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Abstract

Vertical Federated Learning (VFL) is a collaborative machine learning paradigm
that enables multiple participants to jointly train a model on their private data
without sharing it. To make VFL practical, privacy security and communication
efficiency should both be satisfied. Recent research has shown that Zero-Order
Optimization (ZOO) in VFL can effectively conceal the internal information of
the model without adding costly privacy protective add-ons, making it a promising
approach for privacy and efficiency. However, there are still two key problems that
have yet to be resolved. First, the convergence rate of ZOO-based VFL is signifi-
cantly slower compared to gradient-based VFL, resulting in low efficiency in model
training and more communication round, which hinders its application on large
neural networks. Second, although ZOO-based VFL has demonstrated resistance
to state-of-the-art (SOTA) attacks, its privacy guarantee lacks a theoretical explana-
tion. To address these challenges, we propose a novel cascaded hybrid optimization
approach that employs a zeroth-order (ZO) gradient on the most critical output
layer of the clients, with other parts utilizing the first-order (FO) gradient. This
approach preserves the privacy protection of ZOO while significantly enhancing
convergence. Moreover, we theoretically prove that applying ZOO to the VFL is
equivalent to adding Gaussian Mechanism to the gradient information, which offers
an implicit differential privacy guarantee. Experimental results demonstrate that
our proposed framework achieves similar utility as the Gaussian mechanism under
the same privacy budget, while also having significantly lower communication
costs compared with SOTA communication-efficient VFL frameworks.

1 Introduction

Federated Learning [30, 22, 23, 18, 31] is an emerging technique that has raised wide attention
recently. It has become one of the most important distributed learning frameworks for enabling
multiple data holders to train a model collaboratively without sharing their local privacy data explicitly.

∗Co-corresponding authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Comparing the Asyn-VFL Frameworks

Our research focuses on VFL, where each client possesses all the data points, but only a non-
intersecting subset of the features (vertically distributed). In VFL, all participants collaborate
to train a single global model. The client trains a feature extraction model that maps its local
data sample to embeddings, and the server collects the embeddings from all clients to make a
prediction [21, 34, 6, 39, 16, 37, 14, 42, 43, 13].

Ensuring both privacy and computation-communication efficiency is crucial for practical VFL
implementations. One common approach to achieve this is starting with a basic VFL [5, 6, 28]
and subsequently applying privacy protection techniques, such as Secure Multiparty Computation
(SMC) [8], Differential Privacy (DP) [32, 36], and Homomorphic Encryption (HE) [36, 32] to
protect privacy. However, the addition of these protection techniques often increases computation-
communication costs. To avoid these costly protective add-ons, research attention has turned to
Zero-Order Optimization (ZOO). Literature reports that ZOO-based VFL is able to conceal the
internal information of the model (gradient/model parameter) making the SOTA privacy inference
attack ineffective [41]. This finding highlights the potential of ZOO for efficient and secure VFL.

However, two critical problems remained. First, the convergence rate of ZOO-based VFL is signifi-
cantly slower [41] compared to VFL frameworks optimized with gradient, resulting in a high number
of communication rounds and increased communication costs. Furthermore, the convergence rate is
negatively correlated to the size of the parameters optimized using ZOO [41, 27, 12], which hinders
the application of ZOO-based VFL on large neural networks. Second, although ZO-based VFL has
demonstrated resistance to SOTA attacks, its privacy guarantee has not been theoretically explained.

To solve the first problem, we reevaluate the advantages and disadvantages of applying first-order
(FO) or zero-order (ZO) gradient methods for each component of the VFL, and find an optimal
balance between efficiency and privacy protection. This analysis leads to a novel cascaded hybrid
optimization framework that efficiently solves the convergence problems while fully preserving
privacy protection. Specifically, our proposed framework (VFL-CZOFO) utilizes the ZO gradient
for optimizing the most critical output layer of the clients, while other parts are optimized with
the FO gradient2. To address the second problem, we theoretically prove that applying ZOO on
VFL is equivalent to adding Gaussian Mechanism [7] to the gradient information and can provide a
corresponding intrinsic (ϵ, δ)-DP guarantee.

For a clear illustration, a schematic diagram of our proposed framework is presented in Figure 1-(c).
The advantage of our framework is two-fold. First, it greatly alleviates the slow convergence problem
of ZOO-based VFL (Figure 1-b), where our framework’s convergence is solely limited by the output
size of the clients, rather than the parameter size of the entire model. Second, compared with
the FOO-based VFL (Figure 1-a), the connection layer of our framework used ZOO, allowing the
backward messages to be solely losses, thus inheriting the privacy protection of the ZOO-based VFL.

The primary innovations of our paper are as follows: 1) Our framework employs a novel cascaded
hybrid optimization method, in which different optimization methods are applied to different layers of
the global model in each iteration, which significantly improves the convergence rate of ZOO-based
VFL while preserving privacy. To the best of our knowledge, no prior research in VFL has proposed
a similar method that cascaded a hybrid optimization and exploits its advantages. 2) We provide

2Additionally, we apply compression to further reduce the communication cost of our framework.
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a theoretical explanation of the intrinsic privacy guarantee of ZOO, based on (ϵ, δ)-DP, which is
fundamentally different from the common DP mechanism, where noise is added to items afterward.

In summary, the contributions of our paper are:

• We propose the cascade hybrid optimization method in VFL, where ZOO is applied to the
most essential part of the VFL, which provides intrinsic privacy protection and significantly
improves the convergence rate compared with the ZOO-based VFL.

• Theoretically analysis shows: 1) the intrinsic (ϵ, δ)-differential privacy guarantee provided
by ZOO within our framework, 2) the convergence of our framework and its superiority
compared with the ZOO-based VFL, 3) the compatibility of communication compression
for both forward and backward messages within our framework.

• Extensive experiments show: 1) with the same (ϵ, δ)-differential privacy guarantee, our
method can achieve a similar utility as the Gaussian Mechanism, 2) Our method significantly
reduces the communication cost compared with the SOTA communication-efficient VFL.

2 A Detailed Comparison with SOTA VFL Frameworks

Table 1 presents a comparison of our VFL framework with other SOTA VFL frameworks, including
“split-learning” [34], “compressed-VFL” [5], “Syn-ZOO-VFL"3, “VAFL” [6], “ZOO-VFL" [41]. In
the table, Asyn/Syn are abbreviations for asynchronous and synchronous. The T is the iteration of the
model. d and dh represent the size of the entire global model’s parameter and the size of the client’s
output embeddings, respectively. The “communication size per iteration” column summarizes the
number of elements in the original messages before any post-processing, such as compression. B is
the batch size. q is the sampling times for multiple point estimation of ZOO [27].

Compared to the FOO-based VFL [34, 5, 6] our framework has two distinct advantages. First, our
framework leverages the intrinsic privacy protection of ZOO, which is a result of its stochastic
characteristics and the concealment of internal information. Second, we leverage the advantage of
ZOO to reduce the communication cost from the server to the client where the backward message
consists of merely q elements, which is typically significantly smaller than the FO-based VFL with
dhB elements. The key difference between our framework and the FOO-based framework is that our
approach reduces communication costs while simultaneously ensuring privacy protection. In contrast,
FOO-based VFL typically shares internal information (parameters/gradient) [6, 5] and then applies
for extra privacy protection mechanism [36, 32].

Compared with the ZOO-based VFL [41], this framework and ours both leverage the privacy protec-
tion of ZOO in VFL. However, ZOO-based VFL suffers from a slow convergence rate of O(d/

√
T )

which is constrained by the global model parameter size d. This hinders its effectiveness when
dealing with “larger” networks containing millions of parameters, causing higher communication
costs due to increased communication rounds. To address this issue, we applied ZOO to the crucial
connection layer between the server and the client. By doing so, we maintained the privacy protection
offered by ZOO while significantly mitigating the slow convergence problem, reducing the constraint
from the entire global model size d to merely the output size of the clients dh.

Table 1: Compare with Different VFL Algorithm

Framework Privacy Asyn/Syn Optimization Convergence O(·) Comm. Size per Iter.
(Forward + Backward)

Split learning [34] ✗ Syn FO 1/
√
T dhB + dhB

Compressed-VFL [5] ✗ Syn FO 1/
√
T dhB + dhB

VAFL [6] ✗ Asyn FO 1/
√
T dhB + dhB

Syn-ZOO-VFL ✓ Syn ZO d/
√
T 2dhB + 1

ZOO-VFL [41] ✓ Asyn ZO d/
√
T 2dhB + 1

VFL-CZOFO (Ours) ✓ Asyn ZO&FO dh/
√
T dhB + q

3This is the synchronous version of ZOO-VFL, the algorithm is in Appendix E.1.
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3 Method

Problem Definition In the VFL framework, there is one server and M clients4. The server holds
the label yi for each sample i ∈ [n], ([n] ≜ {1, 2 · · ·n}), while each client holds a non-intersecting
feature set for all the samples. Specifically, the features for sample i on client m are denoted as xm,i.
Client m’s model, hm(wm;xm,i), is parameterized by wm and takes local feature xm,i as input,
outputting the embedding. The server inputs the embeddings from all clients into its own model,
which is parameterized by w0, and then calculates the losses for updating the parameters. The VFL
framework can be viewed as solving a finite-sum problem in composite form:

f(w0,w;X,Y ) =
1

n

n∑
i=1

[L(w0, h1,i, . . . , hM,i; yi)]︸ ︷︷ ︸
fi(w0,h1,i,...,hM,i)

with hm,i = hm(wm;xm,i) ∀m ∈ [M ]

(1)

where w = [w1, · · ·wM ] denotes the parameter for all clients, X denotes the entire feature set across
all clients, and y denotes the labels for all samples. For notation brevity, we define the outputs from
all clients as Φi(w) = [h1(w1;x1,i), · · · , hM (wM ;xM,i)] = [h1,i, . . . , hM,i]. Therefore, the loss
for the i-th sample5 can be represented as fi(w0,Φ). L( · ; ytrue) is the loss function.

Cascaded and Minimal Application of ZOO on the Connection Layer Applying ZOO on VFL
resolves the privacy leakage issue from the gradient [41], but simply applying ZOO to the entire VFL
has a slow convergence problem, leading to a high number of communication rounds. Specifically, the
major problem of ZOO is that with more dimensions on the gradient that need to be estimated, more
variance will be introduced in the estimation of the gradient [27, 3]. This is especially problematic for
machine learning scenarios where even relatively small models may have millions of parameters. To
address the slow convergence problem of ZOO-based VFL, we precisely apply ZOO to the client’s
output layer, while the rest of the model utilizes the FO gradient. This approach significantly improves
the convergence of the ZOO-based VFL, since only a small portion of the entire model uses ZOO.

ZOO [12] estimates the gradient of a function by sampling a random perturbation within the function’s
domain of definition and evaluating its shift on the value domain. To estimate the partial derivative
with respect to the output layer of the client’s model, we apply the average random gradient estimation
(Avg-RandGradEst) [27, 25] which utilizes q i.i.d. samples {uj

m,i}
q
j=1 on the objective function:

∇̂hm,ifi (w0, h1,i, · · · , hM,i) =
ϕ(dhm

)

qµm

q∑
j=1

[fi(hm,i + µmuj
m,i)− fi (hm,i)︸ ︷︷ ︸

δjm,i

]uj
m,i (2)

where fi (hm,i + µmum,i) is the abbreviation for fi (w0, h1,i, · · ·hm,i + µmum,i · · · , hM,i), dhm

is the size of the output layer of client m. ϕ(dhm
) is a dimension-dependent factor [26] related to the

choice of the distribution p of the random vector uj
m,i. If p is the multivariate uniform distribution

U(S(0, 1)) on a unit sphere centered at 0 with radius 1, then ϕ(dhm
) = dhm

. If p is the multivariate
normal distribution N (0, I), then ϕ(dhm) = 1. q is the sampling times. The clients cannot calculate
δjm,i by themselves because the loss function fi(·) is held by the server, therefore the server has to
send the δjm,i back to the clients6. To implement multiple-point estimation, the server must transmit
multiple distinct values of δjm,i to the client, with the number of values sent equaling the number of
sampling points q used in the Avg-RandGradEst.

The theoretical difficulty in analyzing our framework is that different optimization methods are
cascaded within a single model. Unlike most VFL research [34, 5, 28, 6, 41] which updates the
global model with a unified optimization method, e.g. ∇fi (wm) (VAFL [6]) or the ∇̂fi (wm) (ZOO-
VFL [41]), we apply a cascaded hybrid gradient via chain rule, i.e. ∇̂hm

fi (hm,i) · ∇wm
hm,i, where

∇̂hm
fi (hm,i) is the stochastic gradient estimator of the partial derivative w.r.t. the output layer of

the client, and∇wmhm(wm) is the local gradient of the client.
4Server and clients are the roles in the framework, in practice, one participant may take more than one role.
5Although sample i was used throughout this paper, it is easy to generalize our approach to a mini-batch B.
6The server and the client also need to share an identical random sequence um,i, but this can be achieved by

sharing one random seed at the beginning of the training, or use the sample ID as the random seed.
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Compress the Communication Furthermore, we demonstrate that compression is compatible with
our approach, and can be applied to all communications in the framework, including the forward
message [5] and the backward message [35]. We define the compressor of the client as Cm(·), and
the compressor of the server as C0(·). In each communication round, the client m sends compressed
embeddings instead of the raw message to the server, and the server replies with the compressed
messages. We apply the uniform scale compressor [2] in the experiment. However, other compression
schemes such as Top-K [24], sign-SGD [4], and lattice quantization [40] can also be applied to the
different parts of our framework to further reduce the message size.

The theoretical challenge in proving the convergence with compression lies in that two errors (forward
and backward) are introduced in the analysis. The first error affects the embeddings sent from the
client to the server, where the error influences the server’s model input, creating uncertainty in the
loss value and gradients for updating the parameter. We bound this error by imposing assumptions
on the curvature of the loss function, i.e. an upper bound for the norm of the Hessian matrix. The
second error affects the message sent from the server to the clients, which then updates using the
hybrid gradient with compression error. As a result, there are three different sources of uncertainty in
the clients’ parameter update: the two mentioned above, as well as the error caused by ZOO.

Algorithm In this section, we propose our asynchronous VFL7 with ZOO on the connection layer
and compression on the communication messages. Starting with the client, which randomly selects a
sample i and sends its local model output to the server. Receiving the forward message from the client
m, the server calculates the δjm,i with Avg-RandGradEst (Eq. 2) and group δjm,i with j = 1, 2, · · · , q
into a vector ∆m,i. The server compresses ∆m,i and sends it back to the client. Then the server and
client update their local model with the “gradient”.

Algorithm 1 VFL-CZOFO

Input: Learning rate ηm, smoothing parameter µm, compressor Cm for m ∈ {0, 1, ...M}.
Output: Parameter wm for m ∈ {0, 1, ...M}.

0: Initialize model parameter wm for all participants m ∈ {0, 1, ...M}
1: while not convergent do
2: when a client m is activated, do:
3: Randomly select a sample xm,i

4: Compute and send Cm(hm(wm;xm,i)) to server
5: Receive C0(∆m,i) from the server (in a listen manner)
6: Compute ∇̂hm,i

f̂i (w0,Φi) via Avg-RandGradEst (Eq. 2)
7: Compute∇wm

hm(wm;xm,i) via backpropagation.
8: Compute vm = ∇̂hm,i f̂i (w0,Φi) · ∇wmhm,i

9: Update wm ← wm − ηmvm
10: when server receives from client m, do:
11: Compute δlm,i and group into ∆m,i

12: Send C0(∆m,i) to the client m
13: Compute v0 = ∇w0

fi(w0,Φi), (FOO)
14: Update w0 ← w0 − η0v0
15: end while

4 Security Analysis

Threat Model We discuss privacy under two scenarios: “honest-but-curious” and “honest-but-
colluded”. In both scenarios, all participants are assumed to follow the protocol and perform their
assigned tasks. Under the “honest-but-curious” scenario, a curious client attempts to obtain private
information from other participants using the information they have received. In the "honest-but-
colluded" scenario, some participants collude to obtain private information from other participants.
The attacker in this scenario can access all information and messages from the colluding participants.
In the "honest-but-colluded" scenario, the attacker’s capability is either equal to or stronger than in
the "honest-but-curious" scenario. This is because the attacker can acquire more information from
other participants when colluding, therefore increasing their ability to infer sensitive data.

7A schematic graph and illustration of asynchronous VFL is in the Appendix section D.1
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Theorem 4.1. Differential Privacy Guarantee of Sharing the ZO Gradient: Under the “honest-
but-colluded" threat model where the attacker can access all information of all clients through the
entire training process, including the client’s dataset, model, and the ZO gradient received from the
server. Under algorithm 1, with q being sufficiently large, ζ being the maximum l2-norm of the partial
gradient w.r.t. any client’s output through the entire training. If the following condition holds:

σmt,s =

√√√√ 1

qdhT

T−1∑
t=0

tr(Ψt
mt

) >
2ζ

√
2 ln(1.25/δ)

N · ϵ
(3)

we can derive that sharing the stochastic gradient estimation from the server ensures (ϵ̄, δ̄)-DP for all
ϵ, δ, δ′ > 0, where ϵ̄ =

√
2T ln(1/δ′)ϵ+ Tϵ(eϵ − 1), δ̄ = Tδ + δ′.

Proof sketch: The proof can be found in Appendix C.1. Firstly, we establish that each client’s update
can be modeled with an ideal sequence, where the unbiased parameter is updated with the gradient
of the smoothed loss function fu,i (w

t
0,Φi) = Eu[fi(w0,Φ(w)) + µu]. Since Avg-RandGradEst in

Eq. 2 is an average of q independently and identically distributed samples from fi(·), applying the
central limit theorem, the estimated gradient is normally distributed for sufficiently large q. We can
then apply the differential privacy guarantee for the Gaussian Mechanism to the estimated gradient.
Finally, the accumulated privacy guarantee is derived from the advanced composition theorem.
Remark 4.2. This theorem tells that under the worse case where a strong attacker has obtained all of
the ZO information ∆m,i from all client m ∈ [M ], of all sample i ∈ [N ], during the entire training
process t ∈ [T ], the attacker cannot differ a single data point in the dataset, with (ϵ̄, δ̄)-DP guarantee.
Remark 4.3. Since the ZO gradient is shared from the server to clients, this theorem mainly provides
a privacy guarantee for the label on the server.
Remark 4.4. For a weaker attacker, where the attacker can only access the information from fewer
clients (“honest-but-colluded”), or only one client (“honest-but-curious”), the privacy guarantee either
remains the same or is strengthened.

Additionally, in Appendix C.2, we provided a detailed discussion of the privacy protection of our
approach at the framework level, plus a discussion on the SOTA inference attacks under “honest-but-
curious" [10, 33, 45, 45, 44, 17, 9] and “honest-but-colluded"[10, 45, 29, 38] threat model.

5 Convergence Analysis

Assumption 5.1. The formal definition and detailed discussion of the assumptions are in Appendix B.
We assume that there is a feasible optimal solution for f(·),∇fi (·) is L-Lipschitz continuous, fi (·)
has an unbiased gradient, bounded Hessian Hm and bounded block-coordinate gradient Gm. The
activation of the clients is independent, and the client has a uniformly bounded delay τ .
Theorem 5.2. Under assumption 5.1, to solve the problem 1 with algorithm 1, the following inequality
holds.

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2 ≤4p∗E

(
f0 − f∗)
Tη

+ 2ηp∗L∗
(
4d∗G

4
∗ + µ2

∗L
2
∗d

2
∗G

2
∗ + 2σ2

0

)
+ 7η2p∗τG

2
∗
(
4d∗G

2
∗ + µ2

∗L
4
∗d

2
∗ + 2L2

∗Γ
)

+ µ2
∗p∗L

2
∗d

2
∗G

2
∗ + Ep∗H2

∗
(
6 + 16G2

∗
)
+ 17Γp∗G

2
∗

where L∗ = maxm {L,L0, Lm}, η0 = ηm = η, 1
p∗

= minm pm, µ∗ = maxm {µm}, d∗ =

maxm {dhm}, G∗ = maxm {G0,Gm}, H∗ = maxm {H0, Hm}, E and Γ are the upper bound for
the square of the norm of the forward and backward compression error respectively. T is the total
number of iterations (communication rounds).

Remark 5.3. If we choose η = 1√
T

and µ∗ = 1√
T

. Design the compression to make E = O
(

1√
T

)
and Γ = O

(
1√
T

)
we can derive:

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2 = O

(
dh√
T

)
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where dh = max
m
{dhm} is the maximum output layer size of the clients.

Remark 5.4. This theorem proves that we significantly relieve the slow convergence problem of
ZOO-based VFL [41] from O( d√

T
) to O( dh√

T
).

6 Experiment

We conducted a systematic experiment on the SOTA and baseline VFL and our proposed framework.
The primary objective of our study was to empirically validate the security measures of our approach
and demonstrate its capability in reducing communication overhead. Furthermore, we conducted an
ablation study to quantify the contributions of each component toward improving communication
efficiency. Due to space limitations, extra experiment details, the CIFAR-10 experiments, extra
experiments on less common datasets, and extra experiments on other aspects of our framework
have been placed in appendix E. The source code for this project is available at the following URL:
https://github.com/GanyuWang/VFL-CZOFO.

6.1 Experiment Setups

Datasets The datasets were vertically partitioned among all participants in our experiments. Each
client held a portion of the features of each sample, while the server held the corresponding labels.
Both the server and the client kept the sample IDs during training. We utilized two datasets in our
main experiments: MNIST [20] and CIFAR-10 [19]. For both datasets, we employed two clients in
our experiments, with each client being responsible for half of the images8 in the respective dataset.
Therefore, we denoted these datasets as dist-MNIST and dist-CIFAR-10.

Models In our dist-MNIST experiment, we implemented a multilayer perception (MLP). Each
client utilized a one-layer Fully Connected Layer (FCL), with an input size equal to the flattened
local data input size, and an output size of 64. The server employed a two-layer FCL. The first layer
concatenated all the outputs from all clients and produced embeddings with 128 neurons. The second
layer outputs 10 neurons for prediction. ReLU [11] was used as the activation function for the server
and clients. Practically, the server kept a table of the outputs from all clients for all of the samples,

i.e. Φ̃t
i = [h1(w

t−τt
1,i

1 ;x1,i), . . . , w
t−τt

M,i

M ] was maintained by the server. The server updated the

corresponding value in the table when it received hm(w
t−τt

m,i
m ;xm,i) from client m during each

communication round. The clients’ outputs from the table were then used for prediction. Regarding
the dist-CIFAR-10 dataset, each client padded its half-image to full size and trained a ResNet-18 [15].
The server then summed the outputs from all the clients.

Frameworks for Comparison We compare our framework with other SOTA VFL frameworks
including “split-learning” [34], “compressed-VFL” [5], “Syn-VFL-ZO”9, “VAFL” [6], “ZOO-
VFL" [41]. All frameworks utilized identical base models and training procedures. While some
frameworks also introduced alternative VFL settings, e.g. server and clients both processing the
labels, we only focus on the VFL setting where the server stores the labels and multiple clients
possess non-intersecting features.

Training Procedures For the experiment applying the split MLP model on dist-MNIST, a batch
size of 64 was utilized, and the model was trained for 100 epochs. For the experiment applying
the ResNet-18 on dist-CIFAR-10, a batch size of 128 was used, and the model was trained for
50 epochs. The learning rate η was chosen from [0.1, 0.01, 0.001, · · · ], and µ for ZOO was cho-
sen from [1, 0.1, 0.001, 0.0001, · · · ]. We use a uniform scale compressor [2] on the forward and
backward messages with different compression bits [8, 4, 2, 1]. The number of sampling q used for
Avg-RandGradEst in the dist-MNIST experiment was set to [10, 100], while in the dist-CIFAR-10
experiment, it was set to either [100, 500, 1000]. The sampling distribution is U(S(0, 1)). We used
a vanilla SGD with a fixed learning rate for all VFL frameworks to ensure a fair comparison. The
reported test accuracy values in the tables have been obtained from five independent runs.

8Details of the feature splitting can be found in Appendix E.1
9This is the synchronous version of ZOO-VFL, the algorithm is in Appendix E.1
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Table 2: Sampling Times of Avg-RandGradEst and the Corresponding Differential Privacy Guarantee

q σ2 ζ δ ϵ δ′ ϵ̄ δ̄

10 1.61 20.1 10−6 2.8× 10−3 10−6 85.9 9.4× 10−2

100 0.15 7.3 10−6 3.3× 10−3 10−6 93.6 9.4× 10−2

6.2 Evaluation on the Privacy Protection

Figure 2: The Utility Compar-
ing with the VAFL with Gaus-
sian Mechanism

In this part, we evaluate the privacy protection of our method and
Gaussian Mechanism. The major difference between the ZOO and
Gaussian Mechanism in DP is that the variance of the stochastic
gradient estimation (ZOO) is intrinsically controlled by the hyper-
parameter of the ZOO and the characteristic of the objective function,
while in the Gaussian Mechanism, the variance is a parameter that
directly controls the magnitude of the noise added.

We obtain the DP guarantee w.r.t. the sampling times of ZOO in the
dist-MNIST experiment and report the result in Table 2. We estimate
σ2 by freezing the model and repeatedly applying Eq.2 100 times,
then calculating the variance of the estimated gradients. We obtain
the maximum gradient norm ζ by recording the norm throughout the
entire training process10. We set δ = 10−6 and calculate ϵ based on the given sampling times q. The
iteration T was set to the total iteration of 50 epochs, which is 93800.

In the second part, we compared the utility of our framework with the VAFL[6] using the Gaussian
Mechanism and gradient clipping [1] on the partial derivative w.r.t. the client’s output with the
corresponding (ϵ, δ)-DP. We set the gradient norm clipping bound to 0.1 And we plotted the training
accuracy for each epoch in Figure 2. As illustrated in the figure, our scheme exhibits comparable
utility to VAFL with the same privacy guarantee.

6.3 Evaluation of Training Efficiency and Communication Cost

(a) MNIST by epochs

(b) MNIST by comm. cost

Figure 3: Compare with other VFL
Frameworks

In this part, we compare our framework with SOTA VFL in
the effectiveness of training and communication efficiency.
We apply the best tuning for all other frameworks with
respect to test accuracy and communication efficiency.
(The experiment for dist-CIFAR-10 is in Appendix E.3)

Figure 3-(a) demonstrates that our VFL-CZOFO frame-
work has the fastest convergence rate comparable to VAFL,
demonstrating the superiority of our cascade hybrid opti-
mization method. It is worth noting that the pure-ZOO-
based VFL suffers from a slower convergence compared
to other frameworks, even with an MLP model. Figure 3-
(b) plots the total communication cost against the training
accuracy, where the crosses indicate the point where the
curve reaches 95% training accuracy for MNIST. It shows
that our VFL-CZOFO framework achieves the same level
of convergence with much lower communication costs.

Table 3 report the important statistic about the training.
As shown in the table, our framework significantly outper-
forms other communication-efficient frameworks in terms
of communication cost.

10Alternatively, one can also apply gradient clipping[1] to get a better privacy guarantee by bounding ζ,
however, we want to focus on the intrinsic privacy of our method, therefore only record the maximum norm.
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Table 3: Evaluating the Test Accuracy and the Comm. Cost

Privacy Test Accuracy Cost(60%) Cost (80%) Cost(90%) Cost (95%) Cost (total)

Split learning [34] ✗ 98.03 ± 0.07 175 MB 234 MB 937 MB 1758 MB 5859 MB
Compressed-VFL [5] ✗ 98.17 ± 0.13 109 MB 330 MB 440 MB 1099 MB 3663 MB
VAFL [6] ✗ 97.36 ± 0.14 123 MB 184 MB 307 MB 1106 MB 6144 MB

VAFL[6]+DP[1] ✓ 95.81 ± 0.20 123 MB 184 MB 799 MB 1413 MB 6144 MB
Syn-ZOO-VFL ✓ 84.51 ± 0.72 1406 MB 2520 MB - - -
ZOO-VFL [41] ✓ 85.62 ± 0.45 860 MB 1300 MB - - -
Ours ✓ 95.00 ± 0.21 16 MB 24 MB 39 MB 205 MB 790 MB

6.4 Ablation Study

Minimal Zeroth-Order Optimization In this section, we evaluate the impact of different ZOO
parameters on convergence and communication costs. We did not apply compression in this section.
We plot the training curve against epochs in Figure 4-(a), and against the logarithm base 10 of the
total backward message size in Figure 4-(b). Table 4 reports the test accuracy and communication
costs. (The experiment for dist-CIFAR-10 can be found in Appendix E.3.2 with a similar conclusion.)

Figure 4 illustrates how increasing the number of sampling q can enhance the convergence of our
proposed method. When q is set to 100, the training curve of our method closely matches that of the
VAFL method. Notably, the use of ZOO in VFL results in a significant reduction in communication
cost, reducing the backward cost by a factor of 40 compared to VAFL.

(a) MNIST by epochs (b) MNIST by comm. cost

Figure 4: Ablation Study on ZOO

Table 4: Ablation Study on ZOO

ZO Type Test Accuracy Backward Cost

FO 97.36 ± 0.14 3073 MB
AvgRand-100 95.30 ± 0.25 75 MB
AvgRand-10 93.33 ± 0.55 7.5 MB
AvgRand-1 79.66 ± 0.96 0.75 MB

Compression of the Communication In this section, we investigate the impact of compression on
convergence and communication costs using Avg-RandGradEst with 100 samplings. We evaluate
different compression schemes on either the forward (F) or backward (B) message. Figure 5 presents
the training curve plotted against the epoch and the log10 of the communication cost of the message
with compression. Table 5 displays the test accuracy and the total cost at the end of the 100-epoch
training period. (corresponding dist-CIFAR-10 experiment can be found in Appendix E.3.2.)

The results show that increasing the compression rate reduces communication costs but leads to a
decline in test accuracy. Notably, even when compressing the gradient information to 2 bits, there
is no significant decrease in test accuracy, and the message size is significantly reduced to 5.4 MB.
Hence, a trade-off can be identified in practical application to achieve a balance point.

(a) MNIST by forward cost (b) MNIST by backward
cost

Figure 5: Ablation Study on Compression

Table 5: Ablation Study on Compression

Compression Type Test Accuracy Message Cost

No Compression 95.30 ± 0.25 3073 MB

F-8 bits 95.02 ± 0.17 769 MB
F-4 bits 93.35 ± 0.23 386 MB
F-2 bits 79.10 ± 0.41 194 MB
F-1 bit 30.20 ± 0.45 96 MB

B-8 bits 94.58 ± 0.21 19 MB
B-4 bits 94.50 ± 0.10 10 MB
B-2 bits 94.16 ± 0.16 5.4 MB
B-1 bit 90.67 ± 0.22 3.1 MB
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7 Limitation

While the utilization of ZOO improves communication efficiency and security, it comes at the expense
of increased computational costs for the server. Specifically, the server needs to perform q extra
forward propagations on its local model compared to other FOO-based VFL methods. A more
comprehensive analysis and supplementary experiments can be found in Appendix E.2. However, it
is important to note that the server typically has higher computational capabilities, which makes the
associated costs manageable and acceptable.

8 Conclusion

We propose a solution in VFL that improves communication efficiency and privacy simultaneously.
Our method has been theoretically proven to outperform ZOO-based VFL in terms of convergence,
while also providing proof of the intrinsic differential privacy guarantees. Through our experiments,
we demonstrate that our method substantially reduces the communication cost of VFL in comparison
to the state-of-the-art communication-efficient VFL. Furthermore, our method achieves comparable
utility to VFL models that offer the same level of privacy guarantee.

Acknowledgments and Disclosure of Funding

This work has been supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), Discovery Grants program. Bin Gu was partially supported by the National Natural
Science Foundation of China under Grant 62076138.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

[2] William Ralph Bennett. Spectra of quantized signals. The Bell System Technical Journal, 27(3):446–472,
1948.

[3] Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Foundations of Computational
Mathematics, 22(2):507–560, 2022.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine Learning,
pages 560–569. PMLR, 2018.

[5] Timothy J Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. Compressed-vfl: Communication-
efficient learning with vertically partitioned data. In International Conference on Machine Learning, pages
2738–2766. PMLR, 2022.

[6] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous federated
learning. arXiv preprint arXiv:2007.06081, 2020.

[7] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[8] Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang, Lei Wang, Jun Zhou, and
Benyu Zhang. Large-scale secure xgb for vertical federated learning. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 443–452, 2021.

[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security, pages 1322–1333, 2015.

[10] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou, Alex X
Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, 2022.

10



[11] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cybernetics,
20(3-4):121–136, 1975.

[12] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[13] Bin Gu, Zhiyuan Dang, Xiang Li, and Heng Huang. Federated doubly stochastic kernel learning for
vertically partitioned data. In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 2483–2493, 2020.

[14] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Privacy-preserving asynchronous vertical
federated learning algorithms for multiparty collaborative learning. IEEE transactions on neural networks
and learning systems, 2021.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[16] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learning
framework for distributed features. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2232–2240, 2019.

[17] Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe: Catastrophic data leakage in
vertical federated learning. Advances in Neural Information Processing Systems, 34:994–1006, 2021.

[18] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[19] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[20] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[21] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[22] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

[23] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learning on
non-IID features via local batch normalization. In International Conference on Learning Representations,
2021.

[24] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

[25] Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred Hero. Zeroth-order online alternating direction method of
multipliers: Convergence analysis and applications. In International Conference on Artificial Intelligence
and Statistics, pages 288–297. PMLR, 2018.

[26] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K Varshney. A
primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances,
and applications. IEEE Signal Processing Magazine, 37(5):43–54, 2020.

[27] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order
stochastic variance reduction for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

[28] Yang Liu, Yan Kang, Liping Li, Xinwei Zhang, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang
Yang. A communication efficient vertical federated learning framework. Scanning Electron Microsc Meet
at, 2019.

[29] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. Feature inference attack on model
predictions in vertical federated learning. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pages 181–192. IEEE, 2021.

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

11



[31] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes! local
gradient steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, pages 15750–15769. PMLR, 2022.

[32] Thilina Ranbaduge and Ming Ding. Differentially private vertical federated learning. arXiv preprint
arXiv:2211.06782, 2022.

[33] Jiankai Sun, Xin Yang, Yuanshun Yao, and Chong Wang. Label leakage and protection from forward
embedding in vertical federated learning. arXiv preprint arXiv:2203.01451, 2022.

[34] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564, 2018.

[35] Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. arXiv
preprint arXiv:2205.02719, 2022.

[36] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security, 15:3454–3469, 2020.

[37] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ranbaduge. Vertical
federated learning: Challenges, methodologies and experiments. arXiv preprint arXiv:2202.04309, 2022.

[38] Haiqin Weng, Juntao Zhang, Feng Xue, Tao Wei, Shouling Ji, and Zhiyuan Zong. Privacy leakage of
real-world vertical federated learning. arXiv preprint arXiv:2011.09290, 2020.

[39] Kai Yang, Tao Fan, Tianjian Chen, Yuanming Shi, and Qiang Yang. A quasi-newton method based vertical
federated learning framework for logistic regression. arXiv preprint arXiv:1912.00513, 2019.

[40] Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Transactions on Information Theory,
42(4):1152–1159, 1996.

[41] Qingsong Zhang, Bin Gu, Zhiyuan Dang, Cheng Deng, and Heng Huang. Desirable companion for
vertical federated learning: New zeroth-order gradient based algorithm. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 2598–2607, 2021.

[42] Qingsong Zhang, Bin Gu, Cheng Deng, Songxiang Gu, Liefeng Bo, Jian Pei, and Heng Huang. AsySQN:
Faster vertical federated learning algorithms with better computation resource utilization. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 3917–3927, 2021.

[43] Qingsong Zhang, Bin Gu, Cheng Deng, and Heng Huang. Secure bilevel asynchronous vertical federated
learning with backward updating. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 10896–10904, 2021.

[44] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients. arXiv
preprint arXiv:2001.02610, 2020.

[45] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

12


	Introduction
	A Detailed Comparison with SOTA VFL Frameworks
	Method
	Security Analysis
	Convergence Analysis
	Experiment
	Experiment Setups
	Evaluation on the Privacy Protection
	Evaluation of Training Efficiency and Communication Cost
	Ablation Study

	Limitation
	Conclusion

