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ABSTRACT

Few-shot 3D point cloud semantic segmentation (FS-3DSeg) aims to segment
novel classes with only a few labeled samples. However, existing metric-based
prototype learning methods generate prototypes solely from the support set, with-
out considering their relevance to query data. This often results in prototype bias,
where prototypes overfit support-specific characteristics and fail to generalize to
the query distribution, especially in the presence of distribution shifts, which leads
to degraded segmentation performance. To address this issue, we propose a novel
Query-aware Hub Prototype (QHP) learning method that explicitly models seman-
tic correlations between support and query sets. Specifically, we propose a Hub
Prototype Generation (HPG) module that constructs a bipartite graph connecting
query and support points, identifies frequently linked support hubs, and gener-
ates query-relevant prototypes that better capture cross-set semantics. To further
mitigate the influence of bad hubs and ambiguous prototypes near class bound-
aries, we introduce a Prototype Distribution Optimization (PDO) module, which
employs a purity-reweighted contrastive loss to refine prototype representations
by pulling bad hubs and outlier prototypes closer to their corresponding class
centers. Extensive experiments on S3DIS and ScanNet demonstrate that QHP
achieves substantial performance gains over state-of-the-art methods, effectively
narrowing the semantic gap between prototypes and query sets in FS-3DSeg.

1 INTRODUCTION

Point cloud semantic segmentation assigns semantic labels to each point in a 3D point cloud and
is essential for applications like autonomous driving and robotics. Although fully supervised meth-
ods (Qi et al., 2017b; Lin et al., 2020; Qian et al., 2022) have made significant progress, they rely
heavily on costly manual annotations and struggle to generalize to novel classes. To address these
challenges, few-shot 3D point cloud segmentation (FS-3DSeg) has gained increasing attention, aim-
ing to learn generalizable models from abundant base class data and adapt the model to novel classes
with only a few labeled point clouds.

Recent FS-3DSeg methods typically adopt metric-based prototype learning frameworks, where pro-
totypes are derived from a few labeled support point clouds, and the unlabeled query set is segmented
by measuring similarity between query points and these prototypes. As illustrated in Figure 1 (a)(b),
these methods can be broadly categorized into two groups: single-prototype approaches (Mao et al.,
2022; He et al., 2023; Liu et al., 2024), which generate global class prototypes via masked average
pooling, and multi-prototype methods (Zhao et al., 2021b; An et al., 2024), which enhance prototype
diversity through strategies like Farthest Point Sampling (FPS) and local clustering. Ideally, proto-
types should serve as semantic bridges between support and query sets, requiring strong alignment
with query semantics. However, existing methods generate prototypes solely from the support set,
emphasizing internal representativeness or diversity while ignoring semantic relevance to the query.
This often causes prototype bias, especially under distribution shifts between support and query
sets. For example, intra-class variations (e.g., square vs. round tables) may share limited similarity,
causing prototypes to overfit support-specific traits and poorly represent diverse queries. Moreover,
uniform sampling strategies like FPS often introduce redundant or query-irrelevant prototypes, fur-
ther compromising segmentation accuracy. To address these challenges, it is essential to develop a
query-aware prototype generation mechanism to narrow the semantic gap between prototypes and
the query set and improve segmentation performance.
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Figure 1: Few-shot 3D point cloud semantic segmentation approaches. (a)(b) Previous prototype
learning methods generate prototypes solely based on support points. (c) We propose a Query-aware
Hub Prototype Learning method that generates prototypes more closely related to query points.

Realizing the above issues, we propose a Query-aware Hub Prototype (QHP) learning method, as
depicted in Figure 1 (c). Hubs (Radovanović et al., 2009) refer to data points that frequently appear
among the nearest neighbors of many other points. Therefore, hubs naturally reflect support-query
semantic correlation and are well-suited as prototypes. In recent few-shot image classification stud-
ies, some methods (Fei et al., 2021; Trosten et al., 2023; Tang et al., 2025) regard hubs as a nightmare
and seek to avoid them, worrying that when a support point is a hub, many query points may be re-
trieved regardless of their true classes. However, we argue that: (1) Not all hubs are harmful.
Hubs that emerge within the same class (i.e., good hubs) can capture accurate support-query rela-
tionships and serve as effective query-aware prototypes, which helps mitigate prototype bias. (2)
The harmful impact of bad hubs is limited in FS-3DSeg. Since each support sample contains nu-
merous points and provides richer point-level supervision, each query point’s segmentation can be
determined by multiple support-query matches, reducing the risk of being misled by any single bad
hub. Therefore, instead of suppressing hubs, we leverage them to bridge the semantic gap between
support and query, and propose to learn query-aware hub prototypes. Notably, to further mitigate the
influence of bad hubs, we optimize their distributions by pulling those near class boundaries closer
to corresponding class centers.

The proposed QHP approach introduces two key components: the Hub Prototype Generation (HPG)
module and the Prototype Distribution Optimization (PDO) module. Specifically, HPG explicitly
models semantic correlations between support and query sets to learn query-relevant hub prototypes.
It constructs a bipartite graph connecting query and support points, identifies support hubs with high
linking frequency, and performs local clustering around each hub to generate query-relevant proto-
types that better capture cross-set semantics. Query segmentation can be conducted by measuring
similarities between query points and these hub prototypes. To further mitigate the influence of bad
hubs and ambiguous prototypes near class boundaries, we propose a PDO module during training.
PDO constructs a global association graph to identify bad hubs, and adopts a purity-reweighted
contrastive loss to pull bad hubs and outlier prototypes toward their corresponding class centers. By
jointly leveraging the HPG and PDO modules, our QHP facilitates more query-relevant and discrim-
inative prototype learning, effectively narrowing the semantic gap between prototypes and query sets
and yielding improved performance in the FS-3DSeg task.

Our main contributions can be summarized as follows:

• We propose a novel Query-aware Hub Prototype (QHP) Learning method for FS-3DSeg,
which explicitly models semantic correlations between support and query sets to generate
query-relevant prototypes, addressing prototype bias and narrowing the semantic gap.

• We propose a Hub Prototype Generation (HPG) module to identify support hubs and gen-
erate query-relevant hub prototypes that better capture cross-set semantics.

• We design a Prototype Distribution Optimization (PDO) module, optimizing the distribu-
tions of bad hubs and outlier prototypes via a purity-reweighted contrastive loss.

• Extensive experiments on S3DIS and ScanNet demonstrate that QHP achieves state-of-the-
art performance.
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2 RELATED WORK

2.1 3D POINT CLOUD SEMANTIC SEGMENTATION

Recent 3D point cloud segmentation methods can be broadly categorized into MLP-based
(e.g., PointNet (Qi et al., 2017a) and RandLA-Net (Hu et al., 2020)), convolution-based (e.g.,
PointCNN (Li et al., 2018), KPConv (Thomas et al., 2019), and RandLA-Net (Hu et al., 2020)),
and Transformer-based approaches such as Point Transformer (Zhao et al., 2021a) and Point Trans-
former V2 (Wu et al., 2022). Although these methods demonstrate strong performance through
local feature aggregation or self-attention mechanisms, they typically require expensive, large-scale
annotations and struggle to generalize to novel classes unseen during training.

2.2 FEW-SHOT 3D POINT CLOUD SEGMENTATION

Recent FS-3DSeg methods primarily adopt the prototype-based paradigm built upon metric learning.
These methods can be broadly categorized into single-prototype and multi-prototype approaches.
Single-prototype methods summarize each class using a single representative prototype from the
support set. For instance, ProtoNet defines the prototype as the class-wise mean of support features.
To mitigate distribution shifts between support and query sets, 2CBR (Zhu et al., 2023) explic-
itly models such biases, and DPA (Liu et al., 2024) employs query-guided attention to generate
task-adaptive prototypes. Seg-NN/PN (Zhu et al., 2024) designs a lightweight module to optimize
support-query interaction for prototype generation. However, these methods lack prototype diver-
sity and are unsuitable for handling complex data. To capture intra-class variations, multi-prototype
approaches generate multiple prototypes per class. AttMPTI (Zhao et al., 2021b) employs farthest
point sampling (FPS) to extract diverse local prototypes. Stratified Transformer (Lai et al., 2022)
combines hierarchical sampling with cross-window self-attention. COSeg (An et al., 2024) main-
tains a momentum-updated pool of base class prototypes. Despite these advances, most methods rely
solely on support data to generate prototypes, yielding prototypes biased toward support distribution
and poorly aligned with queries, thus limiting generalization to novel classes.

2.3 THE HUBNESS PHENOMENON AND HUBS

Hubness (Radovanovic et al., 2010; Radovanović et al., 2009) describes the tendency of certain
points, called hubs, to appear frequently in nearest-neighbor lists. It has been studied in areas like
multi-view clustering (Xu et al., 2025) and cross-modal retrieval (Bogolin et al., 2022; Wang et al.,
2023). In few-/zero-shot classification tasks, prior works (Dinu & Baroni, 2015; Xiao et al., 2021;
Cheraghian et al., 2019; Trosten et al., 2023) mostly view hubs as harmful, as query points may
be misclassified when dominated by support hubs from different classes. In contrast, we argue that
good hubs are beneficial and are primary in our scenario. We thus exploit hubs via query-aware hub
prototype learning and mitigate bad hub distance optimization to narrow query-support gaps.

3 METHOD

3.1 PROBLEM FORMULATION AND OVERVIEW

Problem Formulation. FS-3DSeg aims to predict per-point semantic labels for query point clouds
using a few labeled support samples. Episodic learning (Zhao et al., 2021b) is typically employed
to simulate the few-shot learning process, where each C-way K-shot episode includes a support
set S = {(Ic,ks ,M c,k

s )Kk=1}Cc=1 and a query set Q = {(I lq,M l
q)}Ll=1. Each point cloud Ic,ks , I lq ∈

RT×(3+f0) contains T points, each represented by 3D coordinates and auxiliary features (e.g., RGB).
M c,k

s ∈ {0, 1}T denotes the binary ground truth (GT) mask indicating whether each point in Ic,ks
belongs to class c, while M l

q denotes the GT labels for the query point cloud I lq . During inference,
the goal is to predict the query labels M̂q for the query points in Iq under the guidance of the support
set S.

Overview. Figure 2 illustrates the architecture of the proposed QHP framework, comprising two key
components: a Hub Prototype Generation (HPG) module and a Prototype Distribution Optimization
(PDO) module. We first use a shared backbone Φ to extract point-wise features from the support
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Figure 2: The framework of our Query-aware Hub Prototype Learning method. Initially, we design
an HPG module to select support hubs and generate query-relevant hub prototypes. Moreover,
during training, a PDO module is integrated to optimize the distribution of bad hubs and outlier
prototypes. For clarity, we present the model under the 1-way 1-shot setting.

and query point clouds: Fs = Φ (Is) ∈ RC×K×T×D and Fq = Φ (Iq) ∈ RL×T×D, where D is the
channel dimension. In the HPG module, a Hub Point Mining (HPM) module identifies hub points
from S, which are used to generate hub prototypes P via local clustering. These prototypes are
matched with query features Fq through similarity measures, and further refined via the CMC and
HCA modules (An et al., 2024) to yield query predictions M̂q . To mitigate the influence of bad
hubs and ambiguous prototypes, our PDO module identifies bad hubs by thresholding their purity
and applies a Purity-reweighted Contrastive (PC) loss to promote intra-class compactness. During
training, our model is jointly optimized by a cross-entropy (CE) loss and the proposed PC loss.

Subsequently, we provide a detailed description of the HPG module, PDO module and each loss.

3.2 HUB PROTOTYPE GENERATION

To mitigate prototype bias, we propose an HPG module. It first identifies frequently occurring
support hubs via a Hub Point Mining (HPM) module, then generates query-relevant hub prototypes
through Hub Prototype Clustering.

Hub Point Mining. HPM identifies hub points through three sequential steps, as illustrated in
Figure 3(a)–(c).

Step 1: k-Nearest Neighbor Mining. Given a center point set C and a neighbor point set N , a bipartite
graph is constructed by connecting each center point c ∈ C to its k-nearest (kNN) neighbors in N
via cosine similarity measure. The k-nearest neighbors of c are formulated as kNN(c,N ).

Step 2: Hubness Score Statistic. The hubness score s(n) quantifies how frequently a point n ∈ N
is selected as neighbors by all center points in C, defined as:

s(n) =
∑
c∈C

1 (n ∈ kNN(c,N )) + ε, (1)

where 1(·) denotes the Iverson bracket indicator function, returning 1 if the condition holds and 0
otherwise. A small positive constant ε is added to avoid zero scores caused by potential outliers,
ensuring s(n) > 0 for all n. The collective hubness scores for all points in N are denoted as s(N ).

Step 3: Hub Point Selection. To identify nodes most frequently regarded as neighbors by center
points, we select a subset H ⊆ N consisting of the top-η neighbor points with the highest hubness
scores, defined as:

H = {n ∈ N | s(n) ∈ Top-η(s(N ))}. (2)
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(a) Step 1: k-Nearest Neighbor Mining. (b) Step 2: Hubness Score Statistic. (c) Step 3: Hub Point Selection. (d) Bad Hub Selection.
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Figure 3: Illustration of Hub Point Mining and Bad Hub Selection modules. We give an exam-
ple under hyperparameters k=3, η=2, and γ=0.6. (a)–(c) Hub Point Mining: using center points
{C1, C2, C3} and neighbor points {N1, . . . ,N8} as input, a kNN graph is constructed with k =3.
After calculating hubness scores, the top η=2 points with the highest hubness scores are selected as
hubs. (d) Bad Hub Selection: Hubs with purity below the threshold γ =0.6 are selected as bad hubs.

Hub Prototype Clustering. Before prototype clustering, we treat points in the query set Q and
support set S as input node sets C and N of the HPM module, and select Top-η hub points for each
class to construct hub point set H.

A prototype set P = Pfg ∪ Pbg , where Pfg and Pbg denote foreground/background prototypes, is
generated by conducting point-to-seed clustering (Zhao et al., 2021b) on support features localized
around each hub point, defined as:

Pfg = Fclus (Fs ⊙Ms,Hfg) ,Hfg = H⊙Ms,

Pbg = Fclus (Fs ⊙ ¬Ms,Hbg) ,Hbg = H⊙ ¬Ms,
(3)

where ⊙ denotes the Hadamard product; Ms and ¬Ms are the GT mask and its inverse for support
set; Hfg and Hbg are foreground/background hub point subsets; and Fclus denotes the clustering
operation. After that, we obtain η prototypes per class, yielding a total of (C + 1) · η prototypes.

Notably, although support hubs H originate from S, they are geometrically closer to points in Q
as they retain only those support points that best match the query distribution. Consequently, the
derived hub prototypes are more aligned with Q in the metric space, facilitating improved prototype-
query matching and enhanced segmentation performance.

3.3 PROTOTYPE DISTRIBUTION OPTIMIZATION

In the PDO module, we select potential bad hubs, and then adopt a Purity-reweighted Contrastive
(PC) loss to suppress these bad hubs and optimize the prototype distribution.

Bad Hub Selection. To select bad hubs, we construct a global association graph via kNN algorithm,
where we merge points from Q and S to form the center point set, treat S as neighbor point set N ,
and then utilize the HPM module to identify hub points H from support set S.

After that, we identify all potential bad hubs within H, which with stronger connections to center
points belonging to different classes, as shown in Figure 3(d). This process involves three steps:

First, we compute the number of times each hub h is connected to center points of the same class,
denoted as t(h):

t(h) =
∑
c∈C

1 (h ∈ kNN(c,N )) · 1 (Mh = Mc) , (4)

where Mc,Mh are class labels of c and h, respectively.

Next, a purity P(h) is defined to represent the proportion of connections to center points of the
same class, given by:

P(h) = t(h)/s(h). (5)

Finally, the bad hub point set BH is filtered out using a purity threshold γ ∈ (0, 1), formulated as:
BH = {h ∈ H | P(h) < γ} . (6)
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Purity-reweighted Contrastive Loss. To further eliminate the influence of bad hubs and outlier
prototypes, we aim to pull them back to their cluster centers. A typical solution is contrastive
learning (Wang & Liu, 2021), which has been widely adopted in various areas to pull positive pairs
closer and push negative pairs apart. Despite these successes, contrastive loss has not been explored
in FS-3DSeg. However, directly applying standard contrastive loss to bad hub anchors is suboptimal:
low-purity anchors, which have high similarity to samples from other classes, tend to lie far from
their true class centers and are more likely to be confused, thus requiring stronger guidance to be
correctly aligned. To tackle this issue, we propose a Purity-reweighted Contrastive (PC) loss, which
dynamically adjusts the attraction strength based on the purity of each anchor sample.

We first introduce a purity reweighting factor w(a) to quantify the strength with which anchor a ∈
A = {Pfg ∪ BH} is pulled toward positive prototypes, formulated as:

w(a) =

{
1− P(a) if a ∈ BH
1 otherwise a ∈ Pfg

, (7)

where the first line assigns a higher weight (w(a) → 1) inversely proportional to purity for bad
hub anchors (a ∈ BH) with low purity (P(a) → 0), strongly pulling them toward class centers;
the second line assigns a fixed weight (w(a) = 1) for all foreground prototype anchors (a ∈ Pfg),
ensuring intra-class compactness and inter-class discriminability.

Based on the defined purity reweighting factor w(a), we formulate our purity-reweighted contrastive
loss for all anchors A as follows,

LPC = − 1

|A|
∑
a∈A

log
w(a) ·

∑
p∈P+(a) exp(sim(a, p)/τ)

w(a) ·
∑

p∈P+(a) exp(sim(a, p)/τ) +
∑

p∈P−(a) exp(sim(a, p)/τ)
, (8)

where P+(a) = {p ∈ P | Mp = Ma} and P−(a) = {p ∈ P | Mp ̸= Ma} are positive set
and negative set, respectively; τ is a temperature parameter that controls smoothing; sim(a, p) is the
similarity between a and p.

3.4 TOTAL LOSS

During training, the proposed model is supervised by two loss functions, i.e., a standard cross-
entropy loss LCE that serves to optimize segmentation results, and the proposed PC loss LPC to
optimize the prototype distributions. Specifically, the cross-entropy loss LCE is defined as:

LCE = − 1

L

∑L

l=1
M l

q log(M̂
l
q), (9)

where M l
q and M̂ l

q represent GT mask and the predicted mask for query sample.

Overall loss is a weighted combination of LCE and LPC with a balancing weight λ, represented as:
Ltotal = LCE + λ · LPC. (10)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training. Experiments were conducted on the S3DIS (Armeni et al., 2016) and ScanNet (Dai
et al., 2017) datasets. Data preprocessing follows An et al. (2024): rooms are divided into 1m
× 1m blocks, input points grid-sampled at 0.02m intervals, and 20,480 points are selected after
voxelization to standardize input size. Data augmentation and backbone pre-training were applied
as in An et al. (2024), with each fold pre-trained for 100 epochs. Meta-training was performed over
40,000 episodes using AdamW with a learning rate of 5 × 10−5 and weight decay of 0.01. For
testing, 1,000 episodes per class were sampled in 1-way settings, and 100 episodes per combination
in 2-way settings. We used 100 prototypes per class (η = 100); in k-shot settings (k > 1), η/k
prototypes were selected from each shot and concatenated to form the final prototypes.

Parameters. In both the HPG and PDO modules, the number of neighbors for hub point mining is
set to k = 5. In the HPG module, the number of hub points/prototypes per class is set to η = 100. In
the PDO module, the bad hub purity threshold is set to γ = 0.6 in (Eq. 6). In the total loss function
(Eq. 10), the balance weight for LPC is set to λ = 0.1.
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Methods
1-way 1-shot 1-way 5-shot 2-way 1-shot 2-way 5-shot

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

AttMPTI (Zhao et al., 2021b) 36.32 38.36 37.34 46.71 42.70 44.71 31.09 29.62 30.36 39.53 32.62 36.08
QGE (Ning et al., 2023) 41.69 39.09 40.39 50.59 46.41 48.50 33.45 30.95 32.20 40.53 36.13 38.33
QGPA (He et al., 2023) 35.50 35.83 35.67 38.07 39.70 38.89 25.52 26.26 25.89 30.22 32.41 31.31
Seg-PN†

(Zhu et al., 2024) 37.01 40.43 38.72 39.72 43.02 41.37 33.21 37.02 35.12 39.08 39.16 39.12
COSeg (An et al., 2024) 46.31 48.10 47.21 51.40 48.68 50.04 37.44 36.45 36.95 42.27 38.45 40.36
COSeg† 45.93 47.48 46.71 48.47 48.72 48.60 37.17 37.03 37.10 41.65 38.38 40.02
QHP (ours) 50.33 48.73 49.53 52.27 49.64 50.96 38.86 37.84 38.35 43.90 40.04 41.97

Table 1: Comparison of mIoU (%) performance between our method and previous FS-3DSeg ap-
proaches on the S3DIS dataset. Methods with † are re-implementation using their official code. The
best results are highlighted in bold, and the second-best results are marked in blue.

Methods
1-way 1-shot 1-way 5-shot 2-way 1-shot 2-way 5-shot

S0 S1 mean S0 S1 mean S0 S1 mean S0 S1 mean

AttMPTI (Zhao et al., 2021b) 34.03 30.97 32.50 39.09 37.15 38.12 25.99 23.88 24.94 30.41 27.35 28.88
QGE (Ning et al., 2023) 37.38 33.02 35.20 45.08 41.89 43.49 26.85 25.17 26.01 28.35 31.49 29.92
QGPA (He et al., 2023) 34.57 33.37 33.97 41.22 38.65 39.94 21.86 21.47 21.67 30.67 27.69 29.18
Seg-PN†

(Zhu et al., 2024) 33.98 29.45 31.72 37.24 31.78 34.51 28.20 26.72 27.46 35.52 30.40 32.96
COSeg (An et al., 2024) 41.73 41.82 41.78 48.31 44.11 46.21 28.72 28.83 28.78 35.97 33.39 34.68
COSeg† 40.57 41.94 41.26 49.43 43.57 46.50 28.06 28.92 28.49 35.49 34.03 35.06
QHP (ours) 40.70 42.92 41.81 50.10 44.80 47.45 28.45 29.07 28.76 36.11 34.30 35.21

Table 2: Comparison of mIoU (%) performance between our method and previous FS-3DSeg ap-
proaches on the ScanNet dataset. Methods with † are re-implementation using their official code.
The best results are highlighted in bold, and the second-best results are marked in blue.

4.2 COMPARISON RESULTS

Comparison with Previous Methods. We compare our QHP with prior works including
AttMPTI (Zhao et al., 2021b), QGE (Ning et al., 2023), QGPA (He et al., 2023), Seg-PN (Zhu
et al., 2024) and COSeg (An et al., 2024) on S3DIS (Armeni et al., 2016) and ScanNet (Dai et al.,
2017) datasets. Additionally, we exclude MM-FSS (An et al., 2025) method as it uses multimodal
information, yielding an unfair comparison. The Seg-PN results presented in Table 1 and Table 2
are reproduced based on the corrected few-shot setting proposed by COSeg (An et al., 2024), and
the Seg-NN results in Table 4 of Section 4.3 are obtained using the same setting.

• S3DIS. Table 1 shows that our QHP consistently outperforms prior approaches across all settings.
Specifically, compared to the baseline method COSeg†, QHP achieves performance gains of 2.82%
and 2.36% in the 1-way settings, and enhancements of 1.25% and 1.95% in the 2-way settings.
These gains can be attributed to the hub prototypes generated by our method. Unlike COSeg†, which
relies on FPS-based prototype generation that may produce redundant or irrelevant prototypes, HPG
module effectively identifies hub points to generate query-relevant prototypes. Additionally, opti-
mizing prototype distributions further contributes to the superior performance of our model. When
compared to query-guided methods such as QGE and QGPA, QHP demonstrates more significant
advantages in the 1-way tasks, with improvements of 9.14% and 2.46%, respectively. This high-
lights the superiority of our method in enhancing the discriminability of prototypes.

• ScanNet. Table 2 shows that QHP outperforms all prior methods across all settings, further vali-
dating the effectiveness and applicability of our approach. Notably, in the 1-way 5-shot task, QHP
achieves a mIoU of 47.45% and outperforms COSeg† by 0.95%, which highlights QHP’s adapt-
ability to the complex ScanNet dataset. We note that our performance gains are more pronounced
in 5-shot than 1-shot settings: with more support samples available, QHP can mine important hub
points from a larger pool of support points to generate query-relevant prototypes. However, improve-
ments on ScanNet are less substantial than S3DIS, as the dataset’s higher complexity and inter-class
overlap pose greater challenges for distinguishing similar categories.
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Figure 4: Qualitative comparisons between our proposed model QHP and COSeg. Each row, from
top to bottom, represents the 1-way 1-shot task with the target category as chair (yellow), column
(blue), bookcase (pink), and ceiling (orange), respectively.

Baseline HPG PDO mIoU (%)

✓ 45.93
✓ ✓ 47.37
✓ ✓ ✓ 50.33

Table 3: Ablation study of key components in QHP
method.

Methods S0 S1 mean

COSeg† 45.93 47.48 46.71
Ours 47.37 48.12 47.73

Seg-NN† 25.86 30.54 28.20
Ours 28.28 30.99 29.64

Table 4: Performance evaluation under dif-
ferent baselines (1-way 1-shot setting).

Qualitative Results. In Figure 4, we compare the results from our QHP (6th column) with COSeg
(5th column). QHP improves object boundaries and category shapes, especially for column contours
(blue, 2nd row), capturing finer details and reducing redundancy. PDO module excels in chair class
(yellow, 1st row), resolving boundary ambiguities for more precise segmentation. Overall, QHP
delivers cleaner, more accurate results with improved boundary delineation and reduced redundancy.

4.3 ABLATION STUDY

We present an ablation study on the S3DIS dataset under 1-way 1-shot S0 setting to validate the
effectiveness of HPG and PDO modules, as well as hyperparameter settings.

Effects of Core Components. Using COSeg as the baseline, we conduct experiments to evaluate
the effectiveness of the two core components, i.e., the HPG and PDO modules. As shown in Table 3,
incorporating the HPG module improves the mIoU from 45.93% to 47.37% (+1.44%), while the
addition of the PDO module further increases the mIoU to 50.33% (+2.96%), showing that the
joint use of HPG and PDO significantly enhances the query relevance and discriminability of the
prototypes, thereby leading to substantial performance gains.

Evaluation on Additional Baselines. To demonstrate the generalization capability of our method,
we apply it to additional baselines, including SegNN Zhu et al. (2024), as shown in Table 4. We
extend SegNN’s single-prototype approach to a multi-prototype variant by replacing it with a method
that employs FPS and local clustering. Since SegNN is a non-parametric baseline that does not use
loss functions for training, we only apply our HPG module. The results show that our method
outperforms Seg-NN, demonstrating the generalization capability of our approach.

8
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(a) k and η in HPG. (b) k and γ in PDO.
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(c) Impact of coefficient λ for LPC.

Figure 5: Sensitivity analysis of parameters in HPG, PDO and the coefficient λ for LPC.

Hub Ratio 0% 30% 50% 80% 100%
mIoU (%) 45.93 42.93 42.32 45.47 47.37

Table 5: Analyze the ratio of hub prototypes to to-
tal prototypes in HPG.

Diff. Losses Contrastive Loss Our PC Loss
mIoU (%) 49.82 50.33

Table 6: Comparison between PC loss and con-
trastive loss.

Effects of Hub Prototypes from HPG. Without using the PDO module, we fix the number of pro-
totypes to 100 per class and mix FPS-based prototypes with our hub prototypes in varying ratios. As
the hub prototype ratio increases from 0% (i.e., baseline COSeg) to 50%, performance slightly drops,
likely because prototype class diversity is reduced while the query relevance of prototypes remains
limited, causing suboptimal performance. Beyond 50%, performance steadily improves, peaking
at 100%, demonstrating that hub prototypes better capture support-query semantic correlation and
provide more discriminative representations, significantly enhancing segmentation.

Impact of Parameters k and η in HPG. We analyze the impact of the number of neighborhoods k
in Eq. 1 and the number of hub points η in Eq. 2, as shown in Figure 5a. The best performance is
achieved when k = 12 and η = 50, followed by k = 5 and η = 100. For fair comparison with other
multi-prototype methods with 100 prototypes, we select the setting k = 5 and η = 100.

Impact of Parameters k and γ in PDO. We analyze the impact of the number of neighborhood
k and purity threshold γ in PDO, as shown in Figure 5b. The best performance is achieved when
k = 5 and γ = 0.6; thus, these parameters are selected in our setup.

Effects of Different Contrastive Losses in PDO. To verify the superiority of our proposed PC loss,
we compared it with the standard contrastive loss in the PDO module, as shown in Table 6. The
PC loss yields a 0.51% performance improvement, demonstrating that the reweighting factor in our
PC loss more effectively pulls outlier prototypes and bad hubs near cluster boundaries toward their
respective class centers, reducing boundary ambiguity and enhancing overall performance.

Impact of Coefficient λ in Total Loss. Figure 5c illustrates the impact of the weight λ of the PC
loss in Eq. 10. Value of λ = 0.1 yields the best results, indicating that the model achieves a balance
between class boundary distribution and query segmentation. However, continued increases in λ
could pull prototypes and hub points too tightly into clusters, thereby harming model performance.

5 CONCLUSION

We propose a Query-aware Hub Prototype (QHP) framework for few-shot 3D point cloud semantic
segmentation, addressing limitations of prior methods relying solely on support prototypes. QHP
models semantic correlations between support and query sets to enhance prototype relevance, with
two key modules: Hub Prototype Generation (HPG) module, identifying high-frequency hub points
from support to generate query-relevant prototypes; and Prototype Distribution Optimization (PDO)
module, reducing the impact of bad hubs and ambiguous prototypes via purity-reweighted con-
trastive loss. Experiments on S3DIS and ScanNet show the superiority of the proposed model.
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A APPENDIX

In the appendix, we present more experiments focused on the effects of hub points, further validating
the effectiveness of our method. Besides, we also compare the computational overhead between our
proposed method and the baseline. Furthermore, we give experimental details and analysis, includ-
ing model sizes, inference time, frames per second (FPS) and floating point operations (FLOPs).
We also provide extended qualitative comparison results, which demonstrate the superiority of our
approach in resolving boundary ambiguity and achieving more precise segmentation.

Notably, we used large language models (LLMs) solely to aid in drafting and polishing the writing
of this paper. All scientific content, experimental design, and results are original to this work.

A.1 MORE DETAILS ABOUT HUB POINTS

Trend in the number of bad hub points. Figure 6 depicts the variation trend of bad hub points
during training, with the total number of hubs fixed at 100. The curve clearly shows that the number
of bad hubs drops rapidly in the early training stages and later gradually stabilizes. This experimental
observation is consistent with the design goal of the Prototype Distribution Optimization (PDO)
module, validating its efficacy in alleviating the adverse effects caused by bad hubs. Specifically,
early in training, the PDO module rectifies misclassified bad hubs via purity-reweighted contrastive
loss, gradually aligning them with correct class centers. As training proceeds, the HPG module
strengthens semantic association modeling, reducing bad hubs and mitigating prototype bias. In
later stages, the stabilization of bad hub counts indicates that the model has captured core features
of each class, thereby boosting the performance of FS-3DSeg.
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Figure 6: Trends in the number of bad hubs during training.

Impact of Different Hubs in HPG. In the HPG module, to verify the impact of good/bad hubs on
hub prototype quality, we use only good hubs versus all hubs (good + bad) in prototype clustering,
as in Table 7. Results show that performance with prototypes from only good hubs is suboptimal
compared to all hubs. We analyze that prototypes derived solely from good hubs, while effective
in reducing noise interference during testing, limit training by capturing only intra-class semantics,
weakening class discrimination. In contrast, incorporating bad hubs covers overlooked inter-class
discriminative information from class boundaries and complex scenarios, boosting training by refin-
ing the model’s discriminative ability and yielding a 3.04% improvement. Notably, when combined
with the PDO module, bad hub distribution is further optimized, avoiding interference from exces-
sive outliers during testing.

Types of Hubs Good hubs All hubs
mIoU (%) 44.33 47.37

Table 7: Impact of different hubs in HPG.

Types of Anchors Pfg Pfg & Bad hubs

mIoU (%) 48.58 50.33

Table 8: Impact of different anchors in PC Loss.

Impact of Different Anchors in PC Loss. In PC loss, using both foreground prototypes and bad
hubs as anchors improves performance by 1.75% compared to using only foreground prototypes
(Table 8). Our analysis reveals that relying solely on foreground prototypes as anchors prioritizes
intra-class compactness but underemphasizes semantic associations in boundary regions. In contrast,
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introducing bad hub anchors enables PC loss to further emphasize boundaries/outliers, pull bad
hubs to class centers, accommodate complex scenario ambiguities, break isolation between outlier
prototypes and bad hubs, and boost cross-set alignment.

A.2 COMPUTATIONAL COMPLEXITY

In Table 9, we present the number of parameters and computational complexity of our proposed
method. Compared to the baseline COSeg, our approach does not introduce additional parameters
but achieves higher performance. Notably, our method effectively reduces inference time and im-
proves the FPS value. This is because the farthest point sampling (FPS) strategy adopted in COSeg
requires substantial time to search for the farthest points from the support set, whereas our model
can quickly sample prototype centers through the hub point mining (HPM) method, thus achieving
faster speed and optimal performance.

Methods #Params Inference Time (s) FPS FLOPs (G) mIoU (%)

COSeg† 6.11M 0.27 3.66 14.20 45.93
QHP 6.11M 0.26 3.83 14.64 50.33

Table 9: Analysis of computational cost and experimental results on the S3DIS dataset under 1-way
1-shot S0setting.

A.3 MORE EXPERIMENT DETAILS

We conducted experiments on the S3DIS and ScanNet datasets. The S3DIS dataset Armeni et al.
(2016) comprises five large-scale indoor areas across three buildings, annotated with 12 semantic
classes for segmentation tasks. The ScanNet dataset Dai et al. (2017) contains 1,513 point cloud
scans from 707 indoor scenes, covering 20 semantic categories. Compared to S3DIS, ScanNet
features more irregular point clouds, rendering segmentation more challenging. Following An et al.
(2024), we also adopt the first three blocks of the Stratified Transformer (Lai et al., 2022) as the
backbone of our model. For the S3DIS and ScanNet datasets, the input features consist of both
XYZ coordinates and RGB colors. All settings are implemented in PyTorch. The 1-way and 2-way
1-shot settings are trained on 4 RTX A4000 GPUs, while the 2-way 5-shot setting is trained on 4
RTX 3090 GPUs.

In Section 4.3, we conduct extensive ablation studies on the parameters. The detailed results of
the parameter analysis are presented in Table 10 and Table 11, with specific sections illustrated in
Figure 5a and Figure 5b.

mIoU (%) 0.3 0.45 0.6 0.8
5 41.71 44.52 47.37 43.24
7 44.41 46.63 46.53 46.61

10 45.77 47.77 45.77 42.60
15 41.98 40.98 43.67 38.34

Table 10: Experimental Results on Parameter
Sensitivity of HPG (column: k, row: η).

mIoU (%) 0.3 0.45 0.6 0.8
5 48.62 48.22 50.13 48.16
7 44.93 47.97 48.48 48.71

12 45.13 42.52 47.05 47.95
20 45.24 43.69 47.62 48.07

Table 11: Experimental Results on Parameter
Sensitivity of PDO (column: k, row: γ).

A.4 MORE QUALITATIVE RESULTS

As shown in Figure 7, we present more results of QHP (6th column) compared to COSeg (5th col-
umn). QHP consistently demonstrates superior segmentation performance across various scenarios.
For instance, in the cases of chairs and bookcases, QHP can more accurately delineate object bound-
aries, while COSeg tends to produce fragmented or incomplete masks. In cluttered environments,
such as walls and floors, QHP is more effective at preserving the overall structure, reducing redun-
dancy, and avoiding ambiguity near class boundaries. This ensures that QHP produces a cleaner
and more precise representation compared to COSeg, especially in terms of object completeness.
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These results underscore QHP’s substantial improvements in object boundary delineation and cate-
gory shape representation. Its ability to capture finer details and reduce redundancy allows for more
precise segmentation.

Figure 7: More qualitative comparisons between our proposed model QHP and COSeg.

15


	Introduction
	Related Work
	3D Point Cloud Semantic Segmentation
	Few-shot 3D Point Cloud Segmentation
	The Hubness Phenomenon and Hubs

	Method
	Problem Formulation and Overview
	Hub Prototype Generation
	Prototype Distribution Optimization
	Total Loss

	Experiments
	Implementation Details
	Comparison Results
	Ablation Study

	Conclusion
	Appendix
	More Details about Hub Points
	Computational Complexity
	More Experiment details
	More Qualitative Results


