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Abstract

The generalization mystery of overparametrized deep nets has motivated efforts
to understand how gradient descent (GD) converges to low-loss solutions that
generalize well. Real-life neural networks are initialized from small random values
and trained with cross-entropy loss for classification (unlike the "lazy" or "NTK"
regime of training where analysis was more successful), and a recent sequence of
results (Lyu and Li, 2020; Chizat and Bach, 2020; Ji and Telgarsky, 2020a) provide
theoretical evidence that GD may converge to the "max-margin" solution with zero
loss, which presumably generalizes well. However, the global optimality of margin
is proved only in some settings where neural nets are infinitely or exponentially
wide. The current paper is able to establish this global optimality for two-layer
Leaky ReLU nets trained with gradient flow on linearly separable and symmetric
data, regardless of the width. The analysis also gives some theoretical justification
for recent empirical findings (Kalimeris et al., 2019) on the so-called simplicity
bias of GD towards linear or other "simple" classes of solutions, especially early in
training. On the pessimistic side, the paper suggests that such results are fragile.
A simple data manipulation can make gradient flow converge to a linear classifier
with suboptimal margin.

1 Introduction

One major mystery in deep learning is why deep neural networks generalize despite overparameteri-
zation (Zhang et al., 2017). To tackle this issue, many recent works turn to study the implicit bias
of gradient descent (GD) — what kind of theoretical characterization can we give for the low-loss
solution found by GD?

The seminal works by Soudry et al. (2018a,b) revealed an interesting connection between GD and
margin maximization: for linear logistic regression on linearly separable data, there can be multiple
linear classifiers that perfectly fit the data, but GD with any initialization always converges to the max-
margin (hard-margin SVM) solution, even when there is no explicit regularization. Thus the solution
found by GD has the same margin-based generalization bounds as hard-margin SVM. Subsequent
works on linear models have extended this theoretical understanding of GD to SGD (Nacson et al.,
2019b), other gradient-based methods (Gunasekar et al., 2018a), other loss functions with certain
poly-exponential tails (Nacson et al., 2019a), linearly non-separable data (Ji and Telgarsky, 2018,
2019b), deep linear nets (Ji and Telgarsky, 2019a; Gunasekar et al., 2018b).
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Given the above results, a natural question to ask is whether GD has the same implicit bias towards
max-margin solutions for machine learning models in general. Lyu and Li (2020) studied the
relationship between GD and margin maximization on deep homogeneous neural network, i.e., neural
network whose output function is (positively) homogeneous with respect to its parameters. For
homogeneous neural networks, only the direction of parameter matters for classification tasks. For
logistic and exponential loss, Lyu and Li (2020) assumed that GD decreases the loss to a small value
and achieves full training accuracy at some time point, and then provided an analysis for the training
dynamics after this time point (Theorem 3.1), which we refer to as late phase analysis. It is shown that
GD decreases the loss to 0 in the end and converges to a direction satisfying the Karush-Kuhn-Tucker
(KKT) conditions of a constrained optimization problem (P) on margin maximization.

However, given the non-convex nature of neural networks, KKT conditions do not imply global
optimality for margins. Several attempts are made to prove the global optimality specifically for
two-layer nets. Chizat and Bach (2020) provided a mean-field analysis for infinitely wide two-layer
Squared ReLU nets showing that gradient flow converges to the solution with global max margin,
which also corresponds to the max-margin classifier in some non-Hilbertian space of functions. Ji and
Telgarsky (2020a) extended the proof to finite-width neural nets, but the width needs to be exponential
in the input dimension (due to the use of a covering condition). Both works build upon late phase
analyses. Under a restrictive assumption that the data is orthogonally separable, i.e., any data point
xi can serve as a perfect linear separator, Phuong and Lampert (2021) analyzed the full trajectory of
gradient flow on two-layer ReLU nets with small initialization, and established the convergence to a
piecewise linear classifier that maximizes the margin, irrespective of network width.

In this paper, we study the implicit bias of gradient flow on two-layer neural nets with Leaky ReLU
activation (Maas et al., 2013) and logistic loss. To avoid the lazy or Neural Tangent Kernel (NTK)
regime where the weights are initialized to large random values and do not change much during
training (Jacot et al., 2018; Chizat et al., 2019; Du et al., 2019b,a; Allen-Zhu et al., 2018, 2019; Zou
et al., 2018; Arora et al., 2019b), we use small initialization to encourage the model to learn features
actively, which is closer to real-life neural network training.

When analyzing convergence behavior of training on neural networks, one can simplify the prob-
lem and gain insights by assuming that the data distribution has a simple structure. Many works
particularly study the case where the labels are generated by an unknown teacher network that is
much smaller/simpler than the (student) neural network to be trained. Following Brutzkus et al.
(2018); Sarussi et al. (2021) and many other works, we consider the case where the dataset is linearly
separable, namely the labels are generated by a linear teacher, and study the training dynamics of
two-layer Leaky ReLU nets on such dataset.

1.1 Our Contribution

Among all the classifiers that can be represented by the two-layer Leaky ReLU nets, we show any
global-max-margin classifier is exactly linear under one more data assumption: the dataset is
symmetric, i.e., if x is in the training set, then so is −x. Note that such symmetry can be ensured by
simple data augmentation.

Still, little is known about what kind of classifiers neural network trained by GD learns. Though Lyu
and Li (2020) showed that gradient flow converges to a classifier along KKT-margin direction, we
note that this result is not sufficient to guarantee the global optimality since such classifier can have
nonlinear decision boundaries. See Figure 1 (left) for an example.

In this paper, we provide a multi-phase analysis for the full trajectory of gradient flow, in contrast
with previous late phase analyses which only analyzes the trajectory after achieving 100% training
accuracy. We show that gradient flow with small initialization converges to a global-max-margin
linear classifier (Theorem 4.2). The proof leverages power iteration to show that neuron weights
align in two directions in an early phase of training, inspired by Li et al. (2021). We further show
the alignment at any constant training time by associating the dynamics of wide neural net with that
of two-neuron neural net, and finally, extend the alignment to the infinite time limit by applying
Kurdyka-Łojasiewicz (KL) inquality in a similar way as Ji and Telgarsky (2020a). The alignment at
convergence implies that the convergent classifier is linear.

The above results also justify a recent line of works studying the so-called simplicity bias: GD first
learns linear functions in the early phase of training, and the complexity of the solution increases
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as training goes on (Kalimeris et al., 2019; Hu et al., 2020; Shah et al., 2020). Indeed, our result
establishes a form of extreme simplicity bias of GD: if the dataset can be fitted by a linear classifier,
then GD learns a linear classifier not only in the beginning but also at convergence.

On the pessimistic side, this paper suggests that such global margin maximization result could be
fragile. Even for linearly separable data, global-max-margin classifiers may be nonlinear without
the symmetry assumption. In particular, we show that for any linearly separable dataset, gradient
flow can be led to converge to a linear classifier with suboptimal margin by adding only 3 extra
data points (Theorem 6.2). See Figure 1 (right) for an example.

2 Related Works

Generalization Aspect of Margin Maxmization. Margin often appears in the generalization
bounds for neural networks (Bartlett et al., 2017; Neyshabur et al., 2018), and larger margin leads to
smaller bounds. Jiang et al. (2020) conducted an empirical study for the causal relationships between
complexity measures and generalization errors, and showed positive results for normalized margin,
which is defined by the output margin divided by the product (or powers of the sum) of Frobenius
norms of weight matrices from each layer. On the pessimistic side, negative results are also shown if
Frobenius norm is replaced by spectral norm. In this paper, we do use the normalized margin with
Frobenius norm (see Section 3).

Learning on Linearly Separable Data. Some works studied the training dynamics of (nonlinear)
neural networks on linearly separable data (labels are generated by a linear teacher). Brutzkus
et al. (2018) showed that SGD on two-layer Leaky ReLU nets with hinge loss fits the training set
in finite steps and generalizes well. Frei et al. (2021) studied online SGD (taking a fresh sample
from the population in each step) on the two-layer Leaky ReLU nets with logistic loss. For any data
distribution, they proved that there exists a time step in the early phase such that the net has a test error
competitive with that of the best linear classifier over the distribution, and hence generalizes well on
linearly separable data. Both two papers reveal that the weight vectors in the first layer have positive
correlations with the weight of the linear teacher, but their analyses do not imply that the learned
classifier is linear. In the NTK regime, Ji and Telgarsky (2020b); Chen et al. (2021) showed that GD
on shallow/deep neural nets learns a kernel predictor with good generalization on linearly separable
data, and it suffices to have width polylogarithmic in the number of training samples. Still, they
do not imply that the learned classifier is linear. Pellegrini and Biroli (2020) provided a mean-field
analysis for two-layer ReLU net showing that training with hinge loss and infinite data leads to a
linear classifier, but their analysis requires the data distribution to be spherically symmetric (i.e., the
probability density only depends on the distance to origin), which is a more restrictive assumption
than ours. Sarussi et al. (2021) provided a late phase analysis for gradient flow on two-layer Leaky
ReLU nets with logistic loss, which establishes the convergence to linear classifier based on an
assumption called Neural Agreement Regime (NAR): starting from some time point, for any training
sample, the outputs of all the neurons have the same sign. However, it is unclear why this can happen
a priori. Comparing with our work, we analyze the full trajectory of gradient flow and establish the
convergence to linear classifier without assuming NAR. Phuong and Lampert (2021) analyzed the full
trajectory for gradient flow on orthogonally separable data, but every KKT-margin direction attains
the global max margin (see Appendix H) in their setting, which it is not necessarily true in general.
In our setting, KKT-margin direction with suboptimal margin does exist.

Simplicity Bias. Kalimeris et al. (2019) empirically observed that neural networks in the early
phase of training are learning linear classifiers, and provided evidence that SGD learns functions
of increasing complexity. Hu et al. (2020) justified this view by proving that the learning dynamics
of two-layer neural nets and simple linear classifiers are close to each other in the early phase, for
dataset drawn from a data distribution where input coordinates are independent after some linear
transformation. The aforementioned work by Frei et al. (2021) can be seen as another theoretical
justification for online SGD on aribitrary data distribution. Shah et al. (2020) pointed out that extreme
simplicity bias can lead to suboptimal generalization and negative effects on adversarial robustness.

Small Initialization. Several theoretical works studying neural network training with small initial-
ization can be connected to simplicity bias. Maennel et al. (2018) uncovered a weight quantization
effect in training two-layer nets with small initialization: gradient flow biases the weight vectors to a
certain number of directions determined by the input data (independent of neural network width). It
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Figure 1: Two-layer Leaky ReLU nets (αleaky = 1/2) with KKT margin and global max margin on
linearly separable data. See Appendix I.1 for detailed discussions. Left: Theorem 4.3 is not vacuous:
a symmetric dataset can have KKT directions with suboptimal margin, but our theory shows that
gradient flow from small initialization goes to global max margin. Middle: The linear classifier
(orange) is along a KKT-margin direction with a much smaller margin comparing to the (nonlinear)
global-max-margin classifier (black), but our theory suggests that gradient flow converges to the linear
classifier. Right: Adding three extra data points (marked as “x”; see Definition 6.1) to a linearly
separable dataset makes the linear classifier (orange) has suboptimal margin but causes the neural net
to be biased to it.

is hence argued that gradient flow has a bias towards “simple” functions, but their proof is not entirely
rigorous and no clear definition of simplicity is given. This weight quantization effect has also been
studied under the names of weight clustering (Brutzkus and Globerson, 2019), condensation (Luo
et al., 2021; Xu et al., 2021). Williams et al. (2019) studied univariate regression and showed that
two-layer ReLU nets with small initialization tend to learn linear splines. For the matrix factorization
problem, which can be related to training neural networks with linear or quadratic activations, we can
measure the complexity of the learned solution by rank. A line of works showed that gradient descent
learns solutions with gradually increasing rank (Li et al., 2018; Arora et al., 2019a; Gidel et al., 2019;
Gissin et al., 2020; Li et al., 2021). Such results have been generalized to tensor factorization where
the complexity measure is replaced by tensor rank (Razin et al., 2021). Beyond small initialization of
our interest and large initialization in the lazy or NTK regime, Woodworth et al. (2020); Moroshko
et al. (2020); Mehta et al. (2021) studied feature learning when the initialization scale transitions
from small to large scale.

3 Preliminaries

We denote the set {1, . . . , n} by [n] and the unit sphere {x ∈ Rd : ‖x‖2 = 1} by Sd−1. We call
a function h : RD → R L-homogeneous if h(cθ) = cLh(θ) for all θ ∈ RD and c > 0. For
S ⊆ RD, conv(S) denotes the convex hull of S. For locally Lipschitz function f : RD → R, we
define Clarke’s subdifferential (Clarke, 1975; Clarke et al., 2008; Davis et al., 2020) to be ∂◦f(θ) :=
conv {limn→∞∇f(θn) : f differentiable at θn, limn→∞ θn = θ} (see also Appendix B.1).

3.1 Logistic Loss Minimization and Margin Maximization

For a neural net, we use fθ(x) ∈ R to denote the output logit on input x ∈ Rd when the parameter is
θ ∈ RD. We say that the neural net is L-homogeneous if fθ(x) is L-homogeneous with respect to θ,
i.e., fcθ(x) = cLfθ(x) for all θ ∈ RD and c > 0. VGG-like CNNs can be made homogeneous if we
remove all the bias terms expect those in the first layer (Lyu and Li, 2020).

Throughout this paper, we restrict our attention to L-homogeneous neural nets with fθ(x) definable
with respect to θ in an o-minimal structure for all x. (See Coste 2000 for reference for o-minimal
structures.) This is a technical condition needed by Theorem 3.1, and it is a mild regularity condition
as almost all modern neural networks satisfy this condition, including the two-layer Leaky ReLU
networks studied in this paper.

For a dataset S = {(x1, y1), . . . , (xn, yn)}, we define qi(θ) := yifθ(xi) to be the output margin on
the data point (xi, yi), and qmin(θ) := mini∈[n] qi(θ) to be the output margin on the dataset S (or
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margin for short). It is easy to see that q1(θ), . . . , qn(θ) are L-homogeneous functions, and so is
qmin(θ). We define the normalized margin γ(θ) := qmin

(
θ
‖θ‖2

)
= qmin(θ)

‖θ‖L2
to be the output margin

(on the dataset) for the normalized parameter θ
‖θ‖2 .

We refer the problem of finding θ that maximizes γ(θ) as margin maximization. Note that once we
have found an optimal solution θ∗ ∈ RD, cθ∗ is also optimal for all c > 0. We can put the norm
constraint on θ to eliminate this freedom on rescaling:

max
θ∈SD−1

γ(θ). (M)

Alternatively, we can also constrain the margin to have qmin ≥ 1 and minimize the norm:

min
1

2
‖θ‖22 s.t. qi(θ) ≥ 1, ∀i ∈ [n]. (P)

One can easily show that θ∗ is a global maximizer of (M) if and only if θ∗

(qmin(θ∗))1/L
is a global

minimizer of (P). For convenience, we make the following convention: if θ
‖θ‖2 is a local/global

maximizer of (M), then we say θ is along a local-max-margin direction/global-max-margin direction;
if θ

(qmin(θ))1/L
satisfies the KKT conditions of (P), then we say θ is along a KKT-margin direction.

Gradient flow with logistic loss is defined by the following differential inclusion,

dθ
dt
∈ −∂◦L(θ), with L(θ) :=

1

n

n∑
i=1

`(qi(θ)), (1)

where `(q) := ln(1 + e−q) is the logistic loss. Lyu and Li (2020); Ji and Telgarsky (2020a) showed
that θ(t)/‖θ(t)‖2 always converges to a KKT-margin direction. We restate the results below.
Theorem 3.1 (Lyu and Li 2020; Ji and Telgarsky 2020a). For homogeneous neural networks, if
L(θ(0)) < ln 2

n , then L(θ(t)) → 0, ‖θ(t)‖2 → +∞, and θ(t)
‖θ(t)‖2 converges to a KKT-margin

direction as t→ +∞.

3.2 Two-Layer Leaky ReLU Networks on Linearly Separable Data

Let φ(x) = max{x, αleakyx} be Leaky ReLU, where αleaky ∈ (0, 1). Throughout the following
sections, we consider a two-layer neural net defined as below,

fθ(x) =

m∑
k=1

akφ(w>k x).

where w1, . . . ,wm ∈ Rd are the weights in the first layer, a1, . . . , am ∈ R are the weights in
the second layer, and θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD is the concatenation of all trainable
parameters, where D = md+m. We can verify that fθ(x) is 2-homogeneous with respect to θ.

Let S := {(x1, y1), . . . , (xn, yn)} be the training set. For simplicity, we assume that ‖xi‖2 ≤ 1. We
focus on linearly separable data, thus we assume that S is linearly separable throughout the paper.
Assumption 3.2 (Linear Separable). There exists a w ∈ Rd such that yi 〈w,xi〉 ≥ 1 for all i ∈ [n].
Definition 3.3 (Max-margin Linear Separator). For the linearly separable dataset S, we say that
w∗ ∈ Sd−1 is the max-margin linear separator if w∗ maximizes mini∈[n] yi 〈w,xi〉 over w ∈ Sd−1.

4 Training on Linearly Separable and Symmetric Data

In this section, we study the implicit bias of gradient flow assuming the training data is linearly
separable and symmetric. We say a dataset is symmetric if whenever x is present in the training set,
the input −x is also present. By linear separability, x and −x must have different labels because
〈w∗,x〉 = −〈w∗,−x〉, where w∗ is the max-margin linear separator. The formal statement for this
assumption is given below.
Assumption 4.1 (Symmetric). n is even and xi = −xi+n/2, yi = 1, yi+n/2 = −1 for 1 ≤ i ≤ n/2.
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This symmetry can be ensured via data augmentation. Given a dataset, if it is known that the ground-
truth labels are produced by an unknown linear classifier, then one can augment each data point (x, y)
by flipping the sign, i.e., replace it with two data points (x, y), (−x,−y) (and thus the dataset size is
doubled).

Our results show that gradient flow directionally converges to a global-max-margin direction for
two-layer Leaky ReLU networks, when the dataset is linearly separable and symmetric. To achieve
such result, the key insight is that any global-max-margin direction represents a linear classifier,
which we will see in Section 4.1. Then we will present our main convergence results in Section 4.2.

4.1 Global-Max-Margin Classifiers are Linear

Theorem 4.2 below characterizes the global-max-margin direction in our case by showing that margin
maximization and simplicity bias coincide with each other: a network that representing the max-
margin linear classifier (i.e., fθ(x) = c 〈w∗,x〉 for some c > 0) can simultaneously achieve the
goals of being simple and maximizing the margin.
Theorem 4.2. Under Assumptions 3.2 and 4.1, for the two-layer Leaky ReLU network with width
m ≥ 2, any global-max-margin direction θ∗ ∈ SD−1, fθ∗ represents a linear classifier. Moreover,
we have fθ∗(x) =

1+αleaky

4 〈w∗,x〉 for all x ∈ Rd, where w∗ is the max-margin linear separator.

The result of Theorem 4.2 is based on the observation that replacing each neuron (ak,wk) in a
network with two neurons of oppositing parameters (ak,wk) and (−ak,−wk) does not decrease the
normalized margin on the symmetric dataset, while making the classifier linear in function space.
Thus if any direction attains the global max margin, we can construct a new global-max-margin
direction which corresponds to a linear classifier. We can show that every weight vector wk of this
linear classifier must be in the direction of w∗ or −w∗. Then the original classifier must also be
linear in the same direction.

4.2 Convergence to Global-Max-Margin Directions

Though Theorem 3.1 guarantees that gradient flow directionally converges to a KKT-margin direction
if the loss is optimized successfully, we note that KKT-margin directions can be non-linear and have
complicated decision boundaries. See Figure 1 (left) for an example. Therefore, to establish the
convergence to linear classifiers, Theorem 3.1 is not enough and we need a new analysis for the
trajectory of gradient flow.

We use initialization wk
i.i.d.∼ N (0, σ2

initI), ak
i.i.d.∼ N (0, c2ainitσ

2
init), where cainit is a fixed constant

throughout this paper and σinit controls the initialization scale. We call this distribution as θ0 ∼
Dinit(σinit). An alternative way to generate this distribution is to first draw θ̄0 ∼ Dinit(1), and then
set θ0 = σinitθ̄0. With small initialization, we can establish the following convergence result.
Theorem 4.3. Under Assumptions 3.2 and 4.1 and certain regularity conditions (see Assumptions 4.5
and 4.6 below), consider gradient flow on a Leaky ReLU network with width m ≥ 2 and initialization
θ0 = σinitθ̄0 where θ̄0 ∼ Dinit(1). With probability 1 − 2−(m−1) over the random draw of
θ̄0, if the initialization scale is sufficiently small, then gradient flow directionally converges and
f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) represents the max-margin linear classifier. That is,

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) = C 〈w∗,x〉

]
≥ 1− 2−(m−1),

where C :=
1+αleaky

4 is a scaling factor.

Combining Theorem 4.2 and Theorem 4.3, we can conclude that gradient flow achieves the global
max margin in our case.
Corollary 4.4. In the settings of Theorem 4.3, gradient flow on linearly separable and symmetric
data directionally converges to the global-max-margin direction with probability 1− 2−(m−1).

4.3 Additional Notations and Assumptions

Let µ := 1
n

∑n
i=1 yixi, which is non-zero since 〈µ,w∗〉 = 1

n

∑
i∈[n] yiw

>
∗ xi ≥ 1. Let µ̄ := µ

‖µ‖2 .
We use ϕ(θ0, t) ∈ Rd to the value of θ at time t for θ(0) = θ0.
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We make the following technical assumption, which holds if we are allowed to add a slight perturbation
to the training set.
Assumption 4.5. For all i ∈ [n], 〈µ,xi〉 6= 0.

Another technical issue we face is that the gradient flow may not be unique due to non-smoothness. It
is possible that ϕ(θ0, t) is not well-defined as the solution of (1) may not be unique. See Appendix I.2
for more discussions. In this case, we assign ϕ(θ0, · ) to be an arbitrary gradient flow trajectory
starting from θ0. In the case where ϕ(θ0, t) has only one possible value for all t ≥ 0, we say that θ0

is a non-branching starting point. We assume the following technical assumption.
Assumption 4.6. For any m ≥ 2, there exist r, ε > 0 such that θ is a non-branching starting
point if its neurons can be partitioned into two groups: in the first group, ak = ‖wk‖2 ∈ (0, r)
and all wk point to the same direction w+ ∈ Sd−1 with ‖w+ − µ̄‖2 ≤ ε; in the second group,
−ak = ‖wk‖2 ∈ (0, r) and all wk point to the same direction w− ∈ Sd−1 with ‖w− + µ̄‖2 ≤ ε.

5 Proof Sketch for the Symmetric Case

In this section, we provide a proof sketch for Theorem 4.3. Our proof uses a multi-phase analysis,
which divides the training process into 3 phases, from small initialization to the final convergence.
We will now elaborate the analyses for them one by one.

5.1 Phase I: Dynamics Near Zero

Gradient flow starts with small initialization. In Phase I, we analyze the dynamics when gradient
flow does not go far away from zero. Inspired by Li et al. (2021), we relate such dynamics to power
iterations and show that every weight vector wk in the first layer moves towards the directions of
either µ̄ or −µ̄. To see this, the first step is to note that fθ(xi) ≈ 0 when θ is close to 0. Applying
Taylor expansion on `(yifθ(xi)),

L(θ) =
1

n

∑
i∈[n]

`(yifθ(xi)) ≈
1

n

∑
i∈[n]

(`(0) + `′(0)yifθ(xi)) . (2)

Expanding fθ(xi) and reorganizing the terms, we have

L(θ) ≈ 1

n

∑
i∈[n]

`(0) +
1

n

∑
i∈[n]

`′(0)
∑
k∈[m]

yiakφ(w>k xi) = `(0) +
`′(0)

n

∑
k∈[m]

∑
i∈[n]

yiakφ(w>k xi)

= `(0)−
∑
k∈[m]

akG(wk),

where G-function (Maennel et al., 2018) is defined below:

G(w) :=
−`′(0)

n

∑
i∈[n]

yiφ(w>xi) =
1

2n

∑
i∈[n]

yiφ(w>xi).

This means gradient flow optimizes each −akG(wk) separately near origin.

dwk
dt
≈ ak∂◦G(wk),

dak
dt
≈ G(wk). (3)

In the case where Assumption 4.1 holds, we can pair each xi with −xi and use the identity φ(z)−
φ(−z) = max{z, αleakyz} −max{−z,−αleakyz} = (1 + αleaky)z to show that G(w) is linear:

G(w) =
1

2n

∑
i∈[n/2]

(
φ(w>xi)− φ(−w>xi)

)
=

1

2n

∑
i∈[n/2]

(1 + αleaky)w>xi = 〈w, µ̃〉 ,

where µ̃ :=
1+αleaky

2 µ =
1+αleaky

2n

∑
i∈[n] yixi. Substituting this formula for G into (3) reveals that

the dynamics of two-layer neural nets near zero has a close relationship to power iteration (or matrix
exponentiation) of a matrixMµ̃ ∈ R(d+1)×(d+1) that only depends on data.

d
dt

[
wk
ak

]
≈Mµ̃

[
wk
ak

]
, where Mµ̃ :=

[
0 µ̃
µ̃> 0

]
.
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Simple linear algebra shows that λ0 := ‖µ̃‖2, 1√
2
(µ̄, 1) ∈ Rd+1 are the unique top eigenvalue

and eigenvector of Mµ̃, which suggests that (wk(t), ak(t)) ∈ Rd+1 aligns to this top eigenvector
direction if the approximation (3) holds for a sufficiently long time. With small initialization, this can
indeed be true and we obtain the following lemma.
Definition 5.1 (M-norm). For parameter vector θ = (w1, . . . ,wm, a1, . . . , am), we define the
M-norm to be ‖θ‖M = maxk∈[m] {max{‖wk‖2, |ak|}}.
Lemma 5.2. Let r > 0 be a small value. With probability 1 over the random draw of θ̄0 =

(w̄1, . . . , w̄m, ā1, . . . , ām) ∼ Dinit(1), if we take σinit ≤ r3√
m‖θ̄0‖

M

, then any neuron (wk, ak) at

time T1(r) := 1
λ0

ln r√
mσinit‖θ̄0‖

M

can be decomposed into

wk(T1(r)) = rb̄kµ̄+ ∆wk, ak(T1(r)) = rb̄k + ∆ak,

where b̄k := 〈w̄k,µ̄〉+āk
2
√
m‖θ̄0‖

M

and the error term ∆θ := (∆w1, . . . ,∆wm,∆a1, . . . ,∆am) is bounded

by ‖∆θ‖M ≤ Cr3√
m

for some universal constant C.

5.2 Phase II: Near-Two-Neuron Dynamics

By Lemma 5.2, we know that at time T1(r) we have wk(T1(r)) ≈ rb̄kµ̄ and ak(T1(r)) ≈ rb̄k,
where b̄ ∈ Rd is some fixed vector. This motivates us to couple the training dynamics of θ(t) =
(w1(t), . . . ,wm(t), a1(t), . . . , am(t)) after the time T1(r) with another gradient flow starting from
the point (rb̄1µ̄, . . . , rb̄mµ̄, rb̄1, . . . , rb̄m). Interestingly, the latter dynamic can be seen as a dynamic
of two neurons “embedded” into the m-neuron neural net, and we will show that θ(t) is close to this
“embedded” two-neuron dynamic for a long time. Now we first introduce our idea of embedding a
two-neuron network into an m-neuron network.

Embedding. For any b ∈ Rm, we say that b is a good embedding vector if it has at least one
positive entry and one negative entry, and all the entries are non-zero. For a good embedding vector b,
we use b+ :=

√∑
j∈[m] 1[bj>0]b

2
j and b− := −

√∑
j∈[m] 1[bj<0]b

2
j to denote the root-sum-squared

of the positive entries and the negative root-sum-squared of the negative entries. For parameter
θ̂ := (ŵ1, ŵ2, â1, â2) of a two-neuron neural net with â1 > 0 and â2 < 0, we define the embedding
from two-neuron into m-neuron neural nets as πb(ŵ1, ŵ2, â1, â2) = (w1, . . . ,wm, a1, . . . , am),
where

ak =

{
bk
b+
â1, if bk > 0

bk
b−
â2, if bk < 0

, wk =

{
bk
b+
ŵ1, if bk > 0

bk
b−
ŵ2, if bk < 0

.

It is easy to check that fθ̂(x) = fπb(θ̂)(x) by the homogeneity of the activation (φ(cz) = cφ(z) for
c > 0):

fπb(θ̂)(x) =
∑
bk>0

akφ(w>k x) +
∑
bk<0

akφ(w>k x)

=
∑
bk>0

b2k
b2+
â1φ(ŵ>1 x) +

∑
bk<0

b2k
b2−
â2φ(ŵ>2 x) = â1φ(ŵ>1 x) + â2φ(ŵ>2 x) = fθ̂(x).

Moreover, by taking the chain rule, we can obtain the following lemma showing that the trajectories
starting from θ̂ and πb(θ̂) are essentially the same.

Lemma 5.3. Given θ̂ := (ŵ1, ŵ2, â1, â2) with â1 > 0 and â2 < 0, if both θ̂ and πb(θ̂) are
non-branching starting points, then ϕ(πb(θ̂), t) = πb(ϕ(θ̂, t)) for all t ≥ 0.

Approximate Embedding. Back to our analysis for Phase II, b̄ is a good embedding vector with
high probability (see lemma below). Let θ̂ := (b̄+, b̄+µ̄, b̄−, b̄−µ̄). By Lemma 5.2, πb̄(rθ̂) =

(rb̄1µ̄, . . . , rb̄mµ̄, rb̄1, . . . , rb̄m) ≈ θ(T1(r)), which means rθ̂ → θ(T1(r)) is approximately an
embedding. Suppose that the approximation happens to be exact, namely πb̄(rθ̂) = θ(T1(r)),
then θ(T1(r) + t) = πb̄(ϕ(rθ̂, t)) by Lemma 5.3. Inspired by this, we consider the case where
σinit → 0, r → 0 so that the approximate embedding is infinitely close to the exact one, and prove
the following lemma. We shift the training time by T2(r) to avoid trivial limits (such as 0).
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Lemma 5.4. Follow the notations in Lemma 5.2 and take σinit ≤ r3√
m‖θ̄0‖

M

. Let T2(r) := 1
λ0

ln 1
r ,

then T12 := T1(r) + T2(r) = 1
λ0

ln 1√
mσinit‖θ̄0‖

M

regardless the choice of r. For width m ≥ 2,

with probability 1 − 2−(m−1) over the random draw of θ̄0 ∼ Dinit(1), the vector b̄ ∈ Rm is a
good embedding vector, and for the two-neuron dynamics starting with rescaled initialization in the
direction of θ̂ := (b̄+, b̄+µ̄, b̄−, b̄−µ̄), the following limit exists for all t,

θ̃(t) := lim
r→0

ϕ
(
rθ̂, T2(r) + t

)
6= 0, (4)

and moreover, for the m-neuron dynamics of θ(t), the following holds for all t,

lim
σinit→0

θ (T12 + t) = πb̄(θ̃(t)). (5)

5.3 Phase III: Dynamics near Global-Max-Margin Direction

With some efforts, we have the following characterization for the two-neuron dynamics.
Theorem 5.5. Form = 2, if initially a1 = ‖w1‖2, a2 = −‖w2‖2, 〈w1,w

∗〉 > 0 and 〈w2,w
∗〉 < 0,

then θ(t) directionally converges to the following global-max-margin direction,

lim
t→+∞

θ(t)

‖θ(t)‖2
=

1

4
(w∗,−w∗, 1,−1),

where w∗ is the max-margin linear separator.

It is not hard to verify that θ̃(t) satisfies the conditions required by Theorem 5.5. Given this result, a
first attempt to establish the convergence of θ(t) to global-max-margin direction is to take t→ +∞
on both sides of (5). However, this only proves that θ (T12 + t) directionally converges to the global-
max-margin direction if we take the limit σinit → 0 first then take t→ +∞, while we are interested
in the convergent solution when t→ +∞ first then σinit → 0 (i.e., solution gradient flow converges
to with infinite training time, if it starts from sufficiently small initialization). These two double limits
are not equivalent because the order of limits cannot be exchanged without extra conditions.

To overcome this issue, we follow a similar proof strategy as Ji and Telgarsky (2020a) to prove local
convergence near a local-max-margin direction, as formally stated below. Theorem 5.6 holds for
L-homogeneous neural networks in general and we believe is of independent interest.
Theorem 5.6. Consider any L-homogeneous neural networks with logistic loss. Given a local-max-
margin direction θ̄∗ ∈ SD−1 and any δ > 0, there exists ε0 > 0 and ρ0 ≥ 1 such that for any θ0 with
norm ‖θ0‖2 ≥ ρ0 and direction

∥∥∥ θ0
‖θ0‖2 − θ̄

∗
∥∥∥

2
≤ ε0, gradient flow starting with θ0 directionally

converges to some direction θ̄ with the same normalized margin γ as θ̄∗, and ‖θ̄ − θ̄∗‖2 ≤ δ.

Using Theorem 5.6, we can finish the proof for Theorem 4.3 as follows. First we note that the two-
neuron global-max-margin direction 1

4 (w∗,−w∗, 1,−1) after embedding is a global-max-margin
direction for m-neurons, and we can prove that any direction with distance no more than a small
constant δ > 0 is still a global-max-margin direction. Then we can take t to be large enough so that
πb̄(θ̃(t)) satisfies the conditions in Theorem 5.6. According to (5), we can also make the conditions
hold for θ (T12 + t) by taking σinit and r to be sufficiently small. Finally, applying Theorem 5.6
finishes the proof.

6 Non-symmetric Data Complicates the Picture

Now we turn to study the case without assuming symmetry and the question is whether the implicit
bias to global-max-margin solution still holds. Unfortunately, it turns out the convergence to global-
max-margin classifier is very fragile — for any linearly separable dataset, we can add 3 extra
data points so that every linear classifier has suboptimal margin but still gradient flow with small
initialization converges to a linear classifier.3 See Definition 6.1 for the construction and Figure 1
(right) for an example.

3Here linear classifier refers to a classifier whose decision boundary is linear.
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Unlike the symmetric case, we use balanced Gaussian initialization instead of purely random Gaussian
initialization: wk ∼ N (0, σ2

initI), ak = sk‖wk‖2, where sk ∼ unif{±1}. We call this distribution
as θ0 ∼ D̃init(σinit). This adaptation can greatly simplify our analysis since it ensures that ak(t) =
sk‖wk(t)‖2 for all t ≥ 0 (Corollary B.18). Similar as the symmetric case, an alternative way to
generate this distribution is to first draw θ̄0 ∼ D̃init(1), and then set θ0 = σinitθ̄0.
Definition 6.1 ((H ,K ε,w⊥)-Hinted Dataset). Given a linearly separable dataset S with max-margin
linear separator w∗, for constants H,K, ε > 0 and unit vector w⊥ ∈ Sd−1 perpendicular to w∗, we
define the (H , K, ε, w⊥)-hinted dataset S ′ by the dataset containing all the data points in S and
the following 3 data points (numbered by 1, 2, 3) that can serve as hints to the max-margin linear
separator w∗:

(x1, y1) = (Hw∗, 1), (x2, y2) = (εw∗ +Kw⊥, 1), (x3, y3) = (εw∗ −Kw⊥, 1).

Theorem 6.2. Given a linearly separable dataset S and a unit vector w⊥ ∈ Sd−1 perpendicular
to the max-margin linear separator w∗, for any sufficiently large H > 0,K > 0 and sufficiently
small ε > 0, the following statement holds for the (H , K, ε, w⊥)-Hinted Dataset S ′. Under a
regularity assumption for gradient flow (see Assumption A.6), consider gradient flow on a Leaky
ReLU network with width m ≥ 1 and initialization θ0 = σinitθ̄0 where θ̄0 ∼ D̃init(1). With
probability 1− 2−m over the draw of θ̄0, if the initialization scale is sufficiently small, then gradient
flow directionally converges and f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) represents the one-Leaky-
ReLU classifier 1

2φ(〈w∗,x〉) with linear decision boundary. That is,

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) =

1

2
φ(〈w∗,x〉)

]
≥ 1− δ.

Moreover, the convergent classifier only attains a suboptimal margin.

Theorem 6.2 is actually a simple corollary general theorem under data assumptions that hold for
a broader class of linearly separable data. From a high-level perspective, we only require two
assumptions: (1). There is a direction such that data points have large inner products with this
direction on average; (2). The support vectors for the max-margin linear separatorw∗ have nearly the
same labels. The first hint data point is for the first condition and the second and third data point is for
the second condition. We defer formal statements of the assumptions and theorems to Appendix A.

7 Conclusions and Future Works

We study the implicit bias of gradient flow in training two-layer Leaky ReLU networks on linearly
separable datasets. When the dataset is symmetric, we show any global-max-margin classifier is
exactly linear and gradient flow converges to a global-max-margin direction. On the pessimistic side,
we show such margin maximization result is fragile — for any linearly separable dataset, we can lead
gradient flow to converge to a linear classifier with suboptimal margin by adding only 3 extra data
points. A critical assumption for our convergence analysis is the linear separability of data. We left it
as a future work to study simplicity bias and global margin maximization without assuming linear
separability.
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A Theorem Statements for the Non-symmetric Case

A.1 Assumptions and Main Theorems

For every xi, define x+
i := xi if yi = 1 and x+

i := αleakyxi if yi = −1. Similarly, we define
x−i := αleakyxi if yi = 1 and x+

i := xi if yi = −1. Then we define µ+ to be the mean vector of
yix

+
i , and µ− to be the mean vector of yix−i , that is,

µ+ :=
1

n

∑
i∈[n]

yix
+
i , µ− :=

1

n

∑
i∈[n]

yix
−
i . (6)

Theorem 6.2 is indeed a simple corollary of Theorem A.7 below which holds for a broader class of
datasets. Now we illustrate the assumptions one by one.

We first make the following assumption saying that there is a principal directionw� ∈ Sd−1 such that
data points on average have much larger inner products withw� than any other direction perpendicular
to w�. This ensures at small initialization, the moving direction of each neurons lies in a small
cone around the the direction of ±w�, and thus will converge to that cone eventually. The opening
angle of this small cone is 2 arcsin γ�

maxi∈[n] ‖xi‖2
, which ensures the sign pattern inside the cone

{〈w,xi〉}ni=1 is unique and indeed equal to {yi}ni=1, and thus all neurons converge to two directions,
µ+ and µ− (defined in (6)).

Assumption A.1 (Existence of Principal Direction). There exists a unit-norm vector w� such that
γ� := mini∈[n] yi 〈w�,xi〉 > 0 and

1
n

∑
i∈[n] ‖P �xi‖2

αleaky 〈µ,w�〉
<

γ�

maxi∈[n] ‖P �xi‖2
,

where P � := I −w�w�> is the projection matrix onto the space perpendicular to w�, and µ :=
1
n

∑
i∈[n] yixi is the mean vector of yixi.

Indeed, our main theorem is based on a weaker assumption than Assumption A.1, which is Assump-
tion A.2 below, but the geometric meaning of Assumption A.2 is not as clear as Assumption A.1. We
will show in Lemma G.1 that Assumption A.1 implies Assumption A.2.

Assumption A.2. For all i ∈ [n], we have

〈µ, yixi〉 >
1− αleaky

n · αleaky

∑
j∈[n]

max{−〈yixi, yjxj〉, 0}.

In general, the norms ‖µ+‖2 and ‖µ−‖2 should not be equal: for any given dataset S , we can make
‖µ+‖2 6= ‖µ−‖2 by adding arbitrarily small perturbations to the data points. This motivates us to
assume that ‖µ+‖2 6= ‖µ−‖2. Without loss of generality, we can assume that ‖µ+‖2 > ‖µ−‖2 for
convenience (Assumption A.3). When the reverse is true, i.e., ‖µ+‖2 < ‖µ−‖2, we can change the
direction of the inequality by flipping all the labels in the dataset so that our theorems can apply. We
include the theorem statements for this reversed case in Appendix A.3.

Assumption A.3. The norm of µ+ is strictly larger than µ−, i.e., ‖µ+‖2 > ‖µ−‖2.

Now we definew+ to be the max-margin linear separator of the dataset consisting of (x+
i , yi), where

i ∈ [n], and define γ+ to be this max margin. That is,

w+ := arg max
w∈Sd−1

{
min
i∈[n]

yi
〈
w,x+

i

〉}
, γ+ := max

w∈Sd−1

{
min
i∈[n]

yi
〈
w,x+

i

〉}
.

The reason that we care about w+ and γ+ is because that it can be related to margin maximization
on one-neuron Leaky ReLU nets. The following lemma is easy to prove.

Lemma A.4. For m = 1, if θ = (w1, a1) ∈ SD−1 is a KKT-margin direction and a1 ≥ 0, then
θ = ( 1√

2
w+, 1√

2
), and it attains the global max margin 1

2γ
+.
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The third assumption we made is that this margin cannot be obtained when all ai are negative,
regardless of the width. This assumption holds when all the support vectors x+

i have positive labels,
i.e., yi = 1. Conceptually, this assumption is about whether nearly all the support vectors have
positive labels (or negative labels in the reversed case where ‖µ+‖2 < ‖µ−‖2).
Assumption A.5. For any m ≥ 1 and any θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD, if ak ≤ 0 for all
k ∈ [m], then the normalized margin γ(θ) on the dataset {(xi, yi) : i ∈ [n], yi〈w+,x+

i 〉 = γ+} is
less than 1

2γ
+.

Similar to Assumption 4.6 in the symmetric case, we need Assumption A.6 on non-branching starting
point due to the technical difficulty for the potential non-uniqueness of gradient flow trajectory.
Assumption A.6. For any m ≥ 1, there exist r, ε > 0 such that θ is a non-branching starting point if
ak = ‖wk‖2 ∈ (0, r) holds for all k ∈ [m], and all wk point to the same direction v ∈ Sd−1 with∥∥∥v − µ+

‖µ+‖2

∥∥∥
2
≤ ε.

Now we are ready to state our theorem, and we defer the proofs to Appendix G.
Theorem A.7. Under Assumptions 3.2, A.2, A.3, A.5 and A.6, consider gradient flow on a Leaky
ReLU network with width m ≥ 1 and initialization θ0 = σinitθ̄0 where θ̄0 ∼ D̃init(1). With
probability 1− 2−m over the draw of θ̄0, if the initialization scale is sufficiently small, then gradient
flow directionally converges and f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) represents the one-Leaky-
ReLU classifier 1

2φ(〈w+,x〉) with linear decision boundary. That is,

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) =

1

2
φ(〈w+,x〉)

]
≥ 1− 2−m.

A.2 Applying Theorem A.7 to prove Theorem 6.2

We give a proof of Theorem 6.2 here given the result of Theorem A.7.

Proof. With a (H , K ε, w⊥)-Hinted Dataset (Definition 6.1) with proper H,K, ε, we only need
to show that Assumptions A.2, A.3 and A.5 hold for Theorem 6.2. Specifically, we choose the
parameters such that

• K > 0;

• ε < αleaky mini>3 yi 〈w∗,xi〉;

• H > max{ε,H0, n ‖µ−‖2 + ‖
∑
j>1 yjx

+
j ‖2}, where

H0 =
maxi∈[n] ‖P ∗xi‖2

∑
i∈[n] ‖P

∗xi‖2
αleaky mini>1〈yixi,w∗〉 −

∑
i>1 〈w∗, yixi〉 and P ∗ = I − w∗w∗> is the

projection matrix onto the orthogonal space of w∗.

Notice that H0 is indepenent of H as the data point x1 has projection ‖P ∗x1‖2 = 0. For Assump-
tion A.1, w� = w∗ is a valid principal direction in this case, as

max
i∈[n]
‖P �xi‖2

1
n

∑
i∈[n] ‖P �xi‖2
αleakyγ�

=
1

n
(H0 +

∑
i>1

〈w∗, yixi〉) < 〈µ,w�〉 .

Then Assumption A.2 follows from Assumption A.1 by Lemma G.1. Since H > n ‖µ−‖2 +

‖
∑
j>1 yjx

+
j ‖2, ∥∥µ+

∥∥
2
≥ 1

n
H −

∥∥∥∥∥∥ 1

n

∑
j>1

yjx
+
j

∥∥∥∥∥∥
2

>
∥∥µ−∥∥

2
,

and thus Assumption A.3 holds. Furthermore, with ε < αleaky mini>3 yi 〈w∗,xi〉 and H > ε,
(x2, y2) = (εw∗ + Kw⊥, 1) and (x3, y3) = (εw∗ − Kw⊥, 1) are the only support vectors for
the linear margin problem on {(xi, yi)} and that on {(x+

i , yi)} as well. Then w+ = w∗ and
γ+ = ε. For a neuron with ak < 0, the total output margin on the hints (x2, y2) and (x3, y3) is
akφ(w>k x2) + akφ(w>k x3) ≤ 2αleakyε|ak|‖wk‖2 ≤ αleakyε(a

2
k + ‖wk‖22). Thus the normalized

margin for multiple such neurons is at most αleakyε
2 < ε

2 , so Assumption A.5 will also be true.
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A.3 Results in the Reversed Case

In a reversed case where ‖µ+‖2 < ‖µ−‖2, we can apply Theorem A.7 by flipping the labels in the
dataset. Below we state the assumptions and the theorem in the reversed case.
Assumption A.8. ‖µ+‖2 < ‖µ−‖2.

Now similarly we define w− and γ−.

w− := arg max
w∈Sd−1

{
min
i∈[n]

yi
〈
w,x−

〉}
, γ− := max

w∈Sd−1

{
min
i∈[n]

yi
〈
w,x−i

〉}
.

Assumption A.9. For any m ≥ 1 and any θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD, if ak ≤ 0 for all
k ∈ [m], then the normalized margin γ(θ) on the dataset {(xi, yi) : i ∈ [n], yi〈w−,x−i 〉 = γ−} is
less than 1

2γ
−.

Theorem A.10. Under Assumptions 3.2, A.2, A.6, A.8 and A.9, consider gradient flow on a Leaky
ReLU network with width m ≥ 1 and initialization θ0 = σinitθ̄0 where θ̄0 ∼ D̃init(1). With
probability 1 − 2−m over the draw of θ̄0, there is an sufficiently small initialization scale, such
that gradient flow directionally converges and f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) represents the
one-Leaky-ReLU classifier − 1

2φ(−〈w−,x〉) with linear decision boundary. That is,

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) = −1

2
φ(−〈w−,x〉)

]
≥ 1− 2−m.

B Additional Preliminaries and Lemmas

In this section, we will introduce additional notations and give some preliminary results for the
dynamics of the two-layer Leaky ReLU network. The only assumption we will use for the results
in the section is that the input norm is bounded maxi∈[n] ‖xi‖2 ≤ 1 and we do not assume other
properties of the dataset (such as symmetry) except we assume it explicitly.

B.1 Additional Notations

For notational convenience for calculation with subgradients, we generalize the following notations
for vectors to vector sets. More specifically, we define

• ∀A,B ⊆ Rd, A+B := {x+ y : x ∈ A,y ∈ B} and A−B := A+ (−B);

• ∀A ⊆ Rd, λ ∈ R, λA := {λx : x ∈ A};
• Let ‖ · ‖ be any norm on Rd, ∀A ⊆ Rd, ‖A‖ := {‖x‖ : x ∈ A} ⊆ R;

• ∀A ⊆ Rd and y ∈ Rd, 〈y, A〉 ≡ 〈A,y〉 := {〈x,y〉 : x ∈ A};
• We use dist(x,y) := ‖x − y‖2 to denote the L2-distance between x ∈ Rd and y ∈ Rd,

dist(A,y) := infx∈A ‖x− y‖2 to denote the minimum L2-distance between any x ∈ A
and y ∈ Rd, and dist(A,B) := infx∈A,y∈B ‖x− y‖2 to denote the minimum L2-distance
between any x ∈ A and any y ∈ B.

By Rademacher theorem, any real-valued locally Lipschitz function on RD is differentiable almost
everywhere (a.e.) in the sense of Lebesgue measure. For a locally Lipschitz function L : RD → R,
we use ∇L(θ) ∈ RD to denote the usual gradient (if L is differentiable at θ) and ∂◦L(θ) ⊆ RD
to denote Clarke’s subdifferential. The definition of Clarke’s subdifferential is given by (7): for
any sequence of differentiable points converging to θ, we collect convergent gradients from such
sequences and take the convex hull as the Clarke’s subdifferential at θ.

∂◦L(θ) := conv
{

lim
n→∞

∇L(θn) : L differentiable at θn, lim
n→∞

θn = θ
}
. (7)

For any full measure set Ω ⊆ RD that does not contain any non-differentiable points, (7) also has the
following equivalent form:

∂◦L(θ) = conv
{

lim
n→∞

∇L(θn) : θn ∈ Ω for all n and lim
n→∞

θn = θ
}
. (8)
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The Clarke’s subdifferential ∂◦L(θ) is convex compact if L is locally Lipschitz, and it is upper-
semicontinuous with respect to θ (or equivalently it has closed graph) if L is definable. We use
∂̄◦L(θ) ∈ RD to denote the min-norm gradient vector in the Clarke’s subdifferential at θ, i.e.,
∂̄◦L(θ) := arg ming∈∂◦L(θ) ‖g‖2. IfL is continuously differentiable at θ, then ∂◦L(θ) = {∇L(θ)}
and ∂̄◦L(θ) = ∇L(θ).

If θ can be written as θ = (θ1,θ2) ∈ RD1 × RD2 , then we use ∂L(θ)
∂θ1

∈ RD1 to denote the usual

partial derivatives (partial gradient) and ∂◦L(θ)
∂θ1

⊆ RD1 to denote the partial subderivatives (partial
subgradient) in the sense of Clarke.

Furthermore, we use the following notations to denote the radial and spherical components of ∂̄◦L(θ)
(which will be used in analyzing Phase III):

∂̄◦rL(θ) :=
θθ>

‖θ‖22
∂̄◦L(θ), ∂̄◦⊥L(θ) :=

(
I − θθ>

‖θ‖22

)
∂̄◦L(θ).

For univariate function f : R → R, we use f ′(z) ∈ R to denote the usual derivative (if f is
differentiable at z) and f◦(z) ⊆ R to denote the Clarke’s subdifferential.

The logistic loss is defined by `(q) = ln(1 + e−q), which satisfies `(0) = ln 2, `′(0) = −1/2,
|`′(q)| ≤ 1, |`′′(q)| ≤ 1. Given a dataset S = {(x1, y1), . . . , (xn, yn)}, we consider gradient
flow on two-layer Leaky ReLU network with output function fθ(xi) and logistic loss L(θ) :=
1
n

∑
i∈[n] `(qi(θ)), where qi(θ) := yifθ(xi). Following Davis et al. (2020); Lyu and Li (2020), we

say that a function z(t) ∈ RD on an interval I is an arc if z is absolutely continuous on any compact
subinterval of I . An arc θ(t) is a trajectory of gradient flow on L if θ(t) satisfies the following
gradient inclusion for a.e. t ≥ 0:

dθ(t)

dt
∈ −∂◦L(θ(t)).

Let ΩS be the set of parameter vectors θ = (w1, . . . ,wm, a1, . . . , am) so that 〈wk,xi〉 6= 0 for all
i ∈ [n], k ∈ [m], i.e., no activation function has zero input. For any θ ∈ ΩS , fθ(xi) and L(θ) are
continuously differentiable at θ, and the gradients are given by

∂fθ(x)

∂wk
= akφ

′(w>k xi)xi,
∂fθ(x)

∂ak
= φ(w>k xi). (9)

∂L(θ)

∂wk
=

1

n

∑
i∈[n]

`′(qi(θ))yiakφ
′(w>k xi)xi,

∂L(θ)

∂ak
=

1

n

∑
i∈[n]

`′(qi(θ))yiφ(w>k xi). (10)

Then the Clarke’s subdifferential for any θ can be computed from (8) with Ω = ΩS if needed.

Recall that G-function (Section 5.1) is defined by

G(w) :=
−`′(0)

n

∑
i∈[n]

yiφ(w>xi) =
1

2n

∑
i∈[n]

yiφ(w>xi).

Define L̃(θ) to the linear approximation of L(θ):

L̃(θ) := `(0)−
∑
k∈[m]

akG(wk).

For every θ0 ∈ RD, we define ϕ(θ0, t) to be the value of θ(t) for gradient flow on L(θ) starting
with θ(0) = θ0. For every θ̃0 ∈ RD, we define ϕ̃(θ̃0, t) to be the value of θ̃(t) for gradient flow on
L̃(θ̃) starting with θ̃(0) = θ̃0. In the case where the gradient flow trajectory may not be unique, we
assign ϕ(θ0, · ) (or ϕ̃(θ̃0, · )) by an arbitrary trajectory of gradient flow on L (or L̃) starting from θ0

(or θ̃0).

B.2 Grönwall’s Inequality

We frequently use Grönwall’s inequality in our analysis.
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Lemma B.1 (Grönwall’s Inequality). Let α, β, u be real-valued functions defined on [a, b). Suppose
that β, u are continuous and min{α, 0} is integrable on every compact subinterval of [a, b). If β ≥ 0
and u satisfies the following inequality for all t ∈ [a, b):

u(t) ≤ α(t) +

∫ t

a

β(τ)u(τ)dτ,

then for all t ∈ [a, b],

u(t) ≤ α(t) +

∫ t

a

α(τ)β(τ) exp

(∫ t

τ

β(τ ′)dτ ′
)

dτ. (11)

Furthermore, if α is non-decreasing, then for all t ∈ [a, b],

u(t) ≤ α(t) exp

(∫ t

a

β(τ)dτ
)
. (12)

B.3 Homogeneous Functions

For L ≥ 0, we say that a function f : Rd → R is (positively) L-homogeneous if f(cθ) = cLf(θ) for
all c > 0 and θ ∈ Rd. The proof for the following two theorems can be found in Lyu and Li (2020,
Theorem B.2) and Ji and Telgarsky (2020a, Lemma C.1) respectively.
Theorem B.2. For locally Lipschitz and L-homogeneous function f : Rd → R, we have

∂◦f(cθ) = cL−1∂◦f(θ).

for all θ ∈ Rd.
Theorem B.3 (Euler’s homogeneous function theorem). For locally Lipschitz and L-homogeneous
function f : Rd → R, we have

∀g ∈ ∂◦f(θ) : 〈g,θ〉 = Lf(θ),

for all θ ∈ Rd.

For the maximizer of a homogeneous function on Sd−1, we have the following useful lemma.
Lemma B.4. For locally Lipschitz and L-homogeneous function f : Rd → R, if θ ∈ Sd−1 is a
local/global maximizer of f(θ) on Sd−1 and f is differentiable at θ, then ∇f(θ) = Lf(θ)θ.

Proof. Since θ is a local/global maximizer of f(θ) on Sd−1 and f is differentiable at θ, ∇f(θ) is
parallel to θ, i.e.,∇f(θ) = cθ for some c ∈ R. By Theorem B.3 we know that 〈∇f(θ),θ〉 = Lf(θ).
So c = Lf(θ).

The following is a direct corollary of Lemma B.4.
Lemma B.5. Ifw ∈ Sd−1 attains the maximum of |G(w)| on Sd−1 and G(w) is differentiable atw,
then∇G(w) = G(w)w.

Proof. Note that G(w) is 1-homogeneous. Ifw attains the maximum of |G(w)| on Sd−1, then w is
either a maximizer of G(w) or −G(w). Applying Lemma B.4 gives ∇G(w) = G(w)w.

B.4 Karush-Kuhn-Tucker Conditions for Margin Maximization

Definition B.6 (Feasible Point and KKT Point, Dutta et al. 2013; Lyu and Li 2020). Let f, g1, . . . , gn :
RD → R be locally Lipschitz functions. Consider the following constrained optimization problem
for θ ∈ RD:

min f(θ)

s.t. gi(θ) ≤ 0, ∀i ∈ [n].

We say that θ is a feasible point if gi(θ) ≤ 0 for all i ∈ [n]. A feasible point θ is a KKT point if it
satisfies Karush-Kuhn-Tucker Conditions: there exist λ1, . . . , λn ≥ 0 such that
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1. 0 ∈ ∂◦f(θ) +
∑
i∈[n] λi∂

◦gi(θ);

2. ∀i ∈ [n] : λigi(θ) = 0.

Recall that we say that a parameter vector θ ∈ RD of a L-homogeneous network is along a KKT-
margin direction if θ

(qmin(θ))1/L
is a KKT point of (P), where f(θ) = 1

2‖θ‖
2
2 and gi(θ) = 1− qi(θ).

Alternatively, we can use the following equivalent definition.

Definition B.7 (KKT-margin Direction for Homogeneous Network, Lyu and Li 2020). For a pa-
rameter vector θ ∈ RD of a homogeneous network, we say θ is along a KKT-margin direction if
qi(θ) > 0 for all i ∈ [n] and there exist λ1, . . . , λn ≥ 0 such that

1. θ ∈
∑
i∈[n] λi∂

◦qi(θ);

2. For all i ∈ [n], if qi(θ) 6= qmin(θ) then λi = 0.

For two-layer Leaky ReLU network, qi(θ) := yi
∑
k∈[m] akφ(w>k xi). Then the KKT-margin

direction is defined as follows.

Definition B.8 (KKT-margin Direction for Two-layer Leaky ReLU Network). For a parameter vector
θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD of a two-layer Leaky ReLU network, we say θ is along a
KKT-margin direction if qi(θ) > 0 for all i ∈ [n] and there exist λ1, . . . , λn ≥ 0 such that

1. For all k ∈ [m], wk ∈
∑
i∈[n] λiyiakφ

◦(w>k xi)xi;

2. For all k ∈ [m], ak =
∑
i∈[n] λiyiφ(w>k xi);

3. For all i ∈ [n], if qi(θ) 6= qmin(θ) then λi = 0.

For θ along a KKT-margin direction of two-layer Leaky ReLU network, Lemma B.9 below shows
that |ak| = ‖wk‖2 for all k ∈ [m].

Lemma B.9. If θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD is along a KKT-margin direction of a two-
layer Leaky ReLU network, then |ak| = ‖wk‖2 for all k ∈ [m].

Proof. By Definition B.8 and Theorem B.3, we have

‖wk‖22 ∈

〈
wk,

∑
i∈[n]

λiyiakφ
◦(w>k xi)xi

〉
=

∑
i∈[n]

λiyiakφ(w>k xi)

 ,

|ak|2 = ak ·
∑
i∈[n]

λiyiφ(w>k xi) =
∑
i∈[n]

λiyiakφ(w>k xi).

Therefore ‖wk‖22 = |ak|2.

B.5 Lemmas for Perturbation Bounds

Recall that ‖θ‖M is defined in Definition 5.1.

Lemma B.10. For ‖x‖2 ≤ 1, |fθ(x)| ≤ m‖θ‖2M, |fθ(x)−fθ̃(x)| ≤ m‖θ−θ̃‖M
(
‖θ‖M + ‖θ̃‖M

)
.

Proof. The proof is straightforward by definition of fθ(x) and ‖θ‖M. For the first inequality,

|fθ(x)| ≤
m∑
k=1

|akφ(w>k x)| ≤
m∑
k=1

|ak| · |w>k x| ≤
m∑
k=1

|ak| · ‖wk‖2 ≤ m‖θ‖2M.
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For the second inequality,

|fθ(x)− fθ̃(x)| ≤
m∑
k=1

|akφ(w>k x)− ãkφ(w̃>k x)|

≤
m∑
k=1

|akφ(w>k x)− akφ(w̃>k x)|+ |akφ(w̃>k x)− ãkφ(w̃>k x)|

≤
m∑
k=1

|ak| · ‖wk − w̃k‖2 + |ak − ãk| · ‖w̃k‖2

≤ m‖θ − θ̃‖M
(
‖θ‖M + ‖θ̃‖M

)
,

which completes the proof.

We have the following bound for the difference between ∂◦L(θ) and ∂◦L̃(θ).
Lemma B.11. Assume that ‖xi‖2 ≤ 1 for all i ∈ [n]. For any θ = (w1, . . . ,wm, a1, . . . , am) ∈
RD, we have the following bounds for the partial derivatives of L(θ)− L̃(θ):∥∥∥∥∥∂◦(L(θ)− L̃(θ))

∂wk

∥∥∥∥∥
2

⊆
(
−∞,m‖θ‖2M|ak|

]
,

∣∣∣∣∣∂(L(θ)− L̃(θ))

∂ak

∣∣∣∣∣ ≤ m‖θ‖2M‖wk‖2.
for all k ∈ [m].

Proof. We only need to prove the following bounds for gradients at any θ ∈ ΩS , i.e., 〈wk,xi〉 6= 0
for all i ∈ [n], k ∈ [m]. For the general case where θ can be non-differentiable, we can prove the
same bounds for Clarke’s sub-differential at every point θ ∈ RD by taking limits in ΩS through (8).∥∥∥∥∥∂(L(θ)− L̃(θ))

∂wk

∥∥∥∥∥
2

≤ m‖θ‖2M|ak|,

∣∣∣∣∣∂(L(θ)− L̃(θ))

∂ak

∣∣∣∣∣ ≤ m‖θ‖2M‖wk‖2.
By Taylor expansion, we have

`(yifθ(xi)) = `(0) + `′(0)yifθ(xi) +

∫ yifθ(xi)

0

`′′(z)(yifθ(xi)− z)dz.

Taking average over i ∈ [n] gives

L(θ) = `(0) +
1

n

∑
i∈[n]

`′(0)yifθ(xi) +
1

n

∑
i∈[n]

∫ yifθ(xi)

0

`′′(z)(yifθ(xi)− z)dz

= L̃(θ) +
1

n

∑
i∈[n]

∫ yifθ(xi)

0

`′′(z)(yifθ(xi)− z)dz.

By Leibniz integral rule,

∇θ
(
L(θ)− L̃(θ)

)
= ∇θ

 1

n

∑
i∈[n]

∫ yifθ(xi)

0

`′′(z)(yifθ(xi)− z)dz


= − 1

n

∑
i∈[n]

∫ yifθ(xi)

0

`′′(z)yi∇θ(fθ(xi))dz

= − 1

n

∑
i∈[n]

(∫ yifθ(xi)

0

`′′(z)dz

)
yi∇θ(fθ(xi)).

Since `′′(z) ≤ 1, there exists δi ∈ [−|fθ(xi)|, |fθ(xi)|] for all i ∈ [n] such that

∇θ
(
L(θ)− L̃(θ)

)
=

1

n

∑
i∈[n]

δi∇θ(fθ(xi)). (13)
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Writing the formula with respect to wk, ak, we have∥∥∥∥∥∂(L(θ)− L̃(θ))

∂wk

∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

|δi| ·
∥∥∥∥∂fθ(xi)

∂wk

∥∥∥∥
2

≤ 1

n

∑
i∈[n]

|fθ(xi)| · ‖akφ′(〈wk,xi〉)xi‖2 .∣∣∣∣∣∂(L(θ)− L̃(θ))

∂ak

∣∣∣∣∣ ≤ 1

n

∑
i∈[n]

|δi| ·
∥∥∥∥∂fθ(xi)

∂ak

∥∥∥∥
2

≤ 1

n

∑
i∈[n]

|fθ(xi)| · |φ(〈wk,xi〉)| .

By Lemma B.10, |fθ(xi)| ≤ m‖θ‖2M. Since Leaky ReLU is 1-Lipschitz and ‖xi‖2 ≤ 1, we have
‖akφ′(〈wk,xi〉)xi‖2 ≤ |ak|, |φ(〈wk,xi〉)| ≤ ‖wk‖2. Then we have∥∥∥∥∥∂(L(θ)− L̃(θ))

∂wk

∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

m‖θ‖2M · |ak| = m‖θ‖2M · |ak|,∣∣∣∣∣∂(L(θ)− L̃(θ))

∂ak

∣∣∣∣∣ ≤ 1

n

∑
i∈[n]

m‖θ‖2M · ‖wk‖2 = m‖θ‖2M · ‖wk‖2,

which completes the proof for θ ∈ ΩS and thus the same bounds hold for the general case.

Lemma B.11 is a lemma for bounding the partial subderivatives. For the full subgradient, we have
the following lemma.
Lemma B.12. Assume that ‖xi‖2 ≤ 1 for all i ∈ [n]. For any θ ∈ RD, we have

∀g ∈ ∂◦
(
L(θ)− L̃(θ)

)
: ‖g‖M ≤ m‖θ‖

3
M.

Proof. Note that |ak| ≤ ‖θ‖M and ‖wk‖2 ≤ ‖θ‖M. Combining this with Lemma B.11 gives
‖∂◦L(θ)‖M ⊆ (−∞,m‖θ‖3M].

When L̃(θ) is smooth, we have the following direct corollary.

Corollary B.13. Assume that ‖xi‖2 ≤ 1 for all i ∈ [n]. If L̃ is continuously differentiable at
θ ∈ RD, then we have

∀g ∈
(
∂◦L(θ)−∇L̃(θ)

)
: ‖g‖M ≤ m‖θ‖

3
M.

Note that ∂◦(L(θ) − L̃(θ)) 6= ∂◦L(θ) − ∇L̃(θ) because the exact sum rule does not hold for
Clarke’s subdifferential when L̃(θ) is not smooth. In the non-smooth case, we have the following
lemma:
Lemma B.14. Assume that ‖xi‖2 ≤ 1 for all i ∈ [n]. For any ε > 0 and ‖θ‖M ≤

√
ε

2m , we have

∀k ∈ [m],
∂◦L(θ)

∂wk
⊆

{
− ak

2n

n∑
i=1

(1 + εi)αiyixi : αi ∈ φ◦(w>k xi), εi ∈ [−ε, ε],∀i ∈ [n]

}
.

Proof. If θ ∈ ΩS , by (13), there exists δi ∈ [−|fθ(xi)|, |fθ(xi)|] for all i ∈ [n] such that

∇L(θ) = ∇L̃(θ) +
1

n

∑
i∈[n]

δi∇θ(fθ(xi)).

Writing it with respect to wk, we have
∂L
∂wk

= −ak
∂G(wk)

∂wk
+

1

n

∑
i∈[n]

δi
∂fθ(xi)

∂wk

= − ak
2n

∑
i∈[n]

yiφ
′(w>k xi)xi +

1

n

∑
i∈[n]

δiakφ
′(w>k xi)xi

= − ak
2n

∑
i∈[n]

yi(1− 2yiδi)φ
′(w>k xi)xi.
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Regarding Clarke’s subdifferential at a point θ ∈ RD, we can take limits in a neighborhood of θ in
ΩS through (8), then

∂◦L
∂wk

⊆

− ak2n

∑
i∈[n]

yi(1 + εi)αixi : αi ∈ φ◦(w>k xi), εi ∈ [−2|fθ(xi)|, 2|fθ(xi)|],∀i ∈ [n]

 .

We conclude the proof by noticing that [−2|fθ(xi)|, 2|fθ(xi)|] ⊆ [−ε, ε] by Lemma B.10.

B.6 Basic Properties of Gradient Flow

The following lemma is a simple corollary from Davis et al. (2020).
Lemma B.15. For gradient flow θ(t) on a two-layer Leaky ReLU network with logistic loss, we have

dθ(t)

dt
= −∂̄◦L(θ(t)),

dL(θ(t))

dt
= −

∥∥∥∥dθ(t)

dt

∥∥∥∥2

2

for a.e. t ≥ 0.

The following lemma is from Du et al. (2018). We provide a simple proof here for completeness.
Lemma B.16. For gradient flow θ(t) = (w1(t), . . . ,wm(t), a1(t), . . . , am(t)) on a two-layer Leaky
ReLU network with logistic loss, the following holds for all t ≥ 0,

1

2

d‖wk‖22
dt

=
1

2

d|ak|2

dt
= − 1

n

n∑
i=1

`′(qi(θ))yiakφ(w>k xi),

where qi(θ) := yifθ(xi). Therefore, d
dt (‖wk‖

2
2 − |ak|2) = 0 for all t ≥ 0.

Proof. By (9), we have the following for any θ ∈ ΩS ,

ak ·
∂fθ(x)

∂ak
= akφ(w>k xi),

〈
wk,

∂fθ(x)

∂wk

〉
= akφ

′(w>k xi)w
>
k xi.

By 1-homogeneity of φ and Theorem B.3, we have φ′(w>k xi)w
>
k xi = φ(w>k xi), which implies

that
〈
wk,

∂fθ(x)
∂wk

〉
= akφ(w>k xi).

For any θ ∈ RD, we can take limits in ΩS through (8) to show that the same equation holds in
general.

ak ·
∂◦fθ(x)

∂ak
=

〈
wk,

∂◦fθ(x)

∂wk

〉
=
{
akφ(w>k xi)

}
.

By chain rule, for a.e. t ≥ 0 we have

1

2

d|ak|2

dt
=

dak
dt
· ak ∈ −

1

n

n∑
i=1

`′(qi(θ))yi
∂◦fθ(xi)

∂ak
· ak.

1

2

d‖wk‖22
dt

=

〈
dwk
dt

,wk

〉
∈ − 1

n

n∑
i=1

`′(qi(θ))yi

〈
∂◦fθ(xi)

∂wk
,wk

〉
.

Therefore we have

1

2

d|ak|2

dt
=

1

2

d‖wk‖22
dt

= − 1

n

n∑
i=1

`′(qi(θ))yiakφ(w>k xi),

for a.e. t ≥ 0. Note that − 1
n

∑n
i=1 `

′(qi(θ))yiakφ(w>k xi) is continuous in θ and thus continuous in
time t. This means we can further deduce that this equation holds for all t ≥ 0. This automatically
proves that d

dt (‖wk‖
2
2 − |ak|2) = 0.

The following lemma shows that if a neuron has zero weights, then it stays with zero weights forever.
Conversely, this also implies that the weights stay non-zero if they are initially non-zero.
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Lemma B.17. If ak(t0) = 0 and wk(t0) = 0 at some time t0 ≥ 0, then ak(t) = 0 and wk(t) = 0
for all t ≥ 0.

Proof. By Lemma B.16, we know that ‖wk‖2 = |ak| hold for all t ≥ 0. Also, we have 1
2

∣∣∣ d‖wk‖22
dt

∣∣∣ =

1
2

∣∣∣ d|ak|2
dt

∣∣∣ ≤ C · |ak|‖wk‖2 = C‖wk‖22, where C > 0 is some constant. Then

‖wk(t)‖22 ≤ ‖wk(t0)‖22 +

∫ t

t0

2C‖wk(τ)‖22dτ.

By Grönwall’s inequality (12) this implies that ‖wk(t)‖2 = 0 for all t ≥ t0. Similarly,

‖wk(t)‖22 ≤ ‖wk(t0)‖22 +

∫ t0

t

2C‖wk(τ)‖22dτ.

By Grönwall’s inequality (12) again, ‖wk(t)‖2 = 0 for all t ≤ t0, which completes the proof.

A direct corollary of Lemma B.16 and Lemma B.17 is the following characterization in the case
where the weights are initially balanced.
Corollary B.18. If |ak| = ‖wk‖2 initially for t = 0, then this equation holds for all t ≥ 0. Moreover,

1. If ak(0) = ‖wk(0)‖2, then ak(t) = ‖wk(t)‖2 for all t ≥ 0;

2. If ak(0) = −‖wk(0)‖2, then ak(t) = −‖wk(t)‖2 for all t ≥ 0.

B.7 A Useful Theorem for Loss Convergence

In this section we prove a useful theorem for loss convergence, which will be used later in our analysis
for both symmetric and non-symmetric datasets.
Theorem B.19. Under Assumption 3.2, for any linear seprator w∗ of the data with positive linear
margin (e.g. yi 〈w∗, xi〉 ≥ γ∗ > 0 for all i ∈ [n]), if initially there exists k ∈ [m] such that

sgn(ak(0)) 〈wk(0),w∗〉 > 0, 〈wk(0),w∗〉2 > ‖wk(0)‖22 − |ak(0)|2 ,
then ak(t) 6= 0 for all t > 0, and L(θ(t))→ 0 and ‖θ(t)‖2 → +∞ as t→ +∞.

Before proving Theorem B.19, we first prove a lemma on gradient lower bounds.
Lemma B.20. For a.e. t ≥ 0,〈

sgn(ak)
dwk
dt

,w∗
〉
≥ |ak|αleakyγ

∗ · 1− exp(−nL)

n
.

Proof. By (10), there exist h(k)
1 (t), . . . , h

(k)
n (t) ∈ [αleaky, 1] such that

dwk
dt

=
ak
n

∑
i∈[n]

gi(θ(t))h
(k)
i (t)yixi

where gi(θ(t)) = −`′(yifθ(t)(xi)) > 0. Then we have〈
sgn(ak)

dwk
dt

,w∗
〉
≥ |ak|

n

∑
i∈[n]

gi(θ(t))αleakyγ
∗.

Note that −`′(q) = 1
1+eq = 1− 1

1+e−q = 1− exp(−`(q)) for all q. So we have the following lower
bound for

∑
i∈[n] gi(θ(t)):∑
i∈[n]

gi(θ(t)) =
∑
i∈[n]

−`′(yifθ(xi)) =
∑
i∈[n]

(1− exp(−`(yifθ(xi))))

≥ max
i∈[n]

(1− exp(−`(yifθ(xi))))

≥ 1− exp

(
−max
i∈[n]

`(yifθ(xi))

)
≥ 1− exp(−nL).
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Therefore, 〈
sgn(ak)

dwk
dt

,w∗
〉
≥ |ak|αleakyγ

∗ · 1− exp(−nL)

n
,

which completes the proof.

Proof for Theorem B.19. We only need to show that there exists t0 such that L(θ(t0)) < ln 2
n , then

we can apply Theorem 3.1 to show that L(θ(t))→ 0. Assume to the contrary that L(θ(t)) ≥ ln 2
n

for all t ≥ 0. By Lemma B.20,

sgn(ak)

〈
dwk
dt

,w∗
〉
≥ |ak| ·

αleakyγ
∗

2n
.

Let c := 〈wk(0),w∗〉2 − ‖wk(0)‖22 + |ak(0)|2 > 0. First we show that sgn(ak(t)) = sgn(ak(0))
for all t > 0. Otherwise let ts := inf{t : sgn(ak(t)) 6= sgn(ak(0))}, and since ak(t) is continuous,
ak(ts) = 0. We know for t ∈ [0, ts], sgn(ak(0)) d

dt 〈wk(t),w∗〉 > 0, and

|ak(ts)|2 = |ak(0)|2 − ‖wk(0)‖22 + ‖wk(ts)‖22 ≥ |ak(0)|2 − ‖wk(0)‖22 + 〈wk(ts),w
∗〉2

> |ak(0)|2 − ‖wk(0)‖22 + 〈wk(0),w∗〉2 = c > 0.

This contradicts to the fact that ak(ts) = 0, and thus sgn(ak(t)) does not change during all time.
Therefore for any t > 0, ak(t) 6= 0. Then for all t > 0,

|ak(t)|2 = |ak(0)|2 − ‖wk(0)‖22 + ‖wk(t)‖22 ≥ |ak(0)|2 − ‖wk(0)‖22 + 〈wk(t),w∗〉2

> |ak(0)|2 − ‖wk(0)‖22 + 〈wk(0),w∗〉2 = c.

Lemma B.15 ensures that − dL
dt =

∥∥ dθ
dt

∥∥2

2
for a.e. t ≥ 0. Then we have

−dL
dt
≥
∥∥∥∥dwk

dt

∥∥∥∥2

2

≥
〈

dwk
dt

,w∗
〉2

≥ |ak|2
(
αleakyγ

∗

2n

)2

≥ c2 ·
(
αleakyγ

∗

2n

)2

.

Then we can conclude that

L(θ(0))− L(θ(t)) ≥ c2
(
αleakyγ

∗

2n

)2

t.

Integrating on t from 0 to +∞, we can see that the LHS is upper bounded by L(θ(0))− ln 2
n while

the RHS is unbounded, which leads to a contradiction. Therefore, there exist time t0 such that
L(θ(t0)) < ln 2

n , and thus L(θ(t))→ 0 as t→ +∞.

C Proofs for Linear Maximality for the Symmetric Case

For linearly separable and symmetric data, we show that all global-max-margin directions represent
linear functions in Theorem 4.2. We give a proof here.

Proof for Theorem 4.2. Let θ∗ = (w1, . . . ,wm, a1, . . . , am) ∈ SD−1 be any global-max-margin
direction with output margin qmin(θ∗) = γ(θ∗). As the dataset is symmetric,

γ(θ∗) = min
i∈[n]
{yifθ∗(xi),−yifθ∗(−xi)}.

Now we define A :=
√∑

k∈[m] a
2
k and let θ′ = (w′1, . . . ,w

′
m, a

′
1, . . . , a

′
m) where

w′1 =
1√
2A

∑
k∈[m]

akwk, w′2 = −w′1, a′1 =
A√
2
, a′2 = −a′1,
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and a′k = 0,w′k = 0 for k > 2. We claim that γ(θ′) ≥ γ(θ∗). First we prove that qi(θ′) ≥ γ(θ∗)
by repeatedly applying φ(z)− φ(−z) = (1 + αleaky)z.

qi(θ
′) = yifθ′(xi) = yi (a′1φ(〈w′1,xi〉) + a′2φ(〈w′2,xi〉))

= yi(1 + αleaky)a′1 〈w′1,xi〉

=
yi
2

∑
k∈[m]

〈(1 + αleaky)akwk,xi〉

=
yi
2

∑
k∈[m]

(
akφ(wk

>xi)− akφ(−wk>xi)
)

=
1

2
(yifθ∗(xi)− yifθ∗(−xi)) ≥ γ(θ∗).

Meanwhile, by the Cauchy-Schwarz inequality,

‖θ′‖22 = A2 +

∥∥∥∥∥∥
∑
k∈[m]

ak
A
wk

∥∥∥∥∥∥
2

2

≤ A2 +
∑
k∈[m]

(ak
A

)2

·
∑
k∈[m]

‖wk‖22 = A2 +
∑
k∈[m]

‖wk‖22 = ‖θ∗‖22.

Thus γ(θ′) = qmin(θ′)
‖θ′‖22

≥ γ(θ∗). As θ∗ is already a global-max-margin direction, equalities should
hold in all the inequalities above, so

min
i∈[n]
{yifθ∗(xi)− yifθ∗(−xi)} = 2γ(θ∗),

∥∥∥∥∥∥
∑
k∈[m]

ak
A
wk

∥∥∥∥∥∥
2

2

=
∑
k∈[m]

(ak
A

)2

·
∑
k∈[m]

‖wk‖22.

Then we know the following:

• There is c ∈ Rd that wk = akc for all k;

• There is j ∈ [n] that yjfθ∗(xj) = −yjfθ∗(−xj) = γ(θ∗).

Note that φ(z) + φ(−z) = (1− αleaky)|z|. Then we have

0 = fθ∗(xj)+fθ∗(−xj) =
∑
k∈[m]

ak
(
φ(akc

>xj) + φ(−akc>xj)
)

=

m∑
k=1

(1−αleaky)ak|akc>xj |.

Certainly c>xj 6= 0 as otherwise the margin would be zero. Then
∑
k∈[m] ak|ak| = 0, which means∑

k:ak≥0 a
2
k =

∑
k:ak<0 a

2
k = 1

2A
2, and therefore

fθ∗(x) =

m∑
k=1

akφ(akc
>x) =

m∑
k=1

ak|ak|φ(sgn(ak)c>x)

=
1

2
A2(φ(c>x)− φ(−c>x)) =

1

2
A2(1 + αleaky)c>x

is a linear function in x.

Finally, let γw∗ = mini∈[n] yi 〈w∗,xi〉 be the maximum linear margin, where w∗ ∈ Sd−1 is the
max-margin linear separator. As ‖θ∗‖22 = 1 = (1 + ‖c‖22)A2,

γ(θ∗) =
1

2
A2(1 + αleaky) min

i∈[n]
yic
>xi ≤

1

2
A2(1 + αleaky) ‖c‖2 γw∗

=
‖c‖2

2(1 + ‖c‖22)
(1 + αleaky)γw∗ ≤

1

4
(1 + αleaky)γw∗ .

By choosing c = w∗ with A = 1√
2

, the network is able to attain the margin 1
4 (1 + αleaky)γw∗ . As

θ∗ is already a global-max-margin direction, we know again that the equalities must hold. Therefore
we know
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• mini∈[n] yic
>xi = ‖c‖2 γw∗ ;

• ‖c‖2
1+‖c‖22

= 1
2 .

Then we know c = w∗ due to the uniqueness of the max-margin linear separator, and thus A = 1√
2

.

Therefore the function is fθ∗(x) =
1+αleaky

4 〈w∗,x〉.

D Proofs for Phase I

In the subsequent sections we first show the proofs for the symmetric datasets under Assumption 4.1.
Additional proofs for the non-symmetric counterparts are provided in Appendix G.

As we have illustrated in Section 5.1, we have G(w) = 〈w, µ̃〉 under Assumption 4.1. Then we have

L̃(θ) := `(0)−
∑
k∈[m]

akG(wk) = `(0)−
∑
k∈[m]

ak 〈wk, µ̃〉 .

This means the dynamics of θ̃(t) = (w̃1(t), . . . , w̃m(t), ã1(t), . . . , ãm(t)) = ϕ̃(θ̃0, t) can be de-
scribed by linear ODE:

dw̃k
dt

= akµ̃,
dãk
dt

= 〈w̃k, µ̃〉 .

Lemma D.1. Let θ̃(t) = ϕ̃(θ̃0, t). Then

‖θ̃(t)‖M ≤ exp(tλ0)‖θ̃0‖M.

Proof. By definition and Cauchy-Schwartz inequality,∥∥∥∥dw̃k
dt

∥∥∥∥
2

≤ ‖ãkµ̃‖2 ≤ λ0|ãk|,
∣∣∣∣dãkdt

∣∣∣∣ ≤ |w̃>k µ̃| ≤ λ0‖w̃k‖2.

So we have ‖θ̃(t)‖M ≤ ‖θ0‖M +
∫ t

0
λ0‖θ̃(τ)‖Mdτ . Then we can finish the proof by Grönwall’s

inequality (11).

Lemma D.2. For initial point θ0 6= 0, we have

‖θ(t)− ϕ̃(θ0, t)‖M ≤
4m‖θ0‖3M

λ0
exp(3λ0t),

for all t ≤ 1
λ0

ln

√
λ0/4√

m‖θ0‖M
.

Proof. Let θ̃(t) = ϕ̃(θ0, t). By Corollary B.13, the following holds for a.e. t ≥ 0,∥∥∥∥∥dθ
dt
− dθ̃

dt

∥∥∥∥∥
M

≤ sup
{
‖δ −∇L̃(θ)‖M : δ ∈ ∂◦L(θ)

}
+ ‖∇L̃(θ)−∇L̃(θ̃)‖M

≤ m‖θ(t)‖3M + λ0‖θ − θ̃‖M.
Taking integral, we have

‖θ(t)− θ̃(t)‖M ≤
∫ t

0

(
m‖θ(τ)‖3M + λ0‖θ(τ)− θ̃(τ)‖M

)
dτ.

Let t0 := inf{t ≥ 0 : ‖θ(t)‖M ≥ 2‖θ0‖M exp(λ0t)}. Then for all 0 ≤ t ≤ t0 (or for all t ≥ 0 if
t0 = +∞),

‖θ(t)− θ̃(t)‖M ≤
∫ t

0

(
8m‖θ0‖3M exp(3λ0τ) + λ0‖θ(τ)− θ̃(τ)‖M

)
dτ

≤ 8m‖θ0‖3M
3λ0

exp(3λ0t) + λ0

∫ t

0

‖θ(τ)− θ̃(τ)‖Mdτ.
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By Grönwall’s inequality (12),

‖θ(t)− θ̃(t)‖M ≤
8m‖θ0‖3M

3λ0

(
exp(3λ0t) + λ0

∫ t

0

exp(3λ0τ) exp(λ0(t− τ))dτ
)

=
8m‖θ0‖3M

3λ0

(
exp(3λ0t) +

1

2
exp(3λ0t)

)
=

4m‖θ0‖3M
λ0

exp(3λ0t),

If t0 < 1
2λ0

ln λ0

4m‖θ0‖2M
, then

‖θ(t)‖M ≤ ‖θ̃(t)‖M +
4m‖θ0‖3M

λ0
exp(3λ0t)

≤ ‖θ̃(t)‖M +
4m‖θ0‖2M

λ0
exp(2λ0t0) · ‖θ0‖M exp(λ0t)

< ‖θ̃(t)‖M + ‖θ0‖M exp(λ0t).

By Lemma D.1, ‖θ̃(t)‖M ≤ ‖θ0‖M exp(λ0t). So ‖θ(t)‖M < 2‖θ0‖M exp(λ0t) for all 0 ≤ t ≤ t0,

which contradicts to the definition of t0. Therefore, t0 ≥ 1
2λ0

ln λ0

4m‖θ0‖2M
= 1

λ0
ln

√
λ0/4√

m‖θ0‖M
.

Proof for Lemma 5.2. Let θ̃(t) = (w̃1(t), . . . , w̃m(t), ã1(t), . . . , ãm(t)) = ϕ̃(θ0, t). Then

[w̃k(t), ãk(t)]> = exp(T1(r)Mµ̃)[w̃k(0), ãk(0)]> = exp(T1(r)Mµ̃)[σinitw̄k, σinitāk]>,

whereMµ̃ is defined in Section 5.1,

Mµ̃ :=

[
0 µ̃
µ̃> 0

]
.

Let µ̄2 := 1√
2
[µ̄, 1]> be the top eigenvector ofMµ̃, which is associated with eigenvalue λ0. All the

other eigenvalues ofMµ̃ are no greater than 0. Note that

exp(T1(r)λ0)µ̄2µ̄
>
2

[
σinitw̄k
σinitāk

]
=

r√
m‖θ0‖M

(
σinit√

2
(µ̄>w̄k + āk)

)
µ̄2 =

√
2rb̄kµ̄2 = rb̄k

[
µ̄
1

]
.

So we have∥∥∥∥[w̃k(T1(r))
ãk(T1(r))

]
− rb̄k

[
µ̄
1

]∥∥∥∥
2

=

∥∥∥∥(exp(T1(r)Mµ̃)− exp(T1(r)λ0)µ̄2µ̄
>
2

) [σinitw̄k
σinitāk

]∥∥∥∥
2

≤ σinit

∥∥∥∥[w̄kāk
]∥∥∥∥

2

≤
√

2σinit‖θ̄0‖M.

With probability 1, θ̄0 6= 0. For r ≤
√
λ0/4, we have T1(r) = 1

λ0
ln r√

m‖θ0‖M
≤ 1

λ0
ln

√
λ0/4√

m‖θ0‖M
.

Then by Lemma D.2,

‖θ(T1(r))− θ̃(T1(r))‖M ≤
4m‖θ0‖3M

λ0
exp(3λ0T1(r)) =

4r3

λ0
√
m
.

By triangle inequality, we have∥∥∥∥[wk(T1(r))
ak(T1(r))

]
− rb̄k

[
µ̄
1

]∥∥∥∥
M

≤
∥∥∥∥[wk(T1(r))
ak(T1(r))

]
−
[
w̃k(T1(r))
ãk(T1(r))

]∥∥∥∥
M

+

∥∥∥∥[w̃k(T1(r))
ãk(T1(r))

]
− rb̄k

[
µ̄
1

]∥∥∥∥
M

≤ 4r3

λ0
√
m

+
√

2σinit‖θ̄0‖M ≤
Cr3

√
m
,

for some universal constant C, where the last step is due to our choice of σinit ≤ r3√
m‖θ̄0‖

M

.
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E Proofs for Phase II

E.1 Proof for Exact Embedding

To prove Lemma 5.3, we start from the following lemma.

Lemma E.1. Given θ̂0 := (ŵ1, ŵ2, â1, â2) with â1 > 0 and â2 < 0, then θ(t) = πb(ϕ(θ̂0, t)) is a
gradient flow trajectory on L(θ) starting from θ(0) = πb(θ̂0).

First we notice the following fact.

Lemma E.2. For any θ̂ and g ∈ ∂◦L(θ̂), πb(g) ∈ ∂◦L(πb(θ̂)).

Below we use πb(S) = {πb(s) : s ∈ S} to denote the embedding of a parameter set.

Proof. For every θ̂ = (ŵ1, ŵ2, â1, â2) ∈ ΩS (i.e., no activation function has zero input), let
θ = πb(θ̂) = (w1, . . . ,wm, a1, . . . , am), and clearly θ ∈ ΩS . Then ∂◦L(θ̂) = {∇L(θ̂)} and
∂◦L(θ) = {∇L(θ)} are the usual differentials. In this case, we can apply the chain rule as

∇L(θ̂) =
1

n

∑
i∈[n]

yi`
′(yifθ̂(xi))

∂fθ̂(xi)

∂θ̂
,

∇L(θ) =
1

n

∑
i∈[n]

yi`
′(yifθ(xi))

∂fθ(xi)

∂θ
.

Notice that the embedding preserves the function value,

fθ(xi) =

m∑
j=1

ajφ(w>j xi) =
∑
j:bj>0

b2j
b2+
â1φ(ŵ>1 xi) +

∑
j:bj<0

b2j
b2−
â2φ(ŵ>2 xi)

= â1φ(ŵ>1 xi) + â2φ(ŵ>2 xi) = fθ̂(xi);

and the also preserves the gradient

∂fθ(xi)

∂wk
= akφ

′(w>k xi)xi =

{
bk
b+
â1φ
′(ŵ>1 xi)xi if bk > 0

bk
b−
â2φ
′(ŵ>2 xi)xi if bk < 0

,

∂fθ(xi)

∂ak
= φ(w>k xi) =

{
bk
b+
φ(ŵ>1 xi) if bk > 0

bk
b−
φ(ŵ>2 xi) if bk < 0

,

so ∂fθ(xi)
∂θ = πb

(
∂fθ̂(xi)

∂θ̂

)
. Then from the chain rule above we can see∇L(θ) = πb(∇L(θ̂)), and

we proved the lemma in this case.

In the general case, by the definition of Clarke’s subdifferential,

∂◦L(θ) := conv
{

lim
n→∞

∇L(θn) : L differentiable at θn, lim
n→∞

θn = θ
}
.

For any θ̂n → θ̂ with θ̂n ∈ ΩS , πb(θ̂n)→ πb(θ̂), and

lim
n→∞

∇L(πb(θ̂n)) = lim
n→∞

πb(∇L(θ̂n)) = πb

(
lim
n→∞

∇L(θ̂n)
)
.

Taking the convex hull, it follows that πb(∂◦L(θ̂)) ⊆ ∂◦L(πb(θ̂)), and we finished the proof.

Proof for Lemma E.1. For notations we write θ̂(t) := ϕ(θ̂0, t) and θ(t) = πb(θ̂(t)). Then d
dt θ̂(t) ∈

−∂◦L(θ̂(t)) for a.e. t. At these t, d
dtθ(t) = πb(

d
dt θ̂(t)) ∈ πb(−∂◦L(θ̂(t))). From Lemma E.2 we

know πb(∂
◦L(θ̂(t))) ⊆ ∂◦L(θ(t)). Then d

dtθ(t) ∈ −∂◦L(θ(t)) for a.e. t, and therefore θ(t) is
indeed a gradient flow trajectory.

Proof for Lemma 5.3. By Lemma E.1, πb(ϕ(θ̂0, t)) is indeed a gradient flow trajectory. Then, as
πb(ϕ(θ̂0, 0)) = πb(θ̂0), as well as the fact that θ̂0 and πb(θ̂0) are non-branching starting points, the
gradient flow trajectory is unique and therefore πb(ϕ(θ̂0, t)) = ϕ(πb(θ̂0), t) for all t ≥ 0.
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E.2 A General Theorem for Limiting Trajectory Near Zero

Before analyzing Phase II, we first give a characterization for gradient flow on Leaky ReLU networks
with logistic loss, starting near rθ̂, where θ̂ is a well-aligned parameter vector defined below. We only
assume that the inputs are bounded ‖xi‖2 ≤ 1 and λ := max{|G(w)| : w ∈ Sd−1} > 0. Theorems
in the section will be used again in the non-symmetric case.

Definition E.3 (Well-aligned Parameter Vector). We say that θ̂ := (ŵ1, . . . , ŵm, â1, . . . , âm) is a
well-aligned parameter vector if it satisfies the following for some 1 ≤ p ≤ m:

1. For 1 ≤ k ≤ p, ŵk
‖ŵk‖2 attains the maximum value of |G(w)| on Sd−1, i.e.,

∣∣∣G( ŵk
‖ŵk‖2 )

∣∣∣ = λ;

2. For 1 ≤ k ≤ p, âk = sgn(G(ŵk))‖ŵk‖2;

3. For 1 ≤ k ≤ p, 〈ŵk,xi〉 6= 0 for all i ∈ [n];

4. For p+ 1 ≤ k ≤ m, ŵk = 0, âk = 0.

Our analysis for Phase I shows that weight vectors approximately align to either of µ̄ or −µ̄, and
both of them are maximizers of |G(w)|. Therefore, gradient flow goes near a well-aligned parameter
vector (with p = m) at the end of Phase I.

The following is the main theorem of this subsection.

Theorem E.4. Let θ̂ be a well-aligned parameter vector. Let ∆̂ := mink∈[p],i∈[n]
|〈ŵk,xi〉|
‖θ̂‖M

> 0.

Define T2(r) := 1
λ ln 1

r and let t0 be the following time constant

t0 :=
1

2λ
ln

λ∆̂

16m‖θ̂‖2M
. (14)

Then for all t ∈ (−∞, t0], the following is true:

1. limr→0 ϕ(rθ̂, T2(r) + t) exists. This limit is independent of the choice of ϕ when the
gradient flow may not be unique.

2. limr→0 ϕ(rθ̂, T2(r) + t) lies near eλtθ̂:∥∥∥ lim
r→0

ϕ
(
rθ̂, T2(r) + t

)
− eλtθ̂

∥∥∥
M
≤ 4m‖θ̂‖3M

λ
e3λt.

3. Let θ1,θ2, . . . be a series of parameters converging to 0, r1, r2, . . . be a series of positive
real numbers converging to 0. If ‖θs − rsθ̂‖2 ≤ Cr1+κ

s for some C > 0, κ > 0, then

lim
s→∞

ϕ (θs, T2(rs) + t) = lim
r→0

ϕ(rθ̂, T2(r) + t).

Now we prove Theorem E.4. Throughout this subsection, we fix a well-aligned parameter vector
θ̂ := (ŵ1, . . . , ŵm, â1, . . . , âm) with constant p ∈ [m]. We also use t0 and T2(r) to denote the same
constant t0 defined by (14) and the same function T2(r) := 1

λ ln 1
r as in Theorem E.4.

For any parameter θ = (w1, . . . ,wm, a1, . . . , am), we use ‖θ‖P, ‖θ‖R to denote the following
semi-norms respectively,

‖θ‖P := max
k∈[p]

{max{‖wk‖2, |ak|}} , ‖θ‖R := max
p<k≤m

{max{‖wk‖2, |ak|}} .

The M-norm can be expressed in terms of P-norm and R-norm: ‖θ‖M = max{‖θ‖P, ‖θ‖R}. Also
note that Condition 4 in Definition E.3 is now equivalent to ‖θ̂‖R = 0.

For k ∈ [p], define Ŵk := {w ∈ Rd : 〈ŵk,xi〉 · 〈w,xi〉 > 0,∀i ∈ [n]} to be the set of weights that
share the same activation pattern as ŵk.

Lemma E.5. If r > 0 is small enough and the initial point θ0 of gradient flow satisfies ‖θ0−rθ̂‖M ≤
Cr1+κ for some C > 0, κ > 0, then for any −T2(r) ≤ t ≤ t0, the following four properties hold:
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1. For all k ∈ [p], wk(T2(r) + t) ∈ Ŵk;

2. ‖ϕ(θ0, T2(r) + t)‖M ≤ 2eλt‖θ̂‖M;

3. ‖ϕ (θ0, T2(r) + t)− eλtθ̂‖P ≤ Crκeλt +
4m‖θ̂‖3M

λ e3λt;

4. ‖ϕ (θ0, T2(r) + t)− eλtθ̂‖R ≤ 2Crκeλt.

Proof. Let θ(t) := ϕ(θ0, t) be gradient flow on L starting from θ0, and θ̃(t) := reλtθ̂. Let t1, t2 be
the following time constants and define tmax := min{t0, t1, t2}:

t1 := inf{t ≥ 0 : ∃k ∈ [p],wk(t) /∈ Ŵk} − T2(r),

t2 := inf{t ≥ 0 : ‖θ(t)‖M ≥ 2reλt‖θ̂‖M} − T2(r).

We also define rmax :=
(
‖θ̂‖M∆̂

8C

)1/κ

. We only consider the dynamics for r ≤ rmax, t < T2(r) +

tmax. Our goal is to show that

‖θ(t)− θ̃(t)‖P ≤ Cr1+κeλt +
4m‖θ̂‖3M

λ
r3e3λt, ‖θ(t)− θ̃(t)‖R ≤ 2Cr1+κeλt

within the time interval [0, T2(r) + tmax) (and thus it also holds for [0, T2(r) + tmax] by continuity),
and to show that t0 is actually equal to tmax, i.e., t0 is the minimum among t0, t1, t2. It is easy to
see that proving these suffice to deduce the original lemma statement, given the translation of time
eλT2(r) = 1

r .

For k ∈ [m], by Lemma B.11 we have∥∥∥∥dwk
dt
− ak∂◦G(wk)

∥∥∥∥
2

⊆ (−∞,m‖θ‖2M|ak|],
∣∣∣∣dakdt

−G(wk)

∣∣∣∣ ≤ m‖θ‖2M‖wk‖2. (15)

For θ̃(t), a simple calculus shows that for all t ≥ 0,

∀k ∈ [p] :
dw̃k
dt

= λãk
ŵk
‖ŵk‖2

,
dãk
dt

= λ

〈
ŵk
‖ŵk‖2

, w̃k

〉
. (16)

∀p < k ≤ m : |ãk| = ‖w̃k‖2 = 0. (17)

Bounding ‖θ(t) − θ̃(t)‖P. For k ∈ [p], ∂◦G(wk) = {∇G(wk)} = {∇G(ŵk)}. Also note
that ∇G(ŵk) = ∇G( ŵk

‖ŵk‖2 ) = λ ŵk
‖ŵk‖2 by Lemma B.5. Then ak∂◦G(wk) = {λak ŵk

‖ŵk‖2 } and

G(wk) = λ
〈

ŵk
‖ŵk‖2 ,wk

〉
. Combining these with (15) gives

max

{∥∥∥∥dwk
dt
− λak

ŵk
‖ŵk‖2

∥∥∥∥
2

,

∣∣∣∣dakdt
− λ

〈
ŵk
‖ŵk‖2

,wk

〉∣∣∣∣} ≤ m‖θ‖3M. (18)

Then by (16) we have∥∥∥∥∥dθ
dt
− dθ̃

dt

∥∥∥∥∥
P

≤ m‖θ‖3M + max
k∈[p]

{∥∥∥∥λ(ak − ãk)
ŵk
‖ŵk‖2

∥∥∥∥
2

,

∣∣∣∣λ〈 ŵk
‖ŵk‖2

,wk − w̃k
〉∣∣∣∣}

≤ m‖θ‖3M + λ‖θ − θ̃‖P.

Taking the integral gives ‖θ(t)− θ̃(t)‖P ≤ ‖θ(0)− θ̃(0)‖P +
∫ t

0
(m‖θ(τ)‖3M +λ‖θ(τ)− θ̃(τ)‖P)dτ .

Note that tmax ≤ t2. Then

‖θ(t)− θ̃(t)‖P ≤ ‖θ(0)− θ̃(0)‖P +

∫ t

0

(
8mr3e3λt‖θ̂‖3M + λ‖θ(τ)− θ̃(τ)‖P

)
dτ

≤ Cr1+κ +
8

3λ
mr3e3λt‖θ̂‖3M + λ

∫ t

0

‖θ(τ)− θ̃(τ)‖Pdτ.
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By Grönwall’s inequality (11), we have

‖θ(t)− θ̃(t)‖P ≤ Cr1+κ +
8

3λ
mr3e3λt‖θ̂‖3M +

∫ t

0

(
Cr1+κ +

8

3λ
mr3e3λτ‖θ̂‖3M

)
λeλ(t−τ)dτ

≤ Cr1+κ + Cr1+κ(eλt − 1) +
8

3λ
mr3e3λt‖θ̂‖3M +

8

3λ
mr3 · e

λt

2
(e2λt − 1)‖θ̂‖3M

≤ Cr1+κeλt +
8

3λ
mr3e3λt(1 + 1/2)‖θ̂‖3M.

Therefore we can conclude that

‖θ(t)− θ̃(t)‖P ≤ Cr1+κeλt +
4m‖θ̂‖3M

λ
r3e3λt. (19)

Bounding ‖θ(t) − θ̃(t)‖R. For p < k ≤ m, we can combine Theorem B.3 and (15) to give the
following bound for the norm growth:

1

2

d‖wk‖22
dt

=
1

2

d|ak|2

dt
≤ akG(wk) + |ak| ·m‖θ‖2M‖wk‖2.

This implies
1

2

d|ak|2

dt
=

1

2

d‖wk‖22
dt

≤ ‖θ‖2R(λ+m‖θ‖2M). (20)

Taking the integral gives ‖θ(t)‖2R ≤ ‖θ(0)‖2R +
∫ t

0
2‖θ(τ)‖2R(λ+m‖θ(τ)‖2M)dτ . Note that tmax ≤

t2 and ‖θ(0)‖R ≤ Cr1+κ. Then

‖θ(t)‖2R ≤ C2r2(1+κ) +

∫ t

0

2‖θ(τ)‖2R(λ+ 4mr2e2λτ‖θ̂‖2M)dτ

By Grönwall’s inequality (12), we have

‖θ(t)‖2R ≤ C2r2(1+κ) exp

(∫ t

0

2(λ+ 4mr2e2λτ‖θ̂‖2M)dτ
)

≤ C2r2(1+κ) exp

(
2λt+

4m‖θ̂‖2M
λ

r2e2λt

)
.

Taking the square root gives

‖θ(t)‖R ≤ Cr1+κ exp

(
λt+

2m‖θ̂‖2M
λ

r2e2λt

)
.

For t ≤ T (r) + tmax ≤ T (r) + t0, we can use the the definition (14) of t0 to deduce that
2m‖θ̂‖2M

λ r2e2λt ≤ 2m‖θ̂‖2M
λ e2λt0 = ∆̂/8 ≤ 1/8. Therefore, we have

‖θ(t)− θ̃(t)‖R = ‖θ(t)‖R ≤ Cr1+κeλt+1/8 < Cr1+κeλt+ln 2 = 2Cr1+κeλt. (21)

Bounding tmax. To prove the lemma, now we only need to show that tmax = t0. Combining (19)
and (21), we have for t ≤ T2(r) + tmax,

‖θ(t)− θ̃(t)‖M ≤ 2Cr1+κeλt +
4m‖θ̂‖3M

λ
r3e3λt.

Since r ≤ rmax, 2Crκ ≤ 1
4‖θ̂‖M∆̂. By definition (14) of t0, 4m‖θ̂‖3M

λ r2e2λt ≤ 4m‖θ̂‖3M
λ e2λt0 ≤

1
4‖θ̂‖M∆̂. Then we have 2Crκ +

4m‖θ̂‖3M
λ r2e2λt ≤ 1

2‖θ̂‖M∆̂ and thus

‖θ(t)− θ̃(t)‖M ≤ reλt
(

2Crκ +
4m‖θ̂‖3M

λ
r2e2λt

)
≤ 1

2
reλt‖θ̂‖M∆̂. (22)
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For all time 0 ≤ t < T2(r) + tmax, we can use (22) to deduce

sgn(〈ŵk,wi〉) 〈w(t),xi〉 ≥ sgn(〈ŵk,xi〉)
〈
reλtŵk,xi

〉
− 1

2
reλt‖θ̂‖M∆̂

= reλt
(
|〈ŵk,xi〉| −

1

2
‖θ̂‖M∆̂

)
≥ reλt‖θ̂‖M∆̂/2 > 0,

which implies t1 > tmax.

For norm growth, we can again use (22) to deduce

‖θ(t)‖M ≤ ‖θ̃(t)‖M +
1

2
reλt‖θ̂‖M∆̂ = reλt

(
‖θ̂‖M +

1

2
‖θ̂‖M∆̂

)
≤ 3

2
reλt‖θ̂‖M < 2reλt‖θ̂‖M,

which implies t2 > tmax.

Now we have t1 > tmax, t2 > tmax. Recall that tmax := min{t0, t1, t2} by definition. Then
tmax = t0 must hold, which completes the proof.

Lemma E.6. If r > 0 is small enough and the initial point θ0 of gradient flow satisfies ‖θ0−rθ̂‖M ≤
Cr1+κ for some C > 0, κ > 0, then for all t ∈ [−T2(r), t0],

‖ϕ (θ0, T2(r) + t)− ϕ(rθ̂, T2(r) + t)‖M ≤ 4Crκeλt.

Proof. Let θ(t) := ϕ(θ0, t) and θ̃(t) := ϕ(rθ̂, t) be gradient flows starting from θ0 and rθ̂. For
notation simplicity, let hki = yiφ

′(ŵ>k xi). Let gi := −`′(yifθ(xi)), g̃i := −`′(yifθ̃(xi)).

By Lemma E.5, we can make r to be small enough so that the four properties hold for both θ(T2(r)+t)

and θ̃(T2(r) + t) when t ≤ t0.

Bounding the Difference for 1 ≤ k ≤ p. For all t ≤ t0 and k ∈ [p], we know that φ′(w>k xi) =
φ′(w̃>k xi) = hki, and thus for wk, w̃k we have∥∥∥∥dwk

dt
− dw̃k

dt

∥∥∥∥
2

=

∥∥∥∥∥akn
n∑
i=1

gihkixi −
ãk
n

n∑
i=1

g̃ihkixi

∥∥∥∥∥
2

≤ |ak − ãk| ·

∥∥∥∥∥ 1

n

n∑
i=1

g̃ihkixi

∥∥∥∥∥
2︸ ︷︷ ︸

Λ(t)

+|ak| ·

∥∥∥∥∥ 1

n

n∑
i=1

(gi − g̃i)hkixi

∥∥∥∥∥
2︸ ︷︷ ︸

∆(t)

=: Λ(t) · |ak − ãk|+ |ak| ·∆(t).

and for ak, ãk we have∥∥∥∥dak
dt
− dãk

dt

∥∥∥∥
2

=

∣∣∣∣∣ 1n
n∑
i=1

giφ(w>k xi)−
1

n

n∑
i=1

g̃iφ(w̃>k xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

gihkiw
>
k xi −

1

n

n∑
i=1

g̃ihkiw̃
>
k xi

∣∣∣∣∣
= ‖wk − w̃k‖2 ·

∥∥∥∥∥ 1

n

n∑
i=1

g̃ihkixi

∥∥∥∥∥
2

+ ‖wk‖2 ·

∥∥∥∥∥ 1

n

n∑
i=1

(gi − g̃i)hkixi

∥∥∥∥∥
2

= Λ(t) · ‖wk − w̃k‖2 + ‖wk‖2 ·∆(t).

Therefore,
∥∥∥ dθ

dt −
dθ̃
dt

∥∥∥
P
≤ Λ(t) · ‖θ − θ̃‖M + ‖θ‖M ·∆(t). Now we turn to bound Λ(t) and ∆(t).

By Lipschitzness of `′ and Lemma B.10, we have

|−`′(0)− g̃i| ≤ m‖θ̃‖2M, |gi − g̃i| ≤ m‖θ − θ̃‖M
(
‖θ‖M + ‖θ̃‖M

)
.
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For Λ(t), by triangle inequality and Lemma B.5 we have

Λ(t) ≤

∥∥∥∥∥−`′(0)

n

n∑
i=1

hkixi

∥∥∥∥∥
2

+m‖θ̃‖2M = ‖∇G(ŵk)‖2 +m‖θ̃‖2M = λ+m‖θ̃‖2M,

For ∆(t), we use triangle inequality again to give the following bound:

∆(t) ≤ 1

n

n∑
i=1

|gi − g̃i| ≤ m‖θ − θ̃‖M
(
‖θ‖M + ‖θ̃‖M

)
.

Therefore, we can conclude that∥∥∥∥∥dθ
dt
− dθ̃

dt

∥∥∥∥∥
P

≤ (λ+m‖θ̃‖2M) · ‖θ − θ̃‖M + ‖θ‖M ·m‖θ − θ̃‖M
(
‖θ‖M + ‖θ̃‖M

)
≤
(
λ+ 3mmax{‖θ‖M, ‖θ̃‖M}2

)
‖θ − θ̃‖M

≤
(
λ+ 12mr2e2λt‖θ̂‖2M

)
‖θ − θ̃‖M,

where the last inequality uses the 2nd property in Lemma E.5. Note that ‖θ0 − rθ̂‖P ≤ Cr1+κ. So
we can write it into the integral form:

‖θ(t)− θ̃(t)‖P ≤ Cr1+κ +

∫ t

0

(
λ+ 12mr2e2λτ‖θ̂‖2M

)
‖θ(τ)− θ̃(τ)‖Mdτ. (23)

Bounding the Difference for p < k ≤ m. By Lemma B.17, ‖θ̃(t)‖R = 0 for all t ≥ 0, so
‖θ − θ̃‖R = ‖θ‖R. By the 4th property in Lemma E.5, we then have

‖θ(t)− θ̃(t)‖R = ‖θ(t)‖R = ‖θ(t)− reλtθ̂‖R ≤ 2Cr1+κeλt.

So we can verify that ‖θ(t)− θ̃(t)‖R satisfies the following inequality:

‖θ(t)− θ̃(t)‖R ≤ 2Cr1+κ +

∫ t

0

λ‖θ(τ)− θ̃(τ)‖Rdτ. (24)

Bounding the Difference for All. Combining Lemma E.5 and Lemma E.5, we have the following
inequality for ‖θ(t)− θ̃(t)‖M:

‖θ(t)− θ̃(t)‖M ≤ 2Cr1+κ +

∫ t

0

(
λ+ 12mr2e2λτ‖θ̂‖2M

)
‖θ(τ)− θ̃(τ)‖Mdτ.

By Grönwall’s inequality (12),

‖θ(t)− θ̃(t)‖M ≤ 2Cr1+κ exp

(∫ t

0

(
λ+ 12mr2e2λτ‖θ̂‖2M

)
dτ
)

≤ 2Cr1+κ exp

(
λt+

6m‖θ̂‖2M
λ

r2e2λt

)
.

By definition (14) of t0, we have 6m‖θ̂‖2M
λ r2e2λt ≤ 6m‖θ̂‖2M

λ e2λt0 = 3∆̂
8 ≤ 3/8 < ln 2. Therefore we

have the following bound for ‖θ(t)− θ̃(t)‖M:

‖θ(t)− θ̃(t)‖M ≤ 2Cr1+κeλt+ln 2 = 4Cr1+κeλt.

At time T2(r) + t ∈ [0, T2(r) + t0], this bound can be rewritten as

‖θ(T2(r) + t)− θ̃(T2(r) + t)‖M ≤ 4Crκeλt,

which completes the proof.
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Proof for Theorem E.4. First we show that limr→0 ϕ(rθ̂, T2(r) + t) exists. We consider the case of
r ≤ rmax, where rmax is chosen to be small enough so that the properties in Lemma E.5 hold. For
any r′ < r, by Lemma E.5 we have∥∥∥∥ϕ(r′θ̂, T2(r′) +

1

λ
ln r

)
− rθ̂

∥∥∥∥
M

≤ 4m‖θ̂‖3M
λ

r3 ≤ C ′r1+κ′ ,

where C ′ =
4m‖θ̂‖3M

λ , κ′ = 2. Applying Lemma E.6, we then have∥∥∥∥ϕ(ϕ(r′θ̂, T2(r′) +
1

λ
ln r

)
, T2(r) + t

)
− ϕ

(
rθ̂, T2(r) + t

)∥∥∥∥
M

≤ 4C ′rκ
′
eλt.

Note that T2(r′) + 1
λ ln r + T2(r) + t = T2(r′) + t. So this proves

‖ϕ(r′θ̂, T2(r′) + t)− ϕ(rθ̂, T2(r) + t)‖M ≤ 4C ′rκ
′
eλt.

For any fixed t ≤ t0, the RHS converges to 0 as r → 0, which implies Cauchy convergence of the
limit limr→0 ϕ(rθ̂, T2(r) + t) and thus the limit exists. By the 1st property in Lemma E.5, we know
that there is no activation pattern switch in the time interval t ∈ [0, T2(r) + t0] if r is small enough.
This means L is locally smooth near the trajectory of ϕ(rθ̂, T2(r) + t) and thus the trajectory is
unique. Therefore, the limit limr→0 ϕ(rθ̂, T2(r) + t) is uniquely defined.

By Lemma E.5,

‖ϕ(rθ̂, T2(r) + t)− eλtθ̂‖M ≤
4m‖θ̂‖3M

λ
e3λt.

Taking r → 0 on both sides gives the range of the limit limr→0 ϕ(rθ̂, T2(r) + t):∥∥∥ lim
r→0

ϕ(rθ̂, T2(r) + t)− eλtθ̂
∥∥∥

M
≤ 4m‖θ̂‖3M

λ
e3λt.

For s→∞, by Lemma E.6, we have

lim
s→∞

∥∥∥ϕ(θ̂s, T2(rs) + t
)
− ϕ

(
rsθ̂, T2(rs) + t

)∥∥∥
M

= 0.

So lims→∞ ϕ(θs, T2(rs) + t) = limr→0 ϕ(rθ̂, T2(r) + t) is proved.

E.3 Proof for Approximate Embedding

To analyze Phase II, we need to deal with approximate embedding instead of the exact one. For
this, we further divide Phase II into Phase II.1 and II.2 and analyze them in order. At the end of this
subsection we will prove Lemma 5.4.

E.3.1 Proofs for Phase II.1

Given the discussions in the previous sections, we are ready to present proofs for the phase II
dynamics (Lemma 5.4) here.

We subdivide the dynamics of Phase II into Phase II.1 and Phase II.2. At the end of Phase I, we show
that the parameters grow to norm O(r) in time T1(r). In Phase II.1, we extend the dynamic to time
T1(r) +T2(r) so that the parameters grow into constant norms (irrelevant to r and σinit). Then, when
the initialization scale becomes sufficiently small, at the end of Phase II.1 the parameters become
sufficiently close to the embedded parameters from two neurons at constant norms, so the subsequent
dynamics is a good approximate embedding until the norm of the parameters grow sufficiently large
to ensure directional convergence in Phase III. Here we show the results in Phase II.1.

Lemma E.7. For m ≥ 2, with probability 1− 2−(m−1) over the random draw of θ̄0 ∼ Dinit(1), the
vector b̄ ∈ Rm with entries b̄k := 〈w̄k,µ̄〉+āk

2
√
m‖θ̄0‖

M

defined as in Lemma 5.2 is a good embedding vector.

Proof. Note that b̄ is a good embedding vector iff b̄′ = 2
√
m‖θ̄0‖Mb̄ is a good embedding vector.

Recall that w̄k
i.i.d.∼ N (0, I), āk

i.i.d.∼ N (0, c2ainit). By the property of Gaussian variables,

b̄′k = 〈w̄k, µ̄〉+ āk ∼ N (0, 1 + c2ainit).
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Thus b̄′ ∼ N (0, (1 + c2ainit)I). Since it is a continuous probability distribution, b̄′ 6= 0 with
probability 1. By symmetry and independence, we know that Pr[∀k ∈ [m] : b̄′k > 0] = 2−m and
Pr[∀k ∈ [m] : b̄′k < 0] = 2−m. So b̄′ is a good embedding vector with probability 1−2−m−2−m =

1− 2−(m−1), and so is b̄.

Lemma E.8. Let T2(r) := 1
λ0

ln 1
r , then T12 := T1(r) + T2(r) = 1

λ0
ln 1√

mσinit‖θ̄0‖
M

regardless

the choice of r. For random draw of θ̄0 ∼ Dinit(1), if b̄ ∈ Rm defined as in Lemma 5.2 is a good
embedding vector, then there exists t0 ∈ R such that the following holds:

1. For the two-neuron dynamics starting with rescaled initialization in the direction of θ̂ :=

(b̄+, b̄+µ̄, b̄−, b̄−µ̄), for all t ∈ (−∞, t0], the limit θ̃(t) := limr→0 ϕ(rθ̂, T2(r) + t) exists
and lies near eλ0tθ̂:∥∥∥θ̃(t)− eλ0tθ̂

∥∥∥
M
≤ 4m‖θ̂‖3M

λ0
e3λ0t = O(e3λ0t).

2. For the m-neuron dynamics θ(t), the following holds for all t ∈ (−∞, t0],

lim
σinit→0

θ (T12 + t) = πb̄(θ̃(t)).

Proof. Under Assumptions 4.1 and 4.5, the maximum value of |G(w)| on Sd−1 is λ0 and is attained
at ±µ̄. Given a good embedding vector b̄, both θ̂ and θ̂π := πb̄(θ̂) are well-aligned parameter
vectors (Definition E.3) for width-2 and width-m Leaky ReLU nets respectively. By Theorem E.4,
there exists t0 ∈ R such that the following two limits exist for all t ∈ (−∞, t0]:

θ̃(t) := lim
r→0

ϕ
(
rθ̂, T2(r) + t

)
, θ̃π(t) := lim

r→0
ϕ
(
rθ̂π, T2(r) + t

)
.

Note that by Lemma E.1, we have πb̄(ϕ(rθ̂, T2(r) + t)) is a trajectory of gradient flow starting from
rθ̂π . The uniqueness of θ̃π(t) (for all possible choices of ϕ) shows that

πb̄(θ̃(t)) = lim
r→0

πb̄

(
ϕ
(
rθ̂, T2(r) + t

))
= θ̃π(t).

By Lemma 5.2, for σinit small enough, if we choose r so that σinit = r3√
m‖θ̄0‖

M

, then for some

universal constant C we have

‖θ(T1(r))− rθ̂π‖M ≤
Cr3

√
m
.

Applying Theorem E.4 proves the following for all t ∈ (−∞, t0]:

lim
σinit→0

ϕ(θ(T1(r)), T2(r) + t) = θ̃π(t).

Therefore limσinit→0 θ (T12 + t) = πb̄(θ̃(t)).

E.4 Proofs for Phase II.2

Next, at the end of Phase II.1, θ(T12 + t0) has a constant norm. Then we show the trajectory
convergence with respect to the initialization scale in Phase II.2.

Lemma E.9. If πb̄(θ̃(t0)) is non-branching and limσinit→0 θ (T12 + t0) = πb̄(θ̃(t0)) for some
constant t0, then for all t > t0, limσinit→0 θ (T12 + t) = πb̄(θ̃(t)).

We first start with a simple lemma on gradient upper bounds, and then show that the trajectory of
gradient flow is Lipschitz with time.

Lemma E.10. For every θ ∈ RD, ‖g‖2 ≤ ‖θ‖2 for all g ∈ ∂◦L(θ).
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Proof. Note that |`′(q)| ≤ 1, |φ′(z)| ≤ 1 ‖xi‖2 ≤ 1, |yi| ≤ 1. For every θ ∈ ΩS (i.e., no activation
function has zero input), by the chain rule (10), we have∥∥∥∥∂L(θ)

∂wk

∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n

∑
i∈[n]

`′(qi(θ))yiakφ
′(w>k xi)xi

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

|ak| = |ak|,

∥∥∥∥∂L(θ)

∂ak

∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n

∑
i∈[n]

`′(qi(θ))yiφ(w>k xi)

∥∥∥∥∥∥
2

≤ 1

n

∑
i∈[n]

|w>k xi| ≤ ‖wk‖2.

So ‖∇L(θ)‖2 ≤ ‖θ‖2. We can finish the proof for any θ ∈ RD by taking limits in ΩS .

Lemma E.11. The gradient flow trajectory θ(T12 + t),in the interval t ∈ [t0, ts] for any ts > t0, is
Lipschitz in t with Lipschitz constant ‖θ(T12 + t0)‖2 e(ts−t0).

Proof. By Lemma E.10,
∥∥ d

dtθ(T12 + t)
∥∥

2
≤ ‖θ(T12 + t)‖2. So d‖θ(T12+t)‖2

dt ≤ ‖θ(T12 + t)‖2.
By Grönwall’s inequality (12), ‖θ(T12 + t)‖2 ≤ ‖θ(T12 + t0)‖2 et−t0 . Then

∥∥ d
dtθ(T12 + t)

∥∥
2
≤

‖θ(T12 + t)‖2 ≤ ‖vtheta(T12 + t0)‖2ets−t0 .

Now we are ready to prove Lemma E.9.

Proof of Lemma E.9. When σinit → 0, as θ(T12 + t0) → πb̄(θ̃(t0)), we can select a countable
sequence (σinit)i → 0 and trajectories θi(T12 + t) with initialization scale (σinit)i. We show that for
every t ≥ t0, there must be θi(T12+t) = ϕ(θi(T12+t0), t−t0)→ πb̄(θ̃(t)) = ϕ(πb̄(θ̃(t0)), t−t0).

If this does not hold for some t = T , then there must be a limit point qT of points in {ϕ(θi(T12 +

t0), T − t0)}∞i=1 such that qT 6= ϕ(πb̄(θ̃(t0)), T − t0) and a converging subsequence in {ϕ(θi(T12 +
t0), T − t0)}∞i=1 to qT . Thus WLOG we assume that the sequence is chosen so that

lim
i→∞

ϕ(θi(T12 + t0), T − t0) = qT 6= ϕ(πb̄(θ̃(t0)), T − t0).

We then show that there is a trajectory of the gradient flow that starts from πb̄(θ̃(t0)) and reaches qT
at time T − t0, thereby causing a contradiction to our assumption that πb̄(θ̃(t0)) is non-branching.

For any pair of L0-Lipschitz continuous functions f , g : [t0, T ]→ RD, define the L∞-distance to
be ‖f − g‖∞ := supt∈[t0,T ] ‖f(t) − g(t)‖2. Note that the space of L0-Lipschitz functions with
bounded function values is compact under L∞-distance, and therefore any sequence of functions in
this space has a converging subsequence whose limit is also L0-Lipschitz.

Let C := supi{‖θi(T12 + t0)‖2}, then as {θi(T12 + t0)} is converging to πb̄(θ̃(t0)) 6=∞, C <∞.
By Lemma E.11 we know each trajectory θi(T12 + t) is (CeT−t0)-Lipschitz for t ∈ [t0, T ]. This
means we can find a subsequence 1 ≤ i1 < i2 < i3 < · · · that the trajectory {θij (T12 + t)}
L∞-converges on [t0, T ] as j →∞. Then the pointwise limit q(t) := limj→∞ θij (T12 + t) exists
for every t ∈ [t0, T ]. q(t0) = πb̄(θ̃(t0)), q(T ) = qT .

Finally we show that q(t) is indeed a valid gradient flow trajectory. Notice that q(t) is (CeT−t0)-
Lipschitz, then by Rademacher theorem for q(t) is differentiable for a.e. t ∈ [t0, T ]. We are left to
show q′(t) ∈ ∂◦L(q(t)) whenever q is differentiable at t.

For any ε > 0 that [t, t+ ε] ⊆ [t0, T ], we investigate the behaviour of q(t) in the ε-neighborhood of
t. Let Ωj be the set of τ ∈ [t0, T ] so that d

dτ θik(T12 + τ) ∈ −∂◦L(θik(T12 + τ)). By definition of
differential inclusion, Ωj has full measure in [t0, T ]. Define Bj,ε be the following closed convex hull:

Bj,ε = conv

{
d

dτ
θik(T12 + τ) : k ≥ j, τ ∈ [t, t+ ε] ∩ Ωj

}
.

It is easy to see that Bj,ε is monotonic with respect to j. Then we know that for any j,

θij (T12 + t+ ε)− θij (T12 + t)

ε
=

1

ε

∫ t+ε

t

d
dτ
θij (T12 + τ)dτ ∈ Bj,ε,
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Then taking the limits j →∞, as all Bj,ε are closed, we know q(t+ε)−q(t)
ε ∈ limj→∞Bj,ε.

Now let Cj,ε, Cε be the following closed convex hull of subgradients:

Cj,ε = conv

 ⋃
k≥j

τ∈[t,t+ε]

∂◦L(θik(T12 + τ))

 , Cε = conv

 ⋃
τ∈[t,t+ε]

∂◦L(q(T12 + τ))

 .

Then we know Bj,ε ⊆ −Cj,ε for all j ≥ 1 and ε > 0. Notice that Cj,ε and Cε are also monotonic
with respect to j and ε respectively so we can take the respective limit. As for τ ∈ [t, t + ε],
limj→∞ θij (T12 + τ) = q(T12 + τ), by the upper-semicontinuity of ∂◦L, limj→∞ Cj,ε ⊆ Cε. Then
q(t+ε)−q(t)

ε ∈ lim
j→∞

Bj,ε ⊆ lim
j→∞

Cj,ε ⊆ Cε.

When t ∈ [t0, T ) and q(t) is differential at t, we can take the limit ε → 0, and by the upper-
semicontinuity of ∂◦L again, we have

q′(t) ∈ lim
ε→0

Cε ⊆ conv(−∂◦L(q(T12 + t))) = −∂◦L(q(T12 + t))

as ∂◦L(q(T12 +t)) is closed convex for any t. Therefore q(t) is indeed a gradient flow trajectory.

Proof for Lemma 5.4. We can prove Lemma 5.4 by combining Lemmas E.7 to E.9 together. For
−∞ < t ≤ t0, by Lemma E.8,

∥∥∥θ̃(t)− eλ0tθ̂
∥∥∥

M
≤ 4m‖θ̂‖3M

λ0
e3λ0t. With θ̂ := (b̄+, b̄+µ̄, b̄−, b̄−µ̄),

by choosing a threshold ts < t0 small enough, we can have for any t ≤ ts,

• ã1(t) ≥ eλ0tb̄+ − 4m‖θ̂‖3M
λ0

e3λ0t > 0;

• ã2(t) ≤ eλ0tb̄− +
4m‖θ̂‖3M

λ0
e3λ0t < 0;

• 〈w̃1(t),w∗〉 ≥ eλ0tb̄+ 〈µ̄,w∗〉 − 4m‖θ̂‖3M
λ0

e3λ0t >
8m‖θ̂‖3M

λ0
e3λ0t > 0;

• 〈w̃2(t),w∗〉 ≤ eλ0tb̄− 〈µ̄,w∗〉+
4m‖θ̂‖3M

λ0
e3λ0t < − 8m‖θ̂‖3M

λ0
e3λ0t < 0.

Then θ̃(t) 6= 0 for all t ≤ ts. For t > ts, we know θ̃(t) 6= 0 by applying Theorem B.19. Finally by
Lemmas E.8 and E.9 we know limσinit→0 θ (T12 + t) = πb̄(θ̃(t)) for all t.

F Proofs for Phase III

F.1 Two Neuron Case: Margin Maximization

In this subsection we prove Theorem 5.5 for the symmetric datasets. By Theorem B.19 and Theo-
rem 3.1, we know that gradient flow must converge in a KKT-margin direction of width-2 two-layer
Leaky ReLU network (Definition B.8). Thus we first give some characterizations for KKT-margin
directions by proving Lemma F.1 and Lemma F.2.

Lemma F.1. Given u1,u2 ∈ Rd, if yi(φ(〈u1,xi〉)− φ(−〈u2,xi〉)) ≥ 1 for all i ∈ [n], then

yi(h
(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉) ≥ 1,

for all Clarke’s sub-differentials h(1)
i ∈ φ◦(〈u1,xi〉), h(2)

i ∈ φ◦(−〈u2,xi〉).

Proof. We prove by cases for any fixed i ∈ [n]. By Assumption 4.1 we have

yi(φ(〈u1,xi〉)− φ(−〈u2,xi〉)) ≥ 1, −yi(φ(−〈u1,xi〉)− φ(〈u2,xi〉)) ≥ 1.
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Case 1. Suppose that 〈u1,xi〉 6= 0, 〈u2,xi〉 6= 0. Then we have h(1)
i , h

(2)
i ∈ {αleaky, 1}. If

h
(1)
i = h

(2)
i , then h(1)

i 〈u2,xi〉 = −φ(−〈u2,xi〉), h(2)
i 〈u1,xi〉 = φ(〈u1,xi〉), and thus we have

yi(h
(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉) = yi(−φ(−〈u2,xi〉) + φ(〈u1,xi〉))

= yi(φ(〈u1,xi〉)− φ(−〈u2,xi〉)) ≥ 1.

Otherwise, h(1)
i 6= h

(2)
i , then we have h(1)

i 〈u2,xi〉 = φ(〈u2,xi〉), h(2)
i 〈u1,xi〉 = −φ(−〈u1,xi〉),

and thus

yi(h
(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉) = yi (φ(〈u2,xi〉)− φ(−〈u1,xi〉))

= −yi (φ(−〈u1,xi〉)− φ(〈u2,xi〉)) ≥ 1.

Case 2. Suppose that 〈u1,xi〉 = 0 or 〈u2,xi〉 = 0. WLOG we assume that 〈u1,xi〉 = 0 (the case
of 〈u2,xi〉 = 0 can be proved similarly). Then we have

−yiφ(−〈u2,xi〉)) ≥ 1, yiφ(〈u2,xi〉)) ≥ 1.

If 〈u2,xi〉 = 0, then the feasibility cannot be satisfied. So we must have 〈u2,xi〉 6= 0 and
h

(2)
i ∈ {αleaky, 1}. This implies that yi〈u2,xi〉 ≥ 1

αleaky
.

Since 〈u1,xi〉 = 0, we have h(1)
i ∈ [αleaky, 1]. Therefore,

yi(h
(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉) = yih

(1)
i 〈u2,xi〉 ≥ yiαleaky〈u2,xi〉 ≥ 1,

which completes the proof.

Lemma F.2. If (w1,w2, a1, a2) is along a KKT-margin direction of width-2 two-layer Leaky ReLU
network and a1 > 0, a2 < 0, then w1 = −w2, a1 = −a2 = ‖w1‖2.

Proof. WLOG we assume that qmin(θ) = 1. By Definition B.8 and Lemma B.9, there exist
λ1, . . . , λn ≥ 0 and h(1)

1 , . . . , h
(1)
n ∈ R, h(2)

1 , . . . , h
(2)
n ∈ R such that h(1)

i ∈ φ◦(〈w1,xi〉), h(2)
i ∈

φ◦(〈w2,xi〉), and the following conditions hold:

1. w1 = a1

∑
i∈[n] λiyih

(1)
i xi, w2 = a2

∑
i∈[n] λiyih

(2)
i xi;

2. a1 = ‖w1‖2, a2 = −‖w2‖2;

3. For all i ∈ [n], if qi(θ) 6= 1 then λi = 0.

Let u1 = a1w1 and u2 = −a2w2. Let ū1 := u1

‖u1‖2 , ū2 := − u2

‖u2‖2 . Then the following conditions
hold for all i ∈ [n]:

ū1 −
n∑
i=1

λih
(1)
i yixi = 0, (25)

ū2 −
n∑
i=1

λih
(2)
i yixi = 0, (26)

λi(1− yi(φ(〈u1,xi〉)− φ(−〈u2,xi〉))) = 0. (27)

By homogeneity, h(1)
i · 〈u1,xi〉 = φ(〈u1,xi〉), h(2)

i · 〈u2,xi〉 = −φ(−〈u2,xi〉). Left-multiplying
(u1)> or (u2)> on both sides of (25), we have

‖u1‖2 −
n∑
i=1

λiyiφ(〈u1,xi〉) = 0, (28)

〈ū1, ū2〉‖u2‖2 −
n∑
i=1

λih
(1)
i yi〈u2,xi〉 = 0. (29)
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Similarly, we have

‖u2‖2 +

n∑
i=1

λiyiφ(−〈u2,xi〉) = 0, (30)

〈ū1, ū2〉‖u1‖2 −
n∑
i=1

λih
(2)
i yi〈u1,xi〉 = 0. (31)

Combining (28) and (30), we have

‖u1‖2 + ‖u2‖2 =

n∑
i=1

λiyiφ(〈u1,xi〉)−
n∑
i=1

λiyiφ(−〈u2,xi〉) (32)

=

n∑
i=1

λiyi (φ(〈u1,xi〉)− φ(−〈u2,xi〉)) (33)

=

n∑
i=1

λi, (34)

where the last equality is due to (27).

Combining (29) and (31), we have

〈ū1, ū2〉(‖u1‖2 + ‖u2‖2) =

n∑
i=1

λih
(1)
i yi〈u2,xi〉+

n∑
i=1

λih
(2)
i yi〈u1,xi〉 (35)

=

n∑
i=1

λiyi

(
h

(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉

)
(36)

≥
n∑
i=1

λi, (37)

where the last inequality is due to Lemma F.1. Since we have deduced that ‖u1‖2+‖u2‖2 =
∑n
i=1 λi,

we further have
〈ū1, ū2〉(‖u1‖2 + ‖u2‖2) ≥ ‖u1‖2 + ‖u2‖2.

Combining this with 〈ū1, ū2〉 ≤ ‖ū1‖2‖ū2‖2 ≤ 1, we have 1 ≤ 〈ū1, ū2〉 ≤ 1. So all the inequalities
become equalities, and thus ū1 = ū2. (36) also equals to (37), so

yi

(
h

(1)
i 〈u2,xi〉+ h

(2)
i 〈u1,xi〉

)
= 1, (38)

whenever λi 6= 0.

By (27), we have yi
(
h

(1)
i 〈u1,xi〉+ h

(2)
i 〈u2,xi〉

)
= 1 whenever λi 6= 0. Combining this with (38),

we have
yi(h

(1)
i − h

(2)
i )〈u1,xi〉 = yi(h

(1)
i − h

(2)
i )〈u2,xi〉.

Then we prove that 〈u1,xi〉 = 〈u2,xi〉 by discussing two cases:

1. If 〈u1,xi〉 = 0, then 〈u2,xi〉 = 0 since ū1 = ū2;

2. Otherwise, we have (h
(1)
i , h

(2)
i ) = (1, αleaky) or (αleaky, 1) by symmetry, so h(1)

i 6= h
(2)
i

and thus 〈u1,xi〉 = 〈u2,xi〉.

This means u1 and u2 have the same projection onto the linear space spanned by {xi : λi 6= 0}. By
(25) and (26), u1 and u2 are in the span of {xi : i ∈ [n], λi 6= 0}. Therefore, u1 = u2 and we can
easily deduce that w1 = −w2, a1 = −a2 = ‖w1‖2.

Lemma F.3. If θ = (w1,w2, a1, a2) is along a KKT-margin direction of width-2 two-layer Leaky
ReLU network and ‖θ‖2 = 1, a1 ≥ 0 and a2 ≤ 0, then one of the following three cases is true:

1. θ = 1
2 (w∗,−w∗, 1,−1);

40



2. θ = 1√
2
(w∗,0, 1, 0);

3. θ = 1√
2
(0,−w∗, 0,−1).

Proof. Suppose a1 > 0 and a2 < 0, then by Lemma F.2, we knoww1 = −w2, a1 = −a2 = ‖w1‖2.
Since qi(θ) > 0,∀i, we know 〈w1,xi〉 6= 0,∀i, which implies qi(θ) is differentiable at θ. Let
θ′ = (w1, a1) and [θ′;−θ′] = (w1,−w1, a1,−a1), we know θ′ is along the KKT direction of the
following optimization problem:

min f([θ′;−θ′])
s.t. gi([θ

′;−θ′]) ≤ 0, ∀i ∈ [n],

where f([θ′;−θ′]) = ‖[θ′;−θ′]‖22 = 2 ‖w1‖22 + 2a2
1, and gi([θ′;−θ′]) = 1 − qi([θ

′;−θ′]) =
yiai(φ(〈w1,xi〉)−φ(−〈w1,xi〉)) = a1(1+αleaky) 〈w1, yixi〉. With a standard analysis, we know
w1 be in the direction of the max-margin classifier of the original problem, w∗.

Next we discuss the case where a2 = 0 (a1 = 0 follows the same analysis). When a2 = 0, since
qi(θ) > 0 for all i, we know a1yi 〈xi,x1〉 > 0 for all i. Thus qi(θ) > qi+n

2
(θ) = αleakyqi(θ),

which means only the second half constraints might be active. This reduces the optimization problem
to a standard linear-max-margin problem, and w1 will be aligned with w∗.

Proof for Theorem 5.5. By Theorem B.19 and Theorem 3.1, we know limt→+∞
θ(t)
‖θ(t)‖2 must be

along a KKT-margin direction. By Lemma F.3, we know that there are only 3 KKT-margin directions:

1

2
(w∗,−w∗, 1,−1),

1√
2

(w∗,0, 1, 0),
1√
2

(0,−w∗, 0,−1).

Thus it suffices to show limt→+∞
θ(t)
‖θ(t)‖2 6=

1√
2
(w∗,0, 1, 0). (limt→+∞

θ(t)
‖θ(t)‖2 6=

1√
2
(w∗,0, 1, 0)

would hold for the same reason.)

For convenience, we define i′ := i + n/2 if 1 ≤ i ≤ n/2 and i′ := i − n/2 if n/2 < i ≤ n. By
Assumption 4.1 we know that xi′ = −xi and yi′ = −yi.

We first define the angle between w∗ and w1(t) as β1(t) := arccos 〈w
∗,w1(t)〉
‖w1(t)‖2 and angle between

−w∗ and w2(t) as β2(t) := arccos 〈−w
∗,w2(t)〉

‖w2(t)‖2 . Since 〈w∗,w1(0)〉 > 0 and 〈−w∗,w2(0)〉 > 0,
by Lemma B.20 we know that β1(t), β2(t) ∈ [0, π/2) for all t ≥ 0.

We also define ε := mini∈[n]

{
arcsin 〈yixi,w

∗〉
‖xi‖2

}
, which can be understood as the angle between xi

and the decision boundary determined by the linear separator w∗.

Below we will prove by contradiction. Suppose limt→+∞
θ(t)
‖θ(t)‖2

= 1√
2
(w∗,0, 1, 0) =: θ̄∞ holds.

Then β1(t)→ 0 and ‖w2(t)‖2
‖w1(t)‖2 → 0 as t→ +∞. Thus there must exist T1 > 0 such that β1(t) ≤ ε/2.

Note that fθ̄∞(xi) = 1
2φ(〈xi,w∗〉) for all i ∈ [n]. By symmetry, for i ∈ [n/2] we have

qi(θ̄∞)− qi′(θ̄∞) = fθ̄∞(xi)− fθ̄∞(−xi) =
1

2
〈xi,w∗〉 −

γ∗

2
〈xi,w∗〉 =

1− γ∗

2
〈xi,w∗〉 > 0.

By Theorem B.19, we also know ‖θ(t)‖2 →∞, so qi(θ)−qi′(θ) = ‖θ(t)‖2(qi(θ̄∞)−qi′(θ̄∞))→
+∞ for all i ∈ [n/2]. Let gi(θ) := −`′(qi(θ)). Then

gi(θ(t))

gi′(θ(t))
∼ exp(−gi(θ(t)))

exp(−gi′(θ(t)))
= e−(gi(θ(t))−gi′ (θ(t))) → 0.

Thus there must exist T2 > 0 such that gi(θ(t))
gi′ (θ(t)) ≤ max

{
cos ε−αleaky

1−αleaky cos ε , 1
}

for all i ∈ [n/2] and
t ≥ T2.

We will use these to show that 〈w2(t),−w∗〉
〈w1(t),w∗〉 is non-decreasing for t ≥ T := max{T1, T2}, which

further implies ‖w2(t)‖2
‖w1(t)‖2 is lower bounded by some constant. Thus it contradicts with the assumption

of convergence.
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By Corollary B.18, we know that a1(t) = ‖w1(t)‖2 and a2(t) = −‖w2(t)‖2 for all t ≥ 0. Then for
all i ∈ [n], we have

fθ(xi) = a1φ(w>1 xi) + a2φ(w>2 xi) = ‖w1‖2φ(w>1 xi)− ‖w2‖2φ(w>2 xi).

By (10), if w1(t),w2(t) ∈ ΩS then we have
dw1

dt
=
‖w1‖2
n

∑
i∈[n]

gi(θ)φ′(w>1 xi)yixi, −dw2

dt
=
‖w2‖2
n

∑
i∈[n]

gi(θ)φ′(w>2 xi)yixi.

By symmetry, we can rewrite them as
dw1(t)

dt
=
‖w1(t)‖2

n

∑
i∈[n/2]

σ
(1)
i (t)xi, −dw2(t)

dt
=
‖w2(t)‖2

n

∑
i∈[n/2]

σ
(2)
i (t)xi. (39)

where σ(k)
i (t) := gi(θ(t))φ′(w>k (t)xi) + gi′(θ(t))φ′(−w>k (t)xi). Note that this only holds for

wk(t) ∈ ΩS . By taking limits through (8), we know that for a.e. t ≥ 0, there exists σ(k)
i (t) such that

(39) holds and

σ
(k)
i (t) ∈


{gi(θ) + αleakygi′(θ)} if w>k xi > 0;

{αleakygi(θ) + gi′(θ)} if w>k xi < 0;

{λgi(θ) + (1 + αleaky − λ)gi′(θ) : αleaky ≤ λ ≤ 1} if w>k xi = 0.

(40)

By chain rule, for a.e. t ≥ 0 we have:

d
dt

ln
〈w2,−w∗〉
〈w1,w∗〉

=
〈 dw2

dt ,−w
∗〉

〈w2,−w∗〉
−
〈 dw1

dt ,w
∗〉

〈w1,w∗〉

=
‖w2‖2
〈w2,−w∗〉

· 1

n

∑
i∈[n/2]

σ
(2)
i 〈xi,w

∗〉 − ‖w1‖2
〈w1,w∗〉

· 1

n

∑
i∈[n/2]

σ
(1)
i 〈xi,w

∗〉

=
1

n

∑
i∈[n/2]

(
σ

(2)
i

cosβ2
− σ

(1)
i

cosβ1

)
〈xi,w∗〉.

Now we are ready to prove d
dt ln 〈w2,−w∗〉

〈w1,w∗〉 ≥ 0 for t ≥ T . For this, we only need to show that
σ
(2)
i

cos β2
≥ σ

(1)
i

cos β1
in two cases.

Case 1. When β1 < β2, it suffices to show σ
(1)
i ≤ σ

(2)
i . By our choice of T1, we have β1 ≤ ε/2,

which implies w>1 xi > 0 and σ(1)
i = gi(θ) + αleakygi′(θ) for all i ∈ [n/2]. Note that

gi(θ)) ≤ gi′(θ) according to our choice of T2. Then for any λ ∈ [αleaky, 1] we have

σ
(1)
i = gi(θ) + αleakygi′(θ) ≤ λgi(θ) + (1 + αleaky − λ)gi′(θ).

By (40), we therefore have σ(1)
i ≤ σ(2)

i .

Case 2. If β1 ≥ β2, then by our choice of T1 we have ε/2 ≥ β1 ≥ β2. Then for all i ∈ [n/2],
w>2 xi ≤ 0. So we have

σ
(1)
i

σ
(2)
i

=
gi(θ) + αleakygi′(θ)

αleakygi(θ) + gi′(θ)
=

gi(θ)
gi′ (θ) + αleaky

αleaky
gi(θ)
gi′ (θ) + 1

≤ cos ε ≤ cosβ1(t) ≤ cosβ1(t)

cosβ2(t)
.

Thus σ
(2)
i

cos β2
≥ σ

(1)
i

cos β1
.

Now we have shown that 〈w2(t),−w∗〉
〈w1(t),w∗〉 ≥

〈w2(T ),−w∗〉
〈w1(T ),w∗〉 =: r0, where r0 is a constant (ratio at time T ).

So for t ≥ T ,
‖w2(t)‖2
‖w1(t)‖2

=
〈w2(t),−w∗〉 cosβ1(t)

〈w1(t),w∗〉 cosβ2(t)
≥ 〈w2(t),−w∗〉 cos ε

〈w1(t),w∗〉
≥ r0 cos ε, (41)

is lower bounded, which contradicts with limt→+∞
θ(t)
‖θ(t)‖2

= 1√
2
(w∗,0, 1, 0).
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F.2 Directional Convergence of L-homogeneous Neural Nets

In this section we consider generalL-homogeneous neural nets with logistic loss following the settings
introduced in Section 3.1. We define α(θ) and γ̃(θ) to be smoothed margin and its normalized version
following Lyu and Li (2020).

α(θ) = `−1(nL(θ)), γ̃(θ) =
α(θ)

‖θ‖L2
.

Define ζ(t) :=
∫ t

0

∥∥∥ d
dτ

θ(τ)
‖θ(τ)‖2

∥∥∥
2

dτ to be the length of the trajectory swept by θ/‖θ‖2 from time 0

to t. Define β(t) to be the cosine of the angle between θ(t) and dθ(t)
dt .

β(t) :=

〈
dθ(t)

dt ,θ(t)
〉

∥∥∥ dθ(t)
dt

∥∥∥
2
· ‖θ(t)‖2

, for a.e. t ≥ 0.

F.2.1 Lemmas from Previous Works

We leverage the following two lemmas from Ji and Telgarsky (2020a) on desingularizing function.
Formally, we say that Ψ : [0, ν) is a desingularizing function if Ψ is continuous on [0, ν) with
Ψ(0) = 0 and continuously differentiable on (0, ν) with Ψ′ > 0.
Lemma F.4 (Lemma 3.6, Ji and Telgarsky 2020a). Given a locally Lipschitz definable function f
with an open domain D ⊆ {θ : ‖θ‖2 > 1}, for any c, η > 0, there exists ν > 0 and a definable
desingularizing function Ψ on [0, ν) such that

Ψ′(f(θ)) · ‖θ‖2
∥∥∂̄◦f(θ)

∥∥
2
≥ 1,

whenever f(θ) ∈ (0, ν) and
∥∥∂̄◦⊥f(θ)

∥∥
2
≥ c‖θ‖η2

∥∥∂̄◦r f(θ)
∥∥

2
.

Lemma F.5 (Corollary of Lemma 3.7, Ji and Telgarsky 2020a). Given a locally Lipschitz definable
function f with an open domain D ⊆ {θ : ‖θ‖2 > 1}, for any λ > 0, there exists ν > 0 and a
definable desingularizing function Ψ on [0, ν) such that

Ψ′(f(θ)) · ‖θ‖1+λ
2

∥∥∂̄◦f(θ)
∥∥

2
≥ 1,

whenever f(θ) ∈ (0, ν).

For γ̃(θ), we have the following decomposition lemma from Ji and Telgarsky (2020a).
Lemma F.6 (Lemma 3.4, Ji and Telgarsky 2020a). If L(θ(t)) < `(0)/n at time t = t0, it holds for
a.e. t ≥ t0 that

dγ̃(θ(t))

dt
=
∥∥∂̄◦r γ̃(θ(t))

∥∥
2

∥∥∂̄◦rL(θ(t))
∥∥

2
+
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2

∥∥∂̄◦⊥L(θ(t))
∥∥

2
.

For a ∈ R ∪ {+∞,−∞}, we say that v is an asymptotic Clarke critical value of a locally Lipschitz
function f : RD → R if there exists a sequence of (θj , gj), where θj ∈ RD and gj ∈ ∂◦f(θj), such
that limj→+∞ f(θj) = v and limj→+∞(1 + ‖θj‖2)‖gj‖2 = 0.
Lemma F.7 (Corollary of Lemma B.10, Ji and Telgarsky 2020a). γ̃(θ) only has finitely many
asymptotic Clarke critical values.

For β(θ), we have the following lemma from Lyu and Li (2020).
Lemma F.8 (Lemma C.12, Lyu and Li 2020). If L(θ(t)) < `(0)/n at time t = t0, then there exists
a sequence t1, t2, . . . such that tj → +∞ and β(tj)→ 1 as j → +∞.

F.2.2 Characterizing Margin Maximization with Asymptotic Clarke Critical Value

Before proving Theorem 5.6, we first prove the following theorem that characterizes margin maxi-
mization using asymptotic Clarke critical value.

Theorem F.9. For homogeneous nets, if L(θ(0)) < `(0)/n, then θ(t)
‖θ(t)‖2 converges to some direction

θ̄ and γ(θ̄) is an asymptotic Clarke critical value of γ̃.
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Proof. Note that Theorem 3.1 already implies that θ(t)
‖θ(t)‖2 converges to some direction θ̄. We only

need to show that γ(θ̄) is an asymptotic Clarke critical value of γ̃.

By Lemma F.8 and definition of β, there exists a sequence of (θj ,hj), where hj ∈ −∂◦L(θj), such
that γ̃(θj) → γ(θ̄), ‖θj‖2 → +∞, θj

‖θj‖2 → θ̄, 〈hj ,θj〉
‖hj‖2‖θj‖2 → 1 as j → +∞. By chain rule, we

know that

∂◦γ̃(θ) =
∂◦α(θ)

‖θ‖L2
+

Lα(θ)

‖θ‖L+2
2

θ =
n(`−1)′(nL(θ))∂◦L(θ)

‖θ‖L2
+

Lα(θ)

‖θ‖L+2
2

θ

=
n∂◦L(θ)

‖θ‖L2 `′(α(θ))
+

Lα(θ)

‖θ‖L+2
2

θ.

This means gj :=
Lα(θj)

‖θj‖L+2
2

θj − nhj
‖θj‖L2 `′(α(θj))

∈ ∂◦γ̃(θ). By definition of asymptotic Clarke critical

value, it suffices to show that ‖θj‖2 · ‖gj‖2 → 0 as j → +∞.

By Lemma C.5 in (Ji and Telgarsky, 2020a),
∣∣∣ n〈−hj ,θj〉L·`′(α(θj))

− α(θ)
∣∣∣ ≤ 2 lnn+ 1. So

lim
j→+∞

∣∣∣∣ n 〈−hj ,θj〉
L · ‖θj‖L2 `′(α(θj))

− γ̃(θj)

∣∣∣∣ = lim
j→+∞

1

‖θj‖L2

∣∣∣∣ n 〈−hj ,θj〉L · `′(α(θj))
− α(θj)

∣∣∣∣ = 0,

which implies that limj→+∞
n〈−hj ,θj〉

L·‖θj‖L2 `′(α(θj))
= limj→+∞ γ̃(θj) = γ(θ̄). Now for the radial

component of gj we have

‖θj‖2 ·
∣∣∣∣〈gj , θj

‖θj‖2

〉∣∣∣∣ =
n 〈hj ,θj〉

‖θj‖L2 `′(α(θj))
+
Lα(θj)

‖θj‖L2
→ −Lγ(θ̄) + Lγ(θ̄) = 0.

And for the tangential component we have

‖θj‖2 ·

∥∥∥∥∥
(
I −

θjθ
>
j

‖θj‖22

)
gj

∥∥∥∥∥
2

=
n

‖θj‖L−1
2 `′(α(θj))

∥∥∥∥∥
(
I −

θjθ
>
j

‖θj‖22

)
hj

∥∥∥∥∥
2

=
n‖hj‖2

‖θj‖L−1
2 `′(α(θj))

√
1− 〈θj ,hj〉2
‖θj‖22‖hj‖22

=
n 〈−hj ,θj〉
‖θj‖L2 `′(α(θj))

‖hj‖2‖θj‖2
〈−hj ,θj〉

√
1− 〈θj ,hj〉2
‖θj‖22‖hj‖22

→ Lγ(θ̄) · 1 · 0 = 0.

Combining these proves that ‖θj‖2 · ‖gj‖2 → 0.

F.2.3 Proof for Theorem 5.6

Given Lemmas F.4 and F.5 from Ji and Telgarsky (2020a), we have the following inequality around
any direction.
Lemma F.10. Given any parameter direction θ̄∗ ∈ SD−1, for any κ ∈ (L/2, L), there exists ν > 0
and a definable desingularizing function Ψ on [0, ν) such that the following holds.

1. For any θ, if γ(θ̄∗)− γ̃(θ) ∈ (0, ν) and∥∥∂̄◦⊥γ̃(θ)
∥∥

2
≥ γ(θ̄∗)

4 lnn+ 2
‖θ‖L−κ2

∥∥∂̄◦r γ̃(θ)
∥∥

2
, (42)

then
Ψ′(γ(θ̄∗)− γ̃(θ)) · ‖θ‖2

∥∥∂̄◦γ̃(θ)
∥∥

2
≥ 1. (43)

2. For any θ, if γ(θ̄∗)− γ̃(θ) ∈ (0, ν),

Ψ′(γ(θ̄∗)− γ̃(θ)) · ‖θ‖2κ−L+1
2

∥∥∂̄◦γ̃(θ)
∥∥

2
≥ 1. (44)

44



Proof. Applying Lemma F.4 with f(θ) = γ(θ̄∗) − γ̃(θ), c = γ(θ̄∗)
4 lnn+2 , η = L − κ, we know that

there exists ν1 > 0 and a definable desingularizing function Ψ1 on [0, ν1) such that Item 1 holds for
Ψ1, i.e.,

Ψ′1(γ∗ − γ̃(θ)) · ‖θ‖2
∥∥∂̄◦γ̃(θ)

∥∥
2
≥ 1,

whenever (42) holds.

Applying Lemma F.5 with f(θ) = γ(θ̄∗)− γ̃(θ), λ = 2κ−L, we know that there exists ν2 > 0 and
a definable desingularizing function Ψ2 on [0, ν2) such that Item 2 holds for Ψ2, i.e.,

Ψ′2(γ(θ̄∗)− γ̃(θ)) · ‖θ‖2κ−L+1
2

∥∥∂̄◦γ̃(θ)
∥∥

2
≥ 1.

Since Ψ′1(x)−Ψ′2(x) is definable, there exists a sufficiently small constant ν > 0 such that either
Ψ′1(x) − Ψ′2(x) ≥ 0 holds for all x ∈ [0, ν), or Ψ′1(x) − Ψ′2(x) ≤ 0 holds for all x ∈ [0, ν).
This means either Ψ′1(x) ≥ Ψ′2(x) for all x ∈ [0, ν) or Ψ′2(x) ≥ Ψ′1(x) for all x ∈ [0, ν). Let
Ψ(x) = Ψ1(x) in the former case and Ψ(x) = Ψ2(x) in the latter case. Then Ψ′(x) ≥ Ψ′1(x) and
Ψ′(x) ≥ Ψ′2(x), and thus both Items 1 and 2 hold.

Now we prove the following lemma, which will directly lead to Theorem 5.6. The core idea of the
proof is essentially the same as that for Lemma 3.3 in Ji and Telgarsky (2020a). The key difference
here is that the desingularizing function Ψ in their lemma has dependence on the initial point, while
our lemma does not have such dependence.

Lemma F.11. Consider any L-homogeneous neural networks with definable output fθ(xi) and
logistic loss. Given a local-max-margin direction θ̄∗ ∈ SD−1, there is a desingularizing function on
[0, ν) and two constants ε0 > 0, ρ0 ≥ 1 such that for any θ0 with norm ‖θ0‖2 ≥ ρ0 and direction∥∥∥ θ0
‖θ0‖2 − θ̄

∗
∥∥∥

2
≤ ε0, the gradient flow θ(t) starting with θ0 satisfies

dζ(t)

dt
≤ −cdΨ(γ(θ̄∗)− γ̃(θ(t)))

dt
, for a.e. t ∈ [0, T ),

where T := inf{t ≥ 0 : γ̃(θ(t)) ≥ γ(θ̄∗)} ∈ R ∪ {+∞}.

Proof. Fix an arbitrary κ ∈ (L/2, L). Let Ψ be the desingularizing function on [0, ν) obtained from
Lemma F.10. WLOG, we can make ν < γ(θ̄∗)/2.

Let γ̃inf(ρ, ε) be the following lower bound for the initial smoothed margin γ̃(θ0):

γ̃inf(ρ, ε) := inf

{
γ̃(θ) : ‖θ‖2 ≥ ρ,

∥∥∥∥ θ

‖θ‖2
− θ̄∗

∥∥∥∥
2

≤ ε
}
. (45)

We set ρ0 to be sufficiently large and ε0 to be sufficiently small so that γ̃inf(ρ0, ε0) > 1
2γ(θ̄∗) and

ρL−κ0 ≥ (4 lnn+ 2)/γ(θ̄∗). By chain rule, it suffices to prove

dγ̃(θ(t))

dt
≥ 1

cΨ′(γ(θ̄∗)− γ̃(θ(t)))

dζ(t)

dt
, for a.e. t ∈ [0, T ), (46)

where c = max
{

2, γ(θ̄∗)
2 lnn+1

}
.

We consider two cases, where assume (42) is true in Case 1 and (42) is not true in Case 2. According
to our choice of ρ0 and the monotonicity of ‖θ(t)‖2, we have ‖θ(t)‖L−κ2 ≥ ρL−κ0 ≥ 4 lnn+2

γ(θ̄∗)
, and

thus γ(θ̄∗)
4 lnn+2‖θ(t)‖L−κ2 ≥ 1. This means∥∥∂̄◦r γ̃(θ(t))

∥∥
2

+
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
≤ 2

∥∥∂̄◦r γ̃(θ(t))
∥∥

2
(47)

in Case 1, and∥∥∂̄◦r γ̃(θ(t))
∥∥

2
+
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
<

γ(θ̄∗)

2 lnn+ 1
‖θ(t)‖L−κ2

∥∥∂̄◦r γ̃(θ(t))
∥∥

2
(48)

in Case 2.
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Case 1. For any t ≥ 0, if dθ(t)
dt = −∂̄◦L(θ(t)) and (42) hold for θ(t). By Lemma F.6, we have the

following lower bound for dγ̃(θ(t))
dt .

dγ̃(θ(t))

dt
≥
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2

∥∥∂̄◦⊥L(θ(t))
∥∥

2
. (49)

By triangle inequality and (47),

‖∂̄◦γ̃(θ(t))‖2 ≤ ‖∂̄◦r γ̃(θ(t))‖2 + ‖∂̄◦⊥γ̃(θ(t))‖2 ≤ 2
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
.

So
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
≥ 1

2‖∂̄
◦γ̃(θ(t))‖2. Combining this with (49) and noting that dζ(t)

dt =
1

‖θ(t)‖2

∥∥∂̄◦⊥L(θ(t))
∥∥

2
, we have

dγ̃(θ(t))

dt
≥ 1

2
‖∂̄◦γ̃(θ(t))‖2 ·

(
‖θ(t)‖2 ·

dζ(t)

dt

)
.

Applying (43) gives

dγ̃(θ(t))

dt
≥ 1

2Ψ′(γ(θ̄∗)− γ̃(θ(t)))

dζ(t)

dt
≥ 1

cΨ′(γ(θ̄∗)− γ̃(θ(t)))

dζ(t)

dt
.

Case 2. For any t ≥ 0, if dθ(t)
dt = −∂̄◦L(θ(t)) and (42) does not hold for θ(t), i.e.,∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
<

γ(θ̄∗)

4 lnn+ 2
‖θ(t)‖L−κ2

∥∥∂̄◦r γ̃(θ(t))
∥∥

2
, (50)

By Lemma F.6, we have the following lower bound for dγ̃(θ(t))
dt .

dγ̃(θ(t))

dt
≥
∥∥∂̄◦r γ̃(θ(t))

∥∥
2

∥∥∂̄◦rL(θ(t))
∥∥

2
. (51)

We lower bound
∥∥∂̄◦r γ̃(θ(t))

∥∥
2

and
∥∥∂̄◦rL(θ(t))

∥∥
2

respectively in order to apply KL inequality (44).

Bounding
∥∥∂̄◦r γ̃(θ(t))

∥∥
2

in Case 2. By triangle inequality and (48),

‖∂̄◦γ̃(θ(t))‖2 ≤ ‖∂̄◦r γ̃(θ(t))‖2 + ‖∂̄◦⊥γ̃(θ(t))‖2

<
γ(θ̄∗)

2 lnn+ 1
‖θ(t)‖L−κ2

∥∥∂̄◦r γ̃(θ(t))
∥∥

2
,

which can be restated as∥∥∂̄◦r γ̃(θ(t))
∥∥

2
≥ 2 lnn+ 1

γ(θ̄∗)
‖θ(t)‖κ−L2

∥∥∂̄◦γ̃(θ(t))
∥∥

2
. (52)

Bounding
∥∥∂̄◦rL(θ(t))

∥∥
2

in Case 2. By Lemma C.3 in Ji and Telgarsky (2020a),∥∥∂̄◦r γ̃(θ(t))
∥∥

2
≤ L · (2 lnn+ 1)

‖θ(t)‖L+1
2

.

Combining this with (50),∥∥∂̄◦⊥γ̃(θ(t))
∥∥

2
<

γ(θ̄∗)

4 lnn+ 2
‖θ(t)‖L−κ2 · L · (2 lnn+ 1)

‖θ(t)‖L+1
2

=
γ(θ̄∗)

2
L ‖θ(t)‖−(1+κ)

2 ,

which can be rewritten as

Lγ(θ̄∗)

2
>
∥∥∂̄◦⊥γ̃(θ(t))

∥∥
2
‖θ(t)‖1+κ

2 . (53)

By the chain rule and Lemma C.5 in Ji and Telgarsky (2020a),∥∥∂̄◦r α(θ(t))
∥∥

2
=
L ·
〈
θ(t), ∂̄◦α(θ(t))

〉
‖θ(t)‖2

≥ Lα(θ(t))

‖θ(t)‖2
= Lγ̃(θ(t))‖θ(t)‖L−1

2 . (54)
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By the monotonicity of γ̃(θ(t)) during training, γ̃(θ(t)) ≥ γ̃(θ(0)). Also note that

γ̃(θ(0)) ≥ γ̃0 >
1

2
γ(θ̄∗),

where the first inequality is by definition of γ̃0, and the second inequality is due to our choice of
ρ0, ε0. So we can replace γ̃(θ(t)) with 1

2γ(θ̄∗) in the RHS of (54) and obtain∥∥∂̄◦r α(θ(t))
∥∥

2
≥ Lγ(θ̄∗)

2
‖θ(t)‖L−1

2 .

Combining this with (53) and noting that ∂̄◦⊥α(θ(t)) = ‖θ(t)‖L2 ∂̄◦⊥γ̃(θ(t)), we have∥∥∂̄◦r α(θ(t))
∥∥

2
≥ ‖θ(t)‖L+κ

2

∥∥∂̄◦⊥γ̃(θ(t))
∥∥

2
≥ ‖θ(t)‖κ2

∥∥∂̄◦⊥α(θ(t))
∥∥

2
. (55)

Recall that α(θ) = `−1(L(θ)). By chain rule, ∂̄◦α(θ) is equal to the subgradient ∂̄◦L(θ) rescaled
by some factor. Thus (55) implies∥∥∂̄◦rL(θ(t))

∥∥
2
≥ ‖θ(t)‖κ2

∥∥∂̄◦⊥L(θ(t))
∥∥

2
. (56)

Applying (44) for Case 2. Putting (51), (52) and (56) together gives

dγ̃(θ(t))

dt
≥
(

2 lnn+ 1

γ(θ̄∗)
‖θ(t)‖κ−L2

∥∥∂̄◦γ̃(θ(t))
∥∥

2

)
·
(
‖θ(t)‖κ2

∥∥∂̄◦⊥L(θ(t))
∥∥

2

)
≥ 2 lnn+ 1

γ(θ̄∗)
‖θ(t)‖2κ−L2

∥∥∂̄◦γ̃(θ(t))
∥∥

2
·
∥∥∂̄◦⊥L(θ(t))

∥∥
2

=
2 lnn+ 1

γ(θ̄∗)
‖θ(t)‖2κ−L+1

2

∥∥∂̄◦γ̃(θ(t))
∥∥

2
· dζ(t)

dt
,

where the last equality is due to dζ(t)
dt = 1

‖θ(t)‖2

∥∥∂̄◦⊥L(θ(t))
∥∥

2
. Applying (44) gives

dγ̃(θ(t))

dt
≥ 2 lnn+ 1

γ(θ̄∗)
· 1

Ψ′(γ(θ̄∗)− γ̃(θ(t)))

dζ(t)

dt
≥ 1

cΨ′(γ(θ̄∗)− γ̃(θ(t)))

dζ(t)

dt
.

Final Proof Step. For a.e. t ≥ 0, θ(t) lies in either Case 1 or Case 2, so (46) holds, and we can
rewrite it as

cΨ′(γ(θ̄∗)− γ̃(θ(t)))
dγ̃(θ(t))

dt
≥ dζ(t)

dt
, for a.e. t ∈ [0, T ).

By chain rule, the LHS is equal to d
dt

(
cΨ(γ(θ̄∗)− γ̃(θ(t)))

)
, which completes the proof.

Proof for Theorem 5.6. By Lemma F.11, we can choose ε0, ρ0 such that

dζ(t)

dt
≤ −cdΨ(γ(θ̄∗)− γ̃(θ(t)))

dt
, for a.e. t ∈ [0, T ),

where T := inf{t ≥ 0 : γ̃(θ(t)) ≥ γ(θ̄∗)} ∈ R ∪ {+∞}. Then for all t ∈ (0, T ),

ζ(t) ≤ cΨ(γ(θ̄∗)− γ̃(θ0)) ≤ δ(ε0, ρ0) := cΨ(γ(θ̄∗)− γ̃inf(ρ0, ε0)), (57)

where γ̃inf is defined in (45). We can choose ε0 small enough and ρ0 large enough so that δ(ε0, ρ0) > 0
is as small as we want.

If T = +∞, then (57) implies that θ(t)
‖θ(t)‖2 converges to some θ̄ as t→ +∞, and ‖θ̄ − θ̄∗‖2 ≤ δ if

δ(ε0, ρ0) ≤ δ.

If T is finite, then by triangle inequality we have
∥∥∥ θ(T )
‖θ(T )‖2 − θ̄

∗
∥∥∥

2
≤ ε0 + δ(ε0, ρ0). Since θ̄∗ is

a local-max-margin direction, when ε0 and δ(ε0, ρ0) are sufficiently small, γ̃(θ) ≤ γ(θ) ≤ γ(θ̄∗)

holds for any θ satisfying
∥∥∥ θ
‖θ‖2 − θ̄

∗
∥∥∥

2
≤ 2(ε0 + δ(ε0, ρ0)). The definition of T then implies that

γ̃(θ(T )) = γ(θ(T )) = γ(θ̄∗). By Lemma B.1 from Lyu and Li (2020), γ̃(θ(t)) is non-decreasing
over time, and if it stops increasing at some value, then the time derivative of θ(t)

‖θ(t)‖2 must be zero.
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Thus we have γ̃(θ(t)) = γ(θ̄∗) and d
dt

θ(t)
‖θ(t)‖2 = 0 for all t ≥ T , which implies that θ(t)

‖θ(t)‖2 converges

to θ̄ := θ(T )
‖θ(T )‖2 as t→ +∞. This again proves that ‖θ̄ − θ̄∗‖2 ≤ δ.

Now we only need to show that γ(θ̄) = γ(θ̄∗). In the case where T is finite, we have γ(θ̄) =

γ
(

θ(T )
‖θ(T )‖2

)
= γ(θ̄∗). In the case where T = +∞, γ(θ̄) is a asymptotic Clarke critical value of γ̃

by Theorem F.9. Since there are only finitely many asymptotic Clarke critical values (Lemma F.7),
we can make δ(ε0, ρ0) to be small enough so that the only asymptotic Clarke critical value that can
be achieved near θ̄∗ is γ(θ̄∗) itself.

F.3 Proof for Theorem 4.3

Proof. By Lemma 5.4, limσinit→0 θ (T12 + t) = πb̄(θ̃(t)). Using Lemma E.8 and noting that
〈µ,w∗〉 = 1

n

∑
i∈[n]〈yixi,w∗〉 > 0, we know that there exists t ≤ t0 such that θ̃(t) =

(w̃1(t), w̃2(t), ã1(t), ã2(t)) satisfies ã1(t) = ‖w̃1(t)‖2, ã2(t) = −‖w̃2(t)‖2, 〈w̃1(t),w∗〉 > 0
and 〈w̃2(t),w∗〉 < 0. Then by Theorem 5.5,

lim
t→+∞

θ̃(t)

‖θ̃(t)‖2
=

1

2
(w∗,−w∗, 1,−1) =: θ̃∞,

which also implies that

lim
t→+∞

lim
σinit→0

θ (T12 + t)

‖θ (T12 + t) ‖2
= lim
t→+∞

πb̄(θ̃(t))

‖πb̄(θ̃(t))‖2
= πb̄

(
lim

t→+∞

θ̃(t)

‖θ̃(t)‖2

)
= πb̄(θ̃∞).

lim
t→+∞

lim
σinit→0

‖θ (T12 + t) ‖2 = lim
t→+∞

‖πb̄(θ̃(t))‖2 = +∞.

This means that for any ε > 0 and ρ > 0, we can choose a time t1 ∈ R such that∥∥∥ θ(T12+t1)
‖θ(T12+t1)‖2 − πb̄(θ̃∞)

∥∥∥
2
≤ ε and ‖θ(T12 + t1)‖2 ≥ ρ for any σinit small enough. By Theo-

rem 4.2, πb̄(θ̃∞) is a global-max-margin direction. Then Theorem 5.6 shows that there exists σmax
init

such that for all σinit < σmax
init , θ(t)

‖θ(t)‖2 → θ̄, where γ(θ̄) = γ(πb̄(θ̃∞)) and ‖θ̄ − πb̄(θ̃∞)‖2 ≤ δ.

Therefore, θ̄ is a global-max-margin direction and f∞(x) =
1+αleaky

4 〈w∗,x〉 by Theorem 4.2.

G Trajectory-based Analysis for Non-symmetric Case

The proofs for the non-symmetric case follow similar manners from phase I to phase III. The
high-level idea is to show the following in the 3 phases:

1. In Phase I, every weight vector wk in the first layer moves towards the direction of either
µ+ or −µ−. At the end of Phase I the weight vectors towards −µ− have much smaller
norms than those towards µ+, thereby becoming negligible.

2. In Phase II, we show that the dynamics of θ(t) is close to a one-neuron dynamic (after
embedding) for a long time.

3. In Phase III, we show that the one-neuron classifier converges to the max-margin solution
among one-neuron neural nets (while the embedded classifier may have suboptimal margin
among m-neuron neural nets), and the gradient flow θ(t) on the m-neuron neural net gets
stuck at a KKT-direction near this embedded classifier.

G.1 Additional Notations

In this section we highlight the additional notations that allow us to adapt the results from previous
sections. For δ ≥ 0, define Cδ to be the convex cone containing all the unit weight vectors that have δ
margin over the dataset {(xi, yi)}i∈[n].

Cδ :=
{
λw : 〈w, yixi〉 ≥ δ,w ∈ Sd−1, λ > 0,∀i ∈ [n]

}
,

C := C0 :=
{
w ∈ Rd : w 6= 0, 〈w, yixi〉 ≥ 0,∀i ∈ [n]

}
.
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For 0 < ε < 1, we define

Hε :=

 1

2n

∑
i∈[n]

(1 + εi)αiyixi : αi ∈ [αleaky, 1], εi ∈ [−ε, ε],∀i ∈ [n]

 ,

H := H0 :=

 1

2n

∑
i∈[n]

αiyixi : αi ∈ [αleaky, 1],∀i ∈ [n]

 .

By Lemma B.14 we know −∂
◦L(θ)
∂wk

⊆ akHε if ‖θ‖M ≤
√

ε
2m . Further we define

Kε :=
⋃
λ>0

λHε and K := K0 =
⋃
λ>0

λH0

Then −∂
◦L(θ)
∂wk

⊆ sgn(ak)Kε. For a set S, we will use S̊ to denote the interior of S.

Recall in Appendix A, for every xi, we define x+
i := xi if yi = 1 and x+

i := αleakyxi if yi = −1.
Similarly, we define x−i := αleakyxi if yi = 1 and x+

i := xi if yi = −1. Then we define µ+ to be
the mean vector of yix+

i , and µ− to be the mean vector of yix−i , that is,

µ+ :=
1

n

∑
i∈[n]

yix
+
i , µ− :=

1

n

∑
i∈[n]

yix
−
i .

We use µ̄+ := µ+

‖µ+‖2 , µ̄− := µ−

‖µ−‖2 to denote µ+, µ− after normalization. Similar to Kε, we define
Mε

+ andMε
− as the perturbed versions of µ+ and µ− in the sense thatM+ := {λµ+ : λ > 0} and

M− := {λµ− : λ > 0}.

Mε
+ =

 λ

2n

∑
i∈[n]

(1 + εi)yix
+
i : εi ∈ [−ε, ε], λ > 0

 ,

Mε
− =

 λ

2n

∑
i∈[n]

(1 + εi)yix
−
i : εi ∈ [−ε, ε], λ > 0

 .

G.2 More about Our Assumptions

The following lemma shows that Assumption A.1 is a weaker assumption than Assumption A.2.

Lemma G.1. Assumption A.1 implies Assumption A.2.

Proof. Let w� be the principal direction defined in Assumption A.1. We can decompose µ =
µ⊥ + µ‖, where µ‖ is the along the direction of w� and µ⊥ is orthogonal to w�. Assumption A.1
implies that for all i, j ∈ [n],

−〈yixi, yjxj〉 = −〈yixi,w�〉 · 〈yjxj ,w�〉 − 〈P �(yixi),P �(yjxj)〉
≤ ‖P �xi‖2‖P �xj‖2.

Then for all i ∈ [n], we have

1

n

∑
j∈[n]

max{−〈yixi, yjxj〉, 0} ≤
1

n

∑
j∈[n]

‖P �xi‖2‖P �xj‖2

≤ ‖P �xi‖2 · αleaky 〈µ,w�〉
γ�

maxj∈[n] ‖P �xj‖2
≤ αleaky 〈µ,w�〉 γ�.
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On the other hand, recall that γ� := mini∈[n] yi 〈w�,xi〉, then we have

〈µ, yixi〉 = 〈µ,w�〉 〈yixi,w�〉+ 〈P �µ,P �(yixi)〉

≥ 〈µ,w�〉 〈yixi,w�〉 −
1

n

∑
j∈[n]

‖P �xj‖2‖P �xi‖2

≥ 〈µ,w�〉 γ� − ‖P �xi‖2 · αleaky 〈µ,w�〉
γ�

maxj∈[n] ‖P �xj‖2
≥ (1− αleaky) 〈µ,w�〉 γ�.

Combining these proves that 〈µ, yixi〉 ≥ 1−αleaky

n·αleaky

∑
j∈[n] max{−〈yixi, yjxj〉, 0}.

Lemma G.2 gives the main property we will use from Assumption A.2, i.e. K ⊆ C̊ .

Lemma G.2. For linearly separable dataset {(xi, yi)}i∈[n] and αleaky ∈ (0, 1], Assumption A.2 is
equivalent to K ⊆ C̊ .

Proof. By definition, we know

C = {w ∈ Rd : w 6= 0, 〈w, yixi〉 ≥ 0,∀i ∈ [n]},
C̊ = {w ∈ Rd : 〈w, yixi〉 > 0,∀i ∈ [n]}.

and K =
{
λ
∑
i∈[n] αiyixi : αi ∈ [αleaky, 1], λ > 0

}
. For any i ∈ [n], we have

〈µ, yixi〉 >
1− αleaky

n · αleaky

∑
j∈[n]

max{− 〈yixi, yjxj〉 , 0}

⇐⇒ 1

n

∑
j∈[n]

(
1− αleaky

αleaky
min{〈yixi, yjxj〉 , 0}+ 〈yixi, yjxj〉

)
> 0

⇐⇒
∑
j∈[n]

((1− αleaky) min{〈yixi, yjxj〉 , 0}+ αleaky 〈yixi, yjxj〉)︸ ︷︷ ︸
∆ij

> 0

Note that ∆ij = minαj∈[αleaky,1] 〈yixi, αjyjxj〉. So

∑
j∈[n]

∆ij =
∑
j∈[n]

min
αj∈[αleaky,1]

〈yixi, αjyjxj〉 = min
α∈[αleaky,1]n

〈
yixi,

∑
j∈[n]

αjyjxj

〉
.

Therefore we have the following equivalence:

Assumption A.2 ⇐⇒ ∀i ∈ [n] : min
α∈[αleaky,1]n

〈
yixi,

∑
j∈[n]

αjyjxj

〉
> 0 (58)

⇐⇒ ∀w ∈ K,∀i ∈ [n] : 〈yixi,w〉 > 0 (59)

⇐⇒ K ⊆ C̊ . (60)

which completes the proof.

Lemma G.2 shows that every direction inK has non-zero margin. Below we let the δ be the minimum
of the margin of unit-norm linear separators in K:

δ := min
w∈K∩Sd−1

min
i∈[n]
〈yixi,w〉 .

By (58) we have δ > 0, and thus K ⊆ Cδ .
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G.3 Phase I

The overall result we will prove for phase I in the non-symmetric case is Lemma G.5. Compared to
the symmetric case, even G function is not linear anymore. Recall G is defined as below:

G(w) :=
−`′(0)

n

∑
i∈[n]

yiφ(w>xi) =
1

2n

∑
i∈[n]

yiφ(w>xi).

It holds that ∀w ∈ Rd, ∂◦G(w) ⊆ K. Moreover, we have w ∈ C̊ =⇒ ∂◦G(w) = {µ+} and
w ∈ −C̊ =⇒ ∂◦G(w) = {µ−}. Thanks to Assumption A.2, we can show each neuron wk(t) will
eventually converge to areas with fixed sign pattern±Cδ/3 and thusG will become linear. Lemma G.3
states this idea more formally. Its proof is a simpliciation to the realistic case, Lemma G.4, and thus
omitted. We will not use Lemma G.3 in the future.
Lemma G.3. For any dataset {(xi, yi)}i∈[n] satisfying Assumption A.2, suppose w(0) 6=
λµ−, ∀λ ≥ 0, and it holds that

dw
dt
∈ ‖w‖2 · ∂

◦G(w), (61)

then there exists T0 > 0, such that w(T0) ∈ Cδ/2.

However, in the realistic setting, eachwk is not following gradient flow of G exactly — there are tiny
correlations between different wk. And we will control those correlations by setting initialization
very small. This yields Lemma G.4.
Lemma G.4. Under Assumption A.2, if θ̄ = (w̄1, . . . , w̄m, ā1, . . . , ām) satisfies the following three
conditions:

1. For all k ∈ [m], |āk| = ‖w̄k‖2 6= 0;

2. If āk > 0, then w̄k 6= λµ− for any λ > 0;

3. If āk < 0, then w̄k 6= −λµ+ for any λ > 0;

then there exist T0, σ
max
init > 0, such that for any σinit < σmax

init , the gradient flow θ(t) =
(w1(t), . . . ,wm(t), a1(t), . . . , am(t)) = ϕ(σinitθ̄, t) satisfies the following at time T0,

wk(T0) ∈
{
Cδ/3, if āk > 0,

−Cδ/3, if āk < 0.
(62)

Moreover, there are constants A,B > 0 such that Aσinit ≤ ‖wk(T0)‖2 ≤ Bσinit.

It is easy to see that the three conditions in Lemma G.4 hold with probability 1 over the random
draw of θ̄0 ∼ Dinit(1). Then after time T0, all the neurons wk are either in Cδ/3 or −Cδ/3, and
will not leave it until T εσinit

, which implies the sign patterns sgn(〈xi,wk(t)〉) = skyi is fixed for
t ∈ [T0, T

ε
σinit

]. Thus similar to the symmetric case, θ(t) evolves approximately under power iteration
and yields the following lemma.
Lemma G.5. Suppose that Assumptions A.2 and A.3 hold. Let T1(σinit, r) := 1

λ+
0

ln r√
mσinit

. With

probability 1 over the random draw of θ̄0 = (w̄1, . . . , w̄m, ā1, . . . , ām) ∼ Dinit(1), the prerequisites
of Lemma G.4 are satisfied. In this case, there exists a vector b̄(σinit) ∈ Rm for any σinit > 0 such
that the following statements hold:

1. There exist constantsC1 > 0, C2 > 0, T0 ≥ 0, rmax > 0 such that for r ∈ (0, rmax), σinit ∈
(0, C1r

3), any neuron (wk, ak) at time T0 + T1(σinit, r) can be decomposed into

If āk > 0: wk(T0 + T1(σinit, r)) = rb̄k(σinit)µ̄
+ + ∆wk,

ak(T0 + T1(σinit, r)) = rb̄k(σinit) + ∆ak,

If āk < 0: wk(T0 + T1(σinit, r)) = r1−κb̄k(σinit)µ̄
− + ∆wk,

ak(T0 + T1(σinit, r)) = r1−κb̄k(σinit) + ∆ak,

where the error term ∆θ := (∆w1, . . . ,∆wm,∆a1, . . . ,∆am) is upper bounded by
‖∆θ‖M ≤ C2r

3 and κ is the gap 1− ‖µ
−‖2

‖µ+‖2 > 0.

51



2. There exist constants Ā, B̄ > 0 such that |b̄k(σinit)| ∈ [Ā, B̄] whenever āk > 0 and
|b̄k(σinit)| ∈ [σκinitĀ, σ

κ
initB̄] whenever āk < 0.

As σinit → 0, |b̄k(σinit)| → 0 for neurons with āk < 0, while |b̄k(σinit)| ∈ [Ā, B̄] remains for
neurons with āk > 0. This means when the initialization scale is small, only the neurons with āk > 0
remain effective and the others become negligible. Those effective neurons move their weight vectors
towards the direction of µ̄+, until the error term ∆θ becomes large.

G.3.1 Proof of Lemma G.4

Proof of Lemma G.4. Let sk := sgn(āk). By Corollary B.18, ak(t) = sk‖w(t)‖2 for all
t ≥ 0. Define T εσinit

:= inf
{
t ≥ 0 : ‖θ(t)‖M ≥

√
ε
m

}
. By Lemma B.14, we have ∀t ≤ T εσinit

,

−∂
◦L(θ(t))
∂wk

⊆ ak(t)Hε ⊆ skKε. Since K ⊆ Cδ, there exists ε1 > 0, such that for all ε < ε1,

Kε ⊆ C2δ/3. The high-level idea of the proof is that suppose −∂
◦L(θ(t))
∂wk

⊆ skC2δ/3 holds for
sufficiently long time T0 ,wk(t) will eventually end up in a cone skCδ/3 slightly wider than skC2δ/3,
as long as the total distance traveled is sufficiently long. On the other hand, we can make σmax

init
sufficiently small, such that T εσinit

≥ T0 for all σinit < σmax
init .

By Lemma B.16 and Lipschitzness of `,∣∣∣∣12 d‖wk‖22
dt

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

`′(qi(θ))yiakφ(w>k xi)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|ak| · ‖wk‖2 ≤ ‖wk‖22.

Then we have

∀t ≤ T εσinit
, ‖wk(t)‖2 ∈ [‖wk(0)‖2e−t, ‖wk(0)‖2et]. (63)

Thus for any T0 ≥ 0, if σinit ≤ e−T0

√
ε
m

‖θ̄‖
M

, we have T0 ≤ T εσinit
.

In order to lower bound the total travel distance for each wk(t), it turns out that it suffices to lower
bound the inft∈[0,T εσinit

] ‖wk(t)‖2 by D̄σinit, where D̄ > 0 is some constant. We will first show that
we can guarantee the existence of such constant D̄ by picking sufficiently small ε. Then we will
formally prove the original claim of Lemma G.4.

Existence of D̄. By definitions ofM+ andM−, it holds that ∀k ∈ [m],

w̄k /∈
{
M+, if āk < 0;
−M−, if āk > 0.

In other words

d̄ := min

{
min
k:āk<0

dist(w̄k −M+,0), min
k:āk>0

dist(w̄k +M−,0)

}
> 0.

By the continuity of the distance function, there exists ε2 > 0 such that ∀ε ∈ (0, ε2), it holds that

min

{
min
k:āk<0

dist(w̄k −Mε
+,0), min

k:āk>0
dist(w̄k +Mε

−,0)

}
≥ d̄

2
.

Now we take ε = min{ε1, ε2}. We will first show the existence of such D̄ for k ∈ [m] with āk > 0.
And the same argument holds for k with negative āk. Let tk := sup{t ≤ T εσinit

: wk(t) ∈ −Cδ/3}.
We note that wk(t) ∈ −Cδ/3 for all t ≤ tk. Otherwise, wk(t′) /∈ −Cδ/3 for some t′ < tk. On the
one hand, we have wk(tk) ∈ wk(t′) +Kε ⊆ wk(t′) + C2δ/3; on the other hand, we also know that
wk(tk) ∈ −Cδ/3 by continuity of the trajectory ofwk(t). This implies−Cδ/3∩(C2δ/3+wk(t′)) 6= ∅,
and thus wk(t′) ∈ −Cδ/3 − C2δ/3 ⊆ −Cδ/3 − Cδ/3 ⊆ −Cδ/3. Contradiction.

Now we have wk(t) ∈ −Cδ/3 for all t ≤ tk, and this implies that 〈wk(t),xi〉 < 0 for all i ∈ [n].
Then dwk(t)

dt = −∇wkL(θ(t)) ∈ Mε
−. Therefore we have inft∈[0,tk] ‖wk(t)‖2 ≥ dist(wk(0) +

Mε
−,0) = σinitdist(w̄k +Mε

−,0) ≥ d̄σinit

2 .
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Below we show the norm lower bound for any t such that t ∈ [tk, T
ε
σinit

]. Let d̄′ be the minimum
distance between any point in −C2δ/3 and any point on unit sphere but not in −Cδ/2, that is,

d̄′ := dist(Sd−1 \ (−Cδ/2),−C2δ/3)

We claim that d̄′ > 0. Otherwise there is a sequence of {wj} with unit norm and wj /∈ −Cδ/2
satisfying that limn→∞ dist

(
wk,−C2δ/3

)
= 0. Let w̄ be a limit point, then w̄ ∈ −C2δ/3 since

−C2δ/3 is closed. Since −C2δ/3 ⊆ −C̊δ/2, we further have w̄ ∈ −C̊δ/2, which contradicts with the
definition of limit point.

By the continuity ofwk(t), we knowwk(tk) /∈ −Cδ/2. Thus for any t ∈ [tk, T
ε
σinit

], we havewk(t) ∈
wk(tk)+C2δ/3 and inft∈[tk,T εσinit

] ‖wk(t)‖2 ≥ dist(0,wk(tk)+C2δ/3) = dist(−C2δ/3,wk(tk)) =

‖wk(tk)‖2 dist(−C2δ/3, wk(tk)
‖wk(tk)‖2 ) ≥ ‖wk(tk)‖2 · d̄′ ≥ d̄d̄′σinit

2 . We can apply the same argument
for those k with āk < 0, and finally we can conclude that ‖wk(t)‖2 ≥ D̄σinit for all t ∈ [0, T εσinit

]

and k ∈ [m], where D̄ := max{1, d̄′} d̄2 .

Convergence to Cδ/3. For c ≥ 0 and i ∈ [n] define Γci (w) := 〈w, yixi〉−c ‖w‖2. For all k ∈ [m]
and t ≤ T εσinit

, it holds that

dΓ
δ/3
i (skwk)

dt
=

〈
dwk
dt

, skyixi

〉
− (δ/3)

〈
dwk
dt

,
wk
‖wk‖2

〉
≥ (2δ/3)

∥∥∥∥dwk
dt

∥∥∥∥
2

− (δ/3)

∥∥∥∥dwk
dt

∥∥∥∥
2

= (δ/3)

∥∥∥∥dwk
dt

∥∥∥∥
2

,

where the inequality is because dwk
dt ⊆ akH

ε ⊆ akC2δ/3 and 〈 dwk
dt ,

wk
‖wk‖2

〉 ≤
∥∥ dwk

dt

∥∥
2
.

Let hmin := infw∈Hε ‖w‖2 = minw∈Hε ‖w‖2 > 0. Note that |ak(t)| = ‖wk(t)‖2 ≥ D̄σinit.
Using dwk

dt ⊆ akH
ε again we have

dΓ
δ/3
i (skwk(t))

dt
≥ δhminD̄σinit

3
.

Thus if we pick

T0 := max

{
3

δhminD̄
max

i∈[n],k∈[m]
{−Γ

δ/3
i (skw̄k)}, 0

}
and set σmax

init ≤ e−T0

√
ε
m

‖θ̄‖
M

then it holds that T0 ≤ T εσinit
for all σinit ≤ σmax

init and that

Γ
δ/3
i (skwk(T0)) ≥ δhminD̄σinitT0

3
+ Γ

δ/3
i (skwk(0))

≥ σinit

(
δhminD̄T0

3
+ Γ

δ/3
i (skw̄k(0))

)
≥ 0,

which implies (62).

Finally, by (63), it suffices to pick A = e−T0 mink∈[m] ‖w̄k‖2 and B = eT0 maxk∈[m] ‖w̄k‖2.

G.3.2 Proof of Lemma G.5

Note that G(w) = 〈w,µ+〉 for w ∈ Cδ/3 and G(w) = 〈w,µ−〉 for w ∈ −Cδ/3. Similar to the
first-phase analysis to the symmetric case, we use ϕ̃(θ̃0, t) to denote the trajectory of gradient flow
on L̃:

L̃(θ) := `(0) +
∑
k∈[m]

akG(wk).

Throughout this subsection, we will set T0 and ε as defined in the proof of Lemma G.4, and therefore
by Lemma G.4, we know there is σmax

init > 0, s.t. ak(T0)wk(T0) ∈ Cδ/3 for all σinit ≤ σmax
init . This
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means the dynamics of θ̃(t) = (w̃1(t), . . . , w̃m(t), ã1(t), . . . , ãm(t)) = ϕ̃(θ(T0), t − T0) can be
described by linear ODE for T0 ≤ t ≤ T εσinit

.

If āk > 0:
dw̃k
dt

= ãkµ
+,

dãk
dt

= 〈w̃k,µ+〉;

If āk < 0:
dw̃k
dt

= ãkµ
−,

dãk
dt

= 〈w̃k,µ−〉.

LetM+ :=

[
0 µ+

(µ+)> 0

]
andM− :=

[
0 µ−

(µ−)> 0

]
. The largest eigenvalues forM+ andM−

are λ+
0 := ‖µ+‖2 and λ−0 := ‖µ−‖2 respectively. Then the above linear ODE can be solved as

If āk > 0:
[
w̃k(T0 + t)
ãk(T0 + t)

]
= exp(tM+)

[
wk(T0)
ak(T0)

]
; (64)

If āk < 0:
[
w̃k(T0 + t)
ãk(T0 + t)

]
= exp(tM−)

[
wk(T0)
ak(T0)

]
. (65)

Lemma G.6. Let θ̃(t) = ϕ̃(θ(T0), t− T0). Then for all T0 ≤ t ≤ T εσinit
, it holds that

‖θ̃(t)‖M ≤ exp((t− T0)λ+
0 )‖θ̃(T0)‖M.

Proof. By Assumption A.3, we have λ+
0 > λ−0 . By definition and Cauchy-Schwartz inequality,∥∥∥∥dw̃k

dt

∥∥∥∥
2

≤ λ+
0 |ãk|,

∣∣∣∣dãkdt

∣∣∣∣ ≤ λ+
0 ‖w̃k‖2.

So we have ‖θ̃(t)‖M ≤ ‖θ(T0)‖M +
∫ T εσinit
T0

λ+
0 ‖θ̃(τ)‖Mdτ . Then we can finish the proof by

Grönwall’s inequality (12).

Lemma G.7. For θ(T0) with |ak(T0)| = ‖wk(T0)‖2 and ak(T0)wk(T0) ∈ Cδ/3, we have

‖θ(t)− ϕ̃(θ(T0), t− T0)‖M ≤
4m‖θ(T0)‖3M

λ+
0

exp(3λ0(t− T0)),

for all T0 ≤ t ≤ 1
λ+
0

ln

√
min{ε,λ+

0 }√
4m‖θ(T0)‖M

.

Proof. Let θ̃(t) = ϕ̃(θ(T0), t− T0). Let

t0 := min{T εσinit
, inf{t ≥ T0 : ‖θ(t)‖M ≥ 2‖θ(T0)‖M exp(λ+

0 (t− T0))}.

and it holds that ∀T0 ≤ t ≤ t0, all neurons of θ̃(t),θ(t) are either in Cδ/3 or −Cδ/3, thus θ̃(t),θ(t)

are in the same differentiable region of L̃. By Corollary B.13, the following holds for a.e. t ≥ 0,∥∥∥∥∥dθ
dt
− dθ̃

dt

∥∥∥∥∥
M

≤ sup
{
‖δ −∇L̃(θ)‖M : δ ∈ ∂◦L(θ)

}
+ ‖∇L̃(θ)−∇L̃(θ̃)‖M

≤ m‖θ(t)‖3M + λ+
0 ‖θ − θ̃‖M.

Then we can argue as the proof for Lemma D.2 to show that

‖θ(t)− θ̃(t)‖M ≤
4m‖θ(T0)‖3M

λ0
exp(3λ+

0 (t− T0))

for all t ∈ [T0, t0]. If t0 < T0 + 1
2λ+

0

ln
min{λ+

0 ,ε}
4m‖θ(T0)‖2M

, then for all T0 ≤ t ≤ t0, we have

‖θ(t)‖M ≤ ‖θ(T0)‖M

√
min{λ+

0 , ε}
4m ‖θ(T0)‖2M

<

√
ε

m
,
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which implies that t0 < T εσinit
by definition of T εσinit

. Moreover,

‖θ(t)‖M ≤ ‖θ̃(t)‖M +
4m‖θ(T0)‖3M

λ+
0

exp(3λ+
0 (t− T0))

≤ ‖θ̃(t)‖M +
4m‖θ(T0)‖2M

λ+
0

exp(2λ+
0 (t0 − T0)) · ‖θ(T0)‖M exp(λ+

0 (t− T0))

< ‖θ̃(t)‖M + ‖θ(T0)‖M exp(λ+
0 (t− T0)).

By Lemma G.6, ‖θ̃(t)‖M ≤ ‖θ(T0)‖M exp(λ+
0 (t − T0)). So ‖θ(t)‖M < 2‖θ(T0)‖M exp(λ+

0 (t −
T0)) for all T0 ≤ t ≤ t0, which contradicts to the definition of t0. Therefore, t0 ≥

1
2λ+

0

ln
min{ε,λ+

0 }
4m‖θ(T0)‖2M

= 1
λ+
0

ln

√
min{ε,λ+

0 }√
4m‖θ(T0)‖M

.

Proof for Lemma G.5. Let rmax :=

√
min{λ+

0 ,ε}
2 and C1 := σinitr

−3
max. We only need to prove the

statements for all σinit < σmax
init = C1r

3
max.

We fix a pair of σinit < σmax
init and r < rmax satisfying σinit < C1r

3. For convenience, we use b̄, T1

to denote b̄(σinit), T1(σinit, r) for short.

Let θ(t) = ϕ(σinitθ̄0, t). It is easy to see that the prerequisites of Lemma G.4 are satisfied with
probability 1. Below we only focus on the case where the prerequisites of Lemma G.4 are satisfied.
Let T0, σ

max
init , A,B be the constants from Lemma G.4. Let θ̃(t) = ϕ̃(θ(T0), t− T0).

For āk > 0, we define

b̄k :=
〈wk(T0), µ̄+〉+ ak(T0)

2
√
mσinit

,

and for āk < 0, we define

b̄k :=
〈wk(T0), µ̄−〉+ ak(T0)

2(
√
mσinit)1−κ .

r ≤ rmax and σinit < σmax
init .

Proof for Item 1. By Lemma G.7, we have

‖θ(T0 + T1)− θ̃(T0 + T1)‖M ≤
4m‖θ(T0)‖3M

λ+
0

exp(3λ+
0 T1) =

4‖θ(T0)‖3M
λ+

0

√
mσ3

init

r3. (66)

Now we turn to characterize θ̃(T0 + T1). Note that µ̄+
2 := 1√

2
[µ̄+, 1]> and µ̄−2 := 1√

2
[µ̄−, 1]>

are the top eigenvectors of M+ and M− respectively. Let κ := 1 − ‖µ
−‖2

‖µ+‖2 . Recall that T1 :=
1
λ+
0

ln r√
mσinit

. Then for āk > 0, we have

exp(T1λ
+
0 )µ̄+

2 (µ̄+
2 )>

[
wk(T0)
ak(T0)

]
=

(
r√

mσinit

)
µ̄+

2 (µ̄+
2 )>

[
wk(T0)
ak(T0)

]
= rb̄k

[
µ̄+

1

]
,

where the last equality is by definition of b̄k. Similarly for āk > 0, we have

exp(T1λ
−
0 )µ̄−2 (µ̄−2 )>

[
wk(T0)
ak(T0)

]
=

(
r√

mσinit

)1−κ

µ̄−2 (µ̄−2 )>
[
wk(T0)
ak(T0)

]
= r1−κb̄k

[
µ̄−

1

]
.

Combining these with (64) and (65), then for āk > 0 we have∥∥∥∥[w̃k(T0 + t)
ãk(T0 + t)

]
− rb̄k

[
µ̄+

1

]∥∥∥∥
2

≤
∥∥∥∥(exp(T1M+)− exp(T1λ

+
0 )µ̄+

2 (µ̄+
2 )>

) [wk(T0)
ak(T0)

]∥∥∥∥
2

≤
∥∥∥∥[wk(T0)
ak(T0)

]∥∥∥∥
2

≤
√

2‖θ(T0)‖M.
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and for āk < 0 we have∥∥∥∥[w̃k(T0 + t)
ãk(T0 + t)

]
− r1−κb̄k

[
µ̄−

1

]∥∥∥∥
2

≤
∥∥∥∥(exp(T1M−)− exp(T1λ

−
0 )µ̄−2 (µ̄−2 )>

) [wk(T0)
ak(T0)

]∥∥∥∥
2

≤
∥∥∥∥[wk(T0)
ak(T0)

]∥∥∥∥
2

≤
√

2‖θ(T0)‖M.

Then by definition of ∆θ and (66), we have

‖∆θ‖M ≤
4‖θ(T0)‖3M
λ+

0

√
mσ3

init

r3 +
√

2‖θ(T0)‖M.

Applying the upper bound ‖wk(T0)‖2 ≤ Bσinit from Lemma G.4, we then have

‖∆θ‖M ≤
4B3σ3

init

λ+
0

√
mσ3

init

r3 +
√

2Bσinit =
4B3

λ+
0

√
m
r3 +

√
2Bσinit,

Finally, recalling that σinit ≤ C1r
3, we can conclude that ‖∆θ‖M ≤ C2r

3, where C2 := 4B3

λ+
0

√
m

+
√

2BC1.

Item 2. Now it only remains to lower and upper bound |b̄k|. By Lemma G.4, ak(T0)wk(T0) ∈ Cδ/3.
Then sgn(ak(T0))〈wk(T0), µ̄+〉 ≥ 0 and thus

if āk > 0 : 〈wk(T0), µ̄+〉+ ak(T0) ∈
[
‖wk(T0)‖2, 2 · ‖wk(T0)‖2

]
⊆ [Aσinit, 2Bσinit];

if āk < 0 : 〈wk(T0), µ̄−〉+ ak(T0) ∈
[
− 2 · ‖wk(T0)‖2,−‖wk(T0)‖2

]
⊆ [−2Bσinit,−Aσinit].

Then for every b̄k,

if āk > 0 : |b̄k| =
|〈wk(T0), µ̄+〉+ ak(T0)|

2
√
mσinit

∈
[

A

2
√
m
,
B√
m

]
;

if āk < 0 : |b̄k| =
|〈wk(T0), µ̄−〉+ ak(T0)|

2(
√
mσinit)1−κ ∈

[
σκinitA

2m(1−κ)/2
,
σκinitB

m(1−κ)/2

]
.

Letting Ā := A
2m(1−κ)/2 and B̄ := B

m(1−κ)/2 completes the proof.

G.4 Phase II

As shown in our analysis for Phase I, if the intialization scale is small, the weight vectors of neurons
with āk > 0 move towards the direction of µ̄+, and all the other neurons are negligible. Now we
show that the dynamic of θ(t) is close to that of a one-neuron dynamic in a similar manner as we do
for the symmetric case.

First we slightly extend the definition of embedding. For θ̂ = (ŵ1, ŵ2, â1, â2) and an embedding
vector b ∈ Rm, we say that b is compatible with θ̂ if the following holds:

1. If b+ = 0, then ‖ŵ1‖2 = |â1| = 0;

2. If b− = 0, then ‖ŵ2‖2 = |â2| = 0.

When b is compatible with θ̂, we define the (exact) embedding from two-neuron into m-neuron
neural nets as πb(θ̂) := (w1, . . . ,wm, a1, . . . , am), where

ak =


bk
b+
â1, if bk > 0

bk
b−
â2, if bk < 0

0, if bk = 0

, wk =


bk
b+
ŵ1, if bk > 0

bk
b−
ŵ2, if bk < 0

0, if bk = 0

.

One can easily show that Lemma 5.3 continue to hold when b is compatible with θ̂.
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Lemma G.8. Let b̄(σinit) be the same vector as in the statement of Lemma G.5. Let T12(σinit) :=
T0 + 1

λ+
0

ln 1√
mσinit

and T2(r) := 1
λ+
0

ln 1
r . For width m ≥ 1, the following statements hold with

probability 1 − 2−m over the random draw of θ̄0 = (w̄1, . . . , w̄m, ā1, . . . , ām) ∼ Dinit(1). Let
σ1, σ2, . . . be any sequence of initialization scales so that σj converges to 0 as j → +∞ and the
limit b̂ := limj→+∞ b̄(σj) exists.

1. b̂+ > 0 and b̂− = 0;

2. For the two-neuron dynamics starting with rescaled initialization in the direction of θ̂ :=

(b̂+µ̄
+,0, b̂+, 0), the following limit exists for all t ≥ 0,

θ̃(t) := lim
r→0

ϕ
(
rθ̂, T2(r) + t

)
6= 0; (67)

3. For the m-neuron dynamics of θj(t) with initialization scale σinit = σj , the following holds
for all t ≥ 0,

lim
j→∞

θj (T12(σj) + t) = πb̂(θ̃(t)). (68)

Proof. The proof is similar to Lemma 5.4 for the symmetric case. Apply Theorem E.4 and then the
lemma is straightforward.

G.5 Phase III

In Phase III, we show that the dynamic of θ(t) converges to the same classifier as the one-neuron
dynamic.

Let S+ := arg mini∈[n]

{
yi〈w+,x+

i 〉
}
⊆ [n]. Let ∆h−1 = {p ∈ Rh :

∑
i∈[h] pi = 1, pi ≥ 1} be

the probability simplex. Let Λ+ :=
{
λ ∈ ∆n−1 : λi = 0,∀i /∈ S+

}
.

The theorem below characterizes the solution found by the one-neuron dynamic.
Theorem G.9. Under Assumption 3.2, for m = 1, if initially a1 = ‖w1‖2, 〈w1,w

∗〉 > 0, then θ(t)
directionally converges to the following global-max-margin direction,

lim
t→+∞

θ(t)

‖θ(t)‖2
=

1√
2

(w+, 1).

Proof. By Theorem B.19, L(θ(t)) → 0. Then by Theorem 3.1, θ(t)
‖θ(t)‖2 converges along a KKT-

margin direction. Combining this with Lemma B.17, we know that this direction must has the form
1√
2
(w̄, 1) for some w̄ ∈ Sd−1.

By Definition B.8, yi · 1
2φ(〈w̄,xi〉) > 0 and w̄ can be expressed by a convex combination of

yiφ
′(〈w̄,xi〉)xi among i ∈ arg min{ 1

2φ(〈w̄,xi〉)}. Equivalently. we know that yi〈w̄,x+
i 〉 and w̄

can be expressed by a convex combination of yix+
i among i ∈ S+. Then the only possibility is

w̄ = w+.

Now we turn to analyze the trajectory of θ(t) on m-neuron neural net. First we prove the following
lemma, then we prove Theorem G.11 for local-max-margin directions.
Lemma G.10. Let Θ− := {θ = (w1, . . . ,wm, a1, . . . , am) : m ≥ 1, ak ≤ 0}. Then we have
the following characterization for the global maximum of the normalized margin on the dataset
{(xi, yi) : i ∈ S+}:

sup
θ∈Θ−

{
mini∈S+ qi(θ)

‖θ‖22

}
= inf
λ∈Λ+

sup
u∈Sd−1

−1

2

∑
i∈[n]

λiyiφ(〈u,xi〉)


Proof. The proof is inspired by Chizat and Bach (2020, Proposition 12). By Lemma B.9, the
maximum normalized margin is attained when |ak| = ‖wk‖2 for all k ∈ [m]. Note that we can
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rewrite each neuron output akφ(〈wk,xi〉) as −a2
kφ(〈wk/‖wk‖2,xi〉) for any such solution, and it

is easy to see
∑
k∈[m] a

2
k = 1

2‖θ‖
2
2. Let V be the set of probability distributions supported on finitely

many points of Sd−1. Then

sup
θ∈Θ−

{
mini∈S+ qi(θ)

‖θ‖22

}
= sup

m≥1,p∈∆m−1

u1,...,um∈Sd−1

min
i∈S+

−1

2
yi
∑
k∈[m]

pkφ(〈uk,xi〉)


= sup
ν∈V

min
i∈S+

Eu∼ν
[
−1

2
yiφ(〈u,xi〉)

]
.

By minimax theorem, we can swap the order between sup and min in the following way:

sup
ν∈V

min
i∈S+

Eu∼ν
[
−1

2
yiφ(〈u,xi〉)

]
= sup
ν∈V

inf
λ∈Λ+

Eu∼ν

[
−1

2

∑
i∈S+

λiyiφ(〈u,xi〉)

]

= inf
λ∈Λ+

sup
ν∈V

Eu∼ν

[
−1

2

∑
i∈S+

λiyiφ(〈u,xi〉)

]

= inf
λ∈Λ+

sup
u∈Sd−1

{
−1

2

∑
i∈S+

λiyiφ(〈u,xi〉)

}
,

which proves the claim.

Theorem G.11. Let θ̂ := ( 1√
2
w+, 1√

2
,0, 0) and P be a non-empty subset of [m]. Let Q̄ be the

following subset of SD−1:

Q̄ := {θ = (w1, . . . ,wm, a1, . . . , am) ∈ SD−1 : ak ≥ 0 for all k ∈ P and ak ≤ 0 otherwise}.
For any embedding vect b be an embedding vector satisfying the following:

• b is compatible with θ̂;

• bk > 0 for all k ∈ P ;

• bk = 0 for all k /∈ P ;

the following statements are true under Assumption A.5,

1. πb(θ̂) is a local maximizer of γ(θ) among θ ∈ Q̄;

2. If θ ∈ Q̄ has the same normalized margin as πb(θ̂) and θ is sufficiently close to πb(θ̂), then
fθ(x) = fθ̂(x) for all x ∈ Rd.

Proof. It is easy to see that πb(θ̂) is a KKT-margin direction with γ(πb(θ̂)) = γ(θ̂) = 1
2γ

+. Also,
arg mini∈[n]{qi(πb(θ̂))} = arg mini∈[n]{qi(θ̂)} = S+. Let ε > 0 be a small constant such that the
following holds whenever ‖θ − πb(θ̂)‖M < ε:

1. sgn(〈wk,xi〉) = sgn(〈w+,xi〉) for all i ∈ [n] and for all k ∈ P ;

2. arg mini∈[n]{qi(θ)} ⊆ S+.

Let θ ∈ Q̄ be any parameter satisfying ‖θ − πb(θ̂)‖M < ε. We can decompose θ into θ+ + θ−,
where θ+ = (w+

1 , . . . ,w
+
m, a

+
1 , . . . , a

+
m), θ− = (w−1 , . . . ,w

−
m, a

−
1 , . . . , a

−
m), and

w+
k = 1[k∈P ]wk, a

+
k = 1[k∈P ]ak, w−k = 1[k/∈P ]wk, a

−
k = 1[k/∈P ]ak.

Let r+ = ‖θ+‖2 and r− = ‖θ−‖2. Define θ̄+ and θ̄− to be two unit-norm parameters so that
θ+ = r+θ̄

+, θ− = r−θ̄
−. Then we have

γ(θ) = min
i∈S+
{qi(θ)} = min

i∈S+

{
qi(θ

+) + qi(θ
−)
}

= min
i∈S+

{
r2
+qi(θ̄

+) + r2
−qi(θ̄

−)
}
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Note that r2
+ + r2

− = 1. By minimax theorem (similar to Lemma G.10),

min
i∈S+

{
r2
+qi(θ̄

+) + r2
−qi(θ̄

−)
}
≤ min
λ∈Λ+

max

{∑
i∈S+

λiqi(θ̄
+),

∑
i∈S+

λiqi(θ̄
−)

}
.

By definition of w+ and KKT conditions, we can find λ∗ ∈ Λ+ so that
∑
i∈S+ λ∗ix

+ = γ+w+.
Letting λ = λ∗ for the above inequality, we can obtain

γ(θ) ≤ max

{∑
i∈S+

λ∗i qi(θ̄
+),

∑
i∈S+

λ∗i qi(θ̄
−)

}
.

We only need to prove that both
∑
i∈S+ λ∗i qi(θ̄

+) and
∑
i∈S+ λ∗i qi(θ̄

−) are no more than 1
2γ

+. Note
that combining Assumption A.5 and Lemma G.10 directly implies that

∑
i∈S+ λ∗i qi(θ̄

−) < 1
2γ

+.
Now we focus on

∑
i∈S+ λ∗i qi(θ̄

+).

According to our choice of ε, we have akφ(〈wk,xi〉) = 〈akwk,x+
i 〉. For

∑
i∈S+ λ∗i qi(θ̄

+), we
have ∑

i∈S+

λ∗i qi(θ̄
+) =

∑
i∈S+

λ∗i yi
∑
k∈P

〈akwk,x+
i 〉 =

∑
k∈P

ak

〈
wk,

∑
i∈S+

λ∗i yix
+
i

〉
=
∑
k∈P

ak
〈
wk, γ

+w+
〉
.

By Cauchy-Schwartz inequality,∑
k∈P

ak
〈
wk, γ

+w+
〉
≤
√∑
k∈P

a2
k ·
√∑
k∈P

〈wk, γ+w+〉2 ≤ 1√
2
· 1√

2
γ+ =

1

2
γ+.

This proves that
∑
i∈S+ λ∗i qi(θ̄

+) ≤ 1
2γ

+, and thus γ(θ) ≤ 1
2γ

+ = γ(θ̂). Therefore Item 1 is true.

For Item 2, we only need to note that the equality in γ(θ) ≤ 1
2γ

+ only holds if r− = 0 and
wk = akw

+ for all k ∈ P , so fθ represents the same function as fθ̂.

For proving Theorem A.7, we only need to show this:
Theorem G.12. For any sequence of σ1, σ2, . . . converging to 0, there is a subsequence σp1 , σp2 , . . .
and a constant σmax

init such that Theorem A.7 holds for σinit = σpi as long as σpi < σmax
init .

Proof for Theorem A.7. Assume to the contrary that Theorem A.7 does not hold. Then there exists
x ∈ Rd and a sequence of initialization scales σ1, σ2, . . . converging to 0 such that f∞(x) 6=
1
2φ(〈w+,x〉) for any σj . However, by Theorem G.12, we can find a subsequence σp1 , σp2 , . . . and a
constant σmax

init such that 1
2φ(〈w+,x〉) holds for σpi as long as σpi < σmax

init , contradiction.

Proof for Theorem G.12. With probability 1 over the random draw of θ̄0 ∼ Dinit(1), by Lemma G.5,
the prerequisites of Lemma G.4 hold and we can find a subsequence of initialization scales
σp1 , σp2 , . . . so that the limit b̂ := limj→+∞ b̄(σpj ) exists.

Let θj(t) = ϕ(σpj θ̄0, t). By Lemma G.8, with probability 1− 2−m, limj→∞ θj(T12(σpj ) + t) =

πb̂(θ̃(t)). By Theorem G.9, limt→+∞
θ̃(t)

‖θ̃(t)‖2
= 1√

2
(w+,0, 1, 0) =: θ̃∞. Then we can argue in a

similar way as Theorem 4.3 to show that for any ε > 0 and ρ > 0, we can choose a time t1 ∈ R such

that
∥∥∥ θj(T12(σpj )+t1)

‖θj(T12(σpj+t1))‖2 − πb̂(θ̃∞)
∥∥∥

2
and

∥∥θj(T12(σpj ) + t1)
∥∥

2
≥ ρ for σpj small enough.

By Corollary B.18, the trajectory of gradient flow starting with σpj θ̄0 lies in the set Q := {θ :
akāk ≥ 0 for all k ∈ [m]} for all j ≥ 1, that is, every ak has the same sign as its initial value
during training. By a variant of Theorem 5.6, there exists σmax

init such that for all σpj < σmax
init ,

θ(t)
‖θ(t)‖2 → θ̄ ∈ Q, where γ(θ̄) = γ(πb̄(θ̃∞)) and ‖θ̄ − πb̄(θ̃∞)‖2 ≤ δ. Applying Theorem G.11
proves that f∞(x) = 1

2φ(〈w+,x〉) for σpj < σmax
init .
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H Proofs for the Orthogonally Separable Case

In this section, we revisit the orthogonally separable setting considered by Phuong and Lampert
(2021). Suprisingly, in this setting, all KKT points which contains at least one positive neuron and
negative neuron are indeed global-max-margin directions and unique in function space. This means it
is possible to prove the global optimality of margin in Phuong and Lampert (2021)’s setting even
without a trajectory-based analysis.
Definition H.1 (Orthogonally Separable Data, Phuong and Lampert 2021). A binary classification
dataset {(x1, y1), . . . , (xn, yn)} is called orthogonally separable if for all i, j ∈ [n], if x>i xj > 0
whenever yi = yj and x>i xj ≤ 0 whenever yi = −yj .

Let θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD and fθ(x) :=
∑m
i=1 aiφ(〈x,wi〉) where φ is ReLU,

i.e., φ(x) = max{0, x}. The following theorem shows that for orthogonally separable data, all
KKT-margin directions are global-max-margin directions.
Theorem H.2. Suppose the dataset is orthogonally separable, for all KKT-margin directions θ ∈ SD,
their corresponding functions fθ are the same and thus they are all global-max-margin directions.

The Theorem H.2 is a simple corollary of the following lemma Lemma H.3.
Lemma H.3. If θ satisfies the KKT conditions of (P), then for ak 6= 0, |ak| = ‖wk‖2 and
(
∑
j:ajak>0 a

2
j )
wk
ak

is the global minimizer of the following optimization problem (Q):

min
w

1

2
‖w‖22 s.t. 〈w,xi〉 ≥ 1, for all i ∈ [n] with yi = sgn(ak). (Q)

In other words, all the non-zero ak,wk can be split into 2 groups according to the sign of ak, where
in each group, wkak is the same.

Proof of Theorem H.2. By Lemma H.3, we know for any θ satisfying the KKT condition of (P),

wk =

 ∑
j:ajak>0

a2
j

−1

akw
sgn(ak), (69)

wherewsgn(ak) (w+ orw−) are the unique global minimzer of the constrained convex optimization
of (Q).

Thus ‖θ‖22 =
∑
i∈[m](|ai|2 + ‖xi‖22) = 2

∑
i∈[m] |ai|2 = ‖w−‖2 + ‖w+‖2 is the same for all θ

satisfying the condition in the theorem statement. Here the last equality uses (69) and |ak| = ‖wk‖2.

Next we check the uniqueness of fθ. For any x, we have

fθ(x) =
∑
k∈[m]

akφ(〈x,wk〉) = φ

(〈
x,

∑
k:ak>0

akwk

〉)
+ φ

(〈
x,

∑
k:ak<0

akwk

〉)
= φ

(〈
x,w+

〉)
+ φ

(〈
x,w−

〉)
,

which completes the proof.

Proof of Lemma H.3. By KKT conditions (Definition B.8), there exist λ1, . . . λn ≥ 0, such that for
each k ∈ [m], there are h(k)

1 , . . . , h
(k)
n ∈ R such that for all i ∈ [n], h(k)

i ∈ φ◦(〈wk,xi〉), and the
following conditions hold:

wk = ak
∑
i∈[n]

λih
(k)
i yixi, ak =

∑
i∈[n]

λiyiφ(w>k xi),

and λi = 0 whenever yifθ(xi) > 1. By Lemma B.9, ‖wk‖2 = |ak|.

We claim that for all i ∈ [n] so that λih
(k)
i > 0, it holds that yi = sgn(ak) and 〈wk,xi〉 > 0. Let

i ∈ [n] be any index so that λih
(k)
i > 0. Then h(k)

i > 0. By KKT conditions,

〈wk,xi〉 =

〈
ak
∑
j∈[n]

λjh
(k)
j yjxj ,xi

〉
= akyi

∑
j∈[n]

λjh
(k)
j 〈yjxj , yixi〉 . (70)
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Since φ(x) = max{x, 0}, it holds that 〈wk,xi〉 ≥ 0; otherwise h(k)
i ∈ φ◦(〈wk,xi〉) = {0}, which

contradicts to h(k)
i > 0. Then (70) implies that the product of akyi and

∑
j∈[n] λjh

(k)
j 〈yjxj , yixi〉 is

non-negative. By orthogonal separability, 〈yjxj , yixi〉 ≥ 0 and thus
∑
j∈[n] λjh

(k)
j 〈yjxj , yixi〉 ≥

λih
(k)
i ‖yixi‖22 > 0. Then we can conclude that akyi ≥ 0 and thus yi = sgn(ak). Since yi =

sgn(ak) and ak 6= 0, indeed we have akyi > 0. Now using (70) again, we obtain 〈wk,xi〉 ≥
akyi · λih(k)

i ‖yixi‖22 > 0 if λih
(k)
i > 0.

Furthermore, for any ak 6= 0, since ‖wk‖2 = |ak| > 0, there is at least one index j∗ ∈ [n] such that
λj∗h

(k)
j∗

> 0 (otherwise wk = 0 by KKT conditions). For all i ∈ [n], again by (70), it holds that

sgn(ak)yi〈wk,xi〉 = |ak|
∑
j∈[n]

λjh
(k)
j 〈yjxj , yixi〉 ≥ |ak|λj∗h

(k)
j∗
〈yj∗xj∗ , yixi〉 > 0,

where the last inequality is from the assumption of orthogonally separability. This further implies
h

(k)
i = 1[yi=sgn(ak)] and thus wk = ak

∑n
i=1 1[yi=sgn(ak)]λiyixi for all k ∈ [m].

Therefore we can split the neurons with non-zero ak into two parts: K+ = {k ∈ [m] : ak > 0},
K− = {k ∈ [m] : ak < 0}. Every k ∈ K+ satisfies the following:

ak = ‖wk‖2, (71)

wk = ak

n∑
i=1

1[yi=1]λixi. (72)

This implies ∀k ∈ K+, wkak = wk
‖wk‖2 =

∑n
i=1 1[yi=1]λixi. Define w̄ :=

∑
k∈K+ akwk, then

w̄ =

( ∑
k∈K+

a2
k

)
n∑
i=1

1[yi=1]λixi.

Recall that λi = 0 whenever yifθ(xi) > 1. When yi = 1, fθ(xi) can be rewritten as

fθ(xi) =
∑
k∈[m]

ak1[sgn(ak)=1] 〈wk,xi〉 = 〈xi, w̄〉 .

So we can verify that w̄ satisfies the KKT conditions of the following constrained convex optimization
problem:

min
w
‖w‖22 (73)

s.t. 〈w,xi〉 ≥ 1, for all i ∈ [n] with yi = 1. (74)

By convexity, w̄ is the unique minimizer of the above problem. The negative partK− can be analyzed
in the same way.

I Additional Discussions

I.1 Illustrations for Figure 1

In this section we further illustrate the the relationship between KKT-margin and max-margin
directions, as the examples have showed in Figure 1.

I.1.1 Left: Symmetric Data

Example. For some symmetric data, there are KKT-margin directions with non-linear decision
boundary (and thus by Theorem 4.2 are not global-max-margin directions).

Let λi be the dual variable for (xi, yi), then the KKT conditions (Definition B.8 and Lemma B.9) ask

1. for all k ∈ [m], wk ∈
∑
i∈[n] λiyiakφ

◦(w>k xi)xi;

2. for all k ∈ [m], |ak| = ‖wk‖2;
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3. for all i ∈ [n], if qi(θ) 6= qmin(θ) then λi = 0 (recall that qi(θ) = yifθ(xi)).

For αleaky = 0, the example is simpler. Consider the following case: the data points are x1 = (1,−1),
x2 = (1, 0), x3 = (1, 1) with label 1 and the symmetric counterpart x4 = (−1, 1), x5 = (−1, 0),
x6 = (−1,−1) with label −1. As we have proved, the global-max-margin solution is a linear
function and in this case w∗ = (1, 0). On the other hand, for hidden neurons m ≥ 3, one KKT-
margin direction is as follows:

a1 = 2−1/4 w1 = 1
23/4 (1, 1)

a2 = 2−1/4 w2 = 1
23/4 (1,−1)

a3 = −1 w3 = (−1, 0)
ak = 0 wk = 0 for all k > 3.

In this case, all the data points xi share the same output margin qi(θ), so they are all support
vectors. A possible choice of dual variables is λ = ( 1√

2
, 0, 1√

2
, 0, 1, 0). It is easy to verify that this

KKT-margin direction does not have linear decision boundary and is thus not global-max-margin.

For αleaky > 0, we can adapt the above case to construct a KKT point. Let β be a solution to the
equation

(2 sin2 β + cosβ)α2
leaky − (1 + cosβ)αleaky + cos 2β = 0.

Let the data be x1 = (1, cotβ),x2 = (1, 0),x3 = (1,− cotβ) with label 1 and the corresponding
opposites x4 = (−1,− cotβ),x5 = (−1, 0),x6 = (−1, cotβ) with label −1. Then we can have a
KKT point with λ = ( sin2 β

cos β(1−αleaky) , 0,
sin2 β

cos β(1−αleaky) , 0, 1−
2αleaky sin2 β

(1−αleaky) cos β , 0) and
a1 = (2(1 + αleaky) cosβ)−1/2 w1 = a1 sinβ(cotβ, 1)
a2 = a1 w2 = a2 sinβ(cotβ,−1)
a3 = −(1 + αleaky)−1/2 w3 = −a3(−1, 0)
ak = 0 wk = 0 for all k > 3.

When cos 2β = 0 we already have solution αleaky = 0, and it is easy to verify that for any
αleaky ∈ [0, 1) there is a solution β that satisfy the KKT conditions. Thus in the leaky ReLU case we
are considering in the previous chapters, there are also KKT-margin directions that have non-linear
decision boundaries and therefore have sub-optimal margin.

I.1.2 Middle and Right: Non-symmetric Data

In Figure 1 we further show two examples of non-symmetric data that gradient flow from small
initialization converges to a linear-boundary classifier that has a suboptimal margin.

The idea of the middle plot dataset comes from Shah et al. (2020). In the middle subplot, we exhibit
a data example that is linear separable in the first dimension x but not linear separable in the second
dimension y. The data is distributed on (Aε, 1) and (Aε,−1) with label 1 and on (−Aε′ , 0) with
label −1 (here Ac = [c,∞) is an interval in one dimension). We add identical entries c to all the data
in the third dimension z so in the x− y plane with z = c the two-layer ReLU network can represent
decision patterns with bias.

To apply Theorem A.7 on this dataset, we need to make c smaller than ε and ε/ε′ � αleaky, so
that the points at (ε, 1) and (ε,−1) becomes the support vectors for the one-neuron function. Also
we can control the principal direction by taking more data points from the positive class, and then
gradient flow will converge to the one-neuron max-margin solution as predicted by Theorem A.7.
This solution cannot be global max-margin when ε � 1, as a two-neuron network can express a
function where these two support vectors have much larger distances to the decision boundary (and
possess larger output margins).

In the right plot, we add three hints to a linear separable dataset so that gradient flow converges
to the solution with a linear decision boundary and suboptimal margin. The result follows from
Theorem 6.2.

I.1.3 Experimental Results

We run gradient descent with small learning rate and 0.001 times the He intialization (He et al., 2015)
on the two-layer LeakyReLU network for the examples in Figure 1. The contours of the neural net
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outputs are displayed in Figure 2. In the three settings the neural nets actually converge to linear
classifiers.

(a) LEFT (b) MIDDLE (c) RIGHT

Figure 2: Two-layer Leaky ReLU neural nets converge to functions with linear decision boundary for
the examples in Figure 1. The output contours are displayed in colors, and lighter colors mean higher
outputs.

I.2 On the Non-branching Starting Point Assumptions

In the proofs of the main theorems we make assumptions regarding the starting point of gradient
flow trajectories being non-branching (Assumption 4.6 for the symmetric case and Assumption A.6
for the non-symmetric case). The assumptions address a technical difficulty due to the potential
non-uniqueness of gradient flow trajectories on general non-smooth loss functions. The motivations
for these assumptions are explained below.

I.2.1 The non-uniqueness of gradient flow trajectories

Gradient flow trajectories are unique on smooth loss functions by the classic theory of ordinary
differential equations. In this case, for trajectory defined by dθ

dt = −∇L(θ), at any point θ0, if both
∇L(θ0) and∇2L(θ0) are continuous, then the trajectory is unique as long as it exists.

For the non-smooth case with differential inclusion dθ
dt ∈ −∂

◦L(θ), when L is continuous and
convex, the Clarke subdifferentials agree with the subdifferentials for convex functions, and gradient
flow trajectory is also unique (for instance see Bolte et al. 2010). However, on loss functions that
are non-smooth and non-convex, gradient flow may not be unique and the trajectory may branch at
non-differentiable points (see Figure 3). When a non-differentiable point is atop a “ridge”, a gradient
flow reaching it may go down different slopes next. Then any starting points wherefrom gradient
flow can reach such on-the-ridge points are not non-branching starting points as the trajectory is
not unique. For instance, with L(θ) = −|〈θ,w〉|, then the trajectory with θ(t) = 0 for t < ts and
θ(t) = ±(t− ts)w for t ≥ ts is a valid gradient flow trajectory for any ts ≥ 0. On the other hand,
when the point is either at the bottom of a “valley” or at a “refraction edge”, the trajectory would not
split. Figure 3 sketches in red the possible gradient flow trajectories in different circumstances.

In the case of two-layer Leaky ReLU network dynamics, there are settings where Assumption 4.6
or Assumption A.6 holds. When data points are orthogonally separable (Definition H.1), all start-
ing points are non-branching. In this case, the output of each Leaky ReLU neuron will change
monotonically. By the chain rule, for any neuron k ∈ [m], on any data sample i ∈ [n],〈

dwk
dt

, xi

〉
∈ −ak

n

∑
j∈[n]

`′(qj(θ))yjφ
◦(〈wk,xi〉) 〈xi, xj〉 .

Then as yiyj 〈xi,xj〉 ≥ 0 by the orthogonally separability, the sign of RHS is controlled by
sgn(akyi). With Theorem B.19, we know each ak does not change its sign along the gradient
flow trajectory, and therefore 〈wk, xi〉 changes monotonically. Then following the arguements of the
classic theory of ordinary differential equation, by applying Grönwall’s inequality to both intervals
{t : 〈wk(t), xi〉 > 0} and {t : 〈wk(t), xi〉 ≤ 0} we know the trajectory is unique. In this setting all
the non-differentiable landscapes resemble the “refraction edges”.
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(a) Ridge (b) Valley (c) Refraction edge

Figure 3: Gradient flow trajectories behave differently in different landscapes. The trajectory may be
non-unique only after arriving at a point on the "ridge".

In the general cases, it is a future research direction to find other analyses that can replace the non-
branching starting point assumptions, and doing so may deepen our understanding in the trajectory
behaviors in non-smooth settings.

J Additional Experiments

We conducted several additional experiments on synthetic datasets. The goal is to show that 2-layer
Leaky ReLU networks actually converges to the max-margin linear classifiers in different settings
with moderately small initialization. The results are summarized in Table 1 and Figure 4.

Dataset size SVM test error 2-Layer neural net test error
10 30.2% 30.5 %
20 19.7% 18.9%
30 17.6% 15.6%
40 8.0% 7.1%
50 6.4% 5.9%
60 6.3% 5.1%
70 7.6% 6.5%
80 3.9% 3.1%
90 6.1% 5.2%

100 2.9% 2.9%

Table 1: Test errors for SVM max-margin linear classifiers and 2-Layer ReLU neural networks are
nearly the same across different data size.

Data. n = 10, 20, · · · , 100 data points are randomly sampled from the standard gaussian distribu-
tionN (0, I) in the space of dimension d = 50, and are classified with a linear classifier through zero.
Then the points are translated mildly away from the classifier to make a small nonzero margin that
assists learning.

Model and Training. We used the two-layer leaky ReLU network with hidden layer width m =
100 and with bias terms. In out setting the bias term is equivalent to adding an extra dimension of
value 0.1 to all the data points. We trained our model with the gradient descent method from 0.001
times the He initialization (He et al., 2015) and initial learning rate 0.01. The learning rate is raised
after interpolation to boost margin increase.

We compare the neural network output with the max-margin linear classfier produced by the support
vector machine (SVM) on hinge loss. In Table 1, the test errors are calculated from 10000 test
points from the same distribution. In Figure 4, we drawn the decision boundaries for both the SVM
max-margin linear classifier and the neural network restricted to a plane passing 0. The results show
that the neural network classifier converges to the max-margin linear classfier in our setting.

64



(a) n = 10 (b) n = 20 (c) n = 30

(d) n = 40 (e) n = 50 (f) n = 60

(g) n = 70 (h) n = 80

(i) n = 90 (j) n = 100

Figure 4: Two-layer Leaky ReLU neural net converges in direction to the SVM max-margin linear
classifier. Red and Blue Dots: two classes of data points. Red Lines: the decision boundaries of
the SVM max-margin linear classifiers. Background: the contours of two-layer leaky-ReLU neural
network outputs. Lighter colors mean higher outputs. The underlying true separator is the vertical
line through zero.
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