecessary features. Empirically, we showed that integrating continuous time
leads to significant improvements across various metrics over state-of-the-art discrete-state diffusion
models on a large set of molecular and non-molecular benchmark datasets.
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Appendices
We provide proofs and additional theoretical background in Appendix A. We give details on our
implementation in Appendix B, experimental details in Appendix C and additional experimental results
in Appendix D. Finally, we provide visualization for generated samples in Appendix F.

A THEORETICAL DETAILS

Here, we outline the theoretical details of our COMETH architecture.

A.1 ADDITIONAL BACKGROUND

Continuous-time discrete diffusion Here, we provide a more detailed description of the continuous-time,
discrete-state diffusion model introduced in Campbell et al. (2022).

We begin by recalling our notations. We aim to model a discrete data distribution pdata(z
(0)), where

z(0) ∈ Z and Z is a finite set with cardinality S := |Z|. In the following, the state is denoted by
z(t) ∈ Z , where time is denoted by t ∈ [0, 1], and z(t) ∈ {0, 1}S is its one-hot encoding. The marginal
distributions at time t are denoted by qt(z

(t)) and the conditional distribution of the state z(t) given the
state z(s) at some time s ∈ [0, 1] by qt|s(z

(t) | z(s)). We also denote δz̃,z the Kronecker delta, which
equals 1 if z̃ = z and 0 otherwise.

This model builds upon continuous-time Markov chains (CTMCs). CTMCs are continuous-time
processes in which the state z(t) alternates between remaining in the current state and transitioning
to another state. The dynamics of the CTMC are governed by a rate matrix R(t) ∈ RS×S , where S
represents the number of possible states. We denote R(t)(z(t), z̃) the transition rate from the state z(t) to
another state z̃.

Precisely, a CTMC satisfies three differential equations:

(forward) ∂tqt|s(z̃ | z) =
∑
y

qt|s(y | z)R(t)(y, z̃),

(backward) ∂sqt|s(z | z̃) =
∑
y

R(s)(z̃, y)qt|s(z | y),

(forward, marginals) ∂tqt(z) =
∑
y

qt(y)R
(t)(y, z),

where z, z̃, y ∈ Z and t, s ∈ [0, 1]. The infinitesimal probability of transition from z(t) to another state
z̃ ∈ Z , for a infinitesimal time step dt between time t and t+ dt is given by

qt+dt|t(z̃ | z(t)) :=
{

R(t)(z(t), z̃)dt if z̃ ̸= z(t)

1 +R(t)(z(t), z̃)dt if z̃ = z(t)

= δz̃,z(t) +R(t)(z(t), z̃)dt.

The rate matrix must satisfy the following conditions:

R(t)(z(t), z̃) ≥ 0, and R(t)(z(t), z̃(t)) = −
∑
z̃

R(t)(z(t), z̃) < 0.

The second condition ensures that qt+dt|t(· | z(t)) sums to 1. Intuitively, the rate matrix contains
instantaneous transition rates, i.e., the number of transitions per unit of time. Therefore, the higher
R(t)(z(t), z̃), the more likely the transition from z(t) to z̃. Since the diagonal coefficients of the rate
matrix can be derived from the off-diagonal ones, we will define only the latter in the following.

The CTMC is initialized with q(z(0)) = pdata(z
(0)). The key challenge in designing the rate matrix is

ensuring that the forward process converges to a well-known categorical distribution, that we can later
use as prior distribution during the generative process. In the discrete case, such a distribution can be,
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e.g., a uniform distribution, a discretized-Gaussian distribution, or an absorbing distribution (Campbell
et al., 2022).

The reverse process can also be formulated as a CTMC. Using similar notations than for the forward
process, the reverse process is defined through

qt|t+dt(z
(t) | z̃) = δz(t),z̃ + R̂(t)(z̃, z(t))dt,

where R̂(t) is the rate matrix for the reverse process. Similar to discrete-time diffusion models, this
reverse rate can be expressed as (Campbell et al., 2022, Proposition 1):

R̂(t)(z̃, z(t)) = R(t)(z(t), z̃)
∑

z(0)∈Z

qt|0(z̃ | z(0))
qt|0(z(t) | z(0))

q0|t(z
(0) | z(t)), for z ̸= z̃.

Since the true reverse process q0|t(z(0) | z(t)) is intractable, we approximate it using a neural network
pθ0|t(z

(0) | z) parameterized by θ, yielding the approximate reverse rate:

R̂t,θ(z, z̃) = R(t)(z̃, z)
∑

z(0)∈Z

qt|0(z̃ | z(0))
qt|0(z | z(0))

pθ0|t(z
(0) | z), for z ̸= z̃.

Diffusion models are typically optimized by minimizing the negative ELBO on the negative log-
likelihood, − log pθ0(z

(0)). Campbell et al. (2022, Proposition 2) provides an expression for the ELBO.
Although it is not used in this work, we include it for completeness:

LCT (θ) = T Et∼U([0,T ]),qt(z),r(z|z̃)

∑
z′ ̸=z̃

R̂t,θ(z, z′)−Z(t) log
(
R̂t,θ(z̃, z)

)+ C,

where C is a constant independent of θ, Z(t) =
∑

z′ ̸=z R
(t)(z, z′), and r(z | z̃) = 1 −

δz̃,zR
(t)(z, z̃)/Z(t).

For efficient optimization, it is essential to express qt(z) = qt|0(z | z(0))q0(z(0)) in closed form. In this
context, the transition matrix R(t) must be designed so that qt|0(z | z(0)) has a closed-form expression.
Campbell et al. (2022) established that when R(t) and R(t′) commute for any t and t′, the transition
probability matrix can be written as:

Q̄(t) := qt|0(z
(t) | z(0)) = exp

(∫ t

0

R(s)ds

)
,

where (Q̄(t))ij = q(z(t) = i | z0 = j). This condition is met when the rate is written as R(t) =
β(t)Rb, where β is a time-dependent scalar and Rb is a constant base rate matrix. In that case, the
forward process can be further refined as:

(Q̄(t))kl = qt|0(z
(t) = k | z(0) = l) =

(
P exp

[
Λ

∫ t

0

β(s)ds

]
P−1

)
kl

,

where Rb = PΛP−1 and exp refers to the element-wise exponential.

Given a one-hot encoded data sample z(0), we can sample a noisy state z(t) by sampling a categorical
distribution with probability vector z(0)Q̄(t).

Since most real-world data is multi-dimensional, the above framework needs to be extended to D
dimensions. This is done by assuming that each dimension is noised independently so that the forward
process factorizes as

qt+dt|t(z̃ | z) =
D∏

d=1

qt+dt|t(z̃d | zd),

where qt+∆t|t(z̃d | zd) is the unidimensional forward process on the dth dimension.

14
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Campbell et al. (2022, Proposition 3) establishes how to write the forward and reverse rates in the
D-dimensional case:

R(t)(z̃, z) =

D∑
d=1

δz̃\d,z\dR
(t)
d (z̃d, zd),

R̂t,θ(z, z̃) =

D∑
d=1

δz̃\d,z\dR
(t)
d (z̃d, zd)

∑
z0

qt|0(z̃d | z0d)
qt|0(zd | z0d)

pθ0|t(z
0
d | z),

for zd ̸= z̃d. In brief, assuming that a transition cannot occur in two different dimensions simultaneously,
the multi-dimensional rates are equal to the unidimensional rates in the dimension of transition.
Importantly, if the dimensions are independent in the forward process, they are not in the reverse process
since the whole state is given as input in pθ0|t(z

0
d | z).

Finally, we need a practical way to simulate the reverse process over finite time intervals for D-
dimensional data. To that extent, we follow Campbell et al. (2022) and use the τ -leaping algorithm. The
first step is to sample z(1) from the prior pref(z

(1)). The sampling procedure is as follows. At each
iteration, we keep z(t) and R̂t,θ(z, z̃) constant and simulate the reverse process for a time interval of
length τ . It means that we count all the transitions between t and t− τ and apply them simultaneously.

The number of transitions in each dimension z
(t)
d of the current state z(t), between z

(t)
d and z̃d is

Poisson distributed with mean τR̂t,θ(z
(t)
d , z̃d). In a state space with no ordinal structure, multiple

transitions in one dimension are meaningless, and we reject them. In addition, we experiment using the
predictor-corrector scheme. After each predictor step using R̂(t),θ(z

(t)
d , z̃d), we can also apply several

corrector steps using the expression defined in Campbell et al. (2022), i.e., R̂(t),c = R̂(t),θ +R(t). The
transitions using the corrector rate are counted the same way as for the predictor. This rate admits qt(z(t))
as its stationary distribution, which means that applying the corrector steps brings the distribution of
noisy graphs at time t closer to the marginal distribution of the forward process.

A.2 NOISE SCHEDULE

Here, we provide a proof for Proposition 4, as well as some intuition on the prior distribution.
Proposition 4. For a CTMC (z(t))t∈[0,1] with rate matrix R(t) = β(t)Rb and Rb = 1m′ − I , the
forward process can be written as

Q̄(t) = e−β̄t

I + (1− e−β̄t

)1m′,

where (Q̄(t))ij = q(z(t) = i | z(0) = j) and β̄t =
∫ t

0
β(s)ds.

Proof. Since 1m′ is a rank-one matrix with trace 1, it is diagonalizable and has only one non-zero
eigenvalue, equal to tr(1m′) = 1. Therefore,

Rb = 1m′ − I = PDP−1 − I = P (D − I))P−1,

with D = diag(1, 0, . . . , 0). Denoting β̄t =
∫ t

0
β(s)ds,

Q̄(t) = P exp
(
β̄t(D − I)

)
P−1

= P
(
D − e−β̄t

I − e−β̄t

D
)
P−1

= e−β̄t

I + (1− e−β̄t

)1m′.

We now wish to elaborate on the link between Proposition 4 and the choice of the prior distribution.
Recall our noise schedule,

β(t) = α
π

2
sin

(π
2
t
)

and
∫ t

0

β(s)ds = α
(
1− cos

(π
2
t
))

.
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When t = 1, it holds that e−β̄t

= e−α, and therefore Q̄(1) = e−αI + (1 − e−α)1m′. When α is
large enough, then e−α ≈ 0 and Q̄(1) ≈ 1m′. Denoting (Q̄(1))j the j-th row of Q̄(1), it holds that
(Q̄(1))j = q(z(1) | z(0) = j) ≈m. In other terms, whatever the value z(0), z(1) is sampled from the
same categorical distribution with probability vector m. Therefore,

q1(z
(1)) =

∑
j∈Z

q1|0(z
(1) | z(0) = j)q0(z

(0) = j)

≈
∑
j∈Z

mq0(z
(0) = j)

≈ m = pref(z
(1))

In the D-dimensional case, since the forward process factorizes, we get

q1|0(z
(1) | z(0)) =

D∏
d=0

m = pref(z
(1)),

where d ∈ J0, DK denotes d-th dimension of z ∈ ZD.

A.3 RRWP PROPERTIES

In the following, we formally study the encodings of the RRWP encoding.

Notations A graph G is a pair (V (G), E(G)) with finite sets of vertices or nodes V (G) and edges
E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. If not otherwise stated, we set n := |V (G)|, and the
graph is of order n. For ease of notation, we denote the edge {u, v} ∈ E(G) by (u, v) or (v, u).
An n-order attributed graph is a pair G = (G,X,E), where G = (V (G), E(G)) is a graph and
X ∈ {0, 1}n×a, for a > 0, is a node feature matrix and E ∈ {0, 1}n×n×b, for b > 0, is an
edge feature tensor. Here, we set V (G) := J1, nK. The neighborhood of v ∈ V (G) is denoted by
N(v) := {u ∈ V (G) | (v, u) ∈ E(G)}.
In our experiments, we leverage the relative random-walk probabilites (RRWP) encoding, introduced in
Ma et al. (2023). Denoting A the adjacency matrix of a graph G, and D the diagonal degree matrix,
and M = D−1A the degree-normalized adjacency matrix, for each pair of nodes (i, j), the RRWP
encoding computes

PK
ij :=

[
Iij ,Mij ,M

2
ij , . . . ,M

K−1
ij

]
, (5)

where K refers to the maximum length of the random walks. The entry PK
ii corresponds to the RWSE

encoding of node i; therefore, we leverage them as node encodings. This encoding alone is sufficient to
train our graph diffusion model and attain state-of-the-art results.

In the following, we show that RWPP encoding can (approximately) determine if two nodes lie in the
same connected components and approximate the size of the largest connected component.
Proposition 5. For n ∈ N, let Gn denote the set of n-order graphs and for a graph G ∈ Gn let V (G) :=
J1, nK. Assume that the graph G has c connected components and let C ∈ {0, 1}n×c be a matrix such
the ith row Ci· is a one-hot encoding indicating which of the c connected components the vertex i
belongs to. Then, for any ε > 0, there exists a feed-forward neural network FNN : Rn×n → [0, 1]n×c

such that
∥FNN(Mn−1)−C∥F ≤ ε.

Proof. Let R := Mn−1. First, since the graphs have n vertices, the longest path in the graphs has
length n− 1. Hence, two vertices v, w ∈ V (G), with v ̸= w are in the same connected component if,
and only, if Rvw ̸= 0. Hence, applying a sign activation function to R pointwisely, we get a matrix over
{0, 1} with the same property. Further, by adding Dn ∈ {0, 1}n×n, an n× n diagonal matrix with
ones on the main diagonal, to this matrix, this property also holds for the case of v = w. In addition,
there exists a permutation matrix Pn such that applying it to the above matrix results in a block-diagonal
matrix B ∈ {0, 1}n×n such that Bv· = Bw·, for v, w ∈ V (G), if, and only, if the vertices v, w are in
the same connected component. Since n is finite, the number of such B matrices is finite and hence
compact. Hence, we can find a continuous function mapping each possible row of Bv·, for v ∈ V (G),
to the corresponding one-hot encoding of the connected component. Since all functions after applying
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the sign function are continuous, we can approximate the above composition of functions via a two-layer
feed-forward neural network leveraging the universal approximation theorem (Cybenko, 1992; Leshno
et al., 1993).

Similarly, we can also approximate the size of the largest component in a given graph.
Proposition 6. For n ∈ N, let Gn denote the set of n-order graphs and for G ∈ Gn let V (G) := J1, nK.
Assume that S is the number of vertices in the largest connected component of the graph G. Then, for
any ε > 0, there exists a feed-forward neural network FNN : Rn×n → [1, n],

|FNN(Mn−1)− S| ≤ ε.

Proof. By the proof of Proposition 5, we a get a block-diagonal matrix B ∈ {0, 1}n×n, such that
Buv = 1 if, and only, if u, v are in the same connected components. Hence, by column-wise summation,
we get the number of vertices in each connected component. Hence, there is an n× 1 matrix over {0, 1},
extracting the largest entry. Since all of the above functions are continuous, we can approximate the
above composition of functions via a two-layer feed-forward neural network leveraging the universal
approximation theorem (Cybenko, 1992; Leshno et al., 1993).

Moreover, we can show RRWP encodings can (approximately) count the number p-cycles, for p < 5, in
which a node is contained. A p-cycle is a cycle on p vertices.
Proposition 7. For n ∈ N, let Gn denote the set of n-order graphs and for G ∈ Gn let V (G) := J1, nK.
Assume that c ∈ Nn contains the number of p-cycles a node is contained in for all vertices in G, for
p ∈ {3, 4}. Then, for any ε > 0, there exists a feed-forward neural network FNN : Rn×n → Rn,

∥FNN(P n−1)− c∥2 ≤ ε.

Proof. For p ∈ {3, 4}, Vignac et al. (2022, Appendix B.2) provide simple linear-algebraic equations for
the number of p-cycles each vertex of a given graph is contained based on powers of the adjacency
matrix, which can be expressed as compositions of linear mappings, i.e., continuous functions. Observe
that we can extract these matrices from P n−1. Further, note that the domain of these mappings is
compact. Hence, we can approximate this composition of functions via a two-layer feed-forward neural
network leveraging the universal approximation theorem (Cybenko, 1992; Leshno et al., 1993).

However, we can also show that RRWP encodings cannot detect if a node is contained in a large cycle of
a given graph. We say that an encoding, e.g., RRWP, counts the number of p-cycles for p ≥ 2 if there do
not exist two graphs, one containing at least one p-cycle while the other does not, while the RRWP
encodings of the two graphs are equivalent.
Proposition 8. For p ≥ 8, the RRWP encoding does not count the number of p-cycles.

Proof. First, by Rattan and Seppelt (2023), the RRWP encoding does not distinguish more pairs of
non-isomorphic graphs than the so-called (1, 1)-dimensional Weisfeiler–Leman algorithm. Secondly, the
latter algorithm is strictly weaker than the 3-dimensional Weisfeiler–Leman algorithm in distinguishing
non-isomorphic graphs (Rattan and Seppelt, 2023, Theorem 1.4). However, by Fürer (2017, Theorem 4),
the 3-dimensional Weisfeiler–Leman algorithm cannot count 8-cycles.

Hence, the above proposition implies the following results.
Corollary 9. For p ≥ 8 and K ≥ 0, there exists a graph G containing a p-cycle C , and two vertex pairs
(r, s), (v, w) ∈ V (G)2 such that (r, s) is contained in C while (v, w) is not and PK

vw = PK
rs .

A.4 EQUIVARIANCE PROPERTIES

In this section, we prove that our model is equivariant (Proposition 10) and that our loss is permutation-
invariant (Proposition 11), relying on Vignac et al. (2022, Lemma 3.1 and 3.2). We also prove
exchangeability with Proposition 12.

Let us start by defining the notation for a graph permutation. Denote π a permutation, π acts on the
attributed graph G = (G,X,E) as,
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• πG = (V (πG), E(πG)) where V (πG) = {π(1), . . . , π(n)} and E(πG) = {(π(i), π(j)) |
(vi, vj) ∈ E(G)},

• πX the matrix obtained by permutating the rows of X according to π, i.e. (πX)i = xπ−1(i),

• Similarly, πE is the tensor obtained by the permutation of the components eij of E according
to π, i.e. (πE)ij = eπ−1(i)π−1(j).

Proposition 10 (Equivariance). DIGRESS’ graph transformer using RWSE as node encodings and
RRWP as edge encodings is permutation equivariant.

Proof. We recall the sufficient three conditions stated in Vignac et al. (2022) for ensuring permutation-
equivariance of the DIGRESS architecture, namely,

• their set of structural and spectral features is equivariant.

• All the blocks of their graph transformer architecture are permutation equivariant.

• The layer normalization is equivariant.

Replacing the first condition with the permutation-equivariant nature of the RRWP-based node and edge
encodings completes the proof.

We now derive a more thorough proof of the permutation invariance of the loss compared to Vignac et al.
(2022, Lemma 3.2), relying on the permutation-equivariant nature of both the forward process and the
denoising neural network.
Proposition 11 (Permutation invariance of the loss). The cross-entropy loss defined in Equation 3 is
invariant to the permutation of the input graph G(0).

Proof. Given a graph G = (G,X,E), we denote by Ĝ = (Ĝ, X̂, Ê) the predicted clean graph by the
neural network and πG = (πG, πX, πE) a permutation of this graph, for arbitrary permutation π.
Let us now establish that the loss function is permutation-invariant. We recall the loss function for a
permutation π of the clean data sample G(0) is

LCE := Et∼[0,1],pdata(πG(0)),q(πG(t)|πG(0))

− n∑
i

log pθ0|t(x
(0)
π(i) | πG

(t))− λ

n∑
i<j

log pθ0|t(e
(0)
π(i)π(j) | πG

(t))

 .

Because dimensions are noised independently, the true data distribution pdata(πG
(0)) = pdata(G

(0)) is
permutation-invariant, and the forward process is permutation-equivariant. Thus, we can write,

LCE := Et∼[0,1],pdata(G(0)),q(G(t)|G(0))

− n∑
i

log pθ0|t(x
(0)
π(i) | πG

(t))− λ

n∑
i<j

log pθ0|t(e
(0)
π(i)π(j) | πG

(t))

 .

Using Proposition 10, we also have that pθ0|t(x
(0)
i | G(t)) = pθ0|t(x

(0)
π(i) | πG

(t)) and pθ0|t(e
(0)
ij | G(t)) =

pθ0|t(e
(0)
π(i)π(j) | πG

(t)), which concludes the proof.

Proposition 11 shows that, whatever permutation of the original graph we consider, the loss function
remains the same, and so do the gradients. Hence, we do not have to consider all the permutations of the
same graph during the optimization process.
Proposition 12 (Exchangeability). COMETH yields exchangeable distributions.

Proof. To establish the exchangeability, we require two conditions, a permutation-invariant prior
distribution and an equivariant reverse process.

• Since nodes and edges are sampled i.i.d from the same distribution, our prior distribution is
permutation-invariant, i.e., each permutation of the same random graph has the same probability
of being sampled. Hence pref(πG

(T )) = pref(G
(T )).
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• It is straightforward to see that our reverse rate is permutation-equivariant regarding the joint
permutations of G(t) and G(0). We illustrate this using the node reverse rate,

Rt
X(x̃i, x

(t)
i )

∑
x0

qt|0(x̃i | x(0)
i )

qt|0(x
(t)
i | x

(0)
i )

pθ0|t(x
(0)
i | G(t)).

The forward rate, as well as the forward process, is permutation-equivariant regarding the
joint any permutation on G(t) and G(0), and the neural network is permutation-equivariant.
Similarly, we can reason regarding the edge reverse rate. Therefore, the overall reverse rate is
permutation-equivariant. Since we sample independently across dimensions, the τ -leaping
procedure is also permutation-equivariant.

A.5 CLASSIFIER-FREE GUIDANCE

In the conditional generation setting, one wants to generate samples satisfying a specific property y, to
which we refer as the conditioner. For example, in text-to-image diffusion models, the conditioner
consists of a textual description specifying the image the model is intended to generate. The most
straightforward way to perform conditional generation for diffusion models is to inject the conditioner
into the network—therefore modeling pθ(z(t−1) | z(t),y)—hoping that the model will take it into
account. However, the network might ignore y, and several efficient approaches to conditional generation
for diffusion models were consequently developed.

The approach leveraged by Vignac et al. (2022) to perform conditional generation is classifier-guidance.
It relies on a trained unconditional diffusion model and a regressor, or classifier, depending on the
conditioner, trained to predict the conditioner given noisy inputs. As mentioned in Ho and Salimans
(2021), it has the disadvantage of complicating the training pipeline, as a pre-trained classifier cannot be
used during inference.

To avoid training a classifier to guide the sampling process, classifier-free guidance has been proposed
in Ho and Salimans (2021) and then adapted for discrete data in Tang et al. (2022). A classifier-free
conditional diffusion model jointly trains a conditional and unconditional model through conditional
dropout. That is, the conditioner is randomly dropped with probability puncond during training, in
which the conditioner is set to a null vector. However, Tang et al. (2022) showed that learning the null
conditioner jointly with the model’s parameters is more efficient.

At the sampling stage, the next state is sampled through

log pθ(z(t−1) | z(t),y) = log pθ(z(t−1) | z(t), ∅)+(s+1)(log pθ(z(t−1) | z(t),y)−log pθ(z(t−1) | z(t), ∅)),
(6)

where s is the guidance strength. We refer to Tang et al. (2022) for deriving the above expression for the
sampling process.

Let us now explain how we apply classifier-free guidance in our setting. Denoting R̂t,θ(G, G̃ | y), the
conditional reverse rate can be written as

R̂t,θ(G, G̃ | y) =
∑
i

δG\xi ,G̃\xi R̂
t,θ
X (x

(t)
i , x̃ | y) +

∑
i<j

δ
G\eij ,G̃\eij R̂

t,θ
E (e

(t)
ij , ẽij | y),

and

R̂t,θ
X (x

(t)
i , x̃) = Rt

X(x̃i, x
(t)
i )

∑
x0

qt|0(x̃i | x(0)
i )

qt|0(x
(t)
i | x

(0)
i )

pθ0|t(x
(0)
i | G(t),y), for x(t)

i ̸= x̃i,

and similarly for edges. At the sampling stage, we first compute the unconditional probability
distribution pθ0|t(x

(0)
i | G(t), ∅), where ∅ denotes the learned null vector, then the conditional distribution

pθ0|t(x
(0)
i | G(t),y). These two distributions are combined in the log-probability space in the following

way,

log pθ(z(t−1) | z(t),y) = log pθ(z(t−1) | z(t), ∅)+(s+1)(log pθ(z(t−1) | z(t),y)−log pθ(z(t−1) | z(t), ∅)).
(7)

Finally, the distribution in Equation (7) is exponentiated and plugged into the reverse rate.
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B IMPLEMENTATION DETAILS

Here, we provide some implementation details.

B.1 REVERSE PROCESS : TAU-LEAPING AND PREDICTOR-CORRECTOR

At the sampling stage, we use the τ -leaping algorithm to generate new samples, as proposed by Campbell
et al. (2022). We first sample the graph size and then sample the noisy graph G(t) from the prior
distribution. At each iteration, we keep G(t) and R̂t,θ(G, G̃) constant and simulate the reverse process
for a time interval of length τ . In practice, we count all the transitions between t and t− τ and apply
them simultaneously. The number of transitions between x

(t)
i and x̃i (respectively e

(t)
ij and ẽij) is

Poisson distributed with mean τR
(t),θ
X (x

(t)
i , x̃) (respectively τR̂

(t),θ
E (e

(t)
ij , ẽij)). Since our state space

has no ordinal structure, multiple transitions in one dimension are meaningless, and we reject them.
In addition, we experiment using the predictor-corrector scheme. After each predictor step using
R̂(t),θ(G, G̃), we can also apply several corrector steps using the expression defined in Campbell et al.
(2022), i.e., R̂(t),c = R̂(t),θ + R(t). This rate admits qt(G(t)) as its stationary distribution, which
means that applying the corrector steps brings the distribution of noisy graphs at time t closer to the
marginal distribution of the forward process. As τ is fixed only during the sampling stage, its value can
be adjusted to balance sample quality and efficiency, i.e., the number of model evaluations. We perform
such an ablation study in Appendix D.

B.2 CONDITIONAL GENERATION

If an unconditional generation is essential to designing an efficient diffusion model, conditioning the
generation on some high-level property is critical in numerous real-world applications Corso et al. (2023);
Lee and Min (2022). In addition, Vignac et al. (2022) used classifier guidance, which relies on a trained
unconditional model guided by a regressor on the target property. However, to our knowledge, classifier
guidance has yet to be adapted to continuous-time discrete-state diffusion models. We, therefore, leverage
another approach to conditional diffusion models, classifier-free guidance (Tang et al., 2022), for which
we provide a detailed description in Appendix A.5.

B.3 NOISE SCHEDULE

We plot our noise schedule against the constant noise schedule used for categorical data in Campbell
et al. (2022) in Figure 2. Following Proposition 1, we plot ᾱt = e−β̄t on the y-axis, quantifying the
information level of the original data sample retained at time t. Similarly to Nichol and Dhariwal (2021),
we can see that the constant noise schedule converges towards zero faster than the cosine schedule, hence
degrading the data faster. In our experiments, we perform a hyperparameter search to select the best rate
constant for each dataset, with α ∈ {4, 5, 6}. Following Campbell et al. (2022); we set a minimum time
to tmin = 0.01T because the reverse rates are ill-conditioned close to t = 0.

B.4 ALGORITHMS

We provide the pseudo-code for the training and sampling from COMETH in Figure 3. Similar to
Campbell et al. (2022), we apply a last neural network pass at t = tmin and set the node and edge types
to the types with the highest predicted probability. We omit the corrector steps in the sampling algorithm
for conciseness. They are exactly the same as the predictor τ -leaping steps, using the corrector rate
R̂(t),c = R̂(t),θ +R(t), and applied after time update, i.e. at t− τ . Since those steps are sampled from
different CTMC with rate R̂(t),c, we have control over τ when applying corrector steps. We provide
additional details on the choice of this hyperparameter, denoted as τc, in Appendix C.
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Figure 2: Comparison between our cosine noise schedule and the constant noise schedule proposed by
Campbell et al. (2022). Both schedules are plotted using a rate constant α = 5.

B.5 GRAPH TRANSFORMER

See Figure 4 for an overview of the used graph transformer, building on Vignac et al. (2022). We use the
RRWP encoding, defined in Equation 5, for synthetic graph generation. For molecule generation datasets,
we additionally compute several molecular features used in Vignac et al. (2022), namely the valency and
charge for each node and the molecular weight.

C EXPERIMENTAL DETAILS

Here, we outline the details of your experimental study.

C.1 SYNTHETIC GRAPH GENERATION

We evaluate our method on two datasets from the SPECTRE benchmark (Martinkus et al., 2022), with
200 graphs each. PLANAR contains planar graphs of 64 nodes, and SBM contains graphs drawn from a
stochastic block model with up to 187 nodes. We use the same split as the original paper, which uses 128
graphs for training, 40 for training, and the rest as a validation set. Similar to Jo et al. (2024), we apply
random permutations to the graphs at each training epoch.

We report five metrics from the SPECTRE benchmark, which include four MMD metrics between the
test set and the generated set and the VUN metric on the generated graphs. The MMD metrics measure
the Maximum Mean Discrepancy between statistics from the test and the generated set, namely the
Degree (Degree) distribution, the Clustering coefficient (Cluster) distribution, the count of orbit
information regarding subgraphs of size four Orbit (Orb.) and the eigenvalues (Spectrum) of the graph
Laplacian. The Valid, Unique, and Novel (VUN) metric measures the percentage of valid, unique, and
non-isomorphic graphs to any graph in the training set.

On PLANAR, we report results using τ = 0.002, i.e. using 500 τ -leaping. We also evaluate our model
using 10 corrector steps after each predictor step when t < 0.1T , with τ = 0.002, for a total of 1000
τ -leaping steps. We found our best results using τc = 0.7.

On SBM, we report results using τ = 0.001, i.e., using 1 000 τ -leaping steps.

C.2 SMALL MOLECULE GENERATION : QM9

We evaluate our model on QM9 (Wu et al. (2018)) to assess the ability of our model to model attributed
graph distributiond. The molecules are kekulized using the RDKit library and hydrogen atoms are
removed, following the standard preprocessing pipeline for this dataset. Edges can have three types,
namely simple bonds, double bonds, and triple bonds, as well as one additional type for the absence of
edges. The atom types are listed in Table 6.
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Algorithm 1: Training
Input: A graph G = (X,E)
Sample t ∼ U([0, 1])
Sample Gt ∼XQ̄t

X × EQ̄t
E ▷ Sample sparse noisy graph

Predict pθ0|t(G | G
(t)) ▷ Predict clean graph using neural network

LCE ← −
∑n

i log p
θ
0|t(x

(0)
i | G(t))− λ

∑n
i<j log p

θ
0|t(e

(0)
ij | G(t))

Update θ using LCE

Algorithm 2: τ -leaping sampling of Cometh
Sample n from the training data distribution
Sample G(T ) ∼

∏
i mX

∏
ij mE ▷ Sample random graph from prior

distribution
while t > 0.01 do

for i = 1 to n do
for x̃ in X do

R̂t,θ
X (x

(t)
i , x̃) = Rt

X(x̃i, x
(t)
i )

∑
x0

qt|0(x̃i|x(0)
i )

qt|0(x
(t)
i |x(0)

i )
pθ0|t(x

(0)
i | G(t)), for x(t)

i ̸= x̃i

Sample j
x
(t)
i ,x̃
∼ P(τR̂t,θ

X (x
(t)
i , x̃)) ▷ Count transitions on node i

end
end
for i, j = 1 to n, i < j do

for ẽ in E do

R̂t,θ
E (e

(t)
ij , ẽij) = Rt

E(ẽij , e
(t)
ij )

∑
e0

qt|0(ẽij |e
(0)
ij )

qt|0(e
(t)
ij |e(0)ij )

pθ0|t(e
(0)
ij | G(t)), for e(t)ij ̸= ẽij

Sample j
e
(t)
ij ,ẽij

∼ P(τR̂t,θ
E (e

(t)
ij , ẽij)) ▷ Count transitions on edge ij

end
end
for i = 1 to n do

for x̃ in X do
if j

x
(t)
i ,x̃

= 1 and
∑

x̃ jx(t)
i ,x̃

= 1 then

x
(t−τ)
i = x̃ ▷ Apply unique transition or discard

end
end

end
for i, j = 1 to n, i < j do

for ẽ in E do
if j

e
(t)
ij ,ẽ

= 1 and
∑

ẽ je(t)ij ,ẽ
= 1 then

e
(t−τ)
ij = ẽ ▷ Apply unique transition or discard

end
end

end
t← t− τ

end
G0 ←

∏
i argmax pθ0|t(x

(0)
i | G(t))

∏
ij argmax pθ0|t(e

(0)
ij | G(t)) ▷ Last pass

return G0

Figure 3: Training and Sampling algorithms of COMETH

We use the same split as Vignac et al. (2022), i.e., 100k molecules for training, 13k for testing, and the
rest (20 885 molecules) as a validation set. We choose this split over the one proposed in Jo et al. (2022)
because it leaves a validation set to evaluate the ELBO and select the best checkpoints to minimize this
quantity. In consequence, our training dataset contains roughly 20k molecules, which is less than what
most graph generation works use.

At the sampling stage, we generate 10k molecules. We evaluate four metrics. The Validity is evaluated
by sanitizing the molecules and converting them to SMILES string using the RDKit library. The largest
molecular fragment is selected as a sample if it is disconnected. We then evaluate the Uniqueness among
valid molecules. As stated in Vignac et al. (2022), evaluating novelty on QM9 bears little sense since this
dataset consists of an enumeration of all stable molecules containing the atom above types with size nine
or smaller. We also evaluate the Fréchet ChemNet Distance (FCD), which embeds the generated
set and the test set using the ChemNet neural network and compares the resulting distributions using
the Wasserstein-2 distance (Preuer et al. (2018)). Finally, we evaluate the Neighborhood Subgraph
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Figure 4: Overview of DIGRESS graph transformer.

Pairwise Distance Kernel (NSPDK) between the test set and the generated, which measures the structural
similarities between those two distributions.

C.3 MOLECULE GENERATION ON LARGE DATASETS

We further evaluate COMETH on two large molecule generation benchmarks, MOSES (Polykovskiy et al.,
2020) and GuacaMol (Brown et al., 2019). The molecules are processed the same way as for QM9
and present the same edge types. The atom types for both datasets are listed in Table 6. The filtration
procedure for the GuacaMol consists of converting the SMILES into graphs and retrieving the original
SMILES. The molecules for which this conversion is not possible are discarded. We use the code of
Vignac et al. (2022) to perform this procedure. We use the standard split provided for each dataset.

Both datasets are accompanied by their own benchmarking libraries. For GuacaMol, we use the
distribution learning benchmark. During the sampling stage, we generate 25k molecules for MOSES and
18k for GuacaMol, which is sufficient for both datasets, as they evaluate metrics based on 10k molecules
sampled from the generated SMILES provided.

We then elaborate on the metrics for each dataset. For both datasets, we report Validity, defined in the
same manner as for QM9, the percentage of Valid and Unique (Val. & Uni.) samples, and the percentage
of Valid, Unique, and Novel (VUN) samples. We prefer the latter two metrics over Uniqueness and
Novelty alone, as they provide a better assessment of a model’s performance compared to separately
reporting all three metrics (Validity, Uniqueness, and Novelty). The MOSES benchmark also computes
metrics by comparing the generated set to a scaffold test set, from which we report the Fréchet ChemNet
Distance (FCD), the Similarity to the nearest neighbor (SNN), which computes the average Tanimoto
similarity between the molecular fingerprints of a generated set and the fingerprints of the molecules of a
reference set, and Scaffold similarity (Scaf), which compares the frequencies of the Bemis-Murcko
scaffolds in the generated set and a reference set. Finally, we report the Filters metrics, which indicate
the percentage of generated molecules successfully passing the filters applied when constructing the
dataset. The GuacaMol benchmark computes two scores, the Fréchet ChemNet Distance (FCD) score
and the KL divergences (KL) between the distributions of a set of physicochemical descriptors in the
training set and the generated set.
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Table 6: Details of the molecular datasets. The number of molecules for GuacaMol is computed after
filtration.

Dataset Number of molecules Size Atom types
QM9 133 885 1 to 9 C, N, O, F

MOSES 1 936 962 8 to 27 C, N, S, O, F, Cl, Br
GuacaMol 1 398 223 2 to 88 C, N, O, F, B, Br, Cl, I, P, S, Se, Si

We report results using τ = 0.002, i.e., 500 denoising steps on both datasets. The experiments using the
predictor-corrector were performed using τ = 0.002 and 10 corrector steps for a total of 500 denoising
steps. For both datasets, we used τc = 1.5.

C.4 CONDITIONAL GENERATION

We perform conditional generation experiments on QM9, targeting two properties, the dipole moment µ
and the highest occupied molecular orbital energy (HOMO). They are well suited for conditional
generation evaluation because they can be estimated using the Psi4 library (Smith et al., 2020). We
trained models sweeping over puncond ∈ {0.1, 0.2}, and explore different values for s in J1, 6K during
sampling. We obtained our best results using puncond = 0.1 and s = 1.

During inference, we evaluated our method in the same setting as Vignac et al. (2022). We sampled
100 molecules from the test set, extracted their dipole moment and HOMO values, and generated 10
molecules targeting those properties. We estimated the HOMO energy and the dipole moment of the
generated molecules, and we report the Mean Absolute Error (MAE) between the estimated properties
and the corresponding targets.

To efficiently incorporate the conditioner y, we implemented a couple of ideas proposed in Ninniri et al.
(2023). Instead of using y solely as a global feature, we incorporated it as an additional feature for each
node and edge. Additionally, we trained a two-layer neural network to predict the size of the molecule
given the target properties rather than sampling it from the empirical dataset distribution. Our empirical
observations indicate that this approach enhances performance. As of the time of writing, no official
implementation has been released for Ninniri et al. (2023), rendering it impossible to reproduce their
results. Additionally, since they do not report validity in their experiments on QM9, we choose not to
include their results as a baseline to avoid unfair comparisons.

C.5 COMPUTE RESSOURCES

Experiments on QM9, PLANAR, and SBM were carried out using a single V100 or A10 GPU at the
training and sampling stage. The training time on QM9 is 6 hours, while the training time on SBM and
Planar is approximately 2 days and a half.

We trained models on MOSES or Guacamol using two A100 GPUs. To sample from these models, we
used a single A100 GPU. The training time on MOSES is approximately two days, while training on
GuacaMol required 4 days.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION ON THE NUMBER OF STEPS

To demonstrate why the continuous-time approach allows trade sampling quality and efficiency, we
perform an ablation study on τ . Results are presented in Tables 7 to 9. We report the number of model
evaluations equal to 1/τ instead of τ for readability.

Overall, we observe that the model achieves decent performance across all datasets with just 50 steps.
Increasing the number of model evaluations to 500-700 enhances performance to a state-of-the-art level.
Beyond this point, performance saturates, and models using 1000 steps do not necessarily outperform
those with fewer evaluations, as seen with SBM and PLANAR.
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Table 7: Ablation study on the number of steps for synthetic graphs. We report the mean of 5 runs, as
well as 95% confidence intervals. The best results are highlighted in bold.

Number of steps Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

10 103.0±6.8 11.0±0.1 305.4±10.6 5.3±0.2 0.0±0.0

50 3.6±1.3 3.3±0.2 12.4±4.5 1.3±0.2 41.5±4.51

100 3.1±1.2 2.3±0.3 5.2±2.5 1.4±0.2 76.0±2.23

300 3.4±1.1 1.7±0.5 6.2±3.9 1.3±0.1 86.5±3.82

500 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67

700 2.4±1.2 1.5±0.2 2.2±1.2 1.1±0.2 94.0±2.23

1000 1.9±1.0 1.9±0.2 2.7±1.7 1.5±0.2 89.5±3.51

Stochastic block model

10 166.6±16.1 1.8±0.1 3.3±0.2 2.2±0.2 14.0±4.72

50 2.6±0.6 1.5±0.0 1.9±0.2 0.9±0.1 62.0±5.44

100 1.4±0.7 1.5±0.0 1.7±0.2 0.9±0.1 70.5±5.26

300 2.4±0.6 1.5±0.0 1.8±0.3 0.8±0.0 65.5±5.94

500 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26

700 2.6±0.9 1.5±0.0 1.6±0.1 0.9±0.1 69.0±4.06

1000 1.8±0.7 1.5±0.0 1.7±0.4 0.8±0.1 67.5±3.10

Table 8: Ablation study on the number of steps for QM9. We report the mean of 5 runs, as well as
95% confidence intervals.

Number of steps Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
10 88.69±0.36 98.57±0.13 87.42±0.46 0.84±0.02 0.001±0.0

50 99.07±0.05 96.78±0.16 95.88±0.21 0.25±0.01 0.000±0.0

100 99.42±0.06 96.81±0.06 96.24±0.05 0.26±0.01 0.000±0.0

300 99.53±0.02 96.57±0.12 96.12±0.11 0.25±0.01 0.000±0.0

500 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.0

700 99.53±0.05 96.65±0.15 96.2±0.15 0.25±0.01 0.000±0.0

1000 99.57±0.07 96.79±0.08 96.37±0.14 0.25±0.01 0.000±0.0

Table 9: Ablation study on the number of steps for MOSES We report the mean of five runs, as well
as 95% confidence intervals. The best results are highlighted in bold.

Number of steps Val. ↑ Val. & Uni. ↑ VUN ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
10 26.1±0.2 26.1±0.2 26.0±0.2 59.9±0.6 7.88±0.13 0.36±0.0 8.9±1.1

50 82.9±0.3 82.9±0.3 80.5±0.3 94.6±0.1 1.54±0.01 0.49±0.0 18.4±1.0

100 85.8±0.2 85.7±0.1 82.9±0.2 96.5±0.1 1.43±0.01 0.5±0.0 17.2±0.6

300 86.9±0.2 86.9±0.2 83.8±0.2 97.1±0.1 1.44±0.02 0.51±.0 17.8±1.0

500 87.0±0.2 86.9±0.2 83.8±0.2 97.2±0.1 1.44±0.02 0.51±0.0 15.9±0.8

700 87.2±0.2 87.1±0.2 83.9±0.2 97.2±0.1 1.43±0.02 0.51±0.0 15.9±0.4

1000 87.2±0.2 87.2±0.2 84.0±0.2 97.2±0.1 1.44±0.01 0.51±0.0 17.3±0.9

D.2 ABLATION ON THE NOISE MODEL

To emphasize the impact of using marginal transitions instead of uniform transitions, we trained models
on PLANAR and SBM with the uniform noise model (see table 10). While the uniform model performs
competitively with marginal transitions on SBM, the VUN score remains significantly higher with
marginal transitions. On PLANAR, marginal transitions demonstrate a substantially superior performance
compared to uniform transitions.

D.3 ABLATION ON THE POSITIONAL ENCODING

We conducted an ablation study on the positional encoding to compare the benefits of the RRWP encoding
against the feature set used in Digress (see table 11). While both approaches achieve comparable results
across most distribution metrics, RRWP significantly outperforms DiGress’ set of features in terms of
VUN.
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Table 10: Ablation study on the noise model for synthetic graphs. We report the mean of 5 runs, as
well as 95% confidence intervals.

Noise Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

Marginal 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67

Uniform 14.3±4.2 3.8±0.6 14.2±6.1 1.7±0.2 32.5±4.4

Stochastic block model

Marginal 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26

Uniform 1.6±0.3 1.5±0.0 1.8±0.3 0.9±0.1 63.5±6.6

Table 11: Ablation study on the positional encoding for synthetic graphs. We report the mean of 5
runs, as well as 95% confidence intervals.

Noise Model Degree ↓ Cluster ↓ Orbit ↓ Spectrum ↓ VUN [%] ↑
Planar graphs

RRWP 2.1±1.3 1.5±0.3 3.1±3.0 1.2±0.2 92.5±3.67

DiGress’ features 2.2±1.1 2.2±0.3 18.0±7.4 1.3±0.2 67.5±3.7

Stochastic block model

Marginal 2.4±1.1 1.5±0.0 1.7±0.2 0.8±0.1 77.0±5.26

DiGress’ features 2.3±1.2 1.5±0.0 1.3±0.2 0.9±0.2 64.5±6.41

D.4 ABLATION ON THE LOSS FUNCTION

To better justify our choice to use the cross-entropy as our loss function instead of the ELBO, we provide
the results of our experiments on QM9 using the ELBO as our loss function. Figure 5 presents the
validation performance of both approaches regarding Validity, over 512 samples. While the cross-entropy
loss allows to quickly reach a near-perfect Validity, the model trained using the ELBO saturates below
80%. The significant performance gap on a simple dataset like QM9 underscores the inefficiency of
using the ELBO as the loss function for Cometh.

Figure 5: Validation results on QM9 using the cross-entropy loss and the ELBO loss.

D.5 ABLATION ON THE NOISE SCHEDULE

We also performed a simple ablation study on QM9 to compare the performance of our cosine noise
schedule against the exponential noise schedule β(t) = αγt log γ, using α = 0.8 and γ = 2. Overall,
our cosine schedule performs better on every metric, except the Uniqueness.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: Ablation on the noise schedule on QM9. We report the mean of five runs, as well as 95%
confidence intervals. Best results are highlighted in bold.

Model Validity ↑ Uniqueness ↑ Valid & Unique ↑ FCD ↓ NSPDK ↓
COSINE 99.57±0.07 96.76±0.17 96.34±0.2 0.25±0.01 0.000±0.00

EXP 98.28±0.15 97.0±0.13 95.34±0.15 0.31±0.01 0.001±0.00

E LIMITATIONS

Although our model advances the state-of-the-art across all considered benchmarks, it still faces quadratic
complexity, a common issue in graph diffusion models. This problem could be alleviated by adapting
methods like EDGE (Chen et al., 2023) used to scale DIGRESS for large graph generation. Additionally,
our approach does not support the generation of continuous features and is restricted to categorical
attributes. To generate continuous features, it should be combined with a continuous-state diffusion
model, resulting in an approach similar to Vignac et al. (2023).

F SAMPLES

Figure 6: Samples from COMETH on PLANAR (top) and SBM (bottom)

Figure 7: Samples from COMETH on QM9.
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Figure 8: Samples from COMETH on MOSES.

Figure 9: Samples from COMETH on GuacaMol. The samples on this dataset exhibit some failure cases,
such as disconnected molecules or 3-cycles of carbon atoms.
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