
A Proof of Theorem 4.1

For convenience, we use Gi to represent the i-th factor graph and its adjacency matrix. Also, we
denote the number of nodes in Gi as Ki and an identity matrix with Ki diagonal elements as IKi

.

Proof. The normalized laplacian matrix of the Kronecker product of n factor graphs ⊗n
i=1Gi can be

written as:

L⊗n
i=1Gi = ⊗n

i=1IKi − (⊗n
i=1D

− 1
2

Gi
)(⊗n

i=1Gi)(⊗n
i=1D

− 1
2

Gi
). (8)

Using the property of the Kronecker product of matrices, (A⊗B)(C ⊗D) = AC ⊗BD, we can
obtain that:

L⊗n
i=1Gi

= ⊗n
i=1IKi

−⊗n
i=1(D

− 1
2

Gi
GiD

− 1
2

Gi
)

= ⊗n
i=1IKi −⊗n

i=1(IKi − LGi).
(9)

Let {λG1

k1
}, {λG2

k2
}, . . . , {λGn

kn
} be the eigenvalues of matrices LG1 ,LG2 , . . . ,LGn , with the

corresponding orthonormal eigenvectors {vG1

k1
}, {vG2

k2
}, . . . , {vGn

kn
}, where ki = 1, 2, . . . ,Ki.

Also, denote the diagonal matrices, whose diagonal elements are the values {1 − λG1

k1
}, {1 −

λG2

k2
}, . . . , {1 − λGn

kn
}, as ΛG1

,ΛG2
, . . . ,ΛGn

, and the square matrices containing the eigenvec-
tors {vG1

k1
}, {vG2

k2
}, . . . , {vGn

kn
} as the column vectors as VG1

, VG2
, . . . , VGn

. Using the spectral
decomposition of the matrix IKi

− LGi
(i = 1, . . . , n), we can obtain that:

L⊗n
i=1Gi = ⊗n

i=1IKi −⊗n
i=1(VGiΛGiV

T
Gi
)

= ⊗n
i=1IKi − (⊗n

i=1VGi)(⊗n
i=1ΛGi

)(⊗n
i=1VGi

)T

= (⊗n
i=1VGi)(⊗n

i=1IKi −⊗n
i=1ΛGi)(⊗n

i=1VGi)
T ,

(10)

since ⊗n
i=1IKi

= ⊗n
i=1[(VGi

)(VGi
)T] = (⊗n

i=1VGi
)(⊗n

i=1VGi
)T . This implies that L⊗n

i=1Gi
has

eigenvalues {[1−
∏n

i=1(1− λGi

ki
)]} and corresponding eigenvectors {⊗n

i=1v
Gi

ki
}.

Then, we let Λ = ⊗n
i=1IKi

−⊗n
i=1ΛGi

and D = ⊗n
i=1DGi

. Since the normalized Laplacian could
be expressed in terms of Laplacian matrix as L = D− 1

2LD− 1
2 , we can get L⊗n

i=1Gi(⊗n
i=1VGi) =

D
1
2L⊗n

i=1Gi
D

1
2 (⊗n

i=1VGi
). By making assumption (used and testified in [24, 42]) that D

1
2

Gi
VGi
≈

VGi
D

1
2

Gi
, for i = 1, 2, . . . , n, we can derive that:

L⊗n
i=1Gi

(⊗n
i=1VGi

) ≈ D
1
2L⊗n

i=1Gi
(⊗n

i=1VGi
)D

1
2

= D
1
2Λ(⊗n

i=1VGi
)D

1
2 .

(11)

After applying the same assumption again, we finally obtain that:

L⊗n
i=1Gi(⊗n

i=1VGi) ≈ (DΛ)(⊗n
i=1VGi). (12)

Based on Equation (12), we can get an approximation of the Laplacian spectrum, including the
eigenvalues and corresponding eigenvectors, of the Kronecker product of n factor graphs, shown as
Theorem 4.1.

Next, we will prove that the estimated eigenvalues µk1k2,...,kn
in Theorem 4.1 are non-negative. It

is obvious that dGi

ki
and

∏n
i=1 d

Gi

ki
are non-negative. Then, we need to prove [1−

∏n
i=1(1− λGi

ki
)]

is non-negative. We know that if λ is an eigenvalue of a normalized Laplacian matrix, we can
get 0 ≤ λ ≤ 2. Hence, −1 ≤ 1 − λGi

ki
≤ 1, for i = 1, 2, . . . , n. Based on this, we can get that∣∣∣∏n

i=1(1− λGi

ki
)
∣∣∣ ≤ 1 and thus [1−

∏n
i=1(1− λGi

ki
)] is non-negative.

15

B Basic Conceptions and Notations

Markov Decision Process (MDP): The RL problem can be described with an MDP, denoted by
M = (S,A,P,R, γ), where S is the state space, A is the action space, P : S ×A× S → [0, 1] is
the state transition function,R : S ×A → R1 is the reward function, and γ ∈ (0, 1] is the discount
factor.

State transition graph in an MDP: The state transitions inM can be modelled as a state transition
graph G = (VG, EG), where VG is a set of vertices representing the states in S, and EG is a set of
undirected edges representing state adjacency inM. We note that:
Remark B.1. There is an edge between state s and s′ (i.e., s and s′ are adjacent) if and only if
∃ a ∈ A, s.t. P(s, a, s′) > 0 ∨ P(s′, a, s) > 0.

The adjacency matrix A of G is an |S| × |S| matrix whose (i, j) entry is 1 when si and sj are
adjacent, and 0 otherwise. The degree matrix D is a diagonal matrix whose entry (i, i) equals the
number of edges incident to si. The Laplacian matrix of G is defined as L = D − A. Its second
smallest eigenvalue λ2(L) is called the algebraic connectivity of the graph G, and the corresponding
normalized eigenvector is called the Fiedler vector [4]. Last, the normalized Laplacian matrix is
defined as L = D− 1

2LD− 1
2 .

C Finding the Fiedler vector for the illustrative example shown in Figure 1(a)

(1) Compute the normalized Laplacian matrix of G1 and G2, namely L1 and L2:

L1 =

[
1 −1
−1 1

]
, L2 =


1 − 1√

2
0 0

− 1√
2

1 − 1
2 0

0 − 1
2 1 − 1√

2

0 0 − 1√
2

1

 . (13)

(2) Compute the eigenvalues and eigenvectors of L1 and L2:

λG1
1 = 0, λG1

2 = 2, vG1
1:2 =

1√
2

[[
1
1

]
,

[
−1
1

]]
. (14)

λG2
1 = 0, λG2

2 = 0.5, λG2
3 = 1.5, λG2

4 = 2, (15)

vG2
1:4 =

1√
3




1√
2
1
1
1√
2

 ,


−1
− 1√

2
1√
2
1

 ,


1
− 1√

2

− 1√
2

1

 ,


1√
2
−1
1
− 1√

2


 . (16)

(3) Compute the degree list of G1 and G2 (sorted in ascending order), namely dG1 and dG2 :

dG1 = [1, 1]T , dG2 = [1, 1, 2, 2]T . (17)

(4) According to Theorem 4.1, we can get two approximations of the Fiedler vector:

v11 = vG1
1 ⊗ vG2

1 =
1√
6

[
1√
2
, 1, 1,

1√
2
,

1√
2
, 1, 1,

1√
2

]T
, (18)

v24 = vG1
2 ⊗ vG2

4 =
1√
6

[
− 1√

2
, 1, −1, 1√

2
,

1√
2
, −1, 1, − 1√

2

]T
. (19)

D Pseudo Code of Multi-agent Covering Option Discovery

16

Algorithm 1 Multi-agent Covering Option Discovery
1: Input: # of agents n, list of adjacency matrices A1:n, # of options to generate tot_num
2: Output: list of multi-agent options Ω
3: Ω← ∅, cur_num← 0
4: while cur_num < tot_num do
5: Collect the degree list D1:n of each individual state transition graph according to A1:n

6: Obtain the list of normalized laplacian matrices L1:n corresponding to A1:n

7: Calculate the eigenvalues Ui and corresponding eigenvectors Vi for each Li and collect them
as U1:n and V1:n

8: Obtain the Fielder vector F of the joint state space using Theorem 4.1 with D1:n, U1:n, V1:n

9: Collect the list of joint states corresponding to the minimum or maximum in F , named MIN
and MAX respectively

10: Convert each joint state sjoint in MIN and MAX to (s1, · · · , sn), where si is the corre-
sponding individual state of agent i, based on the equation:

11: ind(sjoint) = ((ind(s1) ∗ dim(A2) + · · ·+ ind(sn−1)) ∗ dim(An) + ind(sn)
where dim(Ai) is the dimension of Ai, ind(si) is the index of si (indexed from 0) in the
state space of agent i

12: Generate a new list of options Ω′ through GenerateOptions
13: Ω← Ω ∪ Ω′, cur_num← cur_num+ len(Ω′)
14: Update A1:n through UpdateAdjacencyMatrices
15: end while
16: Return Ω
17:
18: function GenerateOptions(MIN , MAX)
19: Ω′ ← ∅
20: for s = (s1, · · · , sn) in (MIN ∪MAX) do
21: Define the initiation set Iω as the joint states in the known region of the joint state space
22: Define the termination condition as:

βω(scur)←
{
1 if (scur == s) or (scur is unknown)

0 otherwise
where scur is the current joint state

23: Train the intra-option policy πω = (π1
ω, · · · , πn

ω), where πi
ω maps the individual state of

agent i to its action aiming at leading agent i from any state in its initiation set to its
termination state si

24: Ω′ ← Ω′ ∪ {< Iω, πω, βω >}
25: end for
26: Return Ω′

27: end function
28:
29: function UpdateAdjacencyMatrices(MIN , MAX)
30: for smin = (s1min, · · · , snmin) in MIN do
31: for smax = (s1max, · · · , snmax) in MAX do
32: for i = 1 to n do
33: Ai[ind(s

i
min)][ind(s

i
max)] = 1

34: Ai[ind(s
i
max)][ind(s

i
min)] = 1

35: end for
36: end for
37: end for
38: end function

17

E Additional Evaluation Results

E.1 n-agent Grid Room Task

(a) Grid Room with 2 agents (b) Grid Room with 3 agents (c) Grid Room with 4 agents

(d) Grid Room with 2 agents (e) Grid Room with 3 agents (f) Grid Room with 4 agents

Figure 10: Evaluation on n-agent Grid Room tasks: (a)-(c) using Distributed Q-Learning as the
high-level policy. The performance improvement of our approach is more significant as the number of
agents increases. (d)-(f) using Centralized Q-Learning + Force as the high-level policy. Agents with
single-agent options start to fail since the 3-agent case. Also, it can be observed that the centralized
way to utilize the n-agent options leads to faster convergence.

Figure 11: Performance of SOTA MARL algorithms: COMA, MAVEN, Weighted QMIX, on the
4-agent Grid Maze Task (Figure 5(c)5(f)). For each algorithm, the experiment is repeated three times
with different random seeds (codes are available in the provided link). On this discrete problem
setting, these SOTA algorithms do not show better performance than the tabular Q-learning we use as
baselines. Also, our method performs much better on the same task.

18

E.2 m× n-agent Grid Room Task

(a) 2×2 agents (b) 3×2 agents

(c) 2×2 agents (d) 3×2 agents

Figure 12: Comparisons on the m × n Grid Room tasks: (a)(b) Distributed Q-Learning; (c)(d)
Centralized Q-Learning + Force.

E.3 n-agent Grid Room Task with random grouping

(a) Grid Room with 4 agents (b) Grid Room with 6 agents

(c) Grid Room with 4 agents (d) Grid Room with 6 agents

Figure 13: Comparisons on the n-agent Grid Room tasks with random grouping: (a)(b) Distributed
Q-Learning; (c)(d) Centralized Q-Learning + Force.

E.4 A quantitative study on the approximation error of the joint transition graph with
Kronecker-product approximation

Figure 14: Simulator

In this section, we evaluate the approximation error when we use ⊗n
i=1Gi

as a factorized approximation of G̃, regarding option discovery. We test
on a simplified Grid Room task shown as Figure 14, where two agents
are represented as triangles and the goal area is labelled as circles. The
time complexity to compute the groundtruth of the Laplacian spectrum of
the joint state transition graph is cubic with the number of the joint states
which grows exponentially with the number of agents. For example, there
are 74 states for each agent in Figure 8, and the computation complexity is
already O(1011) (i.e., (742)3).

19

(a) Eigenvalue when α=0.3 (b) Fielder when α=0.3, ρ=0.5 (c) Fielder when α=0.3, ρ=0.2

(d) Eigenvalue when α=0.5 (e) Fielder when α=0.5, ρ=0.5 (f) Fielder when α=0.5, ρ=0.2

(g) Eigenvalue when α=0.7 (h) Fielder when α=0.7, ρ=0.5 (i) Fielder when α=0.7, ρ=0.2

(j) Eigenvalue when α=0.9 (k) Fielder when α=0.9, ρ=0.5 (l) Fielder when α=0.9, ρ=0.2

Figure 15: Comparison between the groundtruth and estimation of the Laplacian spectrum of the
joint state transition graph as transition influence increases. The first column shows the distribution
of the eigenvalues, from which we can see the distribution of the estimated eigenvalues is very close
to the groundtruth. The second column shows the Fiedler vector on the joint state space, where we
partition the states into 2 clusters (i.e., ρ = 0.5) and the states with the value in the Fiedler vector
that is lower than the median is labelled as 1 and the others are labelled as 2. Similarly, in the third
column, the states are partitioned into 5 clusters (i.e., ρ = 0.2), where the value of the states labeled
as i is between the (i− 1)-th and i-th quintile of the values in the Fielder vector. In the third column,
the number of the unmatched groundtruth (i.e., red points) goes up as α increases, showing that
approximation error increases with α.

As mentioned in Section 4.2, the approximation error occurs when the state transitions of an agent
are influenced by others. However, the state transition influence among agents, e.g., collisions
and blocking, would most likely result in local perturbations of the transition graph and thus is
inconsequential to global properties of G̃. Therefore, approximating G̃ by ⊗n

i=1Gi allows efficient
option discovery. In Figure 8, we have evaluated on the case where an agent’s state transitions will
be influenced by the others’ states (i.e., blocking by other agents when going ahead). However,
the transition influence for an agent may also come from the action choices of the other agents.
Thus, in this scenario (i.e., Figure 14), we set Agent #1 as the leading agent and Agent #2 will
follow the moving direction of Agent #1 with the probability α, so the state transition of Agent #2

20

α 0.3 0.5 0.7 0.9
Algebraic Connectivity (×10−3) 8.0988 8.1153 8.0996 7.9763

Estimation Accuracy of
Fielder when ρ=0.5 (%) 100 100 100 100

Estimation Accuracy of
Fielder when ρ=0.2 (%) 99.9 96.2 89.8 79.4

Table 1: Numeric results on the groundtruth of the algebraic connectivity and accuracy of the Fielder
estimation, as the transition influence increases.

can be influenced by the action choice of Agent #1. With a certain α, we collect a million state
transitions (i.e., {(s, a, s′)}) through Monte Carlo sampling, based on which we can build the joint
state transition graph G̃ and the individual state transition graphs Gi (i = 1, 2) and then get ⊗2

i=1Gi.

As shown in Figure 15 and Table 1, we set α as 0.3, 0.5, 0.7, and 0.9, respectively, to show the
approximation error as the transition influence goes up. For the covering option discovery, we only
care about the Laplacian spectrum of the state transition graph, especially the algebraic connectivity
and Fielder vector. We validate through experiments that the approximation error on the algebraic
connectivity and Fielder vector caused by the transition influence among the agents is minor, and
thus we can still accurately identify multi-agent options.

In the first column of Figure 15, we visualize the distribution of the eigenvalues corresponding to the
Laplacian matrix of G̃ (i.e., groundtruth) and ⊗2

i=1Gi (i.e., estimation). It can be observed that the
estimated distribution is very close to the groundtruth. Further, we show the algebraic connectivity
of G̃ when setting α as 0.3, 0.5, 0.7, 0.9 in Table 1. The algebraic connectivity of our estimation
⊗2

i=1Gi is 8.1131× 10−3 (invariant to α), which is close to the groundtruth values.

In the second and third column of Figure 15, we compare the estimated Fiedler vector with the
groundtruth. As mentioned in Section 4.2, we only need to identify areas in the state space with
relatively low or high values in the Fielder vector and connect them with options. Thus, we partition
the states into 2 clusters (i.e., ρ = 1/2 = 0.5) according to the median of the values in the Fiedler
vector, or partition them into 5 clusters (i.e., ρ = 1/5 = 0.2) based on the quintile. We use the Fiedler
vector of G̃ as the groundtruth and compare it with the estimated Fiedler vectors, by comparing
the label (i.e., which cluster it belongs to) of each state. It can be observed that the number of the
unmatched groundtruth (shown as red points) increases with α. Further, we note that the states
with the lowest or highest value in the Fiedler vector (i.e., MIN or MAX) are the subgoals based
on which we define the options, so the estimation accuracy of these states are directly related to
the option discovery. In Table 1, we show the estimation accuracy of the subgoals. The third row
corresponds to defining the states with the lowest or highest 20% values in the Fielder vector as
the subgoals, which is also the setup we use for option discovery. It can be observed that even if in
conditions where the state transition influence is heavy (i.e., α = 0.9), we can still estimate about
80% of the subgoals correctly and build options toward them accordingly.

These results empirically validate our statement that approximating G̃ with ⊗n
i=1Gi allows effi-

cient option discovery in cases where transition influence exists. We will consider a theoretical
characterization of the impact of approximation errors in the future work.

21

	Introduction
	Related Work
	Background
	Proposed Algorithm
	System Model
	Theory results
	Scalable Multi-agent Covering Option Discovery
	Adopting Multi-agent Options in MARL

	Evaluation and Results
	Experiment Setup
	Main Results

	Conclusion And Future Works
	Proof of Theorem 4.1
	Basic Conceptions and Notations
	Finding the Fiedler vector for the illustrative example shown in Figure 1(a)
	Pseudo Code of Multi-agent Covering Option Discovery
	Additional Evaluation Results
	n-agent Grid Room Task
	m n-agent Grid Room Task
	n-agent Grid Room Task with random grouping
	A quantitative study on the approximation error of the joint transition graph with Kronecker-product approximation

