
Under review as a conference paper at ICLR 2021

RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING:
LEARNING FAST WITHOUT A MODEL

Anonymous authors
Paper under double-blind review

A THEORETICAL RESULTS

A.1 TABULAR VERSION OF REDQ

In the tabular algorithm below, for clarity we use G = 1.

Algorithm 1 Tabular REDQ

1: Initialize
{
Qi(s, a), s ∈ S, a ∈ A

}N
i=1

,
2: repeat
3: Choose a ∈ A based on

{
Qi(s, a)

}N
i=1

, observe r, s′

4: Randomly choose a subsetM of size M from
{

1, .., N
}

5: y = r + γmaxa′∈Aminj∈MQj(s′, a′)
6: for i = 1, . . . , N do:
7: Qi(s, a)← Qi(s, a) + α(y −Qi(s, a))

8: s← s′

9: until end

Alternatively in Algorithm 2, at each iteration we could just update one of the Qi functions.

A.2 PROOF OF THEOREM 1

We first prove the following lemma:

Lemma 1. Let X1, X2, . . . be an infinite sequence of i.i.d. random variables. Let F (x) be the cdf
of Xm and let τ = inf{x : F (x) > 0}. Also let Ym = min{X1, X2, . . . , Xm}. Then Y1, Y2, . . .
converges to τ almost surely.

Proof:

Let Fm(x) be the cdf of Ym. Since X1, ..., Xm are independent,

Fm(x) = 1− [1− F (x)]m

For x < τ , Fm(x) = 0 since F (x) = 0. For x > τ , Fm(x)
m→∞−−−−→ 1. Therefore, Ym weakly

converges to τ .

Moreover, for each ω ∈ Ω, {Ym(ω)} is a decreasing sequence. So {Ym(ω)} either converges to a
real number or −∞. Therefore Ym → Y almost surely for some random variable Y . Combined
with the result that Ym

d−→ τ , we can conclude that

Ym
a.s.−−→ τ

Proof of Theorem 1:

1. Let B1, B2 be two subsets of N =
{

1, ..., N
}

of size M . First of all, since {Qj(s, a)}Nj=1 are
i.i.d for any a ∈ A, minj∈B1 Q

j(s, a) and minj∈B2 Q
j(s, a) are identically distributed. Further-

more, since Qj(s, a) are independent for all a ∈ A and 1 ≤ j ≤ N ,
{

minj∈B Q
j(s, a)

}
a∈A are

1

Under review as a conference paper at ICLR 2021

independent for any B ⊂ N . Denote the distribution function of maxa minj∈B1
Qj(s, a) as F1(x)

and the distribution function of maxa minj∈B2
Qj(s, a) as F2(x). Then for any x ∈ R,

F1(x) = P
(

max
a

min
j∈B1

Qj(s, a) ≤ x
)

= P
(
∩a∈A {min

i∈B1

Qj(s, a) ≤ x}
)

=
∏
a∈A

P
(

min
j∈B1

Qj(s, a) ≤ x
)

=
∏
a∈A

P
(

min
j∈B2

Qj(s, a) ≤ x
)

= P
(

max
a

min
j∈B2

Qj(s, a) ≤ x
)

= F2(x)

Therefore, we have proved that maxa minj∈B1 Q
j(s, a) and maxa minj∈B2 Q

j(s, a) are identically
distributed. Then

E
[
ZM,N

]
= γE

[
(max

a
min
j∈M

Qj(s, a)−max
a

Qπ(s, a))
]

= γE
[1(

N
M

) ∑
B⊂N
|B|=M

max
a

min
j∈B

Qj(s, a)
]
− γmax

a
Qπ(s, a)

= γ

(
E
[

max
a

min
1≤j≤M

Qj(s, a)
]
−max

a
Qπ(s, a)

)
which does not depend on N .

2. It follows from 1 that

E
[
Z1,N

]
= γ

(
E
[

max
a

Q1(s, a)
]
−max

a
Qπ(s, a)

)
Since maxaQ

1(s, a) ≥ Q1(s, a′) for all a′ ∈ A, we have

E
[

max
a

Q1(s, a)
]
≥ E

[
Q1(s, a′)

]
for all a′ ∈ A. Consequently,

E
[

max
a

Q1(s, a)
]
≥ max

a
E
[
Q1(s, a)

]
= max

a
Qπ(s, a)

Hence

E
[
Z1,N

]
= γ

(
E
[

max
a

Q1(s, a)
]
−max

a
Qπ(s, a)

)
≥ 0

3. Since maxa min1≤j≤M Qj(s, a) ≥ maxa min1≤j≤M+1Q
j(s, a),

E
[
ZM,N

]
= γ

(
E
[

max
a

min
1≤j≤M

Qj(s, a)
]
−max

a
Qπ(s, a)

)
≥ γ

(
E
[

max
a

min
1≤j≤M+1

Qj(s, a)
]
−max

a
Qπ(s, a)

)
= E

[
ZM+1,N

]
4. Let Fa(x) be the cdf of Qj(s, a) and let τa = inf{x : Fa(x) > 0}. Here we assume the
approximation error eisa is non-trivial, which implies τa < Qπ(s, a). Note that τa can be equal to
−∞. Let

YMa = min
1≤i≤M

Qj(s, a)

From Lemma 1 we have YMa converges to τa almost surely for each a. Because the action space is
finite, it therefore follows that

YM = max
a

YMa

converges almost surely to τ = maxa τa. Furthermore, for each a we have

YMa = min
1≤j≤M

Qj(s, a) ≥ min
1≤j≤M+1

Qj(s, a) = YM+1
a

from which it follows that YM ≥ YM+1. Thus {YM} is a monotonically decreasing sequence.
We also note that due to the assumption eisa ≤ c for all a and i, and because Qπ(s, a) is finite

2

Under review as a conference paper at ICLR 2021

for all s and a, it follows that YM ≤ d for all M for a finite d. Thus {YM} is a bounded-above,
monotonically-decreasing sequence of random variables which converges almost surely to τ . We
can therefore apply the monotone convergence theorem, giving

E
[
ZM,N

]
= γ

(
E
[

max
a

min
1≤j≤M

Qj(s, a)
]
−max

a
Qπ(s, a)

)
= γ

(
E[max

a
YMa]−max

a
Qπ(s, a)

)
M→∞−−−−→ γ

(
max
a

τa −max
a

Qπ(s, a)

)
< 0,

where the last inequality follows from τa < Qπ(s, a) for all actions a.

A.3 PROOF OF THEOREM 2

For convenience, define YB = maxa′ minj∈B Q
j(s′, a′) for any subset B ⊂ N . The distribution of

YB only depends on the cardinality of B; for a fixed M , let vM , Var(YB) where |B| = M .
Proposition 1.

Var(YM,N) ≤ GM (N)

for some function GM (N) satisfying

lim
N→∞

GM (N)

M2vM/N
= 1

Consequently,
lim
N→∞

Var(YM,N) = 0

Proof. Suppose N > 2M .

Var(YM,N) =
γ2(
N
M

)2 Var(
∑
B⊂N
|B|=M

YB)

=
γ2(M !)2(

ΠM−1
i=0 (N − i)

)2 [∑
B⊂N

Var(YB) + 2 ·
∑

B1,B2⊂N
B1 6=B2

Cov(YB1
, YB2

)

]

Let A =
∑
B1,B2⊂N
B1 6=B2

Cov(YB1
, YB2

), which consists of((N
M

)
2

)
=

1

2
· N !

(N −M)!M !
·
(

N !

(N −M)!M !
− 1

)
=

1

2(M !)2
·ΠM−1

i=0 (N − i)2 − N !

2 ·M !(N −M)!

terms.
((N

M)
2

)
can be seen as a polynomial function of N with degree 2M . The coefficient for the

term N2M is 1
2(M !)2 . The coefficient for the term N2M−1 is 1

2(M !)2 · (−2
∑M−1
i=0 i).

Note that YB1
and YB2

are independent ifB1∩B2 = ∅. The total number of different pairs (B1, B2)
such that B1 ∩B2 = ∅ is(

N

2M

)
·
(

2M

M

)
· 1

2
=

1

2(M !)2
· N !

(N − 2M)!
=

1

2(M !)2
·Π2M−1

i=0 (N − i)

This is again a polynomial function of N with degree 2M . The coefficient of the term N2M is
1

2(M !)2 . The coefficient of the term N2M−1 is 1
2(M !)2 · (−

∑2M−1
i=0 i). So the number of non-zero

terms in A is at most
1

2(M !)2
·ΠM−1

i=0 (N − i)2 − N !

2 ·M !(N −M)!
− 1

2(M !)2
·Π2M−1

i=0 (N − i)

=
M2

2(M !)2
·N2M−1 +O(N2M−2)

3

Under review as a conference paper at ICLR 2021

Moreover, by Cauchy-Schwarz inequality, for any B1, B2 ⊂ N

Cov(YB1 , YB2) ≤
√

Var(YB1) ·Var(YB2) = vM

Therefore,

A ≤ [
M2

2(M !)2
·N2M−1 +O(N2M−2)]vM

which implies

Var(YM,N) =
γ2(M !)2(

ΠM−1
i=0 (N − i)

)2 [∑
B⊂N

Var(YB) + 2 ·
∑

B1,B2⊂N
B1 6=B2

Cov(YB1
, YB2

)

]

=
γ2(M !)2(

ΠM−1
i=0 (N − i)

)2 [∑
B⊂N

Var(YB) + 2A

]

≤ γ2
[
M2 · N2M−1

ΠM−1
i=0 (N − i)2

+O(
1

N2
)
]
vM

N→∞−−−−→ 0

Moreover,

lim
N→∞

M2vM/N[
M2 · N2M−1

ΠM−1
i=0 (N−i)2 +O(1

N2)
]
vM

= lim
N→∞

ΠM−1
i=0 (N − i)2

N2M
= 1

A.4 PROOF OF CONVERGENCE OF TABULAR REDQ

Assuming that the step size satisfies the standard Robbins-Monro conditions, it is easily seen that
the tabular version of REDQ converges with probability 1 to the optimal Q function. In fact, for our
Weighted scheme, where we take the expectation over all sets of sizeM , the convergence conditions
in Lan et al. (2020) are fully satisfied.

For the randomized case, only very minor changes are needed in the proof in Lan et al. (2020). Note
that in the case of REDQ, the underlying deterministic target is:

F
(
Q1, Q2, . . . , QN

)
(s, a) = r(s, a) + γ

∑
s′

p (s′ | s, a)
∑
B⊂N
|B|=M

1(
N
M

) max
a′

min
j∈B

Qj(s′, a′)

Let T be the operator that concatenates N identical copies of F , so that T : RS×A×N → RS×A×N
where S and A are the cardinalities of the state and action spaces, respectively. It is easy to show
that the operator T is a contraction with the l∞ norm. The stochastic approximation noise term is
given by

ω(s, a) = R− r(s, a) + γ
[

max
a′

min
j∈B

Qj(s′, a′)−
∑
s′

p (s′ | s, a)
∑
B⊂N
|B|=M

1(
N
M

) max
a′

min
j∈B

Qj(s′, a′)
]

It is straightforward to show

E
[
ω2(s, a) | Fpast

]
≤ Var (R | S = s,A = a) + max

1≤i≤N
max
s′,a′

(
Qi(s′, a′)

)2
(1)

As in Lan et al. (2020), it follows from the contraction property and (1) that REDQ converges with
probability 1 to the optimal Q function (Tsitsiklis, 1994; Bertsekas & Tsitsiklis, 1996).

4

Under review as a conference paper at ICLR 2021

B HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Since MBPO builds on top of a SAC agent, to make our comparisons fair, meaningful, and consistent
with previous work, we make all SAC related hyperparameters exactly the same as used in the
MBPO paper (Janner et al., 2019). Table 1 gives a list of hyperparameter used in the experiments.
For all the REDQ curves reported in the results section, we use a Q network ensemble size N of
10. We use a UTD ratio G of 20 on the four MuJoCo environments, which is the same value that
was used in the MBPO paper. Thus most of the hyperparameters are made to be the same as in the
MBPO paper to ensure fairness and consistency in comparisons.

For all the algorithms and variants, we also first obtain 5000 data points by randomly sampling
actions from the action space without making parameter updates. In our experiments we found that
using a high UTD from the very beginning with a very small amount of data can easily lead to
complete divergence on SAC-20. Sampling a number of random datapoints at the start of training is
also a common technique that has been used in previous model-free as well as model-based works
(Haarnoja et al., 2018; Fujimoto et al., 2018; Janner et al., 2019).

Table 1: REDQ hyperparameters

Parameter Value
Shared

optimizer Adam (Kingma & Ba, 2014)
learning rate 3 · 10−4

discount (γ) 0.99
target smoothing coefficient (ρ) 0.005
replay buffer size 106

number of hidden layers for all networks 2
number of hidden units per layer 256
mini-batch size 256
nonlinearity ReLU
random starting data 5000

REDQ
ensemble size N 10
in-target minimization parameter M 2
UTD ratio G 20

OFENet
random starting data 20,000
OFENet number of pretraining updates 100,000
OFENet UTD ratio 4

For the REDQ-OFE experiments, we implemented a minimal version of the OFENet in the original
paper, with no batchnorm layers. We use the recommended hyperparameters as described in the
original paper (Ota et al., 2020). Compared to REDQ without OFENet, the main difference is we
now first collect 20,000 random data points (which is accounted for in the training curves), and then
pre-train the OFENet for 100,000 updates, with the same learning rate and batch size. We then train
OFENet together with REDQ agent, and the OFENet uses a UTD ratio of 4. We tried a simple
hyperparameter search on Ant with 200,000, 100,000 and 50,000 pre-train updates, and learning
rates of 1e-4, 3e-4, 5e-4, and a OFENet UTD of 1, 4 and 20. However, the results are not very
different. It is possible that better results can be obtained through a more extensive hyperparameter
search or other modifications.

B.1 EFFICIENT CALCULATION OF TARGET FOR WEIGHTED VERSION OF REDQ

In section 4 we provided experimental results for the Weighted version of REDQ. Recall that in
this version, instead of sampling a random subsetM in the target, we average over all subsets B in

5

Under review as a conference paper at ICLR 2021

{1, . . . , N} of size M :

y = r + γ
1(
N
M

) ∑
B

(
min
i∈B

Qφtarg,i (s′, ã′)

)
In practice, however, we do not need to sum over all N choose M subsets. Instead we can re-order
the indices so that

Qφtarg,i (s′, ã′) ≤ Qφtarg,i+1
(s′, ã′)

for i = 1, . . . , N − 1. After the re-ordering, we can use the identity:

1(
N
M

) ∑
M⊂N

min
i∈M

Qi(s
′, a′) =

1(
N
M

) N−M+1∑
i=1

(
N − i
M − 1

)
Qφtarg,i (s′, ã′)

6

Under review as a conference paper at ICLR 2021

C SAMPLE EFFICIENCY COMPARISON FOR REDQ, SAC AND MBPO

The sample efficiency claims made in the main paper are based on Table 2 and Table 3. Table 2
shows that compared to naive SAC, REDQ is much more sample efficient. REDQ reaches 3500
on Hopper with 8x sample efficiency, and reaches 5000 for Ant and Humanoid with 5x and 3.7x
sample efficiency. After adding OFE, this becomes more than 7x on Ant and Humanoid. If we
average all the numbers for the four environments, then REDQ is 5.0x as sample efficient, and 6.4x
after including OFE results.

Table 3 compares REDQ to SAC and MBPO. As in the MBPO paper, we train for 125K for Hopper,
and 300K for the other three environments (Janner et al., 2019). The numbers in Table 3 show the
performance when trained to half and to the full length of the MBPO training limits. When averaging
the numbers, we see that REDQ reaches 4.5x and 2.1x the performance of SAC at 150K and 300K.
REDQ is also stronger than MBPO, with 1.4x and 1.1x the performance of MBPO at 150K and
300K. If we include the results of REDQ-OFE, then the numbers become 5.5x and 2.3x the SAC
performance at 150K and 300K, and 1.8x and 1.2x the MBPO performance at 150 and 300K.

Table 2: Sample efficiency comparison of SAC and REDQ. The numbers show the amount of data
collected when the specified performance level is reached. The last two columns show how many
times REDQ and REDQ-OFE are more sample efficient than SAC in reaching that performance.

Score SAC REDQ REDQ-OFE REDQ faster REDQ-OFE faster
Hopper at 3500 933K 116K - 8.04 -
Walker2d at 3500 440K 141K - 3.12 -
Ant at 5000 771K 153K 106K 5.04 7.27
Humanoid at 5000 945K 255K 134K 3.71 7.05

Table 3: Performance comparison of REDQ, REDQ-OFE, MBPO and SAC. The numbers show the
performance achieved when the specific amount of data is collected. The last two columns show the
ratio of REDQ or REDQ-OFE performance compared to SAC and MBPO performance.

Amount of data SAC MBPO REDQ REDQ/SAC REDQ/MBPO
Hopper at 62K 594 1919 3278 5.52 1.71
Hopper at 125K 2404 3131 3517 1.46 1.12
Walker2d at 150K 760 3308 3544 4.66 1.07
Walker2d at 300K 2556 3537 4589 1.80 1.30
Ant at 150K 1245 4388 4803 3.86 1.09
Ant at 300K 2485 5774 5369 2.16 0.93
Humanoid at 150K 674 1604 2641 3.92 1.65
Humanoid at 300K 1633 4199 4674 2.86 1.11
Amount of data SAC MBPO REDQ-OFE OFE/SAC OFE/MBPO
Ant at 150K 1245 4388 5524 4.44 1.26
Ant at 300K 2485 5774 6578 2.65 1.14
Humanoid at 150K 674 1604 5011 7.43 3.12
Humanoid at 300K 1633 4199 5309 3.25 1.26

7

Under review as a conference paper at ICLR 2021

D NUMBER OF PARAMETERS COMPARISON

Table 4 gives the number of parameters for MBPO, REDQ and REDQ-OFE, for all four environ-
ments. As discussed in the main paper, REDQ uses fewer parameters than MBPO for all four
environments: between 26% and 70% as many parameters depending on the environment. After
adding OFENet, REDQ still uses fewer parameters than MBPO, with 80% and 35% as many pa-
rameters on Ant and Humanoid. In particular, it is surprising that REDQ-OFE can achieve a much
stronger result on Humanoid with much fewer parameters.

Table 4: Number of parameters in millions. REDQ uses the same network structure and ensemble
size for all four environments. The difference in the number of parameters comes from the fact that
the environments have very different observation and action dimensions, which will affect the size
of the input and output layers of the networks.

Algorithm Hopper Walker2d Ant Humanoid
MBPO 1.106M 1.144M 1.617M 7.087M
REDQ N = 10 0.769M 0.795M 1.066M 1.840M
REDQ-OFE N = 10 - - 1.294M 2.460M

8

Under review as a conference paper at ICLR 2021

E ADDITIONAL RESULTS FOR REDQ, SAC-20, AND AVG

Due to lack of space, Figure 2 in Section 3 only compared REDQ with SAC-20 and AVG for the
Ant environment. Figure 1 presents the results for all four environments. We can see that in all
four environments, REDQ has much stronger performance and much lower std of bias compared to
SAC-20 and AVG. Note in terms of average normalized bias, AVG is slightly closer to zero in Ant
compared to REDQ, and SAC-20 is a bit closer to zero in Humanoid compared to REDQ; however,
their std of normalized bias is consistently higher. This shows the importance of having a low std of
the bias in addition to a close-to-zero average bias.

(a) Performance, Hopper (b) Average bias, Hopper (c) Std of bias, Hopper

(d) Performance, Walker2d (e) Average bias, Walker2d (f) Std of bias, Walker2d

(g) Performance, Ant (h) Average bias, Ant (i) Std of bias, Ant

(j) Performance, Humanoid (k) Average bias, Humanoid (l) Std of bias, Humanoid

Figure 1: Performance, mean and std of normalized Q bias for REDQ, AVG, and SAC. All three
algorithms have a UTD ratio of 20.

9

Under review as a conference paper at ICLR 2021

F REDQ AND SAC WITH AND WITHOUT POLICY DELAY

Note that in the REDQ pseudocode, the number of policy updates is always one for each data point
collected. We set the UTD ratio for the policy update to always be one in order to isolate the effect
of additional policy updates from Q updates. Note in this way, REDQ, SAC-20 and SAC-1 all take
the same number of policy updates. This helps show that the performance gain mainly comes from
the additional Q updates.

Having a lower number of policy updates can also be seen as a delayed policy update, or policy
delay, and is a method that has been used in previous works to improve learning stability (Fujimoto
et al., 2018). In this section we discuss how delayed policy update, or policy delay, impact the
performance of REDQ and SAC (with UTD of 20). Figure 2 compares REDQ and SAC-20 with and
without policy delay (NPD for no policy delay). We can see that having the policy delay consistently
makes the bias and std of bias lower and more stable, although they have a smaller effect on REDQ
than on SAC. Performance-wise SAC always gets a performance boost with policy delay, while
REDQ sees improvement in Hopper and Humanoid, and becomes slightly worse in Walker2d and
Ant. The results show that policy delay can be important under high UTD when the variance is
not properly controlled. However, with enough variance reduction, the effect of policy delay is
diminished, and in some cases having more policy update can give better performance.

10

Under review as a conference paper at ICLR 2021

(a) Performance, Hopper (b) Average bias, Hopper (c) Std of Bias, Hopper

(d) Performance, Walker2d (e) Average bias, Walker2d (f) Std of Bias, Walker2d

(g) Performance, Ant (h) Average bias, Ant (i) Std of bias, Ant

(j) Performance, Humanoid (k) Average bias, Humanoid (l) Std of bias, Humanoid

Figure 2: Performance, mean and std of normalized Q bias of REDQ and SAC, with and without
policy delay.

11

Under review as a conference paper at ICLR 2021

G REDQ AND SAC WITH DIFFERENT UTD RATIOS

How do different UTD ratio values G impact the performance of REDQ and SAC? Figure 3 com-
pares the two algorithms under UTD ratio values of 1, 5, 10 and 20 for the Ant environment. The
results show that in the Ant environment, REDQ greatly benefits from larger UTD values, with UTD
of 20 giving the best result. For SAC, performance improves slightly for UTD ratios of 5 and 10,
but becomes much worse at 20. Looking at the normalized bias and the std of the bias, we see that
changing the UTD ratio does not change the values very much for REDQ, while for SAC, we see
that as the UTD ratio increases, both the mean and the std of the bias becomes larger and more
unstable.

(a) Performance, Ant (b) Average bias, Ant (c) Std of bias, Ant

(d) Performance, Ant (e) Average bias, Ant (f) Std of bias, Ant

Figure 3: Performance, mean and std of normalized Q bias for REDQ, and SAC, with different UTD
ratios, in Ant environment.

12

Under review as a conference paper at ICLR 2021

H ADDITIONAL RESULTS FOR WEIGHTED VARIANT

In this section we provide additional results for the Weighted variant. Figure 4 shows the perfor-
mance and bias comparison on all four environments. Results show that Weighted and REDQ have
similar average bias and std of bias. In terms of performance, Weighed is worse in Ant and Hop-
per, similar in Humanoid and slightly stronger in Walker2d. Overall REDQ seems to have stronger
performance and is more robust. Randomness in the networks might help alleviate overfitting in the
early stage, or improve exploration, as shown in previous studies (Osband et al., 2016; Fortunato
et al., 2018). This can be important since positive bias in Q learning-based methods can sometimes
help exploration. This is commonly referred to as optimistic initial values, or optimism in the face of
uncertainty (Sutton & Barto, 2018; Brafman & Tennenholtz, 2002). Thus conservative Q estimates
in recent algorithms can lead to the problem of pessimistic underexploration (Ciosek et al., 2019).
An interesting future work direction is to study how robust and effective exploration can be achieved
without relying on optimistic estimates.

(a) Performance, Hopper (b) Average bias, Hopper (c) Std of bias, Hopper

(d) Performance, Walker2d (e) Average bias, Walker2d (f) Std of bias, Walker2d

(g) Performance, Ant (h) Average bias, Ant (i) Std of bias, Ant

(j) Performance, Humanoid (k) Average bias, Humanoid (l) Std of bias, Humanoid

Figure 4: Performance, mean and std of normalized Q bias for REDQ and Weighted.

13

Under review as a conference paper at ICLR 2021

REFERENCES

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scien-
tific Belmont, MA, 1996.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. In Advances in Neural Information Processing Systems, pp. 1787–1798, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
ICLR, 2018.

Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, pp. 12519–
12530, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Kei Ota, Tomoaki Oiki, Devesh K Jha, Toshisada Mariyama, and Daniel Nikovski. Can increasing
input dimensionality improve deep reinforcement learning? arXiv preprint arXiv:2003.01629,
2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16
(3):185–202, 1994.

14

	Theoretical Results
	Tabular version of REDQ
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of convergence of tabular REDQ

	Hyperparameters and implementation details
	Efficient calculation of target for Weighted version of REDQ

	Sample efficiency comparison for REDQ, SAC and MBPO
	Number of parameters comparison
	Additional results for REDQ, SAC-20, and AVG
	REDQ and SAC with and without policy delay
	REDQ and SAC with different UTD ratios
	Additional results for Weighted variant

