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ABSTRACT

Fast changing states or volatile environments pose a significant challenge to online
optimization, which needs to perform rapid adaptation under limited observation.
In this paper, we give query and regret optimal bandit algorithms under the strict
notion of strongly adaptive regret, which measures the maximum regret over any
contiguous interval I . Due to its worst-case nature, there is an almost-linear
Ω(|I|1−ε) regret lower bound, when only one query per round is allowed [Daniely
el al, ICML 2015]. Surprisingly, with just two queries per round, we give Strongly
Adaptive Bandit Learner (StABL) that achieves Õ(

√
n|I|) adaptive regret for

multi-armed bandits with n arms. The bound is tight and cannot be improved
in general. Our algorithm leverages a multiplicative update scheme of varying
stepsizes and a carefully chosen observation distribution to control the variance.
Furthermore, we extend our results and provide optimal algorithms in the bandit
convex optimization setting. Finally, we empirically demonstrate the superior
performance of our algorithms under volatile environments and for downstream
tasks, such as algorithm selection for hyperparameter optimization.

1 INTRODUCTION

In online optimization, a player iteratively chooses a point from a decision set, and receives loss from
an adversarially chosen loss function. The classic metric for measuring the performance of the player
is regret: the difference between her total loss and that of the best fixed comparator in hindsight.

However, as pointed out by Hazan and Seshadhri Hazan & Seshadhri (2009), regret incentivizes static
behavior and is not the correct metric in changing environments. They instead proposed the notion of
adaptive regret, defined as the maximum regret over any continuous interval in time. This notion
intuitively captures adaptivity to the environment, and is studied later by Daniely et al. (2015) which
gives an algorithm with near-optimal O(

√
|I| log T ) adaptive regret for any interval I simultaneously.

Most algorithms for minimizing adaptive regret, such as Hazan & Seshadhri (2009); Daniely et al.
(2015), work by running O(log T ) independent copies of online learning schemes and using a meta-
learner to aggregate them. Therefore, they make O(log T ) queries per round. In practice, oftentimes it
is expensive to evaluate the arms. For example, an arm corresponds to a set of hyperparameter values
of a large machine learning model, and playing an arm amounts to evaluating the model performance
and fully training the model. This motivates the study of query-efficient adaptive regret algorithms.
Recently, Lu and Hazan Lu & Hazan (2023) give an improved algorithm with only O(log log T )
queries per round. However, the known lower bound in Daniely et al. (2015) only shows that in the
bandit setting, near-optimal adaptive regret is impossible with one query. This leaves the following
question:

∗Equal contribution
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Can we design algorithms with near-optimal adaptive regret using fewer queries?

In this paper we give an affirmative answer, showing that two queries per round is enough to guarantee
an Õ(

√
|I|) adaptive regret bound. The key ingredient of our algorithm is using the additional query

for exploration under a special distribution on arms, which serves to construct unbiased loss estimators
with small variance for both experts and the meta-learner.

1.1 OUR RESULTS

We design adaptive regret minimization schemes with the power to query additional arms. In the
adversarial multi-arm bandit (MAB) problem, the algorithm selects and plays one arm per round.
In our setting the algorithm can pick additional arms to query in parallel to selecting which arm to
play, then the loss values of both the queried and played arms will be revealed, but the algorithm only
suffers the loss of the arm played. This is similar to, but still different from the multi-point feedback
model Agarwal et al. (2010), which suffers the average loss of the arms. The query complexity counts
the total arm observations received, including the one played.

First, we prove that two queries suffice for Õ(
√
nI) adaptive regret in the MAB setting (we slightly

abuse the notation I to denote its length |I|). Our algorithm runs an EXP3-type meta-algorithm on top
of black-box bandit learners A which are EXP3. It uses the additional query to perform exploration
every round for constructing a bounded unbiased loss estimator. Then each bandit algorithm together
with the meta-algorithm gets updated according to the loss estimator. Together with the lower bound
in Daniely et al. (2015), our algorithm gives a tight characterization of the query efficiency of adaptive
regret minimization. Such O(log T ) to 2 improvement in the number of queries needed is significant
for computational efficiency, for applications such as hyperparameter optimization in expensive
settings.

Table 1: Adaptive regret bounds and query efficiency in the adversarial multi-armed bandits setting.

Algorithm Adaptive regret bound Number of queries
FLH Hazan & Seshadhri (2009)

√
nT O(log T )

SAOL Daniely et al. (2015)
√
nI log T O(log T )

EFLH Lu & Hazan (2023) I
1
2+ε ·

√
n log T O

(
log log T

ε

)
This paper (Theorem 1)

√
nI log n · log1.5 T 2

Next, we extend our MAB method to the bandit convex optimization (BCO) setting, proving that
three queries suffice for Õ(

√
I) adaptive regret. We use one of the additional queries to do uniform

exploration, which gets us the loss value of some expert i’s prediction ℓt (Ai(t)). This value is used
to construct both a bounded unbiased loss estimator to the meta EXP3 algorithm, and an unbiased
sparse gradient estimator with bounded variance by leveraging another query to get ℓt (Ai(t) + µ),
where µ is a small random perturbation term.

Finally, we show empirically the advantage of using our adaptive algorithms in changing environments
on synthetic and downstream tasks, such as algorithm selection during hyperparameter optimization.

1.2 RELATED WORK

Adaptive Regret Minimization Motivated by early work on shifting experts Herbster & Warmuth
(1998); Bousquet & Warmuth (2002), the notion of adaptive regret was first proposed by Hazan &
Seshadhri (2009). They gave an algorithm called Follow-the-Leading-History (FLH) with O(log2 T )
adaptive regret for online optimization on strongly convex functions. The bound on the adaptive
regret for general convex cost functions, however, is O(

√
T log T ). This question has been further

studied by a sequence of work Daniely et al. (2015); Jun et al. (2017); Lu et al. (2022) which aims
to improve the regret bound. In particular, Daniely et al. (2015) proposed the algorithm Strongly-
Adaptive-Online-Learner (SAOL) achieving a near-optimal O(

√
I log T ) bound. Later, Jun et al.

(2017) improved this bound by a
√
log T factor and Lu et al. (2022) attained a second-order bound.

Crucially, note that all the algorithms use O(log T ) queries per round.
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Recently, Lu & Hazan (2023) initiated a study on improving the efficiency of adaptive regret
minimization. They showed a trade-off between adaptive regret and computational complexity, that
an Õ(I

1
2+ε) regret bound is achievable with O

(
log log T

ε

)
base algorithms,each with one query per

round. This result differs from ours in two aspects: (i) Lu & Hazan (2023) studied the computational
complexity (number of base algorithms), while we consider the query complexity and achieve a better
bound; and (ii) Lu & Hazan (2023) focused on improving the classic exponential-history-lookback
technique of Hazan & Seshadhri (2009); Daniely et al. (2015) itself, by showing an regret upper
bound with doubly exponential lookback. However, they also showed a matching lower bound that
the history-lookback technique must use Ω(log log T ) experts to achieve non-vacuous regret. Instead,
our work bypasses such limitations by incorporating the EXP3 method into the classic framework,
using only a constant number of queries.

For adaptive regret in the BCO setting, Zhao et al. (2021) showed that an Õ(
√
T ) adaptive regret

bound is achievable under the two-point feedback model. However, the result is weaker than ours
in two aspects. First, our result provides a strongly adaptive regret bound Õ(

√
I) which depends

on the interval-length, and is a stronger notion than adaptive regret. Second, our regret bound is
independent of the condition number κ, while their regret bound is Õ(dGDκ

√
T ). We will discuss

the comparison in more details later.

Dynamic Regret Dynamic regret is another related notation to handle changing environments
in OCO, which aims to capture comparators with bounded total movement instead. Starting from
Zinkevich (2003) which provided an Õ(P

√
T ) dynamic regret bound of vanilla OGD where P

denotes the path length, there have been many works on improving and applying dynamic regret
bounds. Zhao et al. (2020); Zhang et al. (2017) achieved improved dependence on P under further
assumptions. Baby & Wang (2021; 2022) focused on the setting of exp-concave and strongyly-convex
loss, showing that the classic adaptive regret algorithm FLH Hazan & Seshadhri (2009) guarantees
Õ(T

1
3P 2

3 ) dynamic regret. Some works study the relationship between adaptive regret and dynamic
regret, for example Zhang et al. (2018; 2020).

Bandit Convex Optimization The study on BCO was initiated by Flaxman et al. (2005), which
showed how to construct an approximate gradient estimator with bandit feedback, providing an
O(T 3/4) regret bound. If multi-point feedback is allowed, the regret bound can be improved to
O(

√
T ) as shown in Agarwal et al. (2010). Later, Bubeck et al. (2017) used a kernel-based algorithm

to achieve the optimal O(
√
T ) regret bound. Nevertheless, none of the prior works considered

adaptive regret in the BCO setting.

2 SETTINGS AND PRELIMINARIES

We study adaptive regret in a limited information model, for both the multi-armed bandit (MAB) and
the continuous bandit convex optimization (BCO) problems. In the MAB problem, a decision maker
A plays a game of T rounds, she pulls an arm xt at round t and chooses an additional set of arms
Xt to query. Then an adversary reveals the values of the loss vector ℓt on {xt} ∪Xt. The goal is to
minimize the (strongly) adaptive regret, which examines all contiguous intervals I = [j, s] ∈ [T ]:
(we will omit I when it’s clear from the context)

SA-regret(A, I) = max
s−j=I

 s∑
t=j

ℓ⊤t ext
−min

i

s∑
t=j

ℓ⊤t ei

 .

For the BCO setting, similarly the decision maker chooses xt ∈ K ⊂ Rd at each time t along with
a set of points Xt, where K is some convex domain, then the adversary reveals the loss values on
{xt} ∪Xt. The player aims to minimize the (strongly) adaptive regret as well: (notice for expected
regret, it contains the above definiton for MAB as a special case when K is a simplex)

SA-regret(A, I) = max
s−j=I

 s∑
t=j

ℓt(xt)−min
x∈K

s∑
t=j

ℓt(x)

 .
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The decision maker has limited power to query ℓt. For every round t she has a query budget |Xt| ≤ N
for some small constant N ∈ N+. In particular, we will only consider the case N = 1 for the MAB
problem and N = 2 for the BCO problem. We emphasize the choice of which arms to query is made
before any information of the loss is revealed, thus differentiates our setting from the stronger "Bandit
with Hints" setting Bhaskara et al. (2023). Our setting is stronger than the vanilla MAB setting, but
weaker than the full-information setting or the hint setting.

We make the following assumption on the loss ℓt and domain K, which is standard in literature.
Assumption 1. For the MAB problem, the loss vector ℓt is assumed to have each of its coordinate
bounded in [0, 1]. For the BCO problem, we assume the loss ℓt is convex, G-Lipschitz and non-
negative. The convex domain K is sandwiched by two balls centered at origin: rB ⊂ K ⊂ DB, we
denote the condition number κ = D/r.

2.1 THE QUERY MODEL

Our query model is similar to the multi-point feedback model Agarwal et al. (2010), with a slight
difference. Both models specify a set of arms to query beforehand, then after the adversary reveals the
loss, both models receive loss information on the set of chosen arms. Here, the definition (evaluation
of the loss function at a given point) and complexity (number of evaluations) of query are the same
for both models, and the only difference is that our model only incurs loss of the actually played arm,
while the multi-point feedback model incurs the average loss of the set of chosen arms. Notice that
neither model strictly implies the other model. As a result, it’s fair to compare the query efficiency of
our result with previous works under the multi-point feedback model.

2.2 THE EXP3 ALGORITHM

The EXP3 algorithm for adversarial MAB Auer et al. (2002) is based on the multiplicative update
method, and performs a weight update according to an unbiased loss estimator using bandit feedback.
Denote wt(k) as the weight of arm k at time t, the EXP3 algorithm samples the arm xt according to
the weights wt(k). Ideally, we would like to update each weight based on full information of the loss:

wt+1(k) = wt(k)
(
1− ηℓ⊤t ek

)
.

In the bandit setting, we have only the value of ℓ⊤t ext . Let 1 denote the all-ones vector. The EXP3
algorithm instead constructs an unbiased estimator ℓ̂t to replace ℓt:

ℓ̂t(i) = 1i=xt

ℓ⊤t ext

wt(k)
.

This pseudo loss has a bounded variance. In particular, E[w⊤
t ℓ̂

2
t ] ≤ n, which gives the EXP3

algorithm an Õ(
√
nT ) regret bound.

2.3 STANDARD FRAMEWORK FOR MINIMIZING ADAPTIVE REGRET

We briefly review the standard framework of adaptive regret minimization. Since adaptive regret
asks for small regret over all intervals, a simple idea is to construct, for any interval I , a base learner
AI that achieves optimal regret O(

√
I) on I . There are O(T 2) contiguous intervals between [1, T ].

Thus, a naive procedure is to run a meta-learner, such as multiplicative weights (MW) update, on
these O(T 2) experts, and this leads to an O(

√
I log T ) adaptive regret.

Unfortunately, although the regret bound is near optimal, the naive algorithm is inefficient. In
particular, for any t there are Ω(T ) number of intervals containing t, and the naive algorithm needs to
maintain and update Ω(T ) number of base learners per round. To resolve this issue, the key technique
is to consider only a subset S of all intervals Hazan & Seshadhri (2009); Daniely et al. (2015):

S =
{
[s2k, (s+ 1)2k − 1] | 0 ≤ k ≤ log T, s ∈ N+, (s+ 1)2k − 1 ≤ T

}
.

The set S, known as the geometric interval set, contains all successive intervals with length equal to
some power of two. In particular, the kth expert will only need to optimize the series of intervals
[2k, 2× 2k − 1], [2× 2k, 3× 2k − 1], · · · one by one. With this technique, the algorithm only needs
to hold a running set of base algorithms with size O(log T ), while maintaining a near-optimal Õ(

√
I)

adaptive regret bound.
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3 ADAPTIVE REGRET IN MULTI-ARMED BANDITS

In this section, we study efficient adaptive regret minimization in the adversarial multi-armed bandit
(MAB) setting. We propose a procedure (Algorithm 1) that achieves Õ(

√
nI) adaptive regret, using

only two queries. At a high level, the algorithm maintains a set of instances of the EXP3 algorithm
(i.e., base learners) and aggregates them via a MWU meta-algorithm.

Algorithm 1 Strongly Adaptive Bandit Learner (StABL)

1: Input: general EXP3 algorithm A and horizon T .
2: Construct interval set S = {[s2k, (s+ 1)2k − 1] | 2 + log log T ≤ k ≤ log T, s ∈ N+}.
3: Construct B = log T − (1 + log log T ) independent instances of EXP3 algorithm Ak, where

Ak optimizes each {I ∈ S|2k = |I|} one after another since they don’t overlap.
4: Denote wt(k) to be the weight assigned to Ak at time t by the meta-algorithm.
5: Denote v(t, k) ∈ Rn to be the distribution over arms by Ak at time t, and v(t, k)i to be the

probability of sampling arm i by Ak at time t.
6: Define ηk = min

{
1/2

√
n, 1/

√
n|2k|

}
, and initialize w1(k) = ηk for all k ∈ [B].

7: for τ = 1, . . . , T do
8: Let Wt =

∑
k wt(k) and p(t) = 1

Wt
(..., wt(k), ...) be the distribution over the base learners.

9: For all i ∈ [n], let

P (t)i =
maxk v(t, k)

2
i

2
∑

i maxk v(t, k)2i
+

∑
k v(t, k)i
2B

// This defines a probability distribution over n arms.
10: Sample xt ∼

∑
k p(t)kv(t, k), and in parallel sample x′

t ∼ P (t).
// Only the second sample x′

t will be used for weight updating.

11: Play xt, suffer loss ℓ⊤t ext and observe loss ℓ⊤t ex′
t
. Compute loss estimator

ℓ̂t = 1i=x′
t

1

P (t)x′
t

ℓ⊤t ex′
t
.

12: Update the weight v(t+ 1, k) of each EXP3 instance with loss estimator ℓ̂t, via Algorithm 2.
13: Update the meta-algorithm’s weights over base learners via the loss estimator ℓ̂t. For each k,

update wt+1(k) as follows,

wt+1(k) =

{
ηk 2k|t+ 1
wt(k) (1 + ηkr̃t(k)) else

where r̃t(k) = ℓ̂⊤t
∑

k p(t)kv(t, k)− ℓ̂⊤t v(t, k).
14: end for

Algorithm 2 Sub-routine: EXP3 with a General Loss Estimator

1: Input: horizon T , learning rate η and w1 = 1
n .

2: for t = 1, . . . , T do
3: Play it ∼ wt.
4: Get unbiased estimator of loss ℓ̃t.
5: Update yt+1(i) = wt(i)e

−ηℓ̃t(i), wt+1 = yt+1

∥yt+1∥1
.

6: end for

Theorem 1 (Adaptive regret minimization for multi-armed bandits). For the multi-armed bandits
problem with n arms and T rounds, Algorithm 1 achieves an expected adaptive regret bound of
O
(√

nI log n log1.5 T
)
, using two queries per round.

The main idea is to use EXP3-type algorithms for both the black-box base learners and the meta-
algorithm in the typical adaptive regret framework. Directly using EXP3 in the MAB setting will fail,
because the weight distribution might become unbalanced over time and the unbiased estimator of
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the loss will have huge variance. When the unbiased estimator is propagated to the meta algorithm, it
serves now as the value of “arm” which leads to a sub-optimal regret.

The remedy is to use an additional evaluation to create unbiased estimators of the loss vector with
controllable variance, for updating both experts and the meta-algorithm. A naïve (but sub-optimal)
choice is to sample uniformly over the arms to observe x′

t, and update both experts and the meta-
algorithm (line 10 in Algorithm 1). By doing this, the loss estimator ℓ̂t is not only unbiased, but also
norm bounded by n. As a result, the variance term in the classical EXP3 analysis is bounded by n2.
Thus, the regret of the base learners, as well as the meta-algorithm, are

√
n factor worse than optimal.

Instead of the naïve uniform exploration, we choose the distribution of the additional query to be the
average of a uniform exploration among all base learners’ choices and a near-optimal distribution
for the meta-algorithm. Below we briefly explain the design of this importance sampling P (t)i (line
9 in Algorithm 1). Pt is the average of two distributions, the first one controlling the regret of the
meta learner while the second one controlling the regret of base learners. If Pt is merely the second
distribution, it achieves near-optimal regret for base learners, with the excessive term

√
n improved to√

log T . However, the second distribution alone will make the regret of the meta learner unbounded,
thus we mix it with the first distribution which is designed to control the regret of the meta learner.
Such mixing is known to only affect the regret by a constant for EXP-3 type algorithms.

3.1 PROOF SKETCH

In the following, we slightly abuse notation and let ℓ⊤t x = ℓ⊤t ex for x ∈ [n]. The proof consists
of three steps: decomposing the randomness of playing xt, bounding the base learners’ regret, and
analyzing the regret of the meta-algorithm.

Step 1: There are two sources of randomness in the algorithm, namely, randomness pl in sampling
which arm xt to play, and ob in sampling which arm x′

t to observe and update weights. The key
observation is that pl is independent of ob. Thus, we have the following equivalence via linearity and
the tower property of expectations, for any fixed interval I and arm x∗,

Epl,ob

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t x
∗

]
= Eob

[∑
t∈I

ℓ̂⊤t
∑
k

p(t)kv(t, k)−
∑
t∈I

ℓ̂⊤t x
∗

]
,

which decouples the randomness of playing xt from observing x′
t.

Step 2: We prove the following lemma on EXP3 algorithms with general unbiased loss estimators,
which gives a regret guarantee for Algorithm 2.

Lemma 2 (Regret for EXP3). Given ℓ̃t, an unbiased estimator of ℓt, such that for some distribution zt,
ℓ̃t(i) =

1
zt(i)

ℓt(i) and ℓ̃t(j) = 0 for j ̸= i with probability zt(i). Suppose zt satisfies wt(i) ≤ Czt(i)

for all i, where wt(i) represents the weight of the ith expert at time t. Algorithm 2 using ℓ̃t with

η =
√

logn
TnC has regret bound 2

√
CnT log n.

As a result, noticing C = 2 log T in our algorithm, we have that for any expert Ak, its regret on
interval I can be bounded by O(

√
nI log n log T ).

Step 3: We analyze the regret of the meta-learner, which is Epl, ob
[∑

t∈I ℓ
⊤
t xt −

∑
t∈I ℓ

⊤
t v(t, k)

]
=

Eob
[∑

t∈I r̃t(k)
]
. Define the pseudo-weight w̃t(k) to be w̃t(k) =

wt(k)
ηk

, and W̃t =
∑

k w̃t(k), we

first prove W̃t ≤ t(log t+ 1) using induction, which leads to the following estimate

Eob

[∑
t∈I

r̃t(k)

]
≤ ηkEob

[∑
t∈I

r̃2t (k)

]
+

2 log T

ηk
.

Then we show the term Eob
[
r̃2t (k)

]
can be bounded by:

Eob
[
r̃2t (k)

]
≤ Eob,<t

[
n∑

i=1

(ℓ⊤t ei)
2

P (t)i

(
max

k
e⊤i v(t, k)

)2
]
≤ 2n log T,
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which implies the regret of our algorithm on any interval I ∈ S, can be bounded by
O(log T

√
nI log n). Finally, such regret can be extended to any interval at the cost of an addi-

tional
√
log T term, by Cauchy-Schwarz (each arbitrary interval can be decomposed into a disjoint

union of O(log T ) geometric intervals as in Daniely et al. (2015)).

4 ADAPTIVE REGRET IN THE BCO SETTING

The result from the previous section inspires us to consider the following question: can we use a
similar approach to achieve near-optimal adaptive regret in the bandit convex optimization (BCO)
setting with constant number of queries? The answer is yes, that near-optimal adaptive regret is
achievable with three queries, at the cost of extra logarithmic terms in the regret.

The algorithm for adaptive regret in the BCO setting (see appendix) has a similar spirit as Algorithm
1. At time t, each expert k asks for gradient estimation at a point Ak(t), and we only randomly
sample one expert to get the gradient estimation. If we sample expert kt, the estimation for Akt

is
dmu(ℓt(Akt(t) + δtu)− ℓt(Akt(t)))

δt
,

and the gradient estimation for the rest of experts is 0, where m is the number of experts, δ is a
small constant and u is a random unit vector. Such estimation is classic in the two-point feedback
BCO setting Agarwal et al. (2010), in fact all we need is a (nearly) unbiased estimation of loss with
bounded absolute value. Then we can use the same approach as the MAB case to make an unbiased
estimation of the experts’ losses, by setting

ℓ̃t(Ak(t)) = mℓt(Akt(t))1[k=kt].

We have the following regret guarantee for Algorithm 3. The proof is delayed to the appendix.
Theorem 3. In the BCO setting, Algorithm 3 with δt =

1
κT uses three queries per round and achieves

an expected adaptive regret bound of

O
(
dGD

√
I log2 T

)
.

Theorem 3 also directly applies to the full-information setting, improving the query complexity of all
previous works in adaptive regret from Θ(log T ) to a constant, while preserving the optimal regret.

Compared to Zhao et al. (2021), note that though their algorithm uses one fewer query, they considered
only the weaker notion of adaptive regret, failing to achieve dependence on interval length which
leads to a worse

√
T dependence on horizon. We discuss how to further reduce the required number

of queries by one for strongly-adaptive regret in the appendix, by using the linear surrogate loss idea
of Zhao et al. (2021) in our algorithm.

5 EXPERIMENTS

In this section, we evaluate the proposed algorithms on synthetic data and the downstream task of
hyperparameter optimization. We note that even though the algorithms are stated in terms of losses,
we find that in practice, using rewards instead of losses lead to better performance.

5.1 LEARNING FROM EXPERT ADVICE

Experimental Setup We first consider the learning with expert advice setting with linear rewards,
and demonstrate the advantage of using an adaptive algorithm in changing environments. For
simplicity, the arms and experts are equivalent in our construction. More specifically, there are N
arms, indexed from 0 to N − 1, and there are N experts, where the i-th expert (zero-indexed) always
suggests pulling the arm i. We take N = 30, time horizon T = 4096, and for each time step, we
randomly generate a baseline reward r̃t ∈ RN where r̃t,i is drawn from the uniform distribution
over [0, 0.5). To simulate the volatile nature of the environment, we divide the time horizon into 4
intervals, and add an additional reward to the baseline reward of a different expert in each interval.
In particular, for t ∈ [0, 1023], we set the reward rt,0 = r̃t,0 + 0.5 and rt,i = r̃t,i for i ̸= 0; for
t ∈ [1024, 2047], we do the same for expert 1, and so on. The reward at each time step is r⊤t xt,
where xt is the point played.
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Figure 1: Comparison plots of the algorithm rewards in the learning with expert advice setting.
The right subfigure shows the performance of the algorithms when the best arm changes at random
intervals, and demonstrates the advantage of using base algorithms with varying history lengths

Analysis In the first experiment, we compare the performance of the non-adaptive EXP3 algorithm
with uniform exploration, StABL, and the StABL algorithm with naive exploration. In StABL
with naive exploration, the observation query is sampled with the uniform distribution (Line 10 in
Algorithm 1 is replaced with the uniform distribution). We run all algorithms 5 times and plot the
moving average of their reward with a window of size 50 in the left subfigure of Figure 1. Both
StABL and and StABL Naive can adapt to changing environments and recover after the best arm has
changed. In contrast, EXP3 is optimal in the first interval, but its performance quickly degrades in the
subsequent intervals. Compared to StABL, StABL Naive is worse in most intervals, reflecting the
suboptimal performance resulting from the naive observation sampler.

To understand the importance of having base algorithms with varying history lengths, we also compare
StABL with a variant, StABL Single Scale, where the base algorithm only has one history length
of 1024. Such a variant would perform well in the previous experiment, since the intervals have the
same length. In this experiment, we randomly generated time steps at which the best arm changes,
and they are 1355, 1437, 1798, 3249, for a time horizon of 4096. As before, we run each algorithm 5
times and compare the moving average reward in the right subfigure of Figure 1. In this experiment,
StABL Single Scale struggles in intervals that do not conform to a length of 1024. Thus, even though
StABL requires more memory and compute by running log T base algorithms, it is more robust to
volatile environments that can have irregular changes.

5.2 ALGORITHM SELECTION FOR HYPERPARAMETER OPTIMIZATION

Algorithm as Arms We compare the effectiveness of bandit-feedback regret minimization algo-
rithms for the downstream task of choosing the best algorithms for minimizing a blackbox function.
Specifically, we view each round as a selection process between an ensemble of evolutionary strate-
gies, each with different algorithm parameters, such as perturbation, gravity, visibility and pool size
Yang & He (2013). Therefore each arm represents a specific evolutionary algorithm and the rewards
of each arm are observed per-round in a bandit fashion, indicating the performance of the algorithm
at that round, given all of the data observed so far.

Benchmark and Reward Signal The reward is determined by the underlying task of blackbox
optimization, which is done on Black-Box Optimization Benchmark (BBOB) functions (Tušar et al.,
2016). BBOB functions are usually non-negative and we are in the simple regret setting, in which we
want to find some x such that f(x) is minimized. Therefore we use the decrease of the objective, upon
evaluation of the algorithm’s suggestion, as the reward. Specifically, if Di = (xi, f(xi)) are all the
evaluations so far in round k, then each algorithm Aj suggests xj = Aj(Dj) and the corresponding
reward is rj = max(mini(f(xi)) − f(xj), 0). Note that this reward is always positive and we
normalize our BBOB functions so that it is within [0, 1]. Note that this reward signal is sparse, so we
also add a regularization term of −λf(xj) with λ = 0.01 of the negative objective into the reward.
In addition to normalization, we also apply random vectorized shifts and rotations on these functions,
as well as adding observation noise to the evaluations.
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Analysis We ran the four algorithms: the uniform random algorithm, classic EXP3 al-
gorithm, the EXP3 algorithm with uniform exploration, and StABL with history lengths
[20, 40, 80, 160, 320, 640, 1280, 2560]. We run each of our algorithms in dimensions d = 32, 64
and optimize for 1000, 2000 iterations with 5 repeats. For metrics, we use the log objective curve,
as well as the performance profile score, a gold standard in optimization benchmarking (higher is
better) Dolan & Moré (2002). Our full results are in the appendix and here, we focus on the SPHERE
function (Fig. 2), where we see that StABL generally performs better adaptation than the EXP3
algorithms leading to better optimization throughout. Specifically, for the first half of optimization,
both StABL and EXP3-Uniform enjoy a consistent performance advantage in performance, with
respect to the Uniform strategy. However, this advantage sharply drops after around 600 Trials,
after which the EXP3 strategy is no longer competitive against Uniform and ends up worse, as its
performance curve abruptly stops at Trial 700. StABL generally tracks with the EXP3 strategy
throughout this process but is noticeably better at adapting and maintaining its advantage after the
critical turning point.

Figure 2: Algorithm comparison plots of the log objective (lower is better) and the performance
profile score against the Uniform baseline (higher is better) for minimizing the 32-dimensional
SPHERE across 1000 trials.

6 CONCLUSIONS

We study adaptive regret in the limited observation model. By making merely one additional query
with a carefully chosen distribution, our algorithm achieves the optimal Õ(

√
nI) adaptive regret

bound in the multi-arm bandit setting. This result not only improves the state-of-the-art query
efficiency of O(log log T ) in Lu & Hazan (2023), but matches the lower bound in the bandit setting
Daniely et al. (2015), thus providing a sharp characterization of the query efficiency of adaptive
regret. As an extension, we prove that the optimal Õ(

√
I) adaptive regret can be achieved in the

bandit convex optimization setting, with only two additional queries. We also conduct experiments to
demonstrate the power of our algorithms under changing environments and for downstream tasks.
We list some limitations of this work and potential directions for future research, elaborated below.

Reduce the logarithmic dependence in T : Although our regret bound is tight in the leading
parameters n, I , it involves a worse dependence on log T . For the full-information setting, the best
known result in Orabona & Pál (2016) only contains an

√
log T dependence. The main open question

is thus: can the log1.5 T factor be improved in general?

Fewer queries for BCO: Our BCO Algorithm uses two additional queries to achieve the optimal
adaptive regret bound, however for the MAB setting Algorithm 1 requires only one query. Though
BCO is a harder problem than MAB, and the lower bound of Daniely et al. (2015) was designed for
MAB, we wonder whether an algorithm can use even fewer queries in the BCO setting.

Extension to dynamic regret: In the full-information setting, any advance in adaptive regret of
exp-concave loss implies improved dynamic regret bounds via a black-box reduction, as shown in Lu
& Hazan (2023). However, it seems harder in the bandit setting. The fundamental difficulty is, for the
meta-learner, how to exploit exp-concavity (or strong convexity) of the loss in the MAB setting.
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A BCO ALGORITHMS

Algorithm 3 Strongly Adaptive BCO Learner

1: Input: OCO algorithm A (Algorithm 4) and horizon T .
2: Construct interval set S = {[s2k, (s+ 1)2k − 1] | 2 + log log T ≤ k ≤ log T, s ∈ N+}.
3: Construct B = log T − (1 + 2 log log T ) independent instances of the expert BCO algorithm

Ak, where Ak optimizes each {I ∈ S|2k = |I|} one after another since they don’t overlap.
4: Denote wt(k) to be the weight assigned to Ak at time t by the meta algorithm.

5: Define ηk = 1
GD min

{
1
2 ,
√

log T
2k

}
, and initialize w1(k) = ηk.

6: for τ = 1, . . . , T do
7: Let Wt =

∑
k wt(k), denote p(t) = 1

Wt
(..., wt(k), ...) as the distribution over experts.

8: Denote Ak(t) to be the prediction of expert Ak at time t.
9: Sample kt uniformly from [B], sample a random unit vector u and choose constant δt.

10: Play xt =
∑

k p(t)kAk(t) and suffer loss ℓt(xt). Observe losses ℓt(Akt
(t) + δtu) and

ℓt(Akt
(t)).

11: Updating experts: construct gradient estimation for each Ak as below, then invoke Algorithm
4

d log Tu(ℓt(Akt
(t) + δtu)− ℓt(Akt

(t)))

δt
1[k=kt]

12: Updating weights: construct loss vector estimations

ℓ̃t(Ak(t)) = log Tℓt(Akt
(t))1[k=kt], ℓ̃t(xt) =

∑
k

p(t)k ℓ̃t(Ak(t))

13: Update the meta algorithm’s weights. For each k, update wt+1(k) as follows,

wt+1(k) =

{
ηk 2k|t+ 1
wt(k)(1 + ηkr̃t(k)) else

where r̃t(k) = ℓ̃t(xt)− ℓ̃t (Ak(t)).
14: end for

Algorithm 4 Sub-routine: BCO with General Gradient Estimator

1: Input: horizon T , learning rate η and x1 ∈ K.
2: for t = 1, . . . , T do
3: Play xt and suffer loss ℓt(xt).
4: Get gradient estimator g̃t, such that there exists a, b > 0 and another proxy loss ℓ̂t, satisfying:

E[g̃t] = ∇ℓ̂t(xt), E[∥g̃t∥2] ≤ b and ∀x ∈ K̂ it holds |ℓt(x)− ℓ̂t(x)| ≤ a.
5: Update xt+1 = ΠK̂[xt − ηg̃t], where K̂ = {x| 1

1−κδt
x ∈ K} is the domain of ℓ̂t.

6: end for

12
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B PROOF OF THEOREM 1

Proof. The proof consists of three steps: eliminating the randomness of playing xt, analyzing the
expert regret, and analyzing the meta algorithm regret.

Step 1

There are two sources of randomness in the algorithm, namely randomness in sampling which arm xt

to play, and sampling which arm x′
t to observe and update weights. Let pl, ob denote the randomness

of selecting arms to play and to observe, respectively, over all iterations T , and let E denote the
unconditional expectation.

The key observation here is that the randomness in playing is independent of the randomness in
observing, affecting only the loss value suffered and nothing else. Based on this observation, the very
first step of the proof is the following equivalence via linearity and tower property of expectation

E

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t x
∗

]
=
∑
t∈I

E
[
E
[
ℓ⊤t xt − ℓ⊤t x

∗|x1, x
′
1, . . . , xt−1, x

′
t−1

]]
=
∑
t∈I

E
[
EobEpl

[
ℓ⊤t xt − ℓ⊤t x

∗|x1, x
′
1, . . . , xt−1, x

′
t−1

]]
=
∑
t∈I

E

[
Eob

[
ℓ⊤t
∑
k

p(t)kv(t, k)− ℓ⊤t x
∗|x1, x

′
1, . . . , xt−1, x

′
t−1

]]

=
∑
t∈I

E

[
Eob

[
ℓ̂⊤t
∑
k

p(t)kv(t, k)− ℓ̂⊤t x
∗|x1, x

′
1, . . . , xt−1, x

′
t−1

]]

=
∑
t∈I

E

[
Eob

[
ℓ̂⊤t
∑
k

p(t)kv(t, k)− ℓ̂⊤t x
∗|x′

1, . . . , x
′
t−1

]]

=
∑
t∈I

Eob

[
ℓ̂⊤t
∑
k

p(t)kv(t, k)− ℓ̂⊤t x
∗

]

= Eob

[∑
t∈I

ℓ̂⊤t
∑
k

p(t)kv(t, k)−
∑
t∈I

ℓ̂⊤t x
∗

]
,

which decouples the randomness of playing xt from observing x′
t. The third equality holds as we

take expectation over xt conditioned on x1, x
′
1, . . . , xt−1, x

′
t−1, and the fourth equality holds since

ℓ̂t is an unbiased estimator of ℓt. In the fifth equality, we remove the conditioning over x1, . . . xt−1,
since the random variables inside the conditional expectation are not functions of these variables.
Hence, we can take expectation only over the randomness of the observations. As a result of this
equivalence, the random xt term in the regret is replaced by the convex combination of v(t, k), which
is exactly the expectation of xt over the randomness of playing.

Step 2

Assume that the loss value ℓt(i) of each arm i at any time t is bounded in [0, 1], to bound the regret
of experts, we need the following lemma on EXP-3 algorithms with general unbiased loss estimators.

Lemma 4. Given ℓ̃t, an unbiased estimator of ℓt, such that for some distribution zt, ℓ̃t(i) = 1
zt(i)

ℓt(i)

and ℓ̃t(j) = 0 for j ̸= i with probability zt(i). Suppose zt satisfies wt(i) ≤ Czt(i) for all i. The

EXP-3 algorithm using ℓ̃t with η =
√

logn
TnC has regret bound 2

√
CnT log n.
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Proof. Following the standard analysis of EXP-3 in Hazan (2016), we have that

E[regret] = E

[
T∑

t=1

ℓt(it)−
T∑

t=1

ℓt(i
∗)

]
≤ E

[
T∑

t=1

ℓ̃t(wt)−
T∑

t=1

ℓ̃t(i
∗)

]

≤ E

[
η

T∑
t=1

n∑
i=1

ℓ̃t(i)
2wt(i) +

log n

η

]

= η

T∑
t=1

E

[
n∑

i=1

ℓ̃t(i)
2wt(i)

]
+

log n

η
.

Let Et denote the expectation of a random variable conditioned on the randomness before time t
(before playing it). Notice that for each time step,

E

[
n∑

i=1

ℓ̃t(i)
2wt(i)

]
= E

[
Et

[
n∑

i=1

ℓ̃t(i)
2wt(i)

]
|t− 1

]
= E

[
n∑

i=1

ℓt(i)
2wt(i)

zt(i)

]

≤ E

[
n∑

i=1

wt(i)

zt(i)

]
≤ Cn

Therefore, taking η =
√
log n/TCn, we have

E[regret] ≤ 2
√
TCn log n.

Back to our algorithm, had we used v(t, k) to sample x′
t, then in the above lemma we have C = 1 for

the kth expert, which implies an optimal regret 2
√
nI log n. However, each expert may have a very

different v(t, k), thus making one of them optimal can lead to worse regret on the rest of experts.

Instead, in our algorithm we use the distribution Pt ≥ 1
2B

∑
k v(t, k) to sample x′

t, in which
1
B

∑
k v(t, k) is just the average of v(t, k). For each expert k, this distribution treated as zt in the

above lemma, guarantees C = 2B ≤ 2 log T . Therefore, we have that for any expert k, its regret on
interval I is bounded by

E[regret of expert k] = Eob

[∑
t∈I

ℓ̂⊤t v(t, k)−
∑
t∈I

ℓ̂⊤t x
∗

]
≤ 2
√
2nI log n log T .

Step 3

It’s only left to check the regret of the meta algorithm. Our analysis follows Theorem 1 in Daniely
et al. (2015) with a few changes. Recall the equivalence obtained in step 1, the term we need to bound
is the regret of our action xt with respect to expert k for all experts:

Epl, ob

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t v(t, k)

]
= Eob

[∑
t∈I

r̃t(k)

]
.

where we recall the definition r̃t(k) = ℓ̂⊤t
∑

k p(t)kv(t, k)− ℓ̂⊤t v(t, k).

Define the pseudo-weight w̃t(k) to be w̃t(k) =
wt(k)
ηk

, and W̃t =
∑

k w̃t(k). We are going to prove

W̃t ≤ t(log t + 1). To this end, we fix any possible "trajectory" of W̃t’s that can be reached by
our algorithm, then prove W̃t is bounded using induction. Since the only source of randomness for
the objective on the right hand side comes from the observations x′

1, . . . , x
′
T , we take an arbitrary

sequence of x′
t such that the weights of the algorithm are totally deterministic.
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When t = 1, only A1 is active therefore W̃1 = 1 ≤ 1(log 1 + 1). Assume now the claim holds for
any τ ≤ t, we decompose W̃t+1 as

W̃t+1 =
∑
k

w̃t+1(k)

=
∑

k,2k|t+1

w̃t+1(k) +
∑

k,2k∤t+1

w̃t+1(k)

≤ log(t+ 1) + 1 +
∑

k,2k∤t+1

w̃t+1(k),

because there are at most log(t + 1) + 1 number of different intervals in S starting at time t + 1,
where each such interval has initial weight w̃t+1(k) = 1. Now according to the induction hypothesis,∑

k,2k∤t+1

w̃t+1(k) =
∑
k

w̃t(k)(1 + ηkr̃t(k))

= W̃t +
∑
k

w̃t(k)ηkr̃t(k)

≤ t(log t+ 1) +
∑
k

wt(k)r̃t(k).

We complete the argument by showing that
∑

k wt(k)r̃t(k) = 0. By the definition of r̃t(k), we have
that

∑
k

wt(k)r̃t(k) = Wt

∑
k

p(t)k

(
ℓ̂⊤t

(∑
k

p(t)kv(t, k)

)
− ℓ̂⊤t v(t, k)

)

= Wt

(
ℓ̂⊤t

(∑
k

p(t)kv(t, k)−
∑
k

p(t)kv(t, k)

))
= 0.

The second inequality holds because
∑

k p(t)k = 1.

We notice that the weights are all non-negative. To see this, notice the non-negativity of w̃t(k)
is guarded by the non-negativity of 1 + ηkr̃t(k). Let’s lower bound r̃t(k): by the definition of
ℓ̂t, it’s a sparse vector where only the coordinate x′

t can have a positive value 1
P (t)x′

t

. However,

P (t)x′
t

is lower bounded by
v(t,k)x′

t

2B by its definition (line 9), thus r̃t(k) ≥ −2B ≥ −2 log T . Since
k ≥ 2 + log log T , we have that ηk ≤ 1

4 log T , which ensures the desired non-negativity.

Because weights are all non-negative, we obtain

t(log t+ 1) ≥ W̃t ≥ w̃t(k).

Hence, using the inequality that log(1 + x) ≥ x− x2 for x ≥ − 1
2 , we have that for the k satisfying

2k = |I|,

2 log t ≥ log(w̃t(k)) =
∑
t∈I

log(1 + ηkr̃t(k))

≥
∑
t∈I

ηkr̃t(k)−
∑
t∈I

(ηkr̃t(k))
2

Rearranging the above inequality and taking an expectation over the observations, we get the following
bound

Eob

[∑
t∈I

r̃t(k)

]
≤ ηkEob

[∑
t∈I

r̃2t (k)

]
+

2 log T

ηk
.
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Next, we need to estimate r̃t(k) with our observation, which we apply with the distribution P (t).
Denote Nt =

∑n
i=1 maxk v(t, k)

2
i , the term Eob

[
r̃2t (k)

]
can be bounded by:

Eob
[
r̃2t (k)

]
= Eob,<t

Eob,t

(ℓ̂⊤t ∑
k

p(t)kv(t, k)− ℓ̂⊤t v(t, k)

)2

|t− 1


= Eob,<t

 n∑
i=1

P (t)i
(ℓ⊤t ei)

2

P 2(t)i

((∑
k

p(t)kv(t, k)

)
− v(t, k)

)2

i


≤ Eob,<t

[
n∑

i=1

(ℓ⊤t ei)
2

P (t)i

(
max

k
e⊤i v(t, k)

)2
]

≤ Eob,<t [2nNt] .

where we use the fact that (ℓ⊤t ei)
2

P (t)i
≤ 2Nt

maxk e⊤i v(t,k)2
by the definition of P (t). We still need to upper

bound the normalization term Nt. In fact, since v(t, k) is a distribution for each k, we can bound the
Frobenius norm by:

Nt ≤
∑
i

∑
k

(e⊤i v(t, k))
2 ≤ log T

because
∑

i e
⊤
i v(t, k) = 1. As a result, we have that

Eob

[∑
t∈I

r̃t(k)

]
≤ 2ηknI log T +

2 log T

ηk
≤ 8 log T

√
nI.

Putting the two pieces together, we have that the regret of our algorithm on any interval I ∈ S with
length at least 4 log T (i.e. k ≥ 2 + log log T ), can be bounded by O(log T

√
nI log n). For other

intervals with length at most 4 log T , the O
(√

nI log n log1.5 T
)

regret bound automatically holds
(this is the reason we only hedge over 2 + log log T ≤ k ≤ log T instead of 0 ≤ k ≤ log T ).

Finally, apply the same argument as in A.2 of Daniely et al. (2015) (also Lemma 7 in Lu et al. (2022)).
This allows us to extend the O(log T

√
nI log n) regret bound over I ∈ S to any interval I at the cost

of an additional
√
log T term, by observing that any interval can be written as the union of at most

log T number of disjoint intervals in S and using Cauchy-Schwarz; see Theorem 1 in Daniely et al.
(2015).

C PROOF OF THEOREM 3

Proof. Similar to the proof of Theorem 1, we first prove a regret bound of Algorithm 4. We follow
the classic framework of “gradientless” gradient descent (see chapter 6.4 in Hazan (2016)). Let’s
focus on some expert Ak over an interval [j, s] where 2k|j, s, the proxy loss ℓ̂t for this expert is the
smoothed version of ℓt:

ℓ̂t(x) = Eu∼Bℓt(x+ δu)

We can verify that the properties in Algorithm 4 hold with constants a = δG and b = dG log T . As
for the domain K̂, we notice that (1) ∀x ∈ K̂,u we have that x+ δu ∈ K, therefore Akt(t) + δtu in
Algorithm 1 is feasible; (2) for any point x ∈ K, there exists another point x′ = ΠK̂[x] ∈ K̂ such that
∥x− x′∥2 ≤ Dκδ by the property of projection. These properties allow us to bound the regret of ℓ̂t
instead:

s∑
t=j

E[ℓt(Ak(t))]−
s∑

t=j

ℓt(x) ≤
s∑

t=j

E[ℓt(Ak(t))]−
s∑

t=j

ℓt(x
′) + κδDGT

≤
s∑

t=j

E[ℓ̂t(Ak(t))]−
s∑

t=j

ℓ̂t(x
′) + (2 + κ)δDGT.
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As a result, we only need to analyze the regret bound of Algorithm 4 for the loss function ℓ̂t. By the
standard analysis of OGD (see Theorem 3.1 in Hazan (2016)), we have that

s∑
t=j

E[ℓ̂t(Ak(t))]−
s∑

t=j

ℓ̂t(x
′) ≤ η

s∑
t=j

E
[
∥g̃t∥22

]
+

D2

η

≤ ηId2G2 log2 T +
D2

η

Combining these two inequalities, we have that

s∑
t=j

E[ℓt(Ak(t))]−
s∑

t=j

ℓt(x) ≤ ηId2G2 log2 T +
D2

η
+ (2 + κ)δDGT = O

(
dGD

√
I log T

)
when we choose η = D

dG
√
I log T

and δ = 1
κT . This proves that each expert has a near-optimal

expected regret bound over the intervals it focuses on.

Notice that it’s crucial to look at the function value ℓt(Akt
(t)) in Algorithm 3, otherwise b will have

an additional 1
δ dependence which leads to sub-optimal regret bounds. This corresponds to the sharp

separation between two-query Agarwal et al. (2010) and one-query Flaxman et al. (2005) settings.

The rest of the proof is almost identical to that of Theorem 1. Some details are even easier, since we
only uniformly sample from the experts instead of using a complicated distribution as in Algorithm 1.
The next step is to prove a regret bound of the meta MW algorithm. By a similar argument as step 1,
for any interval I = [j, s] ∈ S, the actual regret over the optimal expert Ak on I can be transferred as

E

 s∑
t=j

ℓt(xt)−
s∑

t=j

ℓt(Ak)

 = E

 s∑
t=j

ℓ̃t(xt)−
s∑

t=j

ℓ̃t(Ak)

 ,

which allows us to deal with the pesudo-loss ℓ̃t instead. We focus on the case that
√

log T
2k

≤ 1
2 ,

because in the other case the length I of the sub-interval is O(log T ), and its regret is upper bounded
by IGD = O(GD

√
log TI), and the conclusion follows directly.

Define the pseudo-weight w̃t(k) to be w̃t(k) =
wt(k)
ηk

, and W̃t =
∑

k w̃t(k). We are going to prove

W̃t ≤ t(log t+ 1). When t = 1, only A1 is active therefore W̃1 = 1 ≤ 1(log 1 + 1). Assume now
the claim holds for any τ ≤ t, we decompose W̃t+1 as

W̃t+1 =
∑
k

w̃t+1(k)

=
∑

k,2k|t+1

w̃t+1(k) +
∑

k,2k∤t+1

w̃t+1(k)

≤ log(t+ 1) + 1 +
∑

k,2k∤t+1

w̃t+1(k),

because there are at most log(t + 1) + 1 number of different intervals in S starting at time t + 1,
where each such interval has initial weight w̃t+1(k) = 1. Now according to the induction hypothesis,∑

k,2k∤t+1

w̃t+1(k) =
∑
k

w̃t(k)(1 + ηkr̃t(k))

= W̃t +
∑
k

w̃t(k)ηkr̃t(k)

≤ t(log t+ 1) +
∑
k

wt(k)r̃t(k).
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We complete the argument by showing that
∑

k wt(k)r̃t(k) ≤ 0. By the definition of r̃t(k) and
convexity of ℓ̃t, we have that∑

k

wt(k)r̃t(k) = Wt

∑
k

p(t)k

(
ℓ̃t

(∑
k

p(t)kAk(t)

)
− ℓ̃t(Ak(t))

)

≤ Wt

∑
k

p(t)k

(∑
k

p(t)k ℓ̃t (Ak(t))− ℓ̃t(Ak(t))

)

= Wt

(∑
k

p(t)k ℓ̃t (Ak(t))−
∑
k

p(t)k ℓ̃t (Ak(t))

)
= 0.

Hence, using the inequality that log(1 + x) ≥ x− x2 for x ≥ − 1
2 , we have that for the k satisfying

2k = |I|,

2 log t ≥ log(w̃t(k)) =
∑
t∈I

log(1 + ηkr̃t(k))

≥
∑
t∈I

ηkr̃t(k)−
∑
t∈I

(ηkr̃t(k))
2

≥ ηk

 s∑
t=j

r̃t(j, k)− ηkIG
2D2 log2 T

 ,

because |r̃t(k)| ≤ GD log T . Rearranging the above inequality and taking an expectation over the
observations, we get the following bound

E

[∑
t∈I

r̃t(k)

]
≤ ηkIG

2D2 log2 T +
2 log T

ηk
= O(GD

√
I log1.5 T ).

Combining this with the previous regret bound for experts, we have that for any such interval I ∈ S,
the overall regret can be bounded by O

(
dGD

√
I log1.5 T

)
. Finally, apply the same argument as

in A.2 of Daniely et al. (2015) (also Lemma 7 in Lu et al. (2022)). This allows us to extend the
regret bound over I ∈ S to any interval I at the cost of an additional

√
log T term, by observing that

any interval can be written as the union of at most log T number of disjoint intervals in S and using
Cauchy-Schwarz; see Theorem 1 in Daniely et al. (2015).

D AN ALTERNATIVE PROOF STRATEGY FOR BCO

As we mentioned in the main-text, it’s possible to further improve the number of queries in our
algorithm from three to two, by combining it with the linear surrogate loss idea from Zhao et al.
(2021). We provide a brief algorithm description and proof here, based on the following observation.
Let’s denote xt as the point actually played by the algorithm and gt the sub-gradient of ℓ̂t at xt, then
for any interval I and any expert Ak, we have that

convexity:
∑
t∈I

ℓ̂t(xt)− ℓ̂t(x
′∗
I ) ≤

∑
t∈I

g⊤t (xt − x
′∗
I ),

decomposition:
∑
t∈I

g⊤t (xt − x
′∗
I ) =

∑
t∈I

g⊤t (xt −Ak(t)) +
∑
t∈I

g⊤t (Ak(t)− x
′∗
I ).

The above observation allows us to reduce to problem of minimizing the regret
∑

t∈I ℓ̂t(xt)− ℓ̂t(x
′∗
I ),

to minimizing the tracking regret
∑

t∈I g
⊤
t (xt−Ak(t)) and the expert regret

∑
t∈I g

⊤
t (Ak(t)−x

′∗
I )

of an (adaptive) linear surrogate loss ht(x) = g⊤t x. Luckily, the linear loss is the same across all
experts, thus we only need to make one gradient estimation of gt at each round.

The algorithm is similar to Algorithm 3, with a few differences:
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1. in line 9, we don’t sample kt anymore.
2. in line 10, we make only one additional observation ℓt(xt + δtu) instead.

3. in line 11, the gradient estimator is now constructed as ĝt =
du(ℓt(xt+δtu)−ℓt(xt))

δt
.

4. in line 12, ℓ̃t(Ak(t)) = ĝ⊤t Ak(t), ℓ̃t(xt) = ĝ⊤t xt.

Now we analyze the regret of the modified algorithm. The overall proof strategy is similar to that of
Theorem 3. First we consider the regret of the pseudo loss ĥt(x) = ĝ⊤t x. By the optimality of expert
algorithms, we have that for some k which corresponds to an expert Ak which optimizes I ,∑

t∈I

ĝ⊤t (Ak(t)− x∗
I) = O(dGD

√
I),

because ∥ĝt∥2 ≤ dG by definition. In addition, we have that∑
t∈I

ĝ⊤t (xt −Ak(t)) = Õ(GD
√
I),

by the same argument on the tracking regret as in the proof of Theorem 3. Use the fact that ĝt is an
unbiased estimation of gt, we reach the following upper bound on expected regret:

E

[∑
t∈I

ℓ̂t(xt)− ℓ̂t(x
′∗
I )

]
≤ E

[∑
t∈I

g⊤t (xt − x
′∗
I )

]
= E

[∑
t∈I

ĝ⊤t (xt − x
′∗
I )

]
= Õ(dGD

√
I).

It’s left to bound the estimation error between ℓ̂t and the true loss ℓt. As already shown in the proof
of Theorem 3, similarly we have that∑

t∈I

E[ℓt(xt)]−
∑
t∈I

ℓt(x
∗
I) ≤

∑
t∈I

E[ℓ̂t(xt)]−
∑
t∈I

ℓ̂t(x
′∗
I ) + (2 + κ)δDGT.

Combining the two upper bounds, the expected regret of this algorithm is bounded by Õ(dGD
√
I +

κδDGT ) = Õ(dGD
√
I), with only two queries per round. To sum up, this algorithm combines the

(1) strongly adaptive regret framework from our algorithm 3, (2) the linear surrogate loss idea from
Zhao et al. (2021). (1) improves the sub-optimal Õ(

√
T ) adaptive regret of Zhao et al. (2021), while

(2) reduces the required number of queries by one.

E ADDITIONAL EXPERIMENTS

We provide additional experiments in the learning from expert advice setting. The experimental setup
is the same, but with more arms and time steps. In the additional experiments, we take N = 300,
T = 65536, and we run all algorithms 10 times. We plot the moving average with a window of 500.

Our findings are largely consistent with the previous experiments. The left subfigure of Figure 3
corresponds to the performance of EXP3, StABL, and StABL Naive on four intervals of equal length,
where in each interval we have a different best arm. It is clear that StABL attains the best rewards
among the three algorithms. EXP3 has good rewards in the first interval, but is not able to adapt when
the environment changes. In the right subfigure, we plot the performance of algorithms when the
best arm changes at time 7853, 13822, 25180, and 56621. In this experiment, EXP3 underperforms
both StABL and StABL Single Scale, while StABL Single Scale also has difficulty adapting to the
different interval lengths, especially at the beginning where the environment changes quickly.
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Figure 3: Further comparison plots of the algorithm rewards in the learning with expert advice setting.
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