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A  FURTHER ANALYSIS ON THE STATISTICS OF NARes

A.1 DISTRIBUTION ON MODEL COMPLEXITY

We demonstrate the distribution of architectures in NARes on model complexity in Fig.[8a] The
architectures in NARes cover a wide range of the number of parameters and MACs with overlapping.
According to the marginal distribution, various architectures of NARes may share similar parameters
or MACs. For example, the architecture with decision vector [5, 8,4, 16,9, 10] has a similar number
of MACs (~ 10G) to architectures with decision vectors [4,8, 5,16, 5,12], [4,12,9,10, 4, 14] and
[4,14,5,14,5,10]. Therefore, NARes provides a comprehensive dataset for the research community
to study the relationship between model complexity and adversarial robustness (AR).

To illustrate how different depths and widths affect these two model complexity metrics, we further
investigate the depth and width distribution over the number of parameters and MACs, as shown in
Fig.[8b] We find the value of the depth or width factor at the later stage has more impact on #Params,
while #MAC:s is less sensitive to the depth and width at different stages. The reason is that #MACs
of a convolution layer are determined by (k2 - Cinhw - Cyyy), where k is the kernel size, h and w
are the height and width of the input feature map and Cj,,, C,,; are the number of input and output
channels. Hence, downsampling input feature map size in half will amortize the doubling of channels
at C;,, and Cl,,,; in the next stage. It suggests that blocks of different stages with the same depth and
width values could share similar MACs.

A.2 ROBUST OVERFITTING

Robust overfitting is a common issue in AT, where the model performs well on the normal examples,
but the accuracy on adversarial examples starts to decrease at the later stage of training, especially
after the first decay of learning rate (Rice et al.||2020). In order to measure how different architectures
in NARes are affected by the robust overfitting issue, we plot the distribution of models’ best epoch
and the training curve in Fig.[9] Unfortunately, robust overfitting consistently happens on all models.
The adversarial accuracy on the validation set starts to decrease soon after the first decay of the
learning rate, and usually, the best epoch is just before the first decay of the learning rate. This
observation suggests that the robust overfitting issue cannot be fully resolved simply by searching for
new architecture in our search space.

A.3 ROBUST ACCURACY

In this section, we extend the analysis of the robustness of NARes in Sec.[d.I] We plot the validation
accuracies in models of NARes, as shown in Fig.[T0} The shapes of the distributions are similar to
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Figure 8: The distribution of NARes on model complexity. (a): Overview of all architectures
concerning the number of parameters and MACs. (b): The box plot of the depth and width factor v.s.

n,n

parameters and MACs across the search space; the red "+" sign represents the mean value of each
group.
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Figure 9: Robust overfitting on NARes. Left: The distribution of the best epoch of models in the
search space. Right: The training curve of loss and validation accuracies on two models sampled
from NARes.
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Figure 10: Statisitcs on the validation set of CIFAR-10.1. The clean accuracy, the PGD?? accuracy, the
PGD-CW*? accuracy and the stable accuracy and empirical Lipschitz constant of PGD?? are plotted
against the number of parameters and MACs on the left side. Besides, the adversarial robustness
against the rank of parameters and MACs is shown on the right side.

those on the test set in Fig. |Zl However, the results indicate that both the clean and robust accuracies
on the validation set are lower than those on the test set. This phenomenon has been observed
in the original work of CIFAR-10.1 (Recht et al.| [2018)) and is attributed to the intrinsic potential
distribution shift. Furthermore, Fig. [T1a|plots the statistics of the accuracies on the validation set and
test set. According to the results, correlations of AR on the same evaluated dataset are high. While
the correlations between the validation AR and the test AR are relatively small, unlike the results
of other neural architecture datasets such as NAS-Bench-201 (Dong & Yang| [2019) on the clean
accuracy. But from the overall view in Fig.[TTb] higher validation adversarial accuracies are still a
good indicator of better test adversarial robustness. Moreover, we find that the validation accuracy
on the PGD-CW40 attack has the highest correlation value to AR on the test set, which could be
a consequence of the best epoch selection strategy by the PGD-CW4? accuracy during adversarial
training. We also find that the test FGSM accuracy is relatively less correlated with the validation AR
on PGD?? and PGD-CW*° compared to clean accuracy. This could be a reason for the number of
iteration steps in FGSM is one, where the decision boundary of the model is not effectively explored
like the other two attacks are, hence the nature of the FGSM attack may be different from the other
two attacks across different architectures.

To avoid overinterpreting the shape of the distributions, we further investi-
gate the AR at a subset of the original search space in NARes. we consider
two  subspaces: {Dicgi23 € {5,7,9,11}, Wicq123) € {8,10,12,14,16}}  and
{Die{m,g} €{4,5,7,9,11}, Wicq12.3 € {10,12,14, 16}}, which contains 8000 models
respectively. Fig.[T2]shows the two subspaces’ AR on the test set, which is consistent with the shapes
of the full search space in Fig.[2]

A.4 STABLE ACCURACY AND EMPIRICAL LIPSCHITZ CONSTANT ON OTHER ATTACKS

In this section, we further explore the relations of stable accuracy and empirical Lipschitz constant to
AR. Fig.[13|and Fig. [T4]show the statistics of the stable accuracy and empirical Lipschitz constant of
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Figure 11: Statisitcs of accuracies on the validation set and test set. (a): The Spearman correlation
matrix of the accuracies on the validation set and test set. (b): The validation adversarial robustness
vs. the test adversarial robustness.
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Figure 12: The clean accuracy and adversarial accuracies of different attacks in subspaces of NARes.
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Figure 13: The statistics of PGD-CW4? stable accuracy on the test set. In box plots, the red "+" sign
represents the mean accuracy of each group.
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Figure 14: The statistics of PGD-CW*Y empirical Lipschitz constant on the test set. In box plots, the
red "+" sign represents the mean accuracy of each group.

the test set under the PGD-CW* attack. And the shape and the conclusion are similar to the PGD?°
attack mentioned in Sec.

Moreover, the correlation matrix in Fig. [I3] suggests the empirical Lipschitz constant could be
a dataset-agnostic metric, representing the intrinsic nature of the model and negative to stable
accuracies. In contrast, the stable accuracies between the validation and test sets are not relatively
highly correlated. However, the results also suggest that neither the stable accuracy nor empirical
Lipschitz constant on the validation set is a good indicator of test adversarial robustness compared to
the validation adversarial accuracies.

A.5 ROBUSTNESS ON COMMON CORRUPTIONS

Besides adversarial attacks, we also measure the robustness of models in NARes with common
corruptions, as complementary robustness metrics. The Spearman correlation table over the accuracies
of each corruption group, in addition to metrics of the test set, is shown in Fig.[T6] On these non-worst
perturbations of corruption types, its robust accuracy is only highly correlated with clean accuracy,
suggesting that the worst-case adversarial robustness is quite different from common corruption
robustness.

The average accuracies under different severity and types of corruption are shown in Fig.[T7] We
observe that the accuracies of every corruption type consistently decrease with the severity level,
especially with the corruption of impulse noise, fog, and contrast. We take a few samples from these
corruption types with an additional Gaussian noise as the representative of other common corruptions,
and illustrate them in Fig. [I8]for better understanding. Moreover, in Fig.[T9] we plot the detailed
correlation matrices of each corruption type at different severity levels with the accuracies on the
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Figure 15: The Spearman correlation matrix of the accuracies, stable accuracies and empirical
Lipschitz constants on the validation set and test set.
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Figure 17: The average accuracies of NARes under 19 types of corruptions with 5 severity levels
on CIFAR-10-C. The average corruption accuracies over each corruption type are also shown in the
rightmost column.
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Figure 18: Examples of some corruption types over 5 severity levels on a single image.
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Figure 19: The Spearman correlation matrices of the accuracies of each corruption type at different
severity levels, concerning the accuracies (Clean, PGD?? and PGD-CW*?) on the CIFAR-10 test set.

CIFAR-10 test set, where the correlations to the clean accuracy decrease with the severity level. The
results also suggest that the robustness of common corruptions is not highly correlated with the
adversarial robustness compared to clean accuracy, substantiating the above statement.

In summary, the robustness of common corruption is a rational complementary metric to AR. Since
the levels of corruption severity control the perturbation ranges to the original images, the images
under different corruption levels naturally form datasets with different degrees of out-of-distribution
(OOD) samples with the corruption shift. Therefore, NARes can also be a potential neural architecture
dataset for OOD robustness.
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Table 3: The adversarial and common corruption robustness of common models in NARes.

Model Clean FGSM PGD?° PGD-CW#’ AA-Compact” AA" Corruption*

WRN-28-8 85.61 59.52  53.68 52.17 49.05 49.03 77.03
WRN-28-10 87.12 60.60  54.58 52.98 50.09 50.06 78.76
WRN-34-10 86.54 59.89  54.84 52.98 50.22 50.21 78.52
WRN-34-12  86.85 60.23  55.17 53.45 50.52 50.51 78.56
WRN-46-12 87.86 62.13  56.37 55.02 52.02 51.99 79.52
WRN-46-14 87.08 6143  56.43 55.20 52.61 52.60 78.86
WRN-58-14 8737 6198  56.85 55.41 52.70 52.75 79.20
WRN-70-16 87.22 61.01 56.29 54.86 52.25 52.24 79.13

* : The accuracies of AA-Compact and AA are reported under different evaluation runs.
* : The average accuracy over all 19 corruption types on CIFAR-10-C.

A.6 ROBUSTNESS ON COMMON MODELS

Table [3| summarizes the metrics of commonly used architectures in adversarial robustness domains
that are covered by our search space. Notably, our models achieve better robustness compared to
previous works at the standard adversarial training (Madry et al.| [2018}; [Huang et al., [2021} [2023)),
which indicates the effectiveness of the training strategy in NARes.

A.7 GENERALIZATION TO OTHER DATASETS

Due to the expensive adversarial training cost, it is prohibitive to enumerate the entire search space on
other larger datasets. To investigate the generalization of the statements in NARes, we further evaluate
a small set of architectures on Tiny-ImageNet (Le & Yang, 2015), which contains 200 categories
for classification. The training set includes 500 images for each class. And we split the original
validation set in half to form a validation set and a test set. Each set contains 25 images per class.
To investigate the influence of the last stage architecture (W3 and D3) on AR, we select the central
architecture in the search space with decision vector [7,12, 7,12, 7, 12]; then we choose the other 24
architectures with variant W3 and D3 to form a set of 25 architectures. The training procedure is
similar to that on CIFAR-10, except the input image size is 64x64.

The results are shown in Fig.[20] which has the same tendency in the overall view of CIFAR-10. We
observe that generally increasing the depth and width of the last stage will improve the adversarial
robustness on Tiny-ImageNet, consistent with the results of NARes on CIFAR-10. It substantiates the
statement in Sec. [ 1| that the previous consensus of design principles might not be true. Moreover,
we find a similar robust overfitting issue in Appendix [A.2] as shown in Fig. 2T} These observations
suggest the generalization ability of NARes to other datasets.

B DETAILS ON THE GENERATION OF NARes

B.1 ADVERSARIAL TRAINING DETAILS

A fixed set of hyperparameters was used for all models in NARes. Every model was trained with
the standard adversarial training with Projected Gradient Descent (Madry et al.l [2018)). We used
7-step PGD with step size 2/255 to perturb the input images and limit them into ¢.-norm ball with
maximum radius 8/255. We used the SGD optimizer with momentum 0.9, weight decay 0.0005, and
batch size 128. The initial learning rate was 0.1 and decayed by the factor of 0.1 at the epochs 75 and
90. We applied gradient clipping to the parameters to stabilize the training process by enforcing the
maximum ¢, norm of 5.0 in gradients. Each model was trained for 100 epochs on the full CIFAR-10
training set Krizhevsky| (2009), which contains 50K images of size 32 x 32 from 10 classes. The
training set was augmented with random cropping and random horizontal flipping. To avoid the
Robust Overfitting (Rice et al., 2020) during the later stage of adversarial training, we applied the
early stopping strategy by recording the best PGD-CW*C accuracy on a separate validation set, i.e.,
CIFAR-10.1 (Recht et al.,[2018).
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Table 4: Evaluated corruption types on CIFAR-10-C.

Group Corruption Types
Noise Gaussian, Impulse, Shot, Speckle
Blur Defocus, Glass, Gaussian, Motion, Zoom
Weather | Brightness, Fog, Frost, Snow, Spatter
Digital | Contrast, Elastic, JPEG Compression, Pixelate, Saturate

B.2 EVALUATION DETAILS ON ROBUSTNESS OF CORRUPTIONS

The 19 corruption types in CIFAR-10-C (Hendrycks & Dietterich| [2018) are listed in Table[d which
are classified into four groups. The dataset of CIFAR-10-C is built on the test set of CIFAR-10, and
each corruption type contains 5 levels of severity. Overall, there are 19 * 5 = 95 accuracies on the
common corruptions for each architecture.

B.3 DECISION CHOICE OF NARes

Since this is the first neural network architecture dataset on macro search space for AR, the design
choices for NARes remain unexplored. We explain some of the decisions on the creation of NARes.

Using CIFAR10.1 as the validation set. We expect that the models are able to be directly compared
with other models in previous studies of adversarial training; therefore, we use the full training set
of CIFAR-10 during the adversarial training and utilize a separate validation set, CIFAR-10.1. The
images in CIFAR-10.1 are sampled under the same collecting strategy of CIFAR-10 from the same
source, and the sub-class distribution is carefully matched (Recht et al} 2018)). Although there will
still be a performance drop with this validation set due to the slight distribution shift mentioned in the
original work of CIFAR-10.1, we believe this validation set can better reflect the real robustness of
the model from multiple perspectives. Since the validation set only affects the selection of the best
model, i.e., which epoch the early stopping is applied, we can view the validation performance as a
pessimistic estimate of the test set with unknown data. To study the impact of this decision, we also
retrain 32 models around 10G MACs with 40K training data and 10K validation data split from the
original CIFAR-10 training set (denoted as "Split"), which is commonly used in NAS domains, and
compare with metrics of the same models in NARes. Results in Fig. 22]suggest using CIFAR-10.1
will apply the early stop sooner than "Split"; besides, the loss and clean accuracy in the validation
set indicate that overfitting will also happen on CIFAR-10.1, i.e., on datasets with a slight degree of
out-of-distribution (OOD). As a result, using CIFAR-10.1 as the validation set will also help prevent
OOD overfitting through early stopping.
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Figure 22: The statistics of NARes and the "Split" training strategy on models with ~ 10G #MACs.
"Split" utilizes 40K training data and 10K validation data split from the original CIFAR-10 training
set for the same standard adversarial training.

Table 5: The aggregate adversarial accuracies (from left to right) during AutoAttack on common
models in NARes.

Model APGD-CE APGD-T FAB-T Square

WRN-28-8 50.95 49.03 49.03  49.03
WRN-28-10 51.92 50.06 50.06  50.06
WRN-34-10 52.30 50.21 50.21 50.21
WRN-34-12 52.51 50.51 50.51 50.51
WRN-46-12 53.79 51.99 51.99  51.99
WRN-46-14 54.46 52.60 52.60  52.60
WRN-58-14 54.54 52.75 52775 5275
WRN-70-16 54.10 52.25 5224 5224

Not using SuperNet. Although SuperNet is widely used in NAS domains to reduce training costs,
research on whether models in the Supernet under our search space can be generalized on adversarial
robustness is scarce. In addition, as mentioned by |[Madry et al.| (2018), the adversarial robustness
depends on the complex decision boundary of the model; it is unclear whether the sampled model
from the Supernet can also inherit the decision boundary for adversarial robustness. Therefore, we
choose to train each architecture from scratch with adversarial training, which eliminates the above
concerns. And we hope NARes will help the future development of robust Supernet methods.

Replacing AA with AA-Compact. AutoAttack (AA) is widely used for benchmarking adversarial
robustness. However, the computation cost of AA is high, so evaluating all models in NARes is
expensive. Instead, we choose to use AA-Compact mentioned in Sec.[3.2]as an approximation of AA.
We demonstrate the accuracies of some common models in NARes during the aggregate attacking
of AA in Table[5] The other two attacks are unlikely to yield any new adversarial examples beyond
those produced by APGD-CE and APGD-T, substantiating our decision. This reduces the evaluation
time to approximately 1/5 that of the AA.

C DETAILS ON NARes AS A NAS BENCHMARK

C.1 IMPLEMENTATIONS OF NAS ALGORITHMS IN SEC.[3]

Regularized Evolution (RE): We set the population size to 30, and the tournament size to 10. The
mutation rate is set to 1.0. After each iteration, the oldest individual is replaced by a new offspring
from the mutation of the parent.

BANANAS: The implementation and hyperparameters follow its official codeﬂ We use five predictors
as the ensemble model. Each predictor is a 20-layer feed-forward network with a width of 32. The
decision variable of architecture is encoded as a one-hot binary vector with length 5 * 6 = 30 as the

*nttps://github.com/naszilla/naszilla
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Table 6: Results of different NAS algorithms on NARes. The algorithms search the best architecture
based on (a): the clean accuracy, or (b): the PGD-CW*0 accuracy on the validation set, and the mean
and the standard variance of robustness metrics on the best architecture are reported over 400 runs.

(a) Search objective: Clean Accuracy

Accuracy Optimal® Random Search  Local Search RE BANANAS
Val Clean’ 78.25 77.66 +0.25  77.67+£0.24 7791+021 77.9540.20
Val PGD* 38.80 36.15+£0.68  36.17+0.68 36.19+0.50 36.17 +0.51
Val PGD-CW#0 37.55 35.35+0.67 3542+0.65 35.59+0.66 35.6940.73
Test Clean 88.57 87.924+0.25 87.92+0.26 88.07+0.21 88.09+0.19
Test FGSM 62.68 61.54+043 61.55+043 61.67+043 61.7040.49
Test PGD?° 57.39 55.97 £ 0.57 5598 +0.58 56.18£0.56 56.22 4 0.63
Test PGD-CW*  56.17 54.71+£0.54  54.72+0.53 54.91+£050 54.974+0.54
Test AA* 53.48 51.82+0.53 51.83+0.53 52.01+£0.51 52.0740.55
Test Corruption 80.22 79.62+0.26 79.63+0.25 79.78+0.18 79.80+ 0.16
(b) Search objective: PGD-CW*® Accuracy
Accuracy Optimal® Random Search  Local Search RE BANANAS
Val Clean 78.25 75.96 +£0.67  75.95+0.63 76.12+0.38 76.09+0.34
Val PGD?° 38.80 37.69 £0.41 37.714+0.43 38.09+0.49 38.17+0.44
Val PGD-CW49T  37.55 37.02+0.18 37.06+0.20 37.32+0.20 37.3740.20
Test Clean 88.57 87.31+0.42 87.29+0.41 87.27+0.32 87.26 £0.27
Test FGSM 62.68 61.424+0.34 61.39+0.34 61.46+0.31 61.46 1+ 0.31
Test PGD?° 57.39 56.44+0.30 56.46+0.32 56.66+0.35 56.7240.35
Test PGD-CW*?  56.17 55.03£0.33  55.04£0.34 55.20+0.34 55.20+0.33
Test AA¥ 53.48 52.34+0.34 5235+0.36 52.58+£0.37 52.61 +0.37
Test Corruption 80.22 79.01 +0.42 78.98+0.39 78.86+0.36 78.79 £0.32

* : "Optimal" refers to the highest achievable accuracy in the dataset of NARes.

T : The objective for NAS.
¥ We use AA-Compact, a compact version of AA.

input of predictors, and the output of the predictor is the predicted objective value for that architecture.
The ensemble model is trained from scratch with 500 epochs at each iteration.

C.2 NAS BENCHMARK RESULTS ON OTHER OBJECTIVES

Besides the NAS benchmark on the objective of validation PGD?" accuracy in Table[2| we also test
the NAS algorithms with the objective of validation clean accuracy and PGD-CW*Y accuracy. The
results are shown in Table @ In either case, BANANAS achieves the best search efficiency and
stability on the objective. Moreover, compared to other AR metrics, searching by clean accuracy
makes it difficult for NAS algorithms to achieve higher AR; meanwhile, it makes searching easier to
find architectures with higher clean accuracy and robustness of common corruption.
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