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1 A Notation Table

2 Below is a notation table for the parameter used in the convergence analysis.

Table 1: Notation Table

Basic:
W = [wi,wa, -+, W) The parameter for all the clients.
B i = R (Wi T i) The local model output of client m with sample 4
D, = @;(w) = [h(wi;z1,4), - hae(war; zani)] = [haiy - -5 il The output embeddings from all clients for sample
i
f(wo,w) = f(wo,w, X,y) The global loss function
fi (wo, ®3(w)) = fi (wo, hais ... har) The loss function for the sample i calculated by

server.

With timestep (%), clients’ delay (W), embedding compression ( f), Z0O0 gradient estimator (?)

’wf,, The client m’s parameter, at global timestep ¢,
wh=[wl,... wh, The clients’ parameter at global timestep ¢
.t .t

Wt =wt = [w? L, wfw Tani) The delayed parameter for all the clients at global
time step ¢ (and the local timestep is O for all w).

P = 0;(w') = [ha(wisz1,), -+ s hr (why; 2a0)) The output ;mbeddings.from all clients for sample
7 at global timestep ¢ without delay.

. ot .t

ot = P, (W) = [hl(wi T, ,hM(wju T Zari)] The output embeddings from all clients for sample
¢ with the client delay at global timestep ¢

Ot (wt)) = [hy(wl; z},i), R (W T i), o (W 'TM"it)] ®! substitute the client m’s parameter with w?,

P (wy,) = hl(wi_T“ 1 21,0)s P (W T )5+ - hM(w;T““; xpr4)] @ substitute the client m’s parameter with w?,

fi (wo, ®;) = fi (wo, ha,i + €14+, haryi + €ni) The loss function with compression error of all
client’s embedding.

Vi, fi (wo, ®;) = O(Zi’) [fi (hamyi + i) = fi (Romi)] Wi The ZO gradient estimator w.r.t. the client m’s
output
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B Assumptions

Assumptions[B.T]- are the basic assumptions for solving the non-convex optimization problem
with stochastic gradient descent [[10, [15} 21]].

Assumption B.1. Feasible Optimal Solution: Function f is bounded below that is, there exist f*
such that,

*:= inf , W) > —00.
f o s f(wo, w) 00

Assumption B.2. Lipschitz Gradient: V f; is L-Lipschitz continuous w.r.t. all the parameter, i.e.,
there exists a constant L for V [wg, w], [w(, w'] such that

[V fwo w1 fi (w0, @i (W) = Vfug,w) fi(wh, @i(w)) || < Ll[wo, w] — [wh, ]|

specifically there exists an L,,, > 0 for all parties m =0, --- , M such that V,,  f; is L,,-Lipschitz
continuous:

IV, fi(wo, ®i(W)) =V, fi(wh, ®i(W))|| < L [[[wo, w] — [wo, w]|
Assumption B.3. Unbiased Gradient: For m € 0,1, --- M for every data sample , the stochastic
partial derivatives are unbiased, i.e. E; V., fi(wo, ®;(W)) = V., f (wo, P;(W))

Assumption B.4. Bounded Variance: For m = 0,1,---,M, there exist constants
om < oo such that the variance of the stochastic partial derivatives are bounded:

E; || Vaw,, fi(wo, ®i(w)) = Vi, f(wo, w)|* < 02,

Assumptions [B.5]-[B.6] are the base assumptions for bounding the compression of the embedding
on the loss [4]. Since compression introduces error in the input of the loss function, therefore with
the bounded Hessian we can derive the maximum effect of the error on the loss. And bounding the
block-coordinated gradient is common in VFL analysis for bounding the gradient for the entire model
when the gradient of other parts have been bounded [4, |12} 22].

Assumption B.5. Bounded Hessian: The Hessian for f; (wq, ®;(w)) is bounded, i.e. there exist
positive constant H,,, for m = 0, 1, - - - M such that for all [wg, w], the following inequalities holds:
V2, fi (wo, ®:(w))|| < Ho

Hv%wmmm,afi (wo, @i(w))H < H,

Where the norm is the spectral norm (the matrix norm induced by L2-norn{')

Assumption B.6. Bounded Block-coordinate Gradient: The gradient of all the participants’ local
output w.r.t. their local input is bounded, i.e. there exist positive constants G for the server m = 0
the following inequalities holds:

|V tworh s, ksl fi (Wos Bias -+ har i) || < Go
and there exist positive constants G, for the client m = 1,--- , M the following inequalities hold:

vam (wm; xm,i) || <Gy,

where the first inequality bounds the gradient for the server w.r.t. to all the outputs received from the
clients, and the second inequality bounds the gradient for the client’s outputs w.r.t. the client’s local
parameter.

Assumptions [B.7]- [B.§ are the assumptions for dealing with the asynchronous updates of our VFL
framework. We assume that the activation of clients at each global round is independent and that the
maximum delay is bounded [21} 5, [12]. These are reasonable assumptions for analysis.

Assumption B.7. Independent Client: The activated client m, for the global iteration ¢ is indepen-
dent of my, - - - , my_1 and satisfies P(m; = m) := p,,

Assumption B.8. Uniformly Bounded Delay: For each client m, and each sample i, the delay at
each global iteration ¢ is bounded by a constant 7. i.e. Tfmi <rT

"For notation brevity, unless specific, the norm is L2-norm for the vector and spectral norm for the matrix.
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C Security Analysis

C.1 Differential Privacy Guarantee of Sharing the Stochastic Estimation of the Gradient

Definition C.1. (e, d)-Differential Privacy A randomized mechanism M : D — R with domain
D and range R satisfies (¢, d)-differential privacy if for any two adjacent inputs d, d’ € D, and for
any subset of outputs S C R it holds that:

Pr[M(d) € S] < ePr[M(d') € S|+ 6
Now we start the proof of the (e, §)-Differential Privacy of the training process of sharing the
stochastic gradient.

The activated client m, at iteration ¢ is updated with the following equation.

witt =wh =V, fi (Wh, ®:) - Vin, hn, i (1
where
- 1 1 i
v Ry, Lfl (wO’ gz fl mt;Z—"_l’[’mt My, 7,) f’b( M, )] mti (2)
Jj=1 Hm,

For notation brevity, we define:

g’f;ljt = T[fz( me,i T Hm, U mt z) fi ( me, 1)} Wiy i )
. IRy
gfnt £ Vh homy, 1fz wOv 5 gfnjt @

We will show in the following lemma [C.2]that the solution can be regarded as client updating with the
unbiased gradient of the smoothed loss function fy ; (wf, ®;) = Ey|fi(wo, ®(w)) + pul, but adding
a stochastic noise on it, where the unbiased ideal parameter sequence of the client m; is defined as
Wy, . Formally:

Wit =, =1V, fui (w6 i) - Vi, hany i Q)
wh, =w, +&, (6)

Where £ is a stochastic variable.

For notation brevity, we define:

Tiny = Vi, o Fui (w5, i) )
Lemma C.2. Fort=0,.. T —1, if gfni is i.i.d. and q is sufficiently large, then wfm is distributed as:
1 2 NTt )
~ N mtv 77 (th hmt,l) \Ijmt vmt hmtﬂ (8)
q
and g}, is distributed as
t o Loy
I,y ™ N Imys 7\I/mt (9)
q
proof: First we show that E[w, | = wf, , we prove this by Mathematical Induction. The wy,, = w3,

holds by natural when 1n1t1ahzmg the parameter Assuming E[w? 1] w:n L

'fn - thmt 1f’t (w07 ) vmt h’fnt z]
T UE[tht L.f? (w07 ) v/’nthm{ z]

we have:

Efwy,, ] = E[w
_ t
m
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= wt_l - nvhmt 1f|-l 9 (w07 ) vmthfnt 7
= ! (10)

my

Where the third equality applies the lemma (Eq. . Therefore E[wfnt] = u?fnt fort =
0,1,..7—1.

For the stochastic gradient estimation gﬁm which applies ¢ times of sampling on the same distribution
centering on wfm. Apply the central limit theorem, and assuming the expectation and covariance

matrix for each sampling is ;Lfn and \I'fn respectively, we have

g, = Zg 9~ N, q%t) (11)

The update of the wy,,, is distributed as:

1
_ngfntvmt hmt7i ~ N (_nuﬁntvmthmhia §n2(vﬂ’Lthmt,i)T\IJ§ntvmt hmt,i) (12)

which is the only stochastic part, therefore we have
1
NN ( mtv772(vmthmt,i)T\I’fmvmthmt,i> (13)
q
the first part of the lemma has been proved.

Specifically, E[g!, | = gk, (lemmamEq. , therefore we have

9 1
g:nt - Z gﬂlt (g:n,v \ant> (14)

the second part of the lemma has been proved. O
Lemma C.3. (e, )-Differential Privacy for Gaussian mechanism: Let € € (0,1) be arbitrary, for
¢ > 21n(1.25/6) the Gaussian mechanism with parameter o > cAs /€ is (e, §)-differential privacy.
proof: The proof is in [6] Theorem A.1.

Theorem C4. Let € € [0, 1], the covariance matrix of the gfnt be \Iﬂ;n,,: with the following condition
holds:

T—1
S (e, ) 2\/21n 125/5 )Gy as)

t=0

Omy,s =

qth

under Algorithm 1, sharing the stochastic estimation of the partial gradient for each iteration satisfy
(e, 0)- differential privacy.

Proof: From lemma|[C.2) we already have that:
1
Imy ~ N (éfnt, q%) (16)

To make the problem more trackable, assume each entry of gfm is independent of each other and has
the same variance value, and the variance is stable throughout the training process. Therefore, for
each entry s of g},

t y t
gmt,s ~ N(gmtt#ﬂ? o—mt,s) (17)
where o, = - df N t 0 " r(0f, ,) is the averaged variance for each entry.

The l3-norm sensitive of gmt is given by

(18)

_ ot ot
A2 = 08X [, D = Gon,, 0l
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Assume the probability of selecting each sample in the dataset D (or D’) is the same. D and D’ are
two neighboring dataset differing in only one sample (x;,y;) and (z}, y;). Without loss of generality,
we set the differing sample to be the N-th sample. Assume ¢ = max,,, ; thm, i (wh, @ H be
the maximum lo-norm of the partial gradient w.r.t. any client’s output through the entire tralmng

N-1

Am,2*maX”7thmt7fuz(w07 thmt ,fuz(w07 )

=0

- thmt,Nfu,N (w67h1(w15$/1,1v)a h2(w2;$/2,N)§y§v) ll2

1

= w pax (Vi i Fui (Wh, @) = Vi, fun (wh, ha(wis 2 ), ha(was @b n )i un)] |,
2¢

< N (19)

where the inequality is based on assumption [B.6]

Applying lemma|C.3] with the I>-norm sensitive A, » of g,,. We derived the Theorem [ |

Total Privacy Now we consider the total privacy of the entire training process.
Lemma C.5. (Advanced Composition) For all €, 6, ¢’ the class of (e, 6)-DP mechanisms satisfies
(¢, ké + 0")-DP under k-fold adaptive composition for:

2kIn(1/6")e + ke(e® — 1) (20)

Proof: The proof is from [6, Theorem 3.20].

Theorem C.6. Under the “honest-but-colluded" threat model where the attacker can access all
information of all clients through the entire training process. Under algorithm|l| if the following
condition holds:

T-1
1 . 20\/2Wn(1.25/9)
qdrT ; ntr(\Ilmt) o N -¢ @D

we can derive that sharing the stochastic gradient estimation from the server ensures (€', Td+¢")-DP

foralle, 6,0 > 0, where € = /2T In(1/6")e + Te(e® — 1).

Proof: Theorem|C.4]has proved the (e, §)-DP for each iteration, then applying lemma|[C.5] with the
number of composition k£ = T, the theorem is proved. |

Lemma C.7. Given target privacy parameters 0 < ¢ < 1 and 6’ > 0, to ensure (¢',kd + §')
cumulative privacy loss over k mechanisms, it suffices that each mechanism is (e, 0)-differentially
private, where

e = ¢'/(2¢/2k1n(1/5")) (22)

Proof: The proof is from [6, Corollary 3.21]
Corollary C.8. With algorithm 1, for each iteration, for all § > 0, if the following conditions holds:

1 = 4¢+\/ATn(1.25/5) - n(1/5")
ntr(\Iffnt) > - (23)
qdpT ; N e

we can derived (€', Té + &) cumulative privacy loss over T iteration,

Proof: Applying lemmaand plugging in e = €' /(2+/2T 1n(1/¢"))
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C.2 Defense Against the State-of-the-art Privacy Inference Attack in VFL

Privacy Protection of VFL-CZOFO at Framework Level VFL-CZOFO ensures the protection
of labels on the server through two key mechanisms. Firstly, the information shared by the server
with the clients is the ZO gradient with intrinsic DP rather than the vulnerable unbiased gradient.
Secondly, the internal details of the server’s model and the domain information associated with the
labels are not disclosed to the client. Thus, the server appears as a black box to the client, allowing
queries from the clients, but responds with noisy outputs to protect privacy.

VFL-CZOFO ensures the protection of the features on the clients by keeping the internal model
information of the clients not disclosed to the server. Additionally, clients have the flexibility to
utilize any model, which makes them appear as black-box models to the server. As a result, the server
can only obtain the outputs from the black box (client) but does not have access to the corresponding
inputs nor the ability to make adaptive queries.

SOTA Inference Attack under “Honest-but-curious” We discuss two types of privacy inference
attacks: the label inference attack and the feature inference attack.

A label inference attack[8} [17] under the “honest-but-curious" model involves a curious client
attempting to infer the label of the dataset from the server. The “direct label inference" attack
proposed by Fu et al. [[8] cannot successfully attack our framework because it relies on a strong
assumption that the client explicitly knows that the server simply sums the output from all clients.
This allows the gradient replied by the server to directly reveal the label information by the sign of
the entries. However, in our framework, we assume that the server can use any model and that the
client does not have access to the server’s model. Additionally, the gradient is not sent to the client in
our framework. The "model completion" attack by Fu et al. [8] and the "forward embeddings" attack
by Sun et al. [[17] rely on the local model’s representation of the unknown label, assuming that the
curious client can obtain a small number of labels for the samples. Essentially, this is equivalent to
using the local model and the local feature set to guess the label. The effectiveness of these attacks
depends solely on the representation of the local model and features held by the client. However,
with Theorem [3] we have proven the (e, d)-differential privacy of sharing the ZO gradient. Therefore,
the client cannot differ one item from the server’s dataset. Deep Leakage from Gradient and its
variation [24} 23| [13]], utilizes gradient information to optimize and reconstruct the label from the
model. However, this attack does not apply to our framework. The attack assumes that the attacker
has access to the target model’s structure and parameters, as well as unbiased gradient information.
In contrast, in our framework, participants cannot access each other’s model information through the
protocol. Additionally, our framework does not provide the attacker with any gradient information.
Instead, the attacker can only obtain a stochastic estimation of the gradient of the ZOO.

The feature inference attack [24, 13} [7]], involves the server, acting as the attacker, attempting to infer
the feature from the clients under the "honest-but-curious" model. Deep leakage from gradient [24]]
can also be used as a feature inference attack in VFL, however, this attack cannot compromise our
framework because the attacker cannot access the victim model and cannot get a certain gradient
information. Model inversions attack [7] can be considered as a feature inference attack, wherein the
server uses the output of the client to recover the feature. However, this attack cannot successfully
compromise our framework because it relies on the attacker adaptively querying the model of the
victim with specially designed input features, which is not allowed in our framework. Specifically,
our framework does not provide a mechanism for the server to query the client with feature inputs.
Moreover, all of the attacks mentioned above assume that the attacker obtained the domain of the
label or features, however, in our framework, the client and server can collaborate without sharing the
tasks information.

“Honest-but-colluded” In the "honest-but-colluded" threat model, the label inference attack
involves some clients colluding to infer the label from the server [8},24]. In the worst-case scenario,
all clients collude to infer the label from the server. If there is only one client, the "Honest-but-curious"
threat model is equivalent to the "honest-but-colluded" model since there are no other participants
to collude with. Even in the worst-case scenario where all clients collude, our framework remains
resilient to the "direct label inference" attack described in Fu et al. [8]]. This is because the server’s
model remains unknown to the clients, and the clients can only obtain a stochastic estimation of
the gradient, rather than the unbiased gradient information, which makes it impossible for them to
perform the attack successfully. Our framework remains resistant to the Deep Leakage from Gradient
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attack [24] because this attack relies on the attacker having knowledge of the parameter and structure
of the victim’s model, which is not shared in our framework. Furthermore, the attacker is unable
to access the unbiased gradient in our framework, which further prevents this attack from being
successful.

The feature inference attack in the “honest-but-colluded" threat model is that the server colluded with
some clients to infer the features from one client. In the worst-case scenario, the server colludes with
all clients except the victim client. The attacker can access all the information from the colluding
participants, including the model information, the dataset, and the communications between other
participants, following the protocol. Luo et al. [16] propose a feature inference attack in VFL where
they assume that all participants collude except the victim client. Additionally, they explicitly assume
that all clients use the Logistic Regression (LR) model. However, this attack is not applicable to our
framework because we do not assume a specific model for the client, and the attacker cannot access
the model information of the victim, making the attack infeasible. The Reverse Multiplication Attack
[19] is similar to the feature inference attack proposed by Luo et al. [[16], but the target model adds
Homomorphic Encryption to protect the data. In the attack, the authors assume that the "coordinate
participant" who has the private key is also corrupted, enabling them to decrypt all data received from
the victim. They then perform an equation-solving attack for the LR model. However, this attack is
not applicable to our framework because we do not assume an LR model, and the attacker cannot
access the victim’s model. Therefore, our framework is secure against such attacks.

D Convergence Analysis

D.1 Asynchronous VFL Framework

We use an Asyn-VFL framework [5]] where the server passively handles the request from the clients
and replies with the necessary information instead of actively sending messages to coordinate with
the training process of the clients. Asyn-VFL can be modeled with a global iteration sequence, where
each iteration has four steps. As shown in Fig. |1} step 1 is that the client m; is activated and sends the
forward message to the server. In step 2, the server replies with the necessary information for the
client’s update. Then the server does local updates based on the updated forward message and the
client update its model with the backward message.

g ,
S { [ (3 Server update ]
(2]

(1) Forward message (2) Backward message
2
o { E] [ @ Client update ] D
O

Figure 1: Asynchronous VFL framework

At any iteration ¢, only one client m; and the server updates its parameter. Therefore, there are
delays between parameters updated at iteration ¢ and parameters that are not updated. In this paper,
we use 7/, ; to denote the delay w.r.t. the client m and the sample i at global iteration ¢. At each
global iteration, the client m, is activated and its delay is clear; for all other clients m # my, their
delay count 7}, ; is increased by 1. Formally, the update rules for delay 7/, ; can be represented as

following:

L 1, M= =y
m,i T+, otherwise

D.2 Defining Compression Errors

Definition D.1. Compression Error (forward message). Let vector €, ; be the compression error
of Cpp, (+), on sample i, i.e. €5, 5 = Copp (Rm (W3 1)) — R (Wi ;). We denote the expected norm
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of the error from the client m at global iteration ¢ as £}, = E ||en, 4, H2, and define the upper limit
&= max {&€}

Definition D.2. Compression Error (backward message). Let ¢, ; be the compression error on
Om.i» 1.8. €mi = Co(Om,i) — Im.;. the pseudo partial derivative that the client gets is

d
Um = d)(‘uhm)[fz (hm,z + Nmum,i) - fl (hm,z) + em’i}um’i
¢(dn,, DA,
_ M[fz (hml + ,Umum,l) — fl (hm,z)]umﬂ, + ( ) m,iWm,i
Hm fm
A d
= T i (w0, (w)) + D) @
Hm
Define vector v, ; = ¢(anm ) €m,iUm,; be the compression error on @hm,i fi (wo, ¢i(w)). so that

Uy = @hm,ifi (wo, (W) + Vm.i
(25)

and define 7 = Ym, i, » D€ the error on the activated client m, and the selected sample ¢, at iteration
T, and T* = E ||4*||*. The upper limit for the compression error is I' = max {T}.

D.3 Lemmas

Lemma D.3. Zeroth-Order Optimization. For arbitrary f € C:(R%), we have:

1) fu(z) is continuously differentiable, its gradient is Lipschitz continuous with L, < L:
Vfu(@) = Eu |Vf()] 26)

where u is drawn from the uniform distribution over the unit Euclidean sphere, and v flx) =
% [f (x + pu) — f (z)] u is the gradient estimator, f,(x) = Ey [f(z + pu)] is the smooth approxi-

mation of f.

2) For any x € R?,

@)~ @) < 22 @
V5o~ V) < 28
L@ - < g @ <2 1w P+ A )
3) Forany x € R,
B[ @] <2a10s @ + 255 30

Lemma helps build a connection between f (-) and its smooth approximation f,,, (-) of the
convergence analysis. Proof of this lemma is provided in [14}9].

Lemma D.4. Compression Error. Under assumption [B.3]-[B.6] the norm of the difference between
the loss function value with and without compression error is bounded:

2|V i (1wt @) — Vu i (u #))||” < RS

~ 2
E [V, fi (wh, @1) = Vi, f: (wh, @) | < G2,H2E

3D
— ty M t
where £ = max {&"} = max { > 1 Sm}

proof:
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For notation brevity, we denote:
t
hm = h ( m, y Tm 1)

fi = fi(wmcl,ia TGy, cq.i) = filwo, b AT €1 A 7h§\4,i + 65%,1‘)
fit = filwo, b g+ i) = fi (wh, @)
Et [60’63"" 765\/[]
(32)
Applying the chain rule to V f; w.r.t. w,.
vu}m flt : Won, TYL 1 Vht fl
)
*VU/mhm % (vh" ft + RB)
=V fi + Vo hin,i - Bo (33)
where a) applies Taylor expansion to Vi, . ﬁ around the point [wf, ®]
vhm,ifi = th,if’i + v%myifiEm + -
(34)

Define the infinite sum of all terms higher than the second partial derivative as Rﬁb, where n denotes
the number of terms in the remainder R:

Rl (wo, h1 i+ €14, s hari + €nri) = V%Lm’ifiEm +
(35)

Therefore, for m = [M],
E vamfl (w07 ) vw,nfz <w0> (Dt)

—EHVwm m,i RtH
<]E||Vwm mv” ||R6||

2RG2 || RY?

262 H2E | | E;
— m=-m

nl’

M
2GLHE Y €l

2(}2 H2 gt

5)
<G2 H2¢E
(36)

where 1) apply assumption [B.6] 2) apply the assumptlon L@] and Taylor’s inequality. 3) note that
the specific error to be plugged in is E,, = [0,€!,--- €], i.e. the error for the wy is 0, 4) for

brevity, we use £' to denote > [|€% [|* 5) To make a succinct bound, let £ = max {&'} denote

the maximum norm of the error caused by the compression.

. 2
For the server E vao fi (W, @) — Vo, fi (wh, ®L)|| , the wp in f;(wo, ®;) can be regarded as wy

applying the identical function ho( ), i.e. ho(wg) = wo, and passing through the same procedures
above. Note that ||V, ho(wo)||> = 1.
‘2

E ||V fi (b @) = Vi fi (wh, )




=E ||V - S|
<E |[Vuohg || [| 75
<E||RS|

<HE| 2}

M
—H; Y€,
m=1
=H3E"
<HJE
(37

232 D.4 Bound the Global Update Round

233 In one global round during training, the client m; is activated, and the server and the client m; update
234 one step. Taking expectations w.r.t. the sample ¢ and the random direction u for the zeroth-order
235 optimization in one global update round.

Ei,u [f (w6+17w§7"' wt+1a"' 7w115\/1) 7f(w63wia wt 7w§\l)]

1) . -
< =08 (Vo f (wh, W), Vo fs (1, 81) )
a)
’2

Vo fi (b, )
b)

*nmtEi,u <vwmt f (w67 Wt) ) ﬁhmt f’L (wéa i)z (wfn, )) vwmt hmt (wint ; xm,,,i)>

c)

1

+%L7772ntEi,u Vi, fi (wé, (i)(wfnt)) Vi e, (Wi Ty i) :
d)
< e [V () [+ mHE + LB [ — |
+ LR, ||V f (wh, wh)||* + Lndo? + 2Ln2 HZE + 2Ln2 L3E, ||w' — w'||®
o [V O b BB G+ A G HEE 20, L B [ — |
+ 40, I'G2,,

+2Ln2, dn, GoGa,, + %an%ufm Ly, dy  Gi, + L, G;, T
3) 1 2 t t\ (12 1 t t
< — (gm0 — L0 ) i Vo (b W[ = G0m s [T, f (s, )|
+ (L2 + 203 L2 + 20, L2, ) By || — wt|?

+noHGE + 2Lng HFE + 4, G2, HE, € + 41, G2, T + L2, G2, T

2

1 1
b, L i, G, + 2L, dn,, GG, + 5 Ll i, L, i, G,
+ Lnjog

(38)

236 where 1) applies assumption (smoothness). Then we will discuss the server’s update (a&b) and
237 the client’s update (c&d) separately in the following paragraph. 2) plugging in a), b), ¢) and d). 3)
238 organize the equation.
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239

240

241

242

243

for a)
B (T ) Vs ()
(5 ) T 3)
B (V) T (8) -

2_ nolE;

(
(wp, W),V
(

/—\/—\

Vi fi (1) + Y fi (21))

=10Ei (= Vo f (w0hs W) Vo fi (BF) = T fi (®1) ) = M0E: (Vi (10h W) , Voo fi (@1))

L0 (= Vo f (10hs W), Vo i ((Pi) B

2 1 L

< — 5770Ei ||Vwof (w(t)th) ||2 + 577 wo ( )
1

= gk [V o f (w5, w') ||2
2 o ) i 2
2 Vi fi (‘ﬁ) — Vuy, fi (q’ﬁ) + Vo fi <<1>§) = Vunfi (21)

3) 1
< = 5ok [V f (w5, ') H2

Vuofi (8) = Vo fi (80)

4 1 t t
< - 5770152‘ [V wo f (wh, w

+n

+ 7

Vi fi (®})) —mE; vaof<

)H2 +77ng5 + noL(Q)Ei HV~Vt — WtH

w')]|”
U}()f’L

2
vwo fl ((I)f)

Vo fi (‘E) -

2

(39)

where 0) For notation brevity, we mark f; (wé, @f) as f; (éf), (omit the common parameters), 1)

applies assumpti (unbiased gradient), 2)

{a,0) < 3 llall* + 3 [B11%, 3) fla + bl|* < 2|la]* +

2|b]|?, 4) lemma|D.4{and assumption (smoothness).

for b)
L [t (vt 1)
o () -t 0+
wof() Vo i (@)
[V fi (82) = T i (1)

=E; HVwof( NI+t

i (8)

3)
<E: ||V f (w')[[* + 05

Vo i (‘E)

4)
SEi HV’LU()f (

+ Ez ||Vw0f (Wt

Vaofi (8) + Vo i (1) — Vu i (1) ||

— Vo fi (‘ff) i

N + 08 + 2H2E + 2L2E, ||W' — w'||

2
Vo fi (2F)

[T (2]

I+

2
vwo fz ((Df)

Vo fi (éf) -

2

(40)

244 where 0) For notation brevity, we mark f; (wé, éf) as f; (ti)f), (omit the common parame-

245

ters), 1) applies la+b]* < 2|la]|* + 2]Jp]

% 2) applies E(X?2) = E(X)?2 + Var(X), assump-

246 tion (unbiased gradient) and assumption (bounded variance), i.e. E; ||V, fi (fl)f)||2 =
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247
248

249

250

Voo f (@) + Var(Vi, fi (24)) < |V f (W'

4) lemma|[D-4]and assumption [B.2] (smoothness).
then b) is

for ¢)

- nmtEi,u <vwmtf(w6a ) {vh’ , fz (w07(I> (

0)

n

= nmtEi,u

1
LU(Q) <]Ez

_LnOE ||vwof (

vwo fz <w(t)7 éf)

)|| + Lngog + 2Lng HGE + 2Lng LYE; ||w' — w'||

(Vo £ [vht ‘,.f (<i> (uwh,
= on i (Vo (), Vit

= - nmth <vw f Vht
+Vow, (

)

w).

:777ntEi <_Vwmtf() vht f“mt : ( (wfnt)> v

2)

3)
< -

- nmth <vwmt ()
:nmei
= N, B ||V

1

1
2

wmr

inmt vamt

WmtEi

FOIP

0]k

T (905 * Vi, Bl —

= L [T PO

T3

1

S0m Eil|[ Ve
- vwmt fz ((i)z(
FOIP

1
S - inmt vamt

5)
< -

+ Ty ]E’L
+ 40, E;

+ 20, By

1
- Enmt H vwmt

+ nmt E'L
+ 4nm, E;

+ 20, E;

1

inmt H vwmt f

o i (‘i%‘(w
wmtfl( iwh,)) -
Vo Ji (Bi(wly,)) =
O
i (®0)) = Vi fi (@i(w

b)Y

Wmy "my,s

wmtfz( i(wr,,)))
<—Vw WIOE vhint,ifum,,,i ( i(wfm)) RV

o (R) et
wh)) + Vi, i (Biwly,)) -

ht

Ve, fi ((i)l(wfnt)ﬂ 2
Vu,, fi (2i(w},)) H2

fz( 1( mt))_ Wy ,f1<(i)(

wnfl( iwh,))

()H2 + Nm,

2
/J’mt my

4

2

hmut 2
G
me

12

2

)1? + 02, 3) applies |a + b]|* < 2 [lal* + 25|,

(41)

80) 9] Vi P (k3 20m0))
2)+] T i)

U) ) V’wnfh?mtz—i_ryt'v’wnfh?mtz>

wm,hfmtz—’—’y Vw ny mtz_
wmthf’ﬂtt_vwmtfi( z(

Wmy h’:nt i v’wmt fl ((I)l(

vwmtfi ( z(

Vu,, fi (&)i(wfnt )> +

Ve, fi (®i(w

Vi i (Bt

+ 4777ntEi ||7t FVwm, hfnt i

) 19l

)H +4nmtE ny Vw ny mtz

2
Vwmtfi (‘I’z(wmt))H

)) +'7 vwmt me,i

I

Vo, fi (®i(w),,))

2

Vwmt fz (‘i)i(wfm))
fnt)) + 'Yt : Vwm, hfm i

))"‘7 vwmt mtz>

Wh)) + " Vi, bl o)



251

252

253

254

256
257

258

259

260

261
262

o e (B10080)) = T £ (#1608 |+ A B2 T, 2]
wmtft( i(w mt)> = Vau,, fi (‘Pi(wim,))HQ

< - Enm,, ||vwmf(,)||2 + inmtufnﬁmdimt G2, + 40y, G2, H2 € + 20y, L2 E; || W' — thg

+ 41, E

+ 20, E

+ 4m, Bi |7 Y, B mtzH2

1
- inmt vamtf : || =+ ’nmt,UJthgntdQW G?m + 4nthgntHr2nt€ + QUthfntEi ||V~Vt - WtHQ
2
o+ 4 B [ [V, B
7)
< = St [Fan PO+ Pt L G+ A G H2 £+ 20, L2, B [ — W
+ 40, G2,
(42)
where 0) for notation brevity, we omit the common parameters, f(wi, w!) = f(-),

7 (wm(wfn,,)) = Fi(®ilwhy))s (Wi = B 1) applies EqPd in
lemma L 2) applies assumption
 (w 3°,in by w3 (ab) < 5 llal + 3 ), 4) applying Ha+bll2 < 2alf +

2 ||bH recursively, 5) apphes Eq. in lemma and the assumption [B.6| (bounded block-
coordinated gradient), 6) applies lemma|D.4|and assurnpuon@ 7) applies assumption [B.6| (bounded
block-coordinated gradient) and definition |D.2)

(unbiased gradient) and we use f(w},, ) to denote

for d)
%Ei,u [@hmt fz (wév&)(wfnt)> +’7t:| : vﬂ)mt hmt (wfnt;xmmi) i
0l = (&t t t 2
:iEi,u vhmt fz ((I)(wmt)) +7 ] 'vwmthmt,i
1 . s
SEEi,u Vi, fi (‘1>(wfm)> vamf e i H2
1) N ~ [~ 2
2,0 S o () )H [ Bl + Er [ 9, ]
2)
265, E |91, o (305,) el ez,
L, (5o () B2 8. ) 5 P,
=2G72mdhmt thtfi (‘i)(wfm))H +§ %HL%@tde,GQ +Eiu |7 H e
4§)2th GiG2, + +5 umez d, Gr, +TGh,
(43)
where 0) for notation brevity, we omit the common parameters ie. f(wh,wt) = f(),

fi (1w, ®itwt)) = Fi (BiCwh,))s B, (w0l 8ms) = By, 1) applies [la+ b < 2 al”

2 ||bH2, 2) applies assumption (bounded block-coordinated gradient), 3) applies Eq. |30| in
lemma 4)T' = max {T*}.

Then d) is

1 ~ ~ ~ 2
8 (8o [V o (1 8008 )) T om0
1 2 2 2 2
7L77mt Mmt Lmt dh

<2Lng, dn,. GG, + 5 v G, + L, TG,
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(44)

264 D.5 Combine the Gradient

265  Start with the Eq.[38] additionally taking expectation w.r.t. activated client m;, and applying the
266 assumption[B.7] (independent client).

E’rnt,i,u [f (w6+1vwia"' 7wf7;t17"' 7w§\/[) _f(w(g?wi7 7wfnt7"' 7w§\/[):|

M

1 1
<- (2’70 - Ln3> B[V (b, W)= 5 30 i [V S s, w0

+ (nOLO + 2Ln8L2 + 2 Z pmnmL ) E; HW — WtH2

m=1

M
+ 0 HGE + 2LngHGE +4Y . pnm Gl HAE + 4 Z PmitmG2T + L Z P G T

m=1 m=1 m=1
M M
2 52 2 2M2 2 52 2
¥ - menm,umL 4 GL+2> pulntdy, GIGE + - meanumL a2 G2
m=1 m=1 m=1

+ Ljog

1) 1 1 <
< - (2770 - Ln3> By [V f (W) " = 5 D Pt [V ()|
m=1

M
(noLo + 2L L 42> puim L2, ) E; ||w' — w'||’

m=1

+ Q1

2 1 RS
< = 70 ||V f (w5, w') I” - 1 > ot || Voo, f (W) |

m=1

+ (noLo + 2Ly LG + 2 Z Pmiim L2, ) E; ||w' - w'|”
m=1

+ Q1
3)

1
<= Zmln {Uo,pmnm}E va (wo’ )||2

<n0L2 + 2002 LE +2 Z PmNm L ) E; HW — thz

m=1
+ Q1
(45)
267 where 1) for notation brevity, denotes the line 3-5 (constants) as @1, 2) let ny <
2
268 ﬁ then *%770 + L < 7%770, and 22 —1 PmNmE; ||Vwmt (wé,wt)H <

-1 %:1 Pt ||V, f (wh, w) ?.3) uses the orthogonality of V£, i.e. |V f (wo, w)|>

270 ||V f (wo, W12 + S0 [V, f (w0, W)

269

271 D.6 Define the Lyapunov Function to Eliminate the Client’s Delay.

272 Define a Lyapunov function.

M = f(wh,w Zg ||wt+1 Ziwt7i||2 46)
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273 Taking expectation w.r.t. the activated client m;, sample index ¢, and the random direction .

E (Mt+1 o Mt)

—F lf t+1 t+1 Ze ||Wt+1+1 z_wt+1—i||2 _E

wm Ze Hwt+1 z_wt—iH2

=E [f (wé‘*‘l,wﬂrl) — £ (wh,w')] + Z 0.E ||Wt+1+17i B Wt+1fi||2 - Z 0, Hwtﬂ,i B wt*i||2
i=1

i=1

H o1
g [ (O

+ <n0L2 +20n2LE + 2 Z P L ) E [|w' — tH2
—_———

m=1
a)

+ XT: 0,F ||Wt+1+17i _ Wt+17iH2 . i 0; ||Wt+17i o Wt7i||2

i=1

b)

2) 1
=73 min {no, pmnim } E ||V £ (wh, w') H2 + Q1

M
< OLO+2Ln3LO+2zpmnm ) TZ]EHWtJ,-l z_Wt_iHQ

m=1

T—1
+ 0.E ||w —w'||” + 0;n1 — 0)E ||Ww— —wiH|” — 0. E [|wit!™" —wi™7
1B W = wt[[* 3 (0540 — 0, [[w! T 0E Wt a

1
< — g min {0, pun} E | Vf (wh, w') [ + Qs

+ 601 E ||Wt+1 - th2

2> ( =0 L 2R 42D L )E w1 i

m=1
M
- [97 N (noL + 2003 LE + 2 Z Ptim L ) E [jwh=" — Wt_THz
m=1
(47)
274 where 1) plugging in Eq.[43] 2) plugging in a) and b).
275 For a) in Eq.
1) T 2 2) T
E ||w — th <E Z (W"Jrl — wi) < TZE Hwt—s-l—z‘ - Wt—i||2 (48)
i=1 —

276 where 1) applies assumption [B.8] (uniformly bounded delay), 2) applies Cauchy-Schwarz inequality,
2 2
277 i.e. (Z;:Ol xl) = (Z?;()l 1- xl) <nY )t a?.
278 For b) in Eq.[d7}
Z@E Hwt-i-l-i-l—i _ Wt+1—z’H2 _ Z9iE Hwt—i-l—i _ Wt—iH2

i=1

T—1
—0F ||wt — wt|* + > (i1 — 0)E ||w'H Wi ? = 0. [w T —wi )P 49)

i=1
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279 Let0y > 71 (noL2 +2LngL3 +2 Z . Pmnm L2, ) and design the recurrent relation for 6,

Oip1 = 0; — (770[’0 + 2L L +2 Z Pmim L > (50)

m=1

280 It follows that

M M
0. — (noLg +2LgLE +2 ) pmnmL3n> =0 -7 (UOL% +2LRLE 42 pmnmLi> >0

m=1
(51

m=1

281 Applying Eq.[50]and Eq.[5T]to Eq. 7]
E (Mt+1 _ Mt)

1
< - 1 min {ng, Pmfm } E va (w(t)th) H2 + @

M
+7 (noLo+2Ln§L§+2 > pmnmL >1EHW —wt|?
—_————

1
m= o

1
<~ min {10, P} B | V£ (wh, w') |* + Q1

M M
i (noLg s pmnmLG) (2 S pod, G2G2,

m=1 m=1

M
1
+5 Z pmn7rLNmL2 d2 G72n + Z pmn?n m )

m=1

1
p_2 min {no, Prmim} E ||Vf (w(t)th) H2 T Q1+ Q2

4
(52)
282 where 1) mark the second line as ()2 for notation brevity.
283 For ¢),
o L
1) . . - 2
LB || [V, Fi (10 B, )) + 9] Var P, (0 0m.2)
2) 1 &
<2 Z P, GEGR, + 5 D Pl Lindi, G, + Z P G T
m=1 m=1
(53)

284 where 1) the update rule for the communication round, 2) applies the exactly same procedures in
285 Eq.[3]and applies assumption [B.7] (independent client).

286 D.7 Bound the Gradient V f (w}, w')

287 Start with Eq.[52}
E (Mt-‘rl _ Mt)
1. 2
< S (o, ot} B [V (W) |+ Q1 22 64
288 Summing over the global iteration ¢ = 0, 1,...T" — 1, arrange the equation and divided it by 7" from

289 both sides.
T-1

1
4T mln {7707prn77rn} ZE va wo’ )||2
t=0
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E (M° - M7)

< T +Q1+ Q2
DE (f° — f*
SM +Q1+ Q2
(55)
200 where 1) E(M°—MT) = f(wd,w°) — f(uwl,wl) — ZZ’:lginTfiin—iHQ

291 f (wo, ) f (wo , W ) < fO— f*, weuse fO to denote f (wg, WO) and applying assumption
202 Dividing ¢ = L min {ny, pmnm} from both sides:

*Z]EHVJC wh,w')||”
4ﬁ1l3 O @
c 0T
<E(f0*f*)
S
1 M
¢ (nng +2Ln2H3 + 4 meanan;i> £+ (4 > pmnmGa, + L mean2 ) r
m=1 m=1 m=1

M M
1 1
e Do P L, Gl Z P L, GAGE, + - Z P L2, L, G2,
m=1

m=1

1
+ *LT]QO'Q
C 0~0
- M M
' (noLg R s pmnmLfn> (2 S pod, GIG,
m=1 m=1

M
+= menmumLQ dy G + menm ™ )

(56)
293 where 1) plugging in Q.

204 To simplify the result, let L, = max,, {L, Lo, Lin}, n0 = Nm = 1 < 4i*, pi = min,, Pm,

205 [y = MaXy, {fim}, s = maxm {dp.. }» G« = max,, {Go, G}, H. = max,, {*HO,Hm}, then
26 (= 2min{no, pmim} = - Eq. can be further simplified:

o
%EHW <ws,wt>|\2
t=

Dp.E (£ - 1)
<

M M M
+ 4p, (Hf +2LnH? +4) pmG3H3> £+ 4p. (4 > pmGI+LY pmnGz> r

m=1 m=1 m=1

M M
+ s Z PmpiL2d2G2 +8p. > pmInd Gl +2p. Y pmLnpiLld}G?

m=1 m=1 m=1
+ 4p*Lna(2)
M M 1 M M
2 2 2 2 4 2 272 122 22
+ 4dp.T <L* +2LnL; + 2 Z me*> (2 Z Pmn d Gy + 3 mZ::lpmn wiLid; Gy + mZ::lpmn G*F>

m=1 m=1
2<)4P*E (fo - f*)
>~ TT]
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+4p, (H? +2LnH? + 4G2H?2) € + 4p. (4G2 + LnG3) T
+ P2 L2d2 G2 + 8p, Lnd G + 2p, Lyu2 L2 d> G2
+ 4p,Lno?
1
+4p.7 (L7 +2LnL7 + 2L3) (2n2d*G;* + o LG+ n%}fr)
3)4p,E (f° — f*
3 4p.E (f° — )
_—Tn
+p. (6H + 16GZH?) € + 17p.GIT
+ P2 L2d2 G2 + 8p, Lnd G + 2p, nu2 L3 d> G2
+ 4p*L7700
+ 28p,m?d, GL + Tp T? 2 LA G2 4 14p, 7L?n* G2
4) 4 0 f*
Y4p.E (f° - f*)
==
+n (Sp*Ld Gi +2p plL3d2G2 + 4p, Log)
+ 0 (28p.7d . G} + Tpo Tl LIdIG2 + 14p, 7L2GIT)
1122 (pL2d2G2)
+ & (6p.H? + 16p, G7H?)
+T (17p.G?)
(57)
297 where 1) plugs in the above variables L., n, p., C, ttx, 2) applies Zﬁle pm = 1, 3) simplify by
208 1< 4L ,4) collect 1, iy, €
299 Suppose we set n = ﬁ, P = \F, and design the compression to make £ = O (ﬁ) and
30 I'=0 (ﬁ) the above equation becomes

1T—1 )
LS (9 (whow)|
t=0

1
Sﬁ (4p.E (f° — f*) + 8p.Ld. G} + 4p, Lo + 6p. H. + 16p. G H? + 17p,G?)

1

+ = (28p.7d .G} + p. L2} G?)

‘H'ﬂ\

+ (2p. L3dZG2 + 14p.TLG2)

3
2

»-n'ﬂ

+ 75 (Tp.TpiLidG3) (58)
301 Therefore,
= d,
T E VS (wbow) | =0 () 59)
t=0

sz where dj, = d, = max {d,, } (for clear notation), T" is the number of communication rounds.
m

303 The proof of Theorem [5.2]is complete. |

?Refer to C-VFL [4] about how to design the compression to achieve the compression errors of O(ﬁ).
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E Experiment Details and Extra Experiments

E.1 Experiment Details

Experiment Hardware and Software The experiments were conducted on a Linux server with
Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz and the experiment is run on one Nvidia Tesla P100
graphic card. PyTorch was used as the deep learning framework. We re-implement the framework
by ourselves because all of the frameworks [18, 4, 15, 21]] we compared were not open-source,
and re-implementing the code helped make a fair comparison which eliminated the differences in
implementation details of various methods.

Feature Splitting Details Regarding the dist-MNIST experiment in Section [6] we flattened the
image and then equally distributed the dimensions among each client. Specifically, the first client
received the upper half of each image, while the second client was allocated the lower half.

Regarding the dist-CIFAR-10 experiment in Section[6](and section in this Appendix), we split the
image by the last dimension. Therefore, the first client was assigned the left half, while the second
client received the right half of each image.

Syn-ZOO-VFL

Algorithm 1 The Synchronous Modification of ZOO-VFL [21]]

0: Initialize variables for workers m € [M]
1: fort=0,....,T —1do
2:  Random sample a sample ¢ (or batch B).

3:  for client m in [M] in parallel do

4: Client m compute and send Ry, ; = A (Win; T i) a0 Ry i = R (Wi, + pily 45 T i) tO
the server. .

5: The server calculates d,, = f;(wo, ...Rm.i-..) — fi(wo, h1 4, ...har,i) and send back to the
client.

6: Client m calculate the stochastic gradient w.r.t. its local parameter w,,, with the d,,, received
from the server: V,, fi(-) = Wémum’i

7: Client m update its parameter with gradient descent w,, < W, — nm@u,m fi ()

8: end for

9: The server calculates its local stochastic gradient estimation via @wo i)y =
P .
L(MO) Jilwo + pg iy o) — filwo, ha g, . haga; vi) | U

10:  The server update its local parameter with gradient descent wg <— wo — 1o @wo fi ()
11: end for

E.2 Computation Cost on Extra Propagation on the Server

Our method has extra computation cost on the server compared with other methods, however, the
difference is negligible given the powerful computation performance of the server.

We repeat the experiment on dist-MNIST with the default setting (2 clients). To make the result more
obvious, we disable the GPU to conduct this experiment, and we record the computational time as an
index of the computational cost. We assume that the network latency is the same for all frameworks,
and ignoring other minor operations in the implementation. The major factor which influences the
computation cost is the propagation through the network.

The table below shows a comparison of the computation cost between different frameworks. Letter
“F" means forward propagation, “B" means backward propagation, and the numeral preceding the
letter indicates the number of propagations, for all frameworks, we only count the propagation time.
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Table 2: Computational Cost for Extra Propagation

Client Comp. Time Server Comp.

Framework Client  Server per Epoch (s) per Epoch (s)
Split learning [18]] F+B F+B 0.86 0.90
Syn-ZOO-VFL 2F 3F 0.64 1.00
Compressed-VFL [4] F+B F+B 0.86 0.89
VAFL [5]] 2F F+B 1.10 1.52
ZOO-VFL [21]] 2F 3F 0.92 1.49
VAFL|[5]+DP[3]] F+B F+B 1.10 1.52
Ours F+B 101F+B 1.15 49.02

E.3 Dist-CIFAR-10 Experiments

E.3.1 Comparing with SOTA Frameworks

Following the training procedure outlined in section[6} we utilized the optimal configuration across all
frameworks. Table [3] presents a summary of the test accuracy and communication metrics at various
stages of convergence. Our achieved test accuracy is comparable to the SOTA VFL methodology.
Furthermore, our communication costs are significantly lower than those reported by the leading
VFL communication efficiency research. In contrast, the pure ZOO-based VFL is unable to attain
convergence to a practical model due to the large dimensionality of the model for optimization.

Table 3: Test Accuracy and Evaluation of the Total Communication Cost.

Privacy Security — Test Accuracy  Cost (80%)  Cost (total)

Split learning [18] X 84.31 +0.28 107 MB 381 MB
Compressed-VFL [4]] X 84.10 & 0.18 67 MB 240 MB
VAFL [3] X 83.16 = 0.03 184 MB 400 MB
Syn-ZOO-VFL v 18.08 £+ 0.33 - -
ZOO-VFL [21]] v 17.96 £ 0.92 - -
Ours v 82.82 +0.29 21 MB 45 MB

(-) represents that the model cannot converge to a usable model after the entire training process.

Figure 2] illustrates a plot of the training accuracy against epoch (Figure P}a) and communication
cost (Figure 2}b). As depicted in (a), our framework exhibits a convergence rate comparable to
that of other frameworks. Specifically, regarding the communication cost, as indicated in (b), our
communication cost is significantly lower than that of other communication-efficient algorithms.
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Figure 2: Comparing with other VFL Framework on Dist-CIFAR10
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The cross means that the training accuracy reaches 80%.

E.3.2 Dist-CIFAR-10 Ablation Study

Ablation Study on Zeroth Order Optimization Figure [3| performs an ablation study on the
application of ZOO on the connection layer. We implemented the Avg-RandGradEst using various
sampling times q. The results indicate that exclusively applying ZOO yields communication costs
comparable to those of FOO-based VFL in each communication budget.

0.94 === FO ,J
0.8 1 RandGrad-1000
: 0.8 4 —— RandGrad-500
- - —— RandGrad-100
€ 061 g%
g g
3 $ 0.6
=4 0.4 =1
s 0. ©
£ £05
RandGrad-1000 0.4 4
0.2 4 —— RandGrad-500
—— RandGrad-100 0.3 4
0 10 20 30 40 50 0.0 0.5 1.0 15 2.0 25
Epoch log10 of the total backward message size in MB

(a) Dist-CIFAR10 by epochs (b) Dist-CIFAR-10 by comm. cost
Figure 3: Ablation Study on ZO with Dist-CIFAR-10

Table ] presents the test accuracy of the method and the total backward cost of implementing ZOO
on the output layer. The table shows that the application of ZOO decreases the total communica-
tion required for the entire training process. With all the sampling times ¢ provided in the table,
communication costs are reduced with a slight utility trade-off.

Table 4: Ablation Study on ZO with Dist-CIFAR-10

70 Type Test Accuracy ~ Backward Cost
FO 83.16 £ 0.03 200 MB
RandGradEst-1000  82.10 £ 0.28 156 MB
RandGradEst-500 81.28 £ 0.17 78 MB
RandGradEst-100 72.83 £0.20 16 MB

Ablation Study on Compression Figure[d displays the results of the ablation study on communi-
cation for both forward and backward messages. The plot represents the training accuracy against the
communication cost. The results indicate that the utilization of a certain degree of compression (8, 4,
2 bits) led to a reduction in communication costs without significantly affecting the convergence of
the model.
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Figure 4: Ablation Study on Compression with Dist-CIFAR-10
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Table [5] presents the test accuracy and total communication cost for compression on forward and
backward messages. The results suggest that compressing to a certain degree does not significantly
impact test accuracy, but it considerably reduces the communication cost. Therefore, we may
implement compression to a certain level, such as 4 bits for both the forward and backward messages.

Table 5: Ablation Study on Compression with Dist-CIFAR-10

Compression Test Accuracy  Forward/Backward Cost
No Compression  82.10 £ 0.28 200 MB
Forward-8 bit 81.90 £ 0.24 50 MB
Forward-4 bit 82.64 £0.29 25 MB
Forward-2 bit 81.55£0.23 13 MB
Forward-1 bit 17.68 + 0.70 6 MB
Backward-8 bit 82.03 £0.25 39 MB
Backward-4 bit 82.31 £0.30 20 MB
Backward-2 bit 81.15 £0.34 10 MB
Backward-1 bit 31.03 £ 0.67 5MB

E.4 Experiments on GiveMeSomeCredit Dataset

To simulate a real-world VFL scenario, we utilize the GiveMeSomeCredit dataset [2]]. This dataset
comprises 15,000 samples, each consisting of a single label and 10 features. The first client was
assigned the first 5 features for each sample, while the second client received the remaining 5 features.
Given the dataset’s significant class imbalance, we address this issue by downsampling the majority
(negative) class to achieve an equal size with the positive class. Subsequently, we divide the dataset
into a 75% training set and a 25% testing set. we employ a straightforward linear model (y = Wx) on
the client side. This model takes the local features of the client as input and generates two predictions:
one for the positive class and another for the negative class. We set the batch size to 64 during training,
and the model undergoes 100 epochs. The learning rate is chosen as 0.01 from the option of [0.1,
0.01, 0.001]. Additionally, we select the value of p as 0.001 from the options [0.1, 0.001, 0.0001,
0.00001] through preliminary experiments. We set the sampling time ¢ = 10 for our framework.
The experiment results for different methods’ test accuracy and the communication cost is shown in
table[6] As demonstrated in the table our method significantly reduces the communication cost of
training.

Table 6: Test Accuracy and Evaluation of the Total Communication Cost.

Test Accuracy  Cost (70%)  Cost (total)
Split learning [18]] 72.18 = 0.01 5.7MB 38.3 MB
Compressed-VFL [4]  72.13 £+ 0.03 3.8 MB 24.1 MB
VAFL [3] 72.26 + 0.29 5.4 MB 38.3 MB
Syn-ZOO-VFL 71.74 + 0.53 9.2 MB 38.3 MB
ZOO-VFL [21] 71.85 +0.70 4.6 MB 38.6 MB
Ours 72.76 + 0.29 0.7 MB 5.8 MB

Figure 5] displays the corresponding convergence of all the frameworks, The figure shows that while
all the frameworks converge similarly, our approach notably reduces the communication cost for each
epoch.
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Figure 5: Comparing with other VFL Framework on GiveMeSomeCredit Task

E.5 Experiments on a9a Dataset

The a9a dataset [20} [1] encompasses a total of 32,561 training samples and 16,281 testing samples.
Each sample has one label and 123 features. In our experiment, the first client was assigned the first
62 features of each sample, while the second client received the remaining 61 features. Our approach
employs a linear model similar to the one presented in section[E-4] Specifically, client 1’s model has
an input size of 62, whereas client 2’s model has an input size of 61. Both models have an output
size of 2. The training procedure is the same as the experiment in section [E-4 We set the batch
size to 64 during training, and the model is trained 100 epochs. The learning rate is chosen as 0.01.
Additionally, we select the value of 1 as 0.001. We set the sampling time g = 10 for our framework.
The experiment results for different methods’ test accuracy and the communication cost is shown in
table[7] As demonstrated in the table our method significantly reduces the communication cost of
training.

Table 7: Test Accuracy and Evaluation of the Total Communication Cost.

Test Accuracy  Cost (82%)  Cost (total)

Split learning [[18] 84.84 + 0.01 2.0 MB 99.4 MB
Compressed-VFL [4]] 84.85 + 0.02 1.2 MB 62.5 MB
VAFL [3] 85.08 £ 0.01 2.0 MB 99.4 MB
Syn-ZOO-VFL 84.55 £ 0.05 10.0 MB 99.6 MB
ZOO-VFL [21] 84.84 £ 0.01 2.0 MB 100.1 MB
Ours 84.86 £+ 0.01 0.3 MB 14.9 MB

Figure[6]displays the corresponding convergence of all the frameworks, The figure shows that while
all the frameworks converge almost identically (with the exception of Syn-ZOO-VFL, whose lines do
not overlap), our approach notably reduces the communication cost for each epoch.
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Figure 6: Comparing with other VFL Framework on a9a Dataset

E.6 Experiment on the Privacy-utility Trade-off

In the experiments in section[6.2] and section[6.3} we only demonstrated a typical trade-off of our
framework. However, our framework also has the capability to achieve the same test accuracy as
Split-Learning, compressed-VFL, and VAFL, applying a corresponding privacy-utility trade-off.
Note that these three baselines sacrifice privacy and get higher test accuracy (“test-accuracy-focused
trade-off”), while the last three baselines (VAFL+DP, Syn-ZOO-VFL, ZOO-VFL) take a balance
between privacy and utility (“balanced trade-off”).

To achieve the test-accuracy-focused trade-off, we use the coordinate-wise gradient estimator (Coord-
GradEst) to separately estimate the partial for each dimension[14} [11]]:
dny,

N 1
Vi fi (o, hig, -+ hari) = Z[ﬁ (himi + pime€ly) = fi (R — pmeb, )]ed,
=1

2pm =

1
m,i

where ¢!, € R%n is a dj,, -dimensional standard bias vector with 1 at its [-th dimension, and Os

otherwise. To apply the coordinate-wise estimation, the server sends {5%‘1}72’; back to the client. It

is noteworthy that the backward message { 6;”}721 has the same size as ‘z—f Both are vectors

of decimal numbers with dimensions of dj,, . Therefore, if neither method uses compression, the
communication cost for VAFL-CZOFO (CoordGradEst) is identical to that of VAFL.

Besides, regarding the "balanced trade-off", the basic zeroth-order estimator (ZOE) we used in
section [6| has a large forward bias. To improve this, we applied a slightly “advanced” centralized
version of ZOE so that we reached higher test accuracy and better convergence:

dy ) < , , ,
Vi i fi (Wos hais oo hari) = #ldn,,) Z[fz‘(hm,i + Uy, ;) — fi (hm,z‘ - Nmufnz)]ufnz

qHm =1

5 i
With this centralized ZOE, we can achieve a smoother convergence and a similar privacy budget.

Table [§]illustrates our method’s capacity to achieve diverse privacy-utility trade-offs when compared
to the baselines. In each scenario, our framework successfully achieves the specified privacy budget
while maintaining a test accuracy similar to that of the baselines.

Table 8: Privacy-utility Trade-off of VFL-CZOFO

Privacy Trade-off type Test Accuracy
VAFL X Test-accuracy-focused trade-off ~ 97.36 & 0.14
VFL-CZOFO (CoordGradEst) X Test-accuracy-focused trade-off ~ 97.35 £ 0.05
VAFL + DP e =095 Balanced trade-off 95.94 £ 0.29
VFL-CZOFO (Avg-RandGradEST) € =95 Balanced trade-off 96.32 + 0.22
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E.7 Experiments on More Clients

In section [f]of the paper, we only consider a typical scenario with only two clients. Therefore, we
conducted experiments with four and eight clients to further assess the performance of our framework
on a larger scale.

The dataset spliting setting of the experiments follows the dist-MNIST experiment. For the experiment
involving four clients in section, the first client received the uppermost 1/4 of each image; the second
client obtained the segment spanning from the upper 1/4 to 1/2; the third client from the lower 1/2 to
3/4; finally, the fourth client was assigned the bottommost 1/4. A similar split was implemented for
the experiment involving eight clients.

The models deployed on each client are identical to the one presented in Section[6} Similarly, the
server model is described in detail in Section @ However, it is worth noting that with the number of
clients changed, the input size of the first layer of the server has been adjusted to 4 x 64 = 256 for
the 4-client experiments and 8 x 64 = 512 for the §-client experiments.

E.7.1 Training Efficiency and Communication Cost

We conducted the same experiment on training efficiency and communication cost as in section[6.3}
The outcomes for four clients are depicted in Figure[7]and detailed in Table[9] Similarly, the outcomes
for eight clients are presented in Figure [§] and detailed in Table [[0] These results collectively
substantiate the efficacy of our method in diminishing communication costs, particularly within
scenarios involving a higher number of clients.
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Figure 7: Training Efficiency and Communication Cost Experiment on 4 Clients

Table 9: Test Accuracy and Comm. Cost (4 Clients)

Privacy  Test Accuracy Cost (95%) Cost (total)

Split learning X 97.67 £ 0.03 4570 MB 11718 MB
Compressed-VFL X 97.78 £ 0.12 2783 MB 7325 MB
VAFL X 97.60 + 0.07 2703 MB 12288 MB
VAFL+DP v 96.72 £ 0.21 3179 MB 12288 MB
Syn-ZOO-VFL v 83.97 £ 0.51 - 11722 MB
ZOO-VFL v 87.42+0.25 - 12291 MB
Ours v 96.60 £ 0.08 537 MB 1579 MB
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Figure 8: Training Efficiency and Communication Cost Experiment on 8 Clients

Table 10: Test Accuracy and Comm. Cost (8 Clients)

Privacy  Test Accuracy Cost (95%) Cost (total)
Split learning X 97.46 £+ 0.08 10547 MB 23438 MB
Compressed-VFL X 97.51 £0.09 5860 MB 14649 MB
VAFL X 97.41 £ 0.04 6390 MB 24579 MB
VAFL+DP v 96.62 £ 0.17 8132 MB 24579 MB
Syn-ZOO-VFL v 82.64 + 0.57 - 23443 MB
Z00O-VFL v 89.49 + 0.38 - 24093 MB
Ours v 96.81 +0.12 3272 MB 12590 MB

E.7.2 The Computational Cost

With more clients, the server may take more computational costs on the server. Therefore, we also
conducted an experiment on the computational cost of the server and the clients. The setting of this
experiment follows the experiment in section [E.2] but changes the number of clients to four and eight.
The result is shown in Table[T1]

Table 11: Computational Cost for Propagation (More Clients)

The number of Clients  Clients’ Comp. Time per Epoch (s)  Server’s Comp. Time per Epoch (s)

2 1.15 49.02

4 2.65 122.20

8 9.81 384.29
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