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A Notation Table1

Below is a notation table for the parameter used in the convergence analysis.2

Table 1: Notation Table

Basic:

w = [w1, w2, · · · , wM ] The parameter for all the clients.
hm,i = hm(wm;xm,i) The local model output of client m with sample i
Φi = Φi(w) = [h1(w1;x1,i), · · · , hM (wM ;xM,i)] = [h1,i, . . . , hM,i] The output embeddings from all clients for sample

i
f (w0,w) = f (w0,w, X, y) The global loss function
fi (w0,Φi(w)) = fi (w0, h1,i, . . . , hM,i) The loss function for the sample i calculated by

server.

With timestep (t), clients’ delay (w̃), embedding compression (f̂ ), ZOO gradient estimator (∇̂)

wt
m The client m’s parameter, at global timestep t,

wt = [wt
1, . . . , w

t
M ] The clients’ parameter at global timestep t

w̃t = wt−τt
i = [w

t−τt
1,i

1 , . . . , w
t−τt

M,i

M ] The delayed parameter for all the clients at global
time step t (and the local timestep is 0 for all w).

Φt
i = Φi(w

t) = [h1(w
t
1;x1,i), · · · , hM (wt

M ;xM,i)] The output embeddings from all clients for sample
i at global timestep t without delay.

Φ̃t
i = Φi(w̃

t) = [h1(w
t−τt

1,i

1 ;x1,i), · · · , hM (w
t−τt

M,i

M ;xM,i)] The output embeddings from all clients for sample
i with the client delay at global timestep t

Φt
i(w

t
m) = [h1(w

t
1;x1,i), · · ·hm(wt

m;xm,i), · · ·hM (wt
M ;xM,i)] Φt

i substitute the client m’s parameter with wt
m

Φ̃t
i(w

t
m) = [h1(w

t−τt
1,i

1 ;x1,i), · · ·hm(wt
m;xm,i), · · ·hM (w

t−τt
M,i

M ;xM,i)] Φ̃t
i substitute the client m’s parameter with wt

m

f̂i (w0,Φi) = fi (w0, h1,i + ϵ1,i, · · · , hM,i + ϵM,i) The loss function with compression error of all
client’s embedding.

∇̂hm,i
fi (w0,Φi) =

ϕ(dhm )
µm

[fi (hm,i + µmum,i)− fi (hm,i)]um,i The ZO gradient estimator w.r.t. the client m’s
output
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B Assumptions3

Assumptions B.1 - B.4 are the basic assumptions for solving the non-convex optimization problem4

with stochastic gradient descent [10, 15, 21].5

Assumption B.1. Feasible Optimal Solution: Function f is bounded below that is, there exist f∗6

such that,7

f∗ := inf
[w0,w]∈Rd

f(w0,w) > −∞.

Assumption B.2. Lipschitz Gradient: ∇fi is L-Lipschitz continuous w.r.t. all the parameter, i.e.,8

there exists a constant L for ∀ [w0,w], [w′
0,w

′] such that9 ∥∥∇[w0,w]fi(w0,Φi(w))−∇[w0,w]fi(w
′
0,Φi(w

′))
∥∥ ≤ L ∥[w0,w]− [w′

0,w
′]∥

specifically there exists an Lm > 0 for all parties m = 0, · · · ,M such that ∇wm
fi is Lm-Lipschitz10

continuous:11

∥∇wmfi(w0,Φi(w))−∇wmfi(w
′
0,Φi(w

′))∥ ≤ Lm ∥[w0,w]− [w′
0,w

′]∥

Assumption B.3. Unbiased Gradient: For m ∈ 0, 1, · · ·M for every data sample i, the stochastic12

partial derivatives are unbiased, i.e. Ei∇wm
fi(w0,Φi(w)) = ∇wm

f (w0,Φi(w))13

Assumption B.4. Bounded Variance: For m = 0, 1, · · · ,M , there exist constants14

σm ≤ ∞ such that the variance of the stochastic partial derivatives are bounded:15

Ei ∥∇wm
fi(w0,Φi(w))−∇wm

f(w0,w)∥2 ≤ σ2
m16

Assumptions B.5 - B.6 are the base assumptions for bounding the compression of the embedding17

on the loss [4]. Since compression introduces error in the input of the loss function, therefore with18

the bounded Hessian we can derive the maximum effect of the error on the loss. And bounding the19

block-coordinated gradient is common in VFL analysis for bounding the gradient for the entire model20

when the gradient of other parts have been bounded [4, 12, 22].21

Assumption B.5. Bounded Hessian: The Hessian for fi (w0,Φi(w)) is bounded, i.e. there exist22

positive constant Hm for m = 0, 1, · · ·M such that for all [w0,w], the following inequalities holds:23 ∥∥∇2
w0

fi (w0,Φi(w))
∥∥ ≤ H0∥∥∥∇2

(wm;xm,i)
fi (w0,Φi(w))

∥∥∥ ≤ Hm

Where the norm is the spectral norm (the matrix norm induced by L2-norm1)24

Assumption B.6. Bounded Block-coordinate Gradient: The gradient of all the participants’ local25

output w.r.t. their local input is bounded, i.e. there exist positive constants G0 for the server m = 026

the following inequalities holds:27 ∥∥∇[w0,h1,i,··· ,hM,i]fi (w0, h1,i, · · · , hM,i)
∥∥ ≤ G0

and there exist positive constants Gm for the client m = 1, · · · ,M the following inequalities hold:28

∥∇wm
(wm;xm,i)∥ ≤ Gm

where the first inequality bounds the gradient for the server w.r.t. to all the outputs received from the29

clients, and the second inequality bounds the gradient for the client’s outputs w.r.t. the client’s local30

parameter.31

Assumptions B.7 - B.8 are the assumptions for dealing with the asynchronous updates of our VFL32

framework. We assume that the activation of clients at each global round is independent and that the33

maximum delay is bounded [21, 5, 12]. These are reasonable assumptions for analysis.34

Assumption B.7. Independent Client: The activated client mt for the global iteration t is indepen-35

dent of m0, · · · , mt−1 and satisfies P(mt = m) := pm36

Assumption B.8. Uniformly Bounded Delay: For each client m, and each sample i, the delay at37

each global iteration t is bounded by a constant τ . i.e. τ tm,i ≤ τ38

1For notation brevity, unless specific, the norm is L2-norm for the vector and spectral norm for the matrix.
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C Security Analysis39

C.1 Differential Privacy Guarantee of Sharing the Stochastic Estimation of the Gradient40

Definition C.1. (ϵ, δ)-Differential Privacy A randomized mechanismM : D → R with domain41

D and rangeR satisfies (ϵ, δ)-differential privacy if for any two adjacent inputs d, d′ ∈ D, and for42

any subset of outputs S ⊆ R it holds that:43

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ

Now we start the proof of the (ϵ, δ)-Differential Privacy of the training process of sharing the44

stochastic gradient.45

The activated client mt at iteration t is updated with the following equation.46

wt+1
mt

= wt
mt
− η∇̂hmt,i

fi
(
wt

0,Φi

)
· ∇mt

hmt,i (1)

where47

∇̂hmt,i
fi
(
wt

0,Φi

)
=

1

q

q∑
j=1

1

µmt

[fi(hmt,i + µmt
uj
mt,i

)− fi (hmt,i)]u
j
mt,i

(2)

For notation brevity, we define:48

gt,jmt
≜

1

µmt

[fi(hmt,i + µmt
uj
mt,i

)− fi (hmt,i)]u
j
mt,i

(3)

gtmt
≜ ∇̂hmt,i

fi
(
wt

0,Φi

)
=

1

q

q∑
j=1

gt,jmt
(4)

We will show in the following lemma C.2 that the solution can be regarded as client updating with the49

unbiased gradient of the smoothed loss function fu,i (w
t
0,Φi) = Eu[fi(w0,Φ(w))+µu], but adding50

a stochastic noise on it, where the unbiased ideal parameter sequence of the client mt is defined as51

w̆mt
. Formally:52

w̆t+1
mt

= w̆t
mt
− η∇hmt,i

fu,i
(
wt

0,Φi

)
· ∇mt

hmt,i (5)

wt
mt

= w̆t
mt

+ ξtmt
(6)

Where ξt is a stochastic variable.53

For notation brevity, we define:54

ğtmt
≜ ∇hmt,i

fu,i
(
wt

0,Φi

)
(7)

Lemma C.2. For t = 0, ...T − 1, if gt,jmt
is i.i.d. and q is sufficiently large, then wt

mt
is distributed as:55

wt
mt
∼ N

(
w̆t

mt
,
1

q
η2(∇mt

hmt,i)
⊺Ψt

mt
∇mt

hmt,i

)
(8)

and gtmt
is distributed as56

gtmt
∼ N

(
ğtmt

,
1

q
Ψt

mt

)
(9)

proof: First we show that E[wt
mt

] = w̆t
mt

, we prove this by Mathematical Induction. The w0
mt

= w̆0
mt

57

holds by natural when initializing the parameter. Assuming E[wt−1
mt

] = w̆t−1
mt

, we have:58

E[wt
mt

] = E[wt−1
mt
− η∇̂hmt,i

fi
(
wt

0,Φi

)
· ∇mt

ht
mt,i]

= w̆t−1
mt
− ηE[∇̂hmt,i

fi
(
wt

0,Φi

)
· ∇mt

ht
mt,i]
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= w̆t−1
mt
− η∇hmt,i

fu,i
(
wt

0,Φi

)
· ∇mth

t
mt,i

= w̆t
mt

(10)

Where the third equality applies the lemma D.3 (Eq. 26). Therefore E[wt
mt

] = w̆t
mt

for t =59

0, 1, ...T − 1.60

For the stochastic gradient estimation gtmt
which applies q times of sampling on the same distribution61

centering on wt
mt

. Apply the central limit theorem, and assuming the expectation and covariance62

matrix for each sampling is µµµt
mt

and Ψt
mt

respectively, we have63

gtmt
=

1

q

q∑
j=1

gt,jmt
∼ N (µµµt

mt
,
1

q
Ψt

mt
) (11)

The update of the wt
mt

is distributed as:64

−ηgtmt
∇mthmt,i ∼ N

(
−ηµµµt

mt
∇mthmt,i,

1

q
η2(∇mthmt,i)

⊺Ψt
mt
∇mthmt,i

)
(12)

which is the only stochastic part, therefore we have65

wt
mt
∼ N

(
w̆t

mt
,
1

q
η2(∇mthmt,i)

⊺Ψt
mt
∇mthmt,i

)
(13)

the first part of the lemma has been proved.66

Specifically, E[gtmt
] = ğtmt

(lemma D.3 Eq. 26), therefore we have67

gtmt
=

1

q

q∑
j=1

gt,jmt
∼ N

(
ğtmt

,
1

q
Ψt

mt

)
(14)

the second part of the lemma has been proved.68

Lemma C.3. (ϵ, δ)-Differential Privacy for Gaussian mechanism: Let ϵ ∈ (0, 1) be arbitrary, for69

c2 > 2 ln(1.25/δ) the Gaussian mechanism with parameter σ > c∆2/ϵ is (ϵ, δ)-differential privacy.70

proof: The proof is in [6] Theorem A.1.71

Theorem C.4. Let ϵ ∈ [0, 1], the covariance matrix of the gtmt
be Ψt

mt
, with the following condition72

holds:73

σmt,s =

√√√√ 1

qdhT

T−1∑
t=0

tr(Ψt
mt

) >
2
√

2 ln(1.25/δ)G0

N · ϵ
(15)

under Algorithm 1, sharing the stochastic estimation of the partial gradient for each iteration satisfy74

(ϵ, δ)- differential privacy.75

Proof: From lemma C.2 we already have that:76

gtmt
∼ N

(
ğtmt

,
1

q
Ψt

mt

)
(16)

To make the problem more trackable, assume each entry of gtmt
is independent of each other and has77

the same variance value, and the variance is stable throughout the training process. Therefore, for78

each entry s of gtmt
79

gtmt,s ∼ N (ğmt
t,s, σ

t
mt,s) (17)

where σmt =
1

qdhT

∑T−1
t=0 tr(Ψt

mt
) is the averaged variance for each entry.80

The l2-norm sensitive of gtmt
is given by81

∆mt,2 = max
D,D′

∥∥ğtmt,D − ğtmt,D′

∥∥
2

(18)
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Assume the probability of selecting each sample in the dataset D (or D′) is the same. D and D′ are82

two neighboring dataset differing in only one sample (xi, yi) and (x′
i, y

′
i). Without loss of generality,83

we set the differing sample to be the N -th sample. Assume ζ = maxmt,i

∥∥∇hmt,i
fu,i (w

t
0,Φi)

∥∥ be84

the maximum l2-norm of the partial gradient w.r.t. any client’s output through the entire training.85

∆mt,2 = max
D,D′
∥ 1
N

N∑
i=0

∇hmt,i
fu,i

(
wt

0,Φi

)
− 1

N

N−1∑
i=0

∇hmt,i
fu,i

(
wt

0,Φi

)
− 1

N
∇hmt,N

fu,N
(
wt

0, h1(w1;x
′
1,N ), h2(w2;x

′
2,N ); y′N

)
∥2

=
1

N
max
D,D′

∥∥[∇hmt,i
fu,i

(
wt

0,Φi

)
−∇hmt,N

fu,N
(
wt

0, h1(w1;x
′
1,N ), h2(w2;x

′
2,N ); y′N

)]∥∥
2

≤ 2ζ

N
(19)

where the inequality is based on assumption B.6.86

Applying lemma C.3, with the l2-norm sensitive ∆mt,2 of ğm. We derived the Theorem C.4. ■87

Total Privacy Now we consider the total privacy of the entire training process.88

Lemma C.5. (Advanced Composition) For all ϵ, δ, δ′ the class of (ϵ, δ)-DP mechanisms satisfies89

(ϵ′, kδ + δ′)-DP under k-fold adaptive composition for:90

ϵ′ =
√
2k ln(1/δ′)ϵ+ kϵ(eϵ − 1) (20)

Proof: The proof is from [6, Theorem 3.20].91

Theorem C.6. Under the “honest-but-colluded" threat model where the attacker can access all92

information of all clients through the entire training process. Under algorithm 1, if the following93

condition holds:94

1

qdhT

T−1∑
t=0

ηtr(Ψt
mt

) >
2ζ
√

2 ln(1.25/δ)

N · ϵ
(21)

we can derive that sharing the stochastic gradient estimation from the server ensures (ϵ′, T δ+δ′)-DP95

for all ϵ, δ, δ′ > 0, where ϵ′ =
√
2T ln(1/δ′)ϵ+ Tϵ(eϵ − 1).96

Proof: Theorem C.4 has proved the (ϵ, δ)-DP for each iteration, then applying lemma C.5 with the97

number of composition k = T , the theorem is proved. ■98

Lemma C.7. Given target privacy parameters 0 < ϵ′ < 1 and δ′ > 0, to ensure (ϵ′, kδ + δ′)99

cumulative privacy loss over k mechanisms, it suffices that each mechanism is (ϵ, δ)-differentially100

private, where101

ϵ = ϵ′/(2
√
2k ln(1/δ′)) (22)

Proof: The proof is from [6, Corollary 3.21]102

Corollary C.8. With algorithm 1, for each iteration, for all δ > 0, if the following conditions holds:103

1

qdhT

T−1∑
t=0

ηtr(Ψt
mt

) >
4ζ
√
4T ln(1.25/δ) · ln(1/δ′)

N · ϵ′
(23)

we can derived (ϵ′, T δ + δ′) cumulative privacy loss over T iteration,104

Proof: Applying lemma C.7 and plugging in ϵ = ϵ′/(2
√

2T ln(1/δ′))105
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C.2 Defense Against the State-of-the-art Privacy Inference Attack in VFL106

Privacy Protection of VFL-CZOFO at Framework Level VFL-CZOFO ensures the protection107

of labels on the server through two key mechanisms. Firstly, the information shared by the server108

with the clients is the ZO gradient with intrinsic DP rather than the vulnerable unbiased gradient.109

Secondly, the internal details of the server’s model and the domain information associated with the110

labels are not disclosed to the client. Thus, the server appears as a black box to the client, allowing111

queries from the clients, but responds with noisy outputs to protect privacy.112

VFL-CZOFO ensures the protection of the features on the clients by keeping the internal model113

information of the clients not disclosed to the server. Additionally, clients have the flexibility to114

utilize any model, which makes them appear as black-box models to the server. As a result, the server115

can only obtain the outputs from the black box (client) but does not have access to the corresponding116

inputs nor the ability to make adaptive queries.117

SOTA Inference Attack under “Honest-but-curious” We discuss two types of privacy inference118

attacks: the label inference attack and the feature inference attack.119

A label inference attack[8, 17] under the “honest-but-curious" model involves a curious client120

attempting to infer the label of the dataset from the server. The “direct label inference" attack121

proposed by Fu et al. [8] cannot successfully attack our framework because it relies on a strong122

assumption that the client explicitly knows that the server simply sums the output from all clients.123

This allows the gradient replied by the server to directly reveal the label information by the sign of124

the entries. However, in our framework, we assume that the server can use any model and that the125

client does not have access to the server’s model. Additionally, the gradient is not sent to the client in126

our framework. The "model completion" attack by Fu et al. [8] and the "forward embeddings" attack127

by Sun et al. [17] rely on the local model’s representation of the unknown label, assuming that the128

curious client can obtain a small number of labels for the samples. Essentially, this is equivalent to129

using the local model and the local feature set to guess the label. The effectiveness of these attacks130

depends solely on the representation of the local model and features held by the client. However,131

with Theorem 3, we have proven the (ϵ, δ)-differential privacy of sharing the ZO gradient. Therefore,132

the client cannot differ one item from the server’s dataset. Deep Leakage from Gradient and its133

variation [24, 23, 13], utilizes gradient information to optimize and reconstruct the label from the134

model. However, this attack does not apply to our framework. The attack assumes that the attacker135

has access to the target model’s structure and parameters, as well as unbiased gradient information.136

In contrast, in our framework, participants cannot access each other’s model information through the137

protocol. Additionally, our framework does not provide the attacker with any gradient information.138

Instead, the attacker can only obtain a stochastic estimation of the gradient of the ZOO.139

The feature inference attack [24, 13, 7], involves the server, acting as the attacker, attempting to infer140

the feature from the clients under the "honest-but-curious" model. Deep leakage from gradient [24]141

can also be used as a feature inference attack in VFL, however, this attack cannot compromise our142

framework because the attacker cannot access the victim model and cannot get a certain gradient143

information. Model inversions attack [7] can be considered as a feature inference attack, wherein the144

server uses the output of the client to recover the feature. However, this attack cannot successfully145

compromise our framework because it relies on the attacker adaptively querying the model of the146

victim with specially designed input features, which is not allowed in our framework. Specifically,147

our framework does not provide a mechanism for the server to query the client with feature inputs.148

Moreover, all of the attacks mentioned above assume that the attacker obtained the domain of the149

label or features, however, in our framework, the client and server can collaborate without sharing the150

tasks information.151

“Honest-but-colluded” In the "honest-but-colluded" threat model, the label inference attack152

involves some clients colluding to infer the label from the server [8, 24]. In the worst-case scenario,153

all clients collude to infer the label from the server. If there is only one client, the "Honest-but-curious"154

threat model is equivalent to the "honest-but-colluded" model since there are no other participants155

to collude with. Even in the worst-case scenario where all clients collude, our framework remains156

resilient to the "direct label inference" attack described in Fu et al. [8]. This is because the server’s157

model remains unknown to the clients, and the clients can only obtain a stochastic estimation of158

the gradient, rather than the unbiased gradient information, which makes it impossible for them to159

perform the attack successfully. Our framework remains resistant to the Deep Leakage from Gradient160
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attack [24] because this attack relies on the attacker having knowledge of the parameter and structure161

of the victim’s model, which is not shared in our framework. Furthermore, the attacker is unable162

to access the unbiased gradient in our framework, which further prevents this attack from being163

successful.164

The feature inference attack in the “honest-but-colluded" threat model is that the server colluded with165

some clients to infer the features from one client. In the worst-case scenario, the server colludes with166

all clients except the victim client. The attacker can access all the information from the colluding167

participants, including the model information, the dataset, and the communications between other168

participants, following the protocol. Luo et al. [16] propose a feature inference attack in VFL where169

they assume that all participants collude except the victim client. Additionally, they explicitly assume170

that all clients use the Logistic Regression (LR) model. However, this attack is not applicable to our171

framework because we do not assume a specific model for the client, and the attacker cannot access172

the model information of the victim, making the attack infeasible. The Reverse Multiplication Attack173

[19] is similar to the feature inference attack proposed by Luo et al. [16], but the target model adds174

Homomorphic Encryption to protect the data. In the attack, the authors assume that the "coordinate175

participant" who has the private key is also corrupted, enabling them to decrypt all data received from176

the victim. They then perform an equation-solving attack for the LR model. However, this attack is177

not applicable to our framework because we do not assume an LR model, and the attacker cannot178

access the victim’s model. Therefore, our framework is secure against such attacks.179

D Convergence Analysis180

D.1 Asynchronous VFL Framework181

We use an Asyn-VFL framework [5] where the server passively handles the request from the clients182

and replies with the necessary information instead of actively sending messages to coordinate with183

the training process of the clients. Asyn-VFL can be modeled with a global iteration sequence, where184

each iteration has four steps. As shown in Fig. 1, step 1 is that the client mt is activated and sends the185

forward message to the server. In step 2, the server replies with the necessary information for the186

client’s update. Then the server does local updates based on the updated forward message and the187

client update its model with the backward message.188

Figure 1: Asynchronous VFL framework

At any iteration t, only one client mt and the server updates its parameter. Therefore, there are189

delays between parameters updated at iteration t and parameters that are not updated. In this paper,190

we use τ tm,i to denote the delay w.r.t. the client m and the sample i at global iteration t. At each191

global iteration, the client mt is activated and its delay is clear; for all other clients m ̸= mt, their192

delay count τ tm,i is increased by 1. Formally, the update rules for delay τ tm,i can be represented as193

following:194

τ t+1
m,i =

{
1, m = mt, i = it
τ tm,i + 1, otherwise

D.2 Defining Compression Errors195

Definition D.1. Compression Error (forward message). Let vector ϵm,i be the compression error196

of Cm(·), on sample i, i.e. ϵm,i = Cm(hm(wm;xi))− hm(wm;xi). We denote the expected norm197
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of the error from the client m at global iteration t as Etm = E ∥ϵmt,it∥
2, and define the upper limit198

E = max
t
{Et}199

Definition D.2. Compression Error (backward message). Let em,i be the compression error on200

δm,i, i.e. em,i = C0(δm,i)− δm,i. the pseudo partial derivative that the client gets is201

vm =
ϕ(dhm)

µm
[fi (hm,i + µmum,i)− fi (hm,i) + em,i]um,i

=
ϕ(dhm)

µm
[fi (hm,i + µmum,i)− fi (hm,i)]um,i +

ϕ(dhm)

µm
em,ium,i

= ∇̂hm,i
fi (w0, ϕi(w)) +

ϕ(dhm
)

µm
em,ium,i (24)

Define vector γm,i =
ϕ(dhm )

µm
em,ium,i be the compression error on ∇̂hm,i

fi (w0, ϕi(w)), so that202

vm = ∇̂hm,i
fi (w0, ϕi(w)) + γm,i

(25)

and define γt = γmt,it , be the error on the activated client mt and the selected sample it at iteration203

T , and Γt = E ∥γt∥2. The upper limit for the compression error is Γ = max
t
{Γt}.204

D.3 Lemmas205

Lemma D.3. Zeroth-Order Optimization. For arbitrary f ∈ C1
L(Rd), we have:206

1) fµ(x) is continuously differentiable, its gradient is Lipschitz continuous with Lµ ≤ L:207

∇fµ (x) = Eu

[
∇̂f(x)

]
(26)

where u is drawn from the uniform distribution over the unit Euclidean sphere, and ∇̂f(x) =208
d
µ [f (x+ µu)− f (x)]u is the gradient estimator, fµ(x) = Eu [f(x+ µu)] is the smooth approxi-209

mation of f .210

2) For any x ∈ Rd,211

|fµ (x)− f (x) | ≤ Lµ2

2
(27)

∥∇fµ(x)−∇f(x)∥2 ≤
µ2L2d2

4
(28)

1

2
∥∇f (x)∥2 − µ2L2d2

4
≤ ∥∇fµ (x)∥2 ≤ 2 ∥∇f (x)∥2 + µ2L2d2

2
(29)

3) For any x ∈ Rd,212

Eu

[∥∥∥∇̂f (x)∥∥∥2] ≤ 2d ∥∇f (x)∥2 + µ2L2d2

2
(30)

Lemma D.3 helps build a connection between f (·) and its smooth approximation fµm
(·) of the213

convergence analysis. Proof of this lemma is provided in [14, 9].214

Lemma D.4. Compression Error. Under assumption B.5 - B.6, the norm of the difference between215

the loss function value with and without compression error is bounded:216

E
∥∥∥∇w0

f̂i
(
wt

0,Φ
t
i

)
−∇w0

fi
(
wt

0,Φ
t
i

)∥∥∥2 ≤ H2
0E

E
∥∥∥∇wm f̂i

(
wt

0,Φ
t
i

)
−∇wmfi

(
wt

0,Φ
t
i

)∥∥∥2 ≤ G2
mH2

mE

(31)

where E = max
t
{Et} = max

t

{∑M
m=1 Etm

}
217

proof:218
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For notation brevity, we denote:219

ht
m,i = hm(wt

m;xm,i)

f̂ t
i = fi(w

t
0, c

t
1,i, · · · , ctq,i) = fi(w0, h

t
1,i + ϵt1,i, · · · , ht

M,i + ϵtM,i)

fi
t = fi(w

t
0, h

t
1,i, · · · , ht

M,i) = fi
(
wt

0,Φ
t
i

)
Et

m = [ϵt0, ϵ
t
1, · · · , ϵtM ]

(32)

Applying the chain rule to ∇fi w.r.t. wm.220

∇wm
f̂ t
i =∇wm

ht
m,i∇ht

m,i
f̂ t
i︸ ︷︷ ︸

a)

=∇wm
ht
m,i

(
∇ht

m,i
f t
i +Rt

0

)
=∇wm

f t
i +∇wm

ht
m,i ·Rt

0 (33)

where a) applies Taylor expansion to∇hm,i
f̂i around the point [wt

0,Φ
t
i]221

∇hm,i
f̂i = ∇hm,i

fi +∇2
hm,i

fiEm + · · ·
(34)

Define the infinite sum of all terms higher than the second partial derivative as Rt
n, where n denotes222

the number of terms in the remainder R:223

Rt
n(w0, h1,i + ϵ1,i, · · · , hM,i + ϵM,i) = ∇2

hm,i
fiEm + · · ·

(35)

Therefore, for m = [M ],224

E
∥∥∥∇wm

f̂i
(
wt

0,Φ
t
i

)
−∇wm

fi
(
wt

0,Φ
t
i

)∥∥∥2
=E

∥∥∇wmht
m,i ·Rt

0

∥∥2
≤E

∥∥∇wm
ht
m,i

∥∥2 ∥∥Rt
0

∥∥2
1)

≤EG2
m

∥∥Rt
0

∥∥2
2)

≤G2
mH2

mE
∥∥Et

m

∥∥2
3)
=G2

mH2
m

M∑
m=1

Etm

4)
=G2

mH2
mEt

5)

≤G2
mH2

mE
(36)

where 1) apply assumption B.6, 2) apply the assumption B.5 and Taylor’s inequality. 3) note that225

the specific error to be plugged in is Em = [0, ϵt1, · · · , ϵtM ], i.e. the error for the w0 is 0, 4) for226

brevity, we use Et to denote
∑M

m=1 ∥Etm∥
2 5) To make a succinct bound, let E = max

t
{Et} denote227

the maximum norm of the error caused by the compression.228

For the server E
∥∥∥∇w0

f̂i (w
t
0,Φ

t
i)−∇w0

fi (w
t
0,Φ

t
i)
∥∥∥2, the w0 in fi(w0,Φi) can be regarded as w0229

applying the identical function h0(·), i.e. h0(w0) = w0, and passing through the same procedures230

above. Note that ∥∇w0
h0(w0)∥2 = 1.231

E
∥∥∥∇w0

f̂i
(
wt

0,Φ
t
i

)
−∇w0

fi
(
wt

0,Φ
t
i

)∥∥∥2
9



=E
∥∥∇w0h

t
0 ·Rt

0

∥∥2
≤E

∥∥∇w0
ht
0

∥∥2 ∥∥Rt
0

∥∥2
≤E

∥∥Rt
0

∥∥2
≤H2

0E
∥∥Et

m

∥∥2
=H2

0

M∑
m=1

Etm

=H2
0Et

≤H2
0E

(37)

D.4 Bound the Global Update Round232

In one global round during training, the client mt is activated, and the server and the client mt update233

one step. Taking expectations w.r.t. the sample i and the random direction u for the zeroth-order234

optimization in one global update round.235

Ei,u

[
f
(
wt+1

0 , wt
1, · · · , wt+1

mt
, · · · , wt

M

)
− f

(
wt

0, w
t
1, · · · , wt

mt
, · · · , wt

M

)]
1)

≤−η0Ei

〈
∇w0

f
(
wt

0,w
t
)
,∇w0

f̂i

(
wt

0, Φ̃
t
i

)〉
︸ ︷︷ ︸

a)

+
1

2
Lη20Ei

∥∥∥∇w0
f̂i

(
wt

0, Φ̃
t
i

)∥∥∥2︸ ︷︷ ︸
b)

−ηmt
Ei,u

〈
∇wmt

f
(
wt

0,w
t
)
, ∇̂hmt

f̂i

(
wt

0, Φ̃i(w
t
mt

)
)
∇wmt

hmt
(wt

mt
;xmt,i)

〉
︸ ︷︷ ︸

c)

+
1

2
Lη2mt

Ei,u

∥∥∥∇̂hmt
f̂i

(
wt

0, Φ̃(w
t
mt

)
)
∇wmt

hmt(w
t
mt

;xmt,i)
∥∥∥2︸ ︷︷ ︸

d)

2)

≤− 1

2
η0Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2 + η0H

2
0E + η0L

2
0Ei

∥∥w̃t −wt
∥∥2

+ Lη20Ei

∥∥∇w0f
(
wt

0,w
t
)∥∥2 + Lη20σ

2
0 + 2Lη20H

2
0E + 2Lη20L

2
0Ei

∥∥w̃t −wt
∥∥2

− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2 + 1

4
ηmtµ

2
mt

L2
mt

d2hmt
G2

mt
+ 4ηmtG

2
mt

H2
mt
E + 2ηmtL

2
mt

Ei

∥∥w̃t −wt
∥∥2

+ 4ηmt
ΓG2

mt

+ 2Lη2mt
dhmt

G2
0G

2
mt

+
1

2
Lη2mt

µ2
mt

L2
mt

d2hmt
G2

mt
+ Lη2mt

G2
mt

Γ

3)

≤−
(
1

2
η0 − Lη20

)
Ei

∥∥∇w0f
(
wt

0,w
t
)∥∥2 − 1

2
ηmtEi

∥∥∇wmt
f
(
wt

0,w
t
)∥∥2

+
(
η0L

2
0 + 2Lη20L

2
0 + 2ηmt

L2
mt

)
Ei

∥∥w̃t −wt
∥∥2

+ η0H
2
0E + 2Lη20H

2
0E + 4ηmt

G2
mt

H2
mt
E + 4ηmt

G2
mt

Γ + Lη2mt
G2

mt
Γ

+
1

4
ηmt

µ2
mt

L2
mt

d2hmt
G2

mt
+ 2Lη2mt

dhmt
G2

0G
2
mt

+
1

2
Lη2mt

µ2
mt

L2
mt

d2hmt
G2

mt

+ Lη20σ
2
0

(38)
where 1) applies assumption B.2 (smoothness). Then we will discuss the server’s update (a&b) and236

the client’s update (c&d) separately in the following paragraph. 2) plugging in a), b), c) and d). 3)237

organize the equation.238
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for a)239

− η0Ei

〈
∇w0f

(
wt

0,w
t
)
,∇w0 f̂i

(
wt

0, Φ̃
t
i

)〉
0)
=− η0Ei

〈
∇w0f

(
wt

0,w
t
)
,∇w0 f̂i

(
Φ̃t

i

)〉
=− η0Ei

〈
∇w0f

(
wt

0,w
t
)
,∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)
+∇w0fi

(
Φt

i

)〉
=η0Ei

〈
−∇w0f

(
wt

0,w
t
)
,∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)〉
− η0Ei

〈
∇w0f

(
wt

0,w
t
)
,∇w0fi

(
Φt

i

)〉
1)
=η0Ei

〈
−∇w0f

(
wt

0,w
t
)
,∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)〉
− η0Ei

∥∥∇w0f
(
wt

0,w
t
)∥∥2

2)

≤− 1

2
η0Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2 + 1

2
η0Ei

∥∥∥∇w0
f̂i

(
Φ̃t

i

)
−∇w0

fi
(
Φt

i

)∥∥∥2
=− 1

2
η0Ei

∥∥∇w0f
(
wt

0,w
t
)∥∥2

+
1

2
η0Ei

∥∥∥∇w0
f̂i

(
Φ̃t

i

)
−∇w0

fi

(
Φ̃t

i

)
+∇w0

fi

(
Φ̃t

i

)
−∇w0

fi
(
Φt

i

)∥∥∥2
3)

≤− 1

2
η0Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2

+ η0Ei

∥∥∥∇w0
f̂i

(
Φ̃t

i

)
−∇w0

fi

(
Φ̃t

i

)∥∥∥2 + η0Ei

∥∥∥∇w0
fi

(
Φ̃t

i

)
−∇w0

fi
(
Φt

i

)∥∥∥2
4)

≤− 1

2
η0Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2 + η0H

2
0E + η0L

2
0Ei

∥∥w̃t −wt
∥∥2

(39)

where 0) For notation brevity, we mark fi

(
wt

0, Φ̃
t
i

)
as fi

(
Φ̃t

i

)
, (omit the common parameters), 1)240

applies assumption B.3 (unbiased gradient), 2) ⟨a, b⟩ ≤ 1
2 ∥a∥

2
+ 1

2 ∥b∥
2, 3) ∥a+ b∥2 ≤ 2 ∥a∥2 +241

2 ∥b∥2, 4) lemma D.4 and assumption B.2 (smoothness).242

for b)243

1

2
Ei

∥∥∥∇w0
f̂i

(
wt

0, Φ̃
t
i

)∥∥∥2
0)
=
1

2
Ei

∥∥∥∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)
+∇w0fi

(
Φt

i

)∥∥∥2
1)

≤Ei

∥∥∥∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)∥∥∥2 + Ei

∥∥∇w0fi
(
Φt

i

)∥∥2
2)

≤Ei

∥∥∥∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)∥∥∥2 + Ei

∥∥∇w0f
(
wt
)∥∥2 + σ2

0

=Ei

∥∥∇w0
f
(
wt
)∥∥2 + σ2

0

+ Ei

∥∥∥∇w0 f̂i

(
Φ̃t

i

)
−∇w0fi

(
Φ̃t

i

)
+∇w0fi

(
Φ̃t

i

)
−∇w0fi

(
Φt

i

)∥∥∥2
3)

≤Ei

∥∥∇w0f
(
wt
)∥∥2 + σ2

0

+ 2Ei

∥∥∥∇w0
f̂i

(
Φ̃t

i

)
−∇w0

fi

(
Φ̃t

i

)∥∥∥2 + 2Ei

∥∥∥∇w0
fi

(
Φ̃t

i

)
−∇w0

fi
(
Φt

i

)∥∥∥2
4)

≤Ei

∥∥∇w0
f
(
wt
)∥∥2 + σ2

0 + 2H2
0E + 2L2

0Ei

∥∥w̃t −wt
∥∥2

(40)

where 0) For notation brevity, we mark fi

(
wt

0, Φ̃
t
i

)
as fi

(
Φ̃t

i

)
, (omit the common parame-244

ters), 1) applies ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, 2) applies E(X2) = E(X)2 + Var(X), assump-245

tion B.3 (unbiased gradient) and assumption B.4 (bounded variance), i.e. Ei ∥∇w0
fi (Φ

t
i)∥

2
=246
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∥∇w0f (Φ
t
i)∥

2
+Var(∇w0fi (Φi)) ≤ ∥∇w0f (w

t)∥2 + σ2
0 , 3) applies ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2,247

4) lemma D.4 and assumption B.2 (smoothness).248

then b) is249

Lη20

(
1

2
Ei

∥∥∥∇w0
f̂i

(
wt

0, Φ̃
t
i

)∥∥∥2)
=Lη20Ei

∥∥∇w0
f
(
wt
)∥∥2 + Lη20σ

2
0 + 2Lη20H

2
0E + 2Lη20L

2
0Ei

∥∥w̃t −wt
∥∥2

(41)

for c)250

− ηmt
Ei,u

〈
∇wmt

f
(
wt

0,w
t
)
,
[
∇̂ht

mt,i
f̂i

(
wt

0, Φ̃i(w
t
mt

)
)
+ γt

]
· ∇wmt

hmt
(wt

mt
;xm,i)

〉
0)
=− ηmt

Ei,u

〈
∇wmt

f (·) ,
[
∇̂ht

mt,i
f̂i

(
Φ̃i(w

t
mt

)
)
+ γt

]
· ∇wmt

ht
mt,i

〉
1)
=− ηmt

Ei

〈
∇wmt

f (·) ,∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i + γt · ∇wmt

ht
mt,i

〉
=− ηmt

Ei

〈
∇wmt

f (·),∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i + γt · ∇wmt

ht
mt,i −∇wmt

fi
(
Φi(w

t
mt

)
)

+∇wmt
fi
(
Φi(w

t
mt

)
)〉

=ηmt
Ei

〈
−∇wmt

f (·) ,∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i −∇wmt

fi
(
Φi(w

t
mt

)
)
+ γt · ∇wmt

ht
mt,i

〉
− ηmt

Ei

〈
∇wmt

f (·) ,∇wmt
fi
(
Φi(w

t
mt

)
)〉

2)
=ηmt

Ei

〈
−∇wmt

f (·) ,∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i −∇wmt

fi
(
Φi(w

t
mt

)
)
+ γt · ∇wmt

ht
mt,i

〉
− ηmt

Ei

∥∥∇wmt
f (·)

∥∥2
3)

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2
+

1

2
ηmtEi

∥∥∥∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i −∇wmt

fi
(
Φi(w

t
mt

)
)
+ γt · ∇wmt

ht
mt,i

∥∥∥2
=− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2
+

1

2
ηmt

Ei∥∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i −∇wmt

f̂i

(
Φ̃i(w

t
mt

)
)
+∇wmt

f̂i

(
Φ̃i(w

t
mt

)
)

−∇wmt
fi

(
Φ̃i(w

t
mt

)
)
+∇wmt

fi

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi
(
Φi(w

t
mt

)
)
+ γt · ∇wmt

ht
mt,i∥

2

4)

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2
+ ηmt

Ei

∥∥∥∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
· ∇wmt

ht
mt,i −∇wmt

f̂i

(
Φ̃i(w

t
mt

)
)∥∥∥2

+ 4ηmt
Ei

∥∥∥∇wmt
f̂i

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi

(
Φ̃i(w

t
mt

)
)∥∥∥2 + 4ηmt

Ei

∥∥γt · ∇wmt
ht
mt,i

∥∥2
+ 2ηmtEi

∥∥∥∇wmt
fi

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi
(
Φi(w

t
mt

)
)∥∥∥2

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2
+ ηmt

Ei

∥∥∥∇ht
mt,i

f̂µmt ,i

(
Φ̃i(w

t
mt

)
)
−∇ht

mt,i
f̂i

(
Φ̃i(w

t
mt

)
)∥∥∥2 ∥∥∇wmt

ht
mt,i

∥∥2
+ 4ηmt

Ei

∥∥∥∇wmt
f̂i

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi

(
Φ̃i(w

t
mt

)
)∥∥∥2 + 4ηmt

Ei

∥∥γt · ∇wmt
ht
mt,i

∥∥2
+ 2ηmtEi

∥∥∥∇wmt
fi

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi
(
Φi(w

t
mt

)
)∥∥∥2

5)

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2 + ηmt

µ2
mt

L2
mt

d2hmt

4
G2

mt
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+ 4ηmt
Ei

∥∥∥∇wmt
f̂i

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi

(
Φ̃i(w

t
mt

)
)∥∥∥2 + 4ηmt

Ei

∥∥γt · ∇wmt
ht
mt,i

∥∥2
+ 2ηmtEi

∥∥∥∇wmt
fi

(
Φ̃i(w

t
mt

)
)
−∇wmt

fi
(
Φi(w

t
mt

)
)∥∥∥2

6)

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2 + 1

4
ηmtµ

2
mt

L2
mt

d2hmt
G2

mt
+ 4ηmtG

2
mt

H2
mt
E + 2ηmtL

2
mt

Ei

∥∥w̃t −wt
∥∥2

+ 4ηmt
Ei

∥∥γt · ∇wmt
ht
mt,i

∥∥2
≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2 + 1

4
ηmt

µ2
mt

L2
mt

d2hmt
G2

mt
+ 4ηmt

G2
mt

H2
mt
E + 2ηmt

L2
mt

Ei

∥∥w̃t −wt
∥∥2

+ 4ηmtEi

∥∥γt
∥∥2 ∥∥∇wmt

ht
mt,i

∥∥2
7)

≤− 1

2
ηmt

∥∥∇wmt
f (·)

∥∥2 + 1

4
ηmtµ

2
mt

L2
mt

d2hmt
G2

mt
+ 4ηmtG

2
mt

H2
mt
E + 2ηmtL

2
mt

Ei

∥∥w̃t −wt
∥∥2

+ 4ηmt
ΓG2

mt

(42)

where 0) for notation brevity, we omit the common parameters, f (wt
0,w

t) = f (·),251

f̂i

(
wt

0, Φ̃i(w
t
mt

)
)

= f̂i

(
Φ̃i(w

t
mt

)
)

, hmt(w
t
mt

;xmt,i) = ht
mt,i

, 1) applies Eq.26 in252

lemma D.3, 2) applies assumption B.3 (unbiased gradient) and we use f
(
wt

mt

)
to denote253

f
(
wt,0

0 , wt,0
1 · · ·wt

mt
, · · · , wt,0

M

)
, 3) ⟨a, b⟩ ≤ 1

2 ∥a∥
2
+ 1

2 ∥b∥
2, 4) applying ∥a+ b∥2 ≤ 2 ∥a∥2 +254

2 ∥b∥2 recursively, 5) applies Eq. 28 in lemma D.3 and the assumption B.6 (bounded block-255

coordinated gradient), 6) applies lemma D.4 and assumption B.2. 7) applies assumption B.6 (bounded256

block-coordinated gradient) and definition D.2.257

for d)258

1

2
Ei,u

∥∥∥[∇̂hmt
f̂i

(
wt

0, Φ̃(w
t
mt

)
)
+ γt

]
· ∇wmt

hmt(w
t
mt

;xmt,i)
∥∥∥2

0)
=
1

2
Ei,u

∥∥∥[∇̂hmt
f̂i

(
Φ̃(wt

mt
)
)
+ γt

]
· ∇wmt

ht
mt,i

∥∥∥2
≤1

2
Ei,u

∥∥∥∇̂hmt
f̂i

(
Φ̃(wt

mt
)
)
+ γt

∥∥∥2 ∥∥∇wmt
ht
mt,i

∥∥2
1)

≤Ei,u

∥∥∥∇̂hmt
f̂i

(
Φ̃(wt

mt
)
)∥∥∥2 ∥∥∇wmt

ht
mt,i

∥∥2 + Ei,u

∥∥γt
∥∥2 ∥∥∇wmt

ht
mt,i

∥∥2
2)

≤G2
mt

Ei,u

∥∥∥∇̂hmt
f̂i

(
Φ̃(wt

mt
)
)∥∥∥2 + Ei,u

∥∥γt
∥∥2 G2

mt

3)

≤G2
mt

(
2dhmt

∥∥∥∇hmt
f̂i

(
Φ̃(wt

mt
)
)∥∥∥2 + 1

2
µ2
mt

L2
mt

d2hmt

)
+ Ei,u

∥∥γt
∥∥2 G2

mt

=2G2
mt

dhmt

∥∥∥∇hmt
f̂i

(
Φ̃(wt

mt
)
)∥∥∥2 + 1

2
µ2
mt

L2
mt

d2hmt
G2

mt
+ Ei,u

∥∥γt
∥∥2 G2

mt

4)

≤2dhmt
G2

0G
2
mt

+
1

2
µ2
mt

L2
mt

d2hmt
G2

mt
+ ΓG2

mt

(43)

where 0) for notation brevity, we omit the common parameters, i.e. f (wt
0,w

t) = f (·),259

f̂i

(
wt

0, Φ̃i(w
t
mt

)
)
= f̂i

(
Φ̃i(w

t
mt

)
)

, hmt
(wt

mt
;xmt,i) = ht

mt,i
, 1) applies ∥a+ b∥2 ≤ 2 ∥a∥2 +260

2 ∥b∥2, 2) applies assumption B.6 (bounded block-coordinated gradient), 3) applies Eq. 30 in261

lemma D.3, 4) Γ = max
t
{Γt}.262

Then d) is263

Lη2mt

(
1

2
Ei,u

∥∥∥∇̂hmt
f̂i

(
wt

0, Φ̃(w
t
mt

)
)
∇wmt

hmt(w
t
mt

;xmt,i)
∥∥∥2)

≤2Lη2mt
dhmt

G2
0G

2
mt

+
1

2
Lη2mt

µ2
mt

L2
mt

d2hmt
G2

mt
+ Lη2mt

ΓG2
mt
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(44)

D.5 Combine the Gradient264

Start with the Eq. 38, additionally taking expectation w.r.t. activated client mt, and applying the265

assumption B.7 (independent client).266

Emt,i,u

[
f
(
wt+1

0 , wt
1, · · · , wt+1

mt
, · · · , wt

M

)
− f

(
wt

0, w
t
1, · · · , wt

mt
, · · · , wt

M

)]
≤−

(
1

2
η0 − Lη20

)
Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2 − 1

2

M∑
m=1

pmηmEi

∥∥∇wm
f
(
wt

0,w
t
)∥∥2

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
Ei

∥∥w̃t −wt
∥∥2

+ η0H
2
0E + 2Lη20H

2
0E + 4

M∑
m=1

pmηmG2
mH2

mE + 4

M∑
m=1

pmηmG2
mΓ + L

M∑
m=1

pmη2mG2
mΓ

+
1

4

M∑
m=1

pmηmµ2
mL2

md2hm
G2

m + 2

M∑
m=1

pmLη2mdhm
G2

0G
2
m +

1

2

M∑
m=1

pmLη2mµ2
mL2

md2hm
G2

m

+ Lη20σ
2
0

1)

≤−
(
1

2
η0 − Lη20

)
Ei

∥∥∇w0
f
(
wt

0,w
t
)∥∥2 − 1

2

M∑
m=1

pmηmEi

∥∥∇wm
f
(
wt

0,w
t
)∥∥2

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
Ei

∥∥w̃t −wt
∥∥2

+Q1

2)

≤− 1

4
η0Ei

∥∥∇w0f
(
wt

0,w
t
)∥∥2 − 1

4

M∑
m=1

pmηmEi

∥∥∇wmf
(
wt

0,w
t
)∥∥2

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
Ei

∥∥w̃t −wt
∥∥2

+Q1

3)

≤− 1

4
min {η0, pmηm}Ei

∥∥∇f (wt
0,w

t
)∥∥2

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
Ei

∥∥w̃t −wt
∥∥2

+Q1

(45)

where 1) for notation brevity, denotes the line 3-5 (constants) as Q1, 2) let η0 ≤267

1
4L then − 1

2η0 + Lη20 < − 1
4η0, and − 1

2

∑M
m=1 pmηmEi

∥∥∇wmt
f (wt

0,w
t)
∥∥2 ≤268

− 1
4

∑M
m=1 pmηmEi

∥∥∇wmt
f (wt

0,w
t)
∥∥2, 3) uses the orthogonality of ∇f , i.e. ∥∇f (w0,w)∥2 =269

∥∇w0f (w0,w)∥2 +
∑M

m=1 ∥∇wmf (w0,w)∥2.270

D.6 Define the Lyapunov Function to Eliminate the Client’s Delay.271

Define a Lyapunov function.272

M t = f
(
wt

0,w
t
)
+

τ∑
i=1

θi
∥∥wt+1−i −wt−i

∥∥2 (46)
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Taking expectation w.r.t. the activated client mt, sample index i, and the random direction u.273

E
(
M t+1 −M t

)
=E

[
f
(
wt+1

0 ,wt+1
)
+

τ∑
i=1

θi
∥∥wt+1+1−i −wt+1−i

∥∥2]− E

[
f
(
wt

0,w
t
)
+

τ∑
i=1

θi
∥∥wt+1−i −wt−i

∥∥2]

=E
[
f
(
wt+1

0 ,wt+1
)
− f

(
wt

0,w
t
)]

+

τ∑
i=1

θiE
∥∥wt+1+1−i −wt+1−i

∥∥2 − τ∑
i=1

θi
∥∥wt+1−i −wt−i

∥∥2
1)

≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
E
∥∥w̃t −wt

∥∥2︸ ︷︷ ︸
a)

+

τ∑
i=1

θiE
∥∥wt+1+1−i −wt+1−i

∥∥2 − τ∑
i=1

θi
∥∥wt+1−i −wt−i

∥∥2
︸ ︷︷ ︸

b)

2)

≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1

+

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
τ

τ∑
i=1

E
∥∥wt+1−i −wt−i

∥∥2
+ θ1E

∥∥wt+1 −wt
∥∥2 + τ−1∑

i=1

(θi+1 − θi)E
∥∥wt+1−i −wt−i

∥∥2 − θτE
∥∥wt+1−τ −wt−τ

∥∥2
≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1

+ θ1E
∥∥wt+1 −wt

∥∥2
+

τ−1∑
i=1

(
θi+1 − θi + η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
E
∥∥wt+1−i −wt−i

∥∥2
−

[
θτ −

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)]
E
∥∥wt+1−τ −wt−τ

∥∥2
(47)

where 1) plugging in Eq. 45, 2) plugging in a) and b).274

For a) in Eq. 47:275

E
∥∥w̃t −wt

∥∥2 1)

≤ E

∥∥∥∥∥
τ∑

i=1

(
wi+1 −wi

)∥∥∥∥∥
2

2)

≤ τ

τ∑
i=1

E
∥∥wt+1−i −wt−i

∥∥2 (48)

where 1) applies assumption B.8 (uniformly bounded delay), 2) applies Cauchy-Schwarz inequality,276

i.e.
(∑n−1

i=0 xi

)2
=
(∑n−1

i=0 1 · xi

)2
≤ n

∑n−1
i=0 x2

i .277

For b) in Eq. 47:278

τ∑
i=1

θiE
∥∥wt+1+1−i −wt+1−i

∥∥2 − τ∑
i=1

θiE
∥∥wt+1−i −wt−i

∥∥2
=θ1E

∥∥wt+1 −wt
∥∥2 + τ−1∑

i=1

(θi+1 − θi)E
∥∥wt+1−i −wt−i

∥∥2 − θτE
∥∥wt+1−τ −wt−τ

∥∥2 (49)
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Let θ1 ≥ τ
(
η0L

2
0 + 2Lη20L

2
0 + 2

∑M
m=1 pmηmL2

m

)
and design the recurrent relation for θi279

θi+1 = θi −

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
(50)

It follows that280

θτ −

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
= θ1 − τ

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
≥ 0

(51)

Applying Eq. 50 and Eq. 51 to Eq. 47281

E
(
M t+1 −M t

)
≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1

+ τ

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)
E
∥∥wt+1 −wt

∥∥2︸ ︷︷ ︸
c)

≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1

+ τ

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)(
2

M∑
m=1

pmη2mdhmG2
0G

2
m

+
1

2

M∑
m=1

pmη2mµ2
mL2

md2hm
G2

m +

M∑
m=1

pmη2mG2
mΓ

)
1)
=− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1 +Q2

(52)

where 1) mark the second line as Q2 for notation brevity.282

For c),283

Emt,i,u

∥∥wt+1 −wt
∥∥2

1)
=Emt,i,u

∥∥∥ηmt

[
∇̂hmt

f̂i

(
wt

0, Φ̃(w
t
mt

)
)
+ γt

]
∇wmt

hmt
(wt

mt
;xm,i)

∥∥∥2
2)

≤2
M∑

m=1

pmη2mdhm
G2

0G
2
m +

1

2

M∑
m=1

pmη2mµ2
mL2

md2hm
G2

m +

M∑
m=1

pmη2mG2
mΓ

(53)

where 1) the update rule for the communication round, 2) applies the exactly same procedures in284

Eq. 43 and applies assumption B.7 (independent client).285

D.7 Bound the Gradient∇f (wt
0,w

t)286

Start with Eq. 52:287

E
(
M t+1 −M t

)
≤− 1

4
min {η0, pmηm}E

∥∥∇f (wt
0,w

t
)∥∥2 +Q1 +Q2 (54)

Summing over the global iteration t = 0, 1, ...T − 1, arrange the equation and divided it by T from288

both sides.289

1

4T
min {η0, pmηm}

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2

16



≤
E
(
M0 −MT

)
T

+Q1 +Q2

1)

≤
E
(
f0 − f∗)
T

+Q1 +Q2

(55)

where 1) E
(
M0 −MT

)
= f

(
w0

0,w
0
)
− f

(
wT

0 ,w
T
)
−
∑τ

i=1 θi
∥∥wT−i −wT−i

∥∥2 ≤290

f
(
w0

0,w
0
)
−f

(
wT

0 ,w
T
)
≤ f0−f∗, we use f0 to denote f

(
w0

0,w
0
)

and applying assumption B.1.291

Dividing ζ = 1
4 min {η0, pmηm} from both sides:292

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2

≤
E
(
f0 − f∗)
Tζ

+
Q1

ζ
+

Q2

ζ

≤
E
(
f0 − f∗)
Tζ

+
1

ζ

(
η0H

2
0 + 2Lη20H

2
0 + 4

M∑
m=1

pmηmG2
mH2

m

)
E +

(
4

M∑
m=1

pmηmG2
m + L

M∑
m=1

pmη2mG2
m

)
Γ

+
1

4ζ

M∑
m=1

pmηmµ2
mL2

md2hm
G2

m +
2

ζ

M∑
m=1

pmLη2mdhm
G2

0G
2
m +

1

2ζ

M∑
m=1

pmLη2mµ2
mL2

md2hm
G2

m

+
1

ζ
Lη20σ

2
0

+
τ

ζ

(
η0L

2
0 + 2Lη20L

2
0 + 2

M∑
m=1

pmηmL2
m

)(
2

M∑
m=1

pmη2mdhm
G2

0G
2
m

+
1

2

M∑
m=1

pmη2mµ2
mL2

md2hm
G2

m +

M∑
m=1

pmη2mG2
mΓ

)
(56)

where 1) plugging in Q1.293

To simplify the result, let L∗ = maxm {L,L0, Lm}, η0 = ηm = η ≤ 1
4L∗

, 1
p∗

= minm pm,294

µ∗ = maxm {µm}, d∗ = maxm {dhm
}, G∗ = maxm {G0,Gm}, H∗ = maxm {H0, Hm}, then295

ζ = 1
4 min {η0, pmηm} = η

4p∗
. Eq. 56 can be further simplified:296

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2

1)

≤
4p∗E

(
f0 − f∗)
Tη

+ 4p∗

(
H2

∗ + 2LηH2
∗ + 4

M∑
m=1

pmG2
∗H

2
∗

)
E + 4p∗

(
4

M∑
m=1

pmG2
∗ + L

M∑
m=1

pmηG2
∗

)
Γ

+ p∗

M∑
m=1

pmµ2
∗L

2
∗d

2
∗G

2
∗ + 8p∗

M∑
m=1

pmLηd∗G
4
∗ + 2p∗

M∑
m=1

pmLηµ2
∗L

2
∗d

2
∗G

2
∗

+ 4p∗Lησ
2
0

+ 4p∗τ

(
L2
∗ + 2LηL2

∗ + 2

M∑
m=1

pmL2
∗

)(
2

M∑
m=1

pmη2d∗G
4
∗ +

1

2

M∑
m=1

pmη2µ2
∗L

2
∗d

2
∗G

2
∗ +

M∑
m=1

pmη2G2
∗Γ

)
2)

≤
4p∗E

(
f0 − f∗)
Tη
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+ 4p∗
(
H2

∗ + 2LηH2
∗ + 4G2

∗H
2
∗
)
E + 4p∗

(
4G2

∗ + LηG2
∗
)
Γ

+ p∗µ
2
∗L

2
∗d

2
∗G

2
∗ + 8p∗Lηd∗G

4
∗ + 2p∗Lηµ

2
∗L

2
∗d

2
∗G

2
∗

+ 4p∗Lησ
2
0

+ 4p∗τ
(
L2
∗ + 2LηL2

∗ + 2L2
∗
)(

2η2d∗G
4
∗ +

1

2
η2µ2

∗L
2
∗d

2
∗G

2
∗ + η2G2

∗Γ

)
3)

≤
4p∗E

(
f0 − f∗)
Tη

+ p∗
(
6H2

∗ + 16G2
∗H

2
∗
)
E + 17p∗G

2
∗Γ

+ p∗µ
2
∗L

2
∗d

2
∗G

2
∗ + 8p∗Lηd∗G

4
∗ + 2p∗ηµ

2
∗L

3
∗d

2
∗G

2
∗

+ 4p∗Lησ
2
0

+ 28p∗τη
2d∗G

4
∗ + 7p∗τη

2µ2
∗L

4
∗d

2
∗G

2
∗ + 14p∗τL

2
∗η

2G2
∗Γ

4)

≤
4p∗E

(
f0 − f∗)
Tη

+ η
(
8p∗Ld∗G

4
∗ + 2p∗µ

2
∗L

3
∗d

2
∗G

2
∗ + 4p∗Lσ

2
0

)
+ η2

(
28p∗τd∗G

4
∗ + 7p∗τµ

2
∗L

4
∗d

2
∗G

2
∗ + 14p∗τL

2
∗G

2
∗Γ
)

+ µ2
∗
(
p∗L

2
∗d

2
∗G

2
∗
)

+ E
(
6p∗H

2
∗ + 16p∗G

2
∗H

2
∗
)

+ Γ
(
17p∗G

2
∗
)

(57)

where 1) plugs in the above variables L∗, η, p∗, ζ, µ∗, 2) applies
∑M

m=1 pm = 1, 3) simplify by297

η ≤ 1
4L∗

, 4) collect η, µ∗, E298

Suppose we set η = 1√
T

, µ∗ = 1√
T

, and design the compression to make E = O
(

1√
T

)
and299

Γ = O
(

1√
T

)
2 the above equation becomes300

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2

≤ 1√
T

(
4p∗E

(
f0 − f∗)+ 8p∗Ld∗G

4
∗ + 4p∗Lσ

2
0 + 6p∗H

2
∗ + 16p∗G

2
∗H

2
∗ + 17p∗G

2
∗
)

+
1

T

(
28p∗τd∗G

4
∗ + p∗L

2
∗d

2
∗G

2
∗
)

+
1

T
3
2

(
2p∗L

3
∗d

2
∗G

2
∗ + 14p∗τL

2
∗G

2
∗
)

+
1

T 2

(
7p∗τµ

2
∗L

4
∗d

2
∗G

2
∗
)

(58)

Therefore,301

1

T

T−1∑
t=0

E
∥∥∇f (wt

0,w
t
)∥∥2 = O

(
dh√
T

)
(59)

where dh = d∗ = max
m
{dhm

} (for clear notation), T is the number of communication rounds.302

The proof of Theorem 5.2 is complete. ■303

2Refer to C-VFL [4] about how to design the compression to achieve the compression errors of O( 1√
T

).
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E Experiment Details and Extra Experiments304

E.1 Experiment Details305

Experiment Hardware and Software The experiments were conducted on a Linux server with306

Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz and the experiment is run on one Nvidia Tesla P100307

graphic card. PyTorch was used as the deep learning framework. We re-implement the framework308

by ourselves because all of the frameworks [18, 4, 5, 21] we compared were not open-source,309

and re-implementing the code helped make a fair comparison which eliminated the differences in310

implementation details of various methods.311

Feature Splitting Details Regarding the dist-MNIST experiment in Section 6, we flattened the312

image and then equally distributed the dimensions among each client. Specifically, the first client313

received the upper half of each image, while the second client was allocated the lower half.314

Regarding the dist-CIFAR-10 experiment in Section 6 (and section E.3 in this Appendix), we split the315

image by the last dimension. Therefore, the first client was assigned the left half, while the second316

client received the right half of each image.317

Syn-ZOO-VFL318

Algorithm 1 The Synchronous Modification of ZOO-VFL [21]

0: Initialize variables for workers m ∈ [M ]
1: for t = 0, ..., T − 1 do
2: Random sample a sample i (or batch B).
3: for client m in [M ] in parallel do
4: Client m compute and send hm,i = hm(wm;xm,i) and ĥm,i = hm(wm + µum,i;xm,i) to

the server.
5: The server calculates δm = fi(w0, ...ĥm,i...)− fi(w0, h1,i, ...hM,i) and send back to the

client.
6: Client m calculate the stochastic gradient w.r.t. its local parameter wm with the δm received

from the server: ∇̂wmfi (·) = ϕ(dm)
µ δmum,i

7: Client m update its parameter with gradient descent wm ← wm − ηm∇̂wm
fi (·)

8: end for
9: The server calculates its local stochastic gradient estimation via ∇̂w0

fi (·) =
ϕ(d0)

µ

[
fi(w0 + µu0,i, ...ĥm,i...)− fi(w0, h1,i, ...hM,i; yi)

]
u0,i

10: The server update its local parameter with gradient descent w0 ← w0 − η0∇̂w0fi (·)
11: end for

E.2 Computation Cost on Extra Propagation on the Server319

Our method has extra computation cost on the server compared with other methods, however, the320

difference is negligible given the powerful computation performance of the server.321

We repeat the experiment on dist-MNIST with the default setting (2 clients). To make the result more322

obvious, we disable the GPU to conduct this experiment, and we record the computational time as an323

index of the computational cost. We assume that the network latency is the same for all frameworks,324

and ignoring other minor operations in the implementation. The major factor which influences the325

computation cost is the propagation through the network.326

The table below shows a comparison of the computation cost between different frameworks. Letter327

“F" means forward propagation, “B" means backward propagation, and the numeral preceding the328

letter indicates the number of propagations, for all frameworks, we only count the propagation time.329
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Table 2: Computational Cost for Extra Propagation

Framework Client Server Client Comp. Time
per Epoch (s)

Server Comp.
per Epoch (s)

Split learning [18] F+B F+B 0.86 0.90
Syn-ZOO-VFL 2F 3F 0.64 1.00
Compressed-VFL [4] F+B F+B 0.86 0.89
VAFL [5] 2F F+B 1.10 1.52
ZOO-VFL [21] 2F 3F 0.92 1.49
VAFL[5]+DP[3] F+B F+B 1.10 1.52
Ours F+B 101F+B 1.15 49.02

E.3 Dist-CIFAR-10 Experiments330

E.3.1 Comparing with SOTA Frameworks331

Following the training procedure outlined in section 6, we utilized the optimal configuration across all332

frameworks. Table 3 presents a summary of the test accuracy and communication metrics at various333

stages of convergence. Our achieved test accuracy is comparable to the SOTA VFL methodology.334

Furthermore, our communication costs are significantly lower than those reported by the leading335

VFL communication efficiency research. In contrast, the pure ZOO-based VFL is unable to attain336

convergence to a practical model due to the large dimensionality of the model for optimization.337

Table 3: Test Accuracy and Evaluation of the Total Communication Cost.

Privacy Security Test Accuracy Cost (80%) Cost (total)

Split learning [18] ✗ 84.31 ± 0.28 107 MB 381 MB
Compressed-VFL [4] ✗ 84.10 ± 0.18 67 MB 240 MB
VAFL [5] ✗ 83.16 ± 0.03 184 MB 400 MB

Syn-ZOO-VFL ✓ 18.08 ± 0.33 - -
ZOO-VFL [21] ✓ 17.96 ± 0.92 - -
Ours ✓ 82.82 ± 0.29 21 MB 45 MB

(-) represents that the model cannot converge to a usable model after the entire training process.338

Figure 2 illustrates a plot of the training accuracy against epoch (Figure 2-a) and communication339

cost (Figure 2-b). As depicted in (a), our framework exhibits a convergence rate comparable to340

that of other frameworks. Specifically, regarding the communication cost, as indicated in (b), our341

communication cost is significantly lower than that of other communication-efficient algorithms.342

(a) Dist-CIFAR-10 by epochs (b) Dist-CIFAR-10 by comm. cost

Figure 2: Comparing with other VFL Framework on Dist-CIFAR10
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The cross means that the training accuracy reaches 80%.343

E.3.2 Dist-CIFAR-10 Ablation Study344

Ablation Study on Zeroth Order Optimization Figure 3 performs an ablation study on the345

application of ZOO on the connection layer. We implemented the Avg-RandGradEst using various346

sampling times q. The results indicate that exclusively applying ZOO yields communication costs347

comparable to those of FOO-based VFL in each communication budget.348

(a) Dist-CIFAR10 by epochs (b) Dist-CIFAR-10 by comm. cost

Figure 3: Ablation Study on ZO with Dist-CIFAR-10

Table 4 presents the test accuracy of the method and the total backward cost of implementing ZOO349

on the output layer. The table shows that the application of ZOO decreases the total communica-350

tion required for the entire training process. With all the sampling times q provided in the table,351

communication costs are reduced with a slight utility trade-off.352

Table 4: Ablation Study on ZO with Dist-CIFAR-10

ZO Type Test Accuracy Backward Cost

FO 83.16 ± 0.03 200 MB
RandGradEst-1000 82.10 ± 0.28 156 MB
RandGradEst-500 81.28 ± 0.17 78 MB
RandGradEst-100 72.83 ± 0.20 16 MB

Ablation Study on Compression Figure 4 displays the results of the ablation study on communi-353

cation for both forward and backward messages. The plot represents the training accuracy against the354

communication cost. The results indicate that the utilization of a certain degree of compression (8, 4,355

2 bits) led to a reduction in communication costs without significantly affecting the convergence of356

the model.357

(a) Dist-CIFAR-10 by forward cost (b) Dist-CIFAR-10 by backward cost

Figure 4: Ablation Study on Compression with Dist-CIFAR-10
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Table 5 presents the test accuracy and total communication cost for compression on forward and358

backward messages. The results suggest that compressing to a certain degree does not significantly359

impact test accuracy, but it considerably reduces the communication cost. Therefore, we may360

implement compression to a certain level, such as 4 bits for both the forward and backward messages.361

Table 5: Ablation Study on Compression with Dist-CIFAR-10

Compression Test Accuracy Forward/Backward Cost

No Compression 82.10 ± 0.28 200 MB

Forward-8 bit 81.90 ± 0.24 50 MB
Forward-4 bit 82.64 ± 0.29 25 MB
Forward-2 bit 81.55 ± 0.23 13 MB
Forward-1 bit 17.68 ± 0.70 6 MB

Backward-8 bit 82.03 ± 0.25 39 MB
Backward-4 bit 82.31 ± 0.30 20 MB
Backward-2 bit 81.15 ± 0.34 10 MB
Backward-1 bit 31.03 ± 0.67 5 MB

E.4 Experiments on GiveMeSomeCredit Dataset362

To simulate a real-world VFL scenario, we utilize the GiveMeSomeCredit dataset [2]. This dataset363

comprises 15,000 samples, each consisting of a single label and 10 features. The first client was364

assigned the first 5 features for each sample, while the second client received the remaining 5 features.365

Given the dataset’s significant class imbalance, we address this issue by downsampling the majority366

(negative) class to achieve an equal size with the positive class. Subsequently, we divide the dataset367

into a 75% training set and a 25% testing set. we employ a straightforward linear model (y = Wx) on368

the client side. This model takes the local features of the client as input and generates two predictions:369

one for the positive class and another for the negative class. We set the batch size to 64 during training,370

and the model undergoes 100 epochs. The learning rate is chosen as 0.01 from the option of [0.1,371

0.01, 0.001]. Additionally, we select the value of µ as 0.001 from the options [0.1, 0.001, 0.0001,372

0.00001] through preliminary experiments. We set the sampling time q = 10 for our framework.373

The experiment results for different methods’ test accuracy and the communication cost is shown in374

table 6. As demonstrated in the table our method significantly reduces the communication cost of375

training.376

Table 6: Test Accuracy and Evaluation of the Total Communication Cost.

Test Accuracy Cost (70%) Cost (total)

Split learning [18] 72.18 ± 0.01 5.7 MB 38.3 MB
Compressed-VFL [4] 72.13 ± 0.03 3.8 MB 24.1 MB
VAFL [5] 72.26 ± 0.29 5.4 MB 38.3 MB

Syn-ZOO-VFL 71.74 ± 0.53 9.2 MB 38.3 MB
ZOO-VFL [21] 71.85 ± 0.70 4.6 MB 38.6 MB
Ours 72.76 ± 0.29 0.7 MB 5.8 MB

Figure 5 displays the corresponding convergence of all the frameworks, The figure shows that while377

all the frameworks converge similarly, our approach notably reduces the communication cost for each378

epoch.379
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(a) GiveMeSomeCredit by epochs (b) GiveMeSomeCredit by comm. cost

Figure 5: Comparing with other VFL Framework on GiveMeSomeCredit Task

E.5 Experiments on a9a Dataset380

The a9a dataset [20, 1] encompasses a total of 32,561 training samples and 16,281 testing samples.381

Each sample has one label and 123 features. In our experiment, the first client was assigned the first382

62 features of each sample, while the second client received the remaining 61 features. Our approach383

employs a linear model similar to the one presented in section E.4. Specifically, client 1’s model has384

an input size of 62, whereas client 2’s model has an input size of 61. Both models have an output385

size of 2. The training procedure is the same as the experiment in section E.4. We set the batch386

size to 64 during training, and the model is trained 100 epochs. The learning rate is chosen as 0.01.387

Additionally, we select the value of µ as 0.001. We set the sampling time q = 10 for our framework.388

The experiment results for different methods’ test accuracy and the communication cost is shown in389

table 7. As demonstrated in the table our method significantly reduces the communication cost of390

training.391

Table 7: Test Accuracy and Evaluation of the Total Communication Cost.

Test Accuracy Cost (82%) Cost (total)

Split learning [18] 84.84 ± 0.01 2.0 MB 99.4 MB
Compressed-VFL [4] 84.85 ± 0.02 1.2 MB 62.5 MB
VAFL [5] 85.08 ± 0.01 2.0 MB 99.4 MB

Syn-ZOO-VFL 84.55 ± 0.05 10.0 MB 99.6 MB
ZOO-VFL [21] 84.84 ± 0.01 2.0 MB 100.1 MB
Ours 84.86 ± 0.01 0.3 MB 14.9 MB

Figure 6 displays the corresponding convergence of all the frameworks, The figure shows that while392

all the frameworks converge almost identically (with the exception of Syn-ZOO-VFL, whose lines do393

not overlap), our approach notably reduces the communication cost for each epoch.394
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(a) a9a by epochs (b) a9a by comm. cost

Figure 6: Comparing with other VFL Framework on a9a Dataset

E.6 Experiment on the Privacy-utility Trade-off395

In the experiments in section 6.2 and section 6.3, we only demonstrated a typical trade-off of our396

framework. However, our framework also has the capability to achieve the same test accuracy as397

Split-Learning, compressed-VFL, and VAFL, applying a corresponding privacy-utility trade-off.398

Note that these three baselines sacrifice privacy and get higher test accuracy (“test-accuracy-focused399

trade-off”), while the last three baselines (VAFL+DP, Syn-ZOO-VFL, ZOO-VFL) take a balance400

between privacy and utility (“balanced trade-off”).401

To achieve the test-accuracy-focused trade-off, we use the coordinate-wise gradient estimator (Coord-402

GradEst) to separately estimate the partial for each dimension[14, 11]:403

∇̂hm,i
fi (w0, h1,i, · · · , hM,i) =

1

2µm

dhm∑
l=1

[fi
(
hm,i + µmelm

)
− fi

(
hm,i − µmelm

)︸ ︷︷ ︸
δlm,i

]elm

where elm ∈ Rdhm is a dhm-dimensional standard bias vector with 1 at its l-th dimension, and 0s404

otherwise. To apply the coordinate-wise estimation, the server sends {δlm,i}
dhm

l=1 back to the client. It405

is noteworthy that the backward message {δlm,i}
dhm

l=1 has the same size as ∂fi
∂hm,i

. Both are vectors406

of decimal numbers with dimensions of dhm
. Therefore, if neither method uses compression, the407

communication cost for VAFL-CZOFO (CoordGradEst) is identical to that of VAFL.408

Besides, regarding the "balanced trade-off", the basic zeroth-order estimator (ZOE) we used in409

section 6 has a large forward bias. To improve this, we applied a slightly “advanced” centralized410

version of ZOE so that we reached higher test accuracy and better convergence:411

∇̂hm,i
fi (w0, h1,i, · · · , hM,i) =

ϕ(dhm
)

qµm

q∑
j=1

[fi(hm,i + µmuj
m,i)− fi

(
hm,i − µmuj

m,i

)
︸ ︷︷ ︸

δjm,i

]uj
m,i

With this centralized ZOE, we can achieve a smoother convergence and a similar privacy budget.412

Table 8 illustrates our method’s capacity to achieve diverse privacy-utility trade-offs when compared413

to the baselines. In each scenario, our framework successfully achieves the specified privacy budget414

while maintaining a test accuracy similar to that of the baselines.415

Table 8: Privacy-utility Trade-off of VFL-CZOFO

Privacy Trade-off type Test Accuracy

VAFL ✗ Test-accuracy-focused trade-off 97.36 ± 0.14
VFL-CZOFO (CoordGradEst) ✗ Test-accuracy-focused trade-off 97.35 ± 0.05

VAFL + DP ϵ = 95 Balanced trade-off 95.94 ± 0.29
VFL-CZOFO (Avg-RandGradEST) ϵ = 95 Balanced trade-off 96.32 ± 0.22
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E.7 Experiments on More Clients416

In section 6 of the paper, we only consider a typical scenario with only two clients. Therefore, we417

conducted experiments with four and eight clients to further assess the performance of our framework418

on a larger scale.419

The dataset spliting setting of the experiments follows the dist-MNIST experiment. For the experiment420

involving four clients in section, the first client received the uppermost 1/4 of each image; the second421

client obtained the segment spanning from the upper 1/4 to 1/2; the third client from the lower 1/2 to422

3/4; finally, the fourth client was assigned the bottommost 1/4. A similar split was implemented for423

the experiment involving eight clients.424

The models deployed on each client are identical to the one presented in Section 6. Similarly, the425

server model is described in detail in Section 6. However, it is worth noting that with the number of426

clients changed, the input size of the first layer of the server has been adjusted to 4× 64 = 256 for427

the 4-client experiments and 8× 64 = 512 for the 8-client experiments.428

E.7.1 Training Efficiency and Communication Cost429

We conducted the same experiment on training efficiency and communication cost as in section 6.3.430

The outcomes for four clients are depicted in Figure 7 and detailed in Table 9. Similarly, the outcomes431

for eight clients are presented in Figure 8 and detailed in Table 10. These results collectively432

substantiate the efficacy of our method in diminishing communication costs, particularly within433

scenarios involving a higher number of clients.434

(a) MNIST by epochs (b) MNIST by comm. cost

Figure 7: Training Efficiency and Communication Cost Experiment on 4 Clients

Table 9: Test Accuracy and Comm. Cost (4 Clients)

Privacy Test Accuracy Cost (95%) Cost (total)

Split learning ✗ 97.67 ± 0.03 4570 MB 11718 MB
Compressed-VFL ✗ 97.78 ± 0.12 2783 MB 7325 MB
VAFL ✗ 97.60 ± 0.07 2703 MB 12288 MB

VAFL+DP ✓ 96.72 ± 0.21 3179 MB 12288 MB
Syn-ZOO-VFL ✓ 83.97 ± 0.51 - 11722 MB
ZOO-VFL ✓ 87.42 ± 0.25 - 12291 MB
Ours ✓ 96.60 ± 0.08 537 MB 1579 MB
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(a) MNIST by epochs (b) MNIST by comm. cost

Figure 8: Training Efficiency and Communication Cost Experiment on 8 Clients

Table 10: Test Accuracy and Comm. Cost (8 Clients)

Privacy Test Accuracy Cost (95%) Cost (total)

Split learning ✗ 97.46 ± 0.08 10547 MB 23438 MB
Compressed-VFL ✗ 97.51 ± 0.09 5860 MB 14649 MB
VAFL ✗ 97.41 ± 0.04 6390 MB 24579 MB

VAFL+DP ✓ 96.62 ± 0.17 8132 MB 24579 MB
Syn-ZOO-VFL ✓ 82.64 ± 0.57 - 23443 MB
ZOO-VFL ✓ 89.49 ± 0.38 - 24093 MB
Ours ✓ 96.81 ± 0.12 3272 MB 12590 MB

E.7.2 The Computational Cost435

With more clients, the server may take more computational costs on the server. Therefore, we also436

conducted an experiment on the computational cost of the server and the clients. The setting of this437

experiment follows the experiment in section E.2 but changes the number of clients to four and eight.438

The result is shown in Table 11.439

Table 11: Computational Cost for Propagation (More Clients)

The number of Clients Clients’ Comp. Time per Epoch (s) Server’s Comp. Time per Epoch (s)

2 1.15 49.02
4 2.65 122.20
8 9.81 384.29
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