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Abstract

Do LMs infer the semantics of text from co-001
occurrence patterns in their training data? Mer-002
rill et al. (2022) argue that, in theory, proba-003
bilities predicted by an optimal LM encode se-004
mantic information about entailment relations,005
but it is unclear whether neural LMs trained on006
corpora learn entailment in this way because007
of strong idealizing assumptions made by Mer-008
rill et al.. In this work, we investigate whether009
their theory can be used to decode entailment010
judgments from neural LMs. We find that a011
test similar to theirs can decode entailment re-012
lations between natural sentences, well above013
random chance, though not perfectly, across014
many datasets and LMs. This suggests LMs015
implicitly model aspects of semantics to pre-016
dict semantic effects on sentence co-occurrence017
patterns. However, we find the test that predicts018
entailment in practice works in the opposite019
direction to the theoretical test. We thus re-020
visit the assumptions underlying the original021
test, finding its derivation did not adequately022
account for redundancy in human-written text.023
We argue that correctly accounting for redun-024
dancy related to explanations might derive the025
observed flipped test and, more generally, im-026
prove linguistic theories of human speakers.027

1 Introduction028

Inspired by the empirical capabilities of language029

models (LMs) trained on next-word prediction, re-030

cent work has examined if and how linguistic mean-031

ing might be inferred from raw text (Bender and032

Koller, 2020; Merrill et al., 2021; Pavlick, 2022;033

Wu et al., 2023, inter alia). A text corpus is the re-034

sult of humans using text to communicate informa-035

tion, and doing this efficiently requires following036

pragmatic principles like avoiding contradictory or037

redundant sentences. Therefore, training to predict038

whether sentences can co-occur might lead LMs to039

represent semantic relationships between sentences040

(Harris, 1954; Potts, 2020; Michael, 2020).041

But does sentence co-occurrence provide enough 042

signal for LMs to learn to represent complex seman- 043

tic phenomena like entailment? Merrill et al. (2022) 044

derive a simple equation by which the entailment 045

relation between two sentences can be detected 046

using their co-occurrence probability in a corpus 047

generated by speakers who avoid redundancy. In- 048

tuitively, non-redundant speakers will rarely utter 049

entailed sentences, so low co-occurrence probabil- 050

ity of two sentences is predictive of their entail- 051

ment relationship. This means that, in principle, 052

learning to model sentence co-occurrence perfectly 053

requires an LM to implicitly model entailment, and 054

entailment classifications can be extracted from the 055

co-occurrence probabilities of such an LM. 056

However, Merrill et al.’s theoretical result has 057

two caveats. First, it assumes an “ideal” LM that 058

perfectly models the likelihood of texts in a lan- 059

guage. Second, it makes the strong (but theo- 060

retically motivated; Grice, 1975) assumption that 061

speakers always avoid redundancy. It is thus un- 062

clear whether real LMs infer a model of entailment 063

from sentence co-occurrence probabilities in their 064

training data, both because LMs may misestimate 065

probabilities and because the required assumptions 066

about human speakers may be too simplified. 067

In this work, we empirically evaluate the distri- 068

butional entailment test from Merrill et al. (2022): 069

can we use it to classify entailment from LM prob- 070

ability estimates? Overall, we find across a wide 071

range of entailment benchmarks and LMs that a 072

variant of the entailment test consistently detects 073

entailment well above random chance. This sug- 074

gests that LM probability judgments are sensitive 075

to the relationships between sentence meanings 076

that are reflected in sentence co-occurrence pat- 077

terns, at least to some extent. This further suggests 078

that next-word prediction is a strong enough objec- 079

tive for LMs to acquire at least a partial model of 080

entailment relationships between sentences. 081

However, this result comes with a surprise. 082
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Across many entailment benchmarks, we find that083

the direction of the test is flipped compared to Mer-084

rill et al.’s theoretical test: higher co-occurrence085

probabilities correlate with entailment when the op-086

posite is expected! We take this as evidence against087

a theory of human speakers based purely on mini-088

mizing redundancy. Analyzing natural corpora, we089

find humans are often more redundant than Mer-090

rill et al.’s non-redundant speakers, which could091

explain the flipped test. We present a preliminary092

account of how better accounting for explanations093

(one observed type of redundancy) might predict094

the flipped test. Overall, our results motivate future095

work in computational pragmatics accounting for096

redundancy and are a case study for how the data097

aggregated about many speakers in LMs can be098

used to test and develop pragmatic theories.099

2 Distributional Semantics and the100

Entailment Test101

There is an old debate in linguistics and NLP about102

whether distributional semantics—the idea that103

text co-occurrence patterns can contain semantic104

information—captures semantics in any true sense105

(Brunila and LaViolette, 2022). This debate goes106

back at least to Harris (1954), who argues that sen-107

tence co-occurrences patterns in a corpus could108

be used as data to build a linguistic theory of se-109

mantics, but it has been revisited in recent years110

in terms of LMs. In particular, Bender and Koller111

(2020)—in disagreement with Harris (1954)—took112

a strong stance against the claim that LMs “under-113

stand” language because understanding requires114

modeling communicative intent or at least conven-115

tionalized semantic denotations, both of which do116

not appear explicitly in the training data for LMs.117

While it is certainly true that LMs are only118

trained on surface forms, counterarguments to Ben-119

der and Koller (2020) have been given for how120

LMs might be able to reconstruct semantic infor-121

mation from their training data. One line of coun-122

terarguments (Potts, 2020; Michael, 2020; Merrill123

et al., 2022) echoes Harris (1954), positing that124

sentence co-occurrence probabilities contain infor-125

mation about semantics because speakers aim to126

be truthful and informative and are thus unlikely127

to produce contradictory or redundant pairs of sen-128

tences. Properly learning which sentences can co-129

occur (part of LM training) thus amounts to acquir-130

ing a semantic representation of which sentences131

are contradictory or redundant with one another.132

Merrill et al. (2022, CoNLL slides) motivate this 133

claim with the following example: 134

(1) I have two cats. 135

a. *I don’t have a cat. 136

b. *I have a cat. 137

c. One is orange. 138

Example 1a is unlikely to be uttered because it con- 139

tains a contradiction. More subtly, Example 1b is 140

unlikely because its second sentence is uninforma- 141

tive given the first, even though they are consistent. 142

In contrast, Example 1c is acceptable because it is 143

consistent and adds new information. Thus, Exam- 144

ple 1 suggests sentence co-occurrence is governed 145

by semantic constraints against inconsistency and 146

redundancy. If strong LMs correctly model such co- 147

occurrences, they might need an implicit model of 148

sentence semantics to determine these properties. 149

2.1 The Entailment Test 150

One way to define semantic competency is the abil- 151

ity to resolve entailment relations between pairs of 152

sentences. This simple idea has a long history both 153

in both the philosophy of language (Van Benthem, 154

1986; Brandom, 2000) and NLP evaluation (Dagan 155

et al., 2010). Drawing on the semantic nature of 156

sentence co-occurrence and its connection to redun- 157

dancy, Merrill et al. (2022) derive a test to check 158

whether sentence x entails sentence y using their 159

co-occurrence probability in a corpus produced by 160

so-called Gricean speakers. If we accept the idea 161

that the ability to evaluate entailment captures se- 162

mantics in full, this test establishes semantics, can, 163

in principle, be inferred from next-word prediction. 164

Gricean Speakers. Gricean speakers are a com- 165

putational model of human speakers implement- 166

ing fundamental principles for effective commu- 167

nication (the Gricean maxims; Grice, 1975). The 168

maxims say that a speaker should convey as much 169

relevant information as possible without saying too 170

much, among other desiderata. Following stan- 171

dard computational choices in rational theories of 172

pragmatics (Goodman and Frank, 2016), Merrill 173

et al. (2022) operationalized these principles by 174

modeling the probability of a text z produced by a 175

Gricean speaker as a function of the text’s informa- 176

tion content and cost: 177

• Information content: Sentences with a lot 178

of new information for the listener about the 179

speaker’s beliefs are more likely. This penal- 180

izes untruthful, uninformative, and redundant 181
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sentences. Let iℓ(y | x,w) be the information182

y conveys to the listener given beliefs w and183

context x, which speakers aim to maximize.184

• Cost: Long or complex sentences should be185

less likely so that speakers do not produce186

informative, but verbose, text. The model187

assumes a function c(y) that gives the cost of188

sentence y, which speakers aim to minimize.189

Under Merrill et al. (2022)’s model, a Gricean190

speaker utters y (having said x) with probability191

p(y | x,w) ∝ exp(iℓ(y | x,w)− c(y)).192

A sequence of sentences z1 · · · zn occurs in a cor-193

pus generated by Gricean speakers with probability194

p(z) = E
w

[
n∏

i=1

p(zi | z<i, w)

]
.195

Let $ denote a special “end-of-text” sentence.196

Entailment Test. Assuming a corpus is sampled197

from a collection of Gricean speakers with different198

beliefs, Merrill et al. (2022) derive the following199

measure Êp(x, y) for detecting entailment purely200

using log probabilities of sentence co-occurrences:201

Êp(x, y) = log p(xy)− log p(x$)

− log p(yy) + log p(y$).
(1)202

A ∼0 score means entailment. The first two terms203

≈ log p(y | x) and the last two ≈ − log p(y | y).204

This gives some intuition for the test: 0 means xy205

is as redundant as yy, i.e., x entails y (see §A).206

3 Evaluating the Entailment Test207

Merrill et al. (2022) showed their test could detect208

entailment from n-gram LMs trained on synthetic209

data generated by Gricean speakers. Although210

Gricean speakers capture some principles of how211

humans speak, they are likely simplistic compared212

to real language use. Additionally, real LMs may213

misestimate the co-occurrence probabilities used214

by the test. For both of these reasons, it is un-215

clear whether the entailment test should correctly216

detect entailment on natural sentences given LM-217

estimated probabilities. We thus evaluate the entail-218

ment test with probabilities computed by real LMs219

on natural-language entailment benchmarks.220

3.1 Entailment Datasets221

We first evaluate the entailment test on ex-222

isting broad-coverage entailment datasets built223

by crowd workers: RTE (Dagan et al., 2010), 224

MNLI (Williams et al., 2018), WaNLI (Liu et al., 225

2022), and ANLI (Nie et al., 2020).1 Unless oth- 226

erwise mentioned, we always use the training set. 227

We collapse three-way label distinctions (entail- 228

ment, neutral, contradiction) to entailment or non- 229

entailment. We also evaluate on targeted synthetic 230

entailment datasets designed to test specific kinds 231

of entailment à la GLUE diagnostics (Wang et al., 232

2018): specifically, entailment related to the log- 233

ical connectives and/or, the quantifiers all/some, 234

numbers, passivization, and datives (details in §G). 235

We reported dataset statistics in §I. 236

3.2 Models 237

We evaluate the entailment test with probabili- 238

ties computed by a diverse suite of LMs: GPT-2 239

(Radford et al., 2019), OPT (Zhang et al., 2022), 240

Llama-1 (Touvron et al., 2023a), Vicuna (Chiang 241

et al., 2023), Llama-2, and Llama-2-Chat (Touvron 242

et al., 2023b). The LMs vary in size, pretraining 243

data, and whether and how they undergo an “align- 244

ment” process (i.e., instruction-tuning or RLHF). 245

For each LM family, we use both the smallest and 246

the largest publicly available LM (see §H for a list). 247

3.3 Evaluation Metric: Flipped ROC-AUC 248

The entailment test does not directly classify en- 249

tailment but gives a score where ∼0 suggests en- 250

tailment and higher values suggest non-entailment. 251

This can be converted to a classifier by choosing 252

a decision boundary for entailment, but the choice 253

of a threshold is arbitrary. To evaluate the test, 254

we thus use the standard ROC-AUC metric, which 255

can be understood to evaluate the score holistically 256

across different choices of the threshold. There is 257

an inherent tradeoff between precision and recall 258

with the choice of the threshold, and ROC-AUC 259

provides a consistent way to evaluate without ar- 260

bitrarily fixing the threshold. Independent of the 261

class imbalance, ROC-AUC ranges from 0 to 100 262

where 50 is random chance. In many cases, we 263

found that the flipped entailment score (meaning 264

Equation (1) with the sign of each term flipped) 265

detected entailment better than the original score 266

(§4.1). We thus report the ROC-AUC score of the 267

flipped score, which we call flipped ROC-AUC. 268

1For ANLI, we use the data collected in the third round.
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Figure 1: Entailment score Êp(x, y) distribution com-
puted with Llama2-70b probabilities on RTE. The score
discriminates the two classes, though imperfectly.

4 Entailment Test Results269

Overall, we find the test predicts entailment on the270

broad-coverage datasets, but only when the test271

score is flipped compared to the theoretical test272

(i.e., a larger score means entailment). However,273

the pattern is more complicated for the targeted274

data, where some constructions follow the flipped275

trend but others follow the original, unflipped test.276

4.1 Flipped Test on Broad-Coverage Data277

Figure 1 shows the entailment score Êp(x, y) for278

the RTE training data using Llama2-70b probabil-279

ities. The score distinguishes the two classes, but280

not perfectly. However, the theory predicts smaller281

Êp(x, y) for entailment vs. non-entailment, which282

is flipped in Figure 1 (which we try to account283

for in §6). We find this holds consistently across284

the broad-coverage datasets: the flipped entailment285

test detects entailment above random chance and a286

length baseline2 (Figure 2). We also hypothesize287

the entailment test should be more predictive for288

better LMs. Using perplexity on the C4 validation289

set (Raffel et al., 2020) as the proxy for model qual-290

ity, we plot their correlation in Figure 3. Across291

broad-coverage datasets, better perplexity is associ-292

ated with higher flipped ROC-AUC. This suggests293

LMs that more accurately predict the next token294

also better model sentence co-occurrence patterns295

reflecting entailment.296

We also evaluate how test performance emerges297

during training using Pythia-12b checkpoints. Fig-298

ure 4 shows that ROC-AUC consistently increases299

as training progresses. Around 1b tokens, flipped300

ROC-AUC scores on RTE, MNLI, and WaNLI301

2Computed by using the premise length, the hypothesis
length, or the inverse of each, as the score, whichever of the
four yields the best flipped AUC-ROC.

Figure 2: Flipped AUC-ROC scores of the flipped en-
tailment test across datasets using Llama2-70b proba-
bilities. The flipped test generally performs above
random (=50) and the length baseline, while the orig-
inal test works better for connectives (represented by
<50 Flipped ROC-AUC).

sharply increase together, suggesting the model un- 302

dergoes a phase transition where general features 303

useful for predicting entailment may be emerging. 304

4.2 Varied Pattern for Targeted Phenomena 305

Figure 2 shows the flipped test works better for 306

datives, passives, and quantifiers. For connectives, 307

the unflipped test better predicts entailment. This 308

suggests that, while the flipped test outperforms the 309

original test in aggregate, the original theory might 310

apply only for some constructions. Figure 3 shows 311

the association between LM perplexity and flipped 312

ROC-AUC for the targeted cases. Datives, passives, 313

and quantifiers show a similar trend to the broad- 314

coverage data where lower perplexity associates 315

with higher flipped ROC-AUC, but connectives 316

and numbers mostly follow the original test. 317

4.3 Learning a Distributional Entailment Test 318

We have seen that the distributional entailment test 319

of Merrill et al. (2022) can detect entailment, but 320

only when the sign of each term is flipped. We 321

now evaluate this flipped test by comparing it to an 322

oracle test that optimally predicts entailment. Their 323

discrepancies would inform us about realistic LMs 324

and data distributions. We train a small regression 325

model that weights co-occurrence probabilities to 326

predict entailment and inspect the learned weights. 327

Setup. The original entailment test can be viewed 328

as a linear model with features ϕ and parameters θ: 329

ϕ = ⟨log p(xy), log p(x$)︸ ︷︷ ︸
Left-hand side (LHS)

, log p(yy), log p(y$)︸ ︷︷ ︸
Right-hand side (RHS)

⟩ 330

θ = ⟨1,−1,−1, 1⟩. 331
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Broad-Coverage Datasets Targeted Test Sets

Figure 3: C4 validation perplexity vs. flipped AUC-ROC score for all models on broad-coverage and targeted
datasets. Note that the scale of the y-axis differs for each subplot. See Figure 2 for a scale-controlled version of
Llama2-70b results. For broad-coverage datasets, model quality (represented by perplexity) clearly correlates
with flipped test performance, though this is more complicated for the targeted test sets.

Instead of applying the test with parameters θ332

(original test) or −θ (flipped test), we now learn333

parameters θ̂ via logistic regression on labeled en-334

tailment pairs. This learned test is not a standard335

supervised text classifier: it only gets sentence co-336

occurrence log-probabilities as input, not text itself.337

Results. Figure 5 shows the results for the broad-338

coverage datasets (other datasets in §F). For the339

LHS, the negative xy weight matches the positive340

x$ weight in magnitude, as for the flipped test.341

For the RHS, the trend is less consistent, but yy342

and y$ generally get smaller weights than the LHS343

terms. Nevertheless, in aggregate, yy gets a posi-344

tive weight of the same magnitude as the negative345

y$ weight (Figure 6), as for the flipped test.346

We interpret the similarity between the flipped347

and learned tests as evidence for the directional cor-348

rectness of the flipped test. The main difference be-349

tween the learned and flipped tests is that the RHS350

Figure 4: Flipped ROC-AUC of entailment score across
Pythia-12b checkpoints. Each step is around 2M tokens.

has smaller weights than the LHS for the learned 351

test. This may be due to the transformer’s learning 352

biases and not the underlying data: Transformer 353

LMs are prone to in-context copying (Olsson et al., 354
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Figure 5: Learned logistic regression coefficients for the
log-prob features for the broad-coverage datasets. Each
bar represents one LM. For ease of visualization, y-axis
is in log scale, except in [−0.1, 0.1] where it is linear.

Figure 6: The RHS coefficients, for log p(y$) and
log p(yy), marginalized across all LMs.

2022) and thus might overestimate log p(yy). Re-355

duced RHS weights may correct for this.356

5 Corpus Study: Characterizing357

Naturalistic Linguistic Redundancy358

A surprising finding from the previous section is359

that the entailment test is robustly flipped: en-360

tailed continuations tend to be more likely than non-361

entailed ones. This suggests the Gricean speaker362

assumed to derive the test may be too simplistic to363

account for humans. In particular, we hypothesize364

the disconnect may be because human speakers365

are explicitly redundant in certain contexts unlike366

Gricean speakers, who always avoid redundancy.367

We thus search for natural instances of contextually368

entailed text in corpora to better understand why369

real human speakers produce redundant sentences.370

Data. To find contextually entailed sentences in371

different types of discourse, we consider a vari-372

ety of web domains: Book3 (Gao et al., 2020),373

Wikipedia (en) (Gao et al., 2020), Multi-News (Fab-374

bri et al., 2019) and Reuters-21578 (Hayes and 375

Weinstein, 1991), Yahoo! Answers Topics (Zhang 376

et al., 2016), and Yelp Reviews (Zhang et al., 2016). 377

Finding Contextually Entailed Text. For each 378

document in each corpus, we construct premise 379

and hypothesis pairs by choosing six contiguous 380

sentences, with the first five as the premise and 381

sixth as the hypothesis. We use entailment classi- 382

fiers finetuned from T5 (Honovich et al., 2022) and 383

RoBERTa (Liu et al., 2019) to detect entailment 384

pairs and take the intersection of examples consid- 385

ered entailment by both. We then manually filter to 386

remove incorrect entailment pairs (details in §D). 387

Results. As Table 1 shows, the frequency of en- 388

tailed sentences is on the order of at least 10−3. 389

Even this lower bound is several orders of magni- 390

tude higher than expected for a Gricean speaker. 391

Quite conservatively, imagine that for each entailed 392

continuation there is at least one alternative of the 393

same length that conveys 10 nats of information, 394

which is quite reasonable given Shannon’s lower 395

bound estimate of 0.4 nats/character3 (Shannon, 396

1951) and that typical sentences are at least 30 char- 397

acters. Then the likelihood of producing an entailed 398

sentence should be at most 1/ exp(10) ≈ 10−5. 399

This suggests the data cannot be accounted for by 400

assuming speakers always avoid redundancy. 401

To better understand what is lost when assum- 402

ing speakers always avoid redundancy, we inspect 403

examples of contextually entailed text from these 404

corpora. We find there are many reasons speakers 405

produce entailed text. This includes both repetition 406

of previous statements (44.44%4) and high-level 407

summaries or conclusions (35.56%). One observed 408

use of repetition is to emphasize an important point: 409

(2) Yelp Review: When he returned with it, he 410

just placed it in front of me on the wet bar- 411

no napkin/coaster, the beer was flat, and 412

contained a FREAKING lemon. ⇒Not an 413

orange- a lemon. 414

Beyond repetition, we also found examples where 415

a weaker claim follows more specific premises: 416

(3) Yelp Review: Frankly, I’m no oyster afi- 417

cionado, but after comparing with other 418

3Technically, the Gricean speaker uses semantic informa-
tion, whereas Shannon’s estimate captures all information.
However, we imagine most information in text is semantic, so
these are on the same order of magnitude.

4Percentages determined manually; see §E for details.
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Data Sources T5 RoB ∩ ∩+

Book3 0.40 1.31 0.33 0.27
Wikipedia (en) 0.47 1.69 0.30 0.24
Yelp Review 1.53 1.78 0.56 0.50
Multi-News 2.11 2.82 2.11 1.88
Reuters-21578 0.64 1.53 0.51 0.38
Yahoo! Answers 1.63 8.16 0.82 0.82

Table 1: Percentage of sentences entailed by their im-
mediate context. ∩ is the intersection of sentences clas-
sified as entailment by both T5 and RoBERTa (RoB).
∩+ is the percentage after manual filtering.

restaurant, it was pretty weak. In compar-419

ison to other oyster bars in the area, they420

were much to liquid-y. That is, they just421

didn’t have enough substance on the whole422

and also, the taste wasn’t really like seawa-423

ter, it was more salt water than anything.424

⇒Fairly disappointed in the oysters.425

In Example 3, the final sentences does not restate426

all the information from any previous sentence but427

rather makes a weaker claim that summarizes the428

review. In other cases, we find that the conclusion429

of logical arguments can behave similarly:430

(4) Wikipedia: All of the known431

sphenacodonts are carnivores except432

for certain therapsids. Glaucosaurus is433

plainly not a therapsid . . . And it is just as434

plainly not a carnivore . . .⇒So, it is very435

likely to be an edaphosaur.436

With the world knowledge that a glaucosaurus must437

either be an edaphosaur or a sphenacodont, the final438

sentence follows logically from the context. Thus,439

it seems the role of this entailed sentence is to make440

explicit the conclusion of a logical argument.441

In summary, our corpus study reveals that more442

entailed text is uttered by humans than expected443

if humans were always avoiding redundancy, as444

Gricean speakers do. There are many types of en-445

tailed text, including both repetition and instances446

where the entailed text is a summary or conclu-447

sion. Next, we will consider how a Gricean speaker448

might be extended to account for this behavior.449

6 Towards Accounting for Redundancy450

We have found that, in practice, the flipped entail-451

ment test better detects entailment than the original452

one and that this trend is also supported by an or-453

acle logistic regression analysis (§4). Our corpus454

study (§5) pointed to a possible explanation: the 455

original test relied on the fact that Gricean speakers 456

always avoid redundancy, but real humans produce 457

redundant text in certain contexts. Quantitatively, 458

the rate of contextually entailed sentences in nat- 459

ural corpora was higher than we would expect if 460

the corpus authors were Gricean speakers. Quali- 461

tatively, specific examples suggested humans are 462

redundant both to repeat important information and 463

for the sake of explanation, i.e., they state entailed 464

summaries or conclusions after a more detailed 465

premise. Prima facie, such redundancy could lead 466

to a flipped entailment test if entailed continuations, 467

which are fully redundant, become more likely than 468

other continuations. However, it is crucial to have 469

a more concrete theory of why speakers are redun- 470

dant to evaluate this and ideally explain why the 471

test direction varies across constructions. We thus 472

consider some possible angles to extend Gricean 473

speakers to account for redundant speech acts and 474

whether these extensions predict the flipped test. 475

6.1 Redundancy via Noise Tolerance 476

Our corpus study showed that one type of redun- 477

dancy in natural text unaccounted for by Gricean 478

speakers is simple repetition. For example, the 479

speaker in Example 2 repeats the claim that the 480

orange in their beer was not a lemon. Gricean 481

speakers are unlikely to generate such repetition, 482

but they can be extended to do so by assuming there 483

is noise in the communication channel, i.e., listen- 484

ers may fail to interpret each sentence with some 485

probability (Degen et al., 2019). In this setting, a ra- 486

tional speaker is incentivized to hedge the risk their 487

listener might not understand important informa- 488

tion by repeating it twice. We call such a speaker a 489

noise-tolerant speaker, which we formalize in §B. 490

Noise-tolerant speakers can better account for 491

repetition than Gricean speakers, but, if we assume 492

corpora are generated by noise-tolerant speakers, 493

would it explain the flipped direction of the entail- 494

ment test? The short answer seems to be no. In §B, 495

we derive an extension of the entailment test that 496

“cancels out” noise tolerance by simply repeating 497

the initial sentence in each term n times: 498

Ên
p (x, y) ≜ log p(xny)− log p(xn$) 499

− log p(yn+1) + log p(yn$). 500

As n increases, this test approximates the origi- 501

nal test for a Gricean speaker. Thus, if the source 502

of the flipped test was redundancy introduced by 503
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a speaker’s goal of being noise-tolerant, this test504

should work unflipped. Instead, we find that the505

flipped noise-tolerant test still detects entailment—506

in fact, better than the original flipped test. Post507

hoc analysis suggests the better performance may508

be due to the computational benefit of the addi-509

tional tokens in the noise-tolerant test prompts. In510

summary, accounting for noise tolerance does not511

seem to explain why the test was flipped.512

6.2 Redundancy via Explanations513

A theory of speakers based on noise tolerance does514

not seem to explain the flipped entailment test. The515

noise-tolerant speaker accounts for repetition, but516

we also saw other kinds of redundancy in the data.517

In particular, Examples 3 and 4 show redundant518

sentences can occur at the end of an explanation519

or logical argument. One account could be that an520

initial explanation can dramatically lower the pro-521

cessing cost of a later conclusion, and that speakers522

consider this when selecting utterances. This is523

not modeled by the Gricean speaker whose pro-524

cessing cost c(y) is independent of the context x.525

We thus reformulate the cost c(y | x) as context-526

dependent. The impact of x on cost is measured527

by ∆(x, y) ≜ c(y) − c(y | x): a large ∆(x, y)528

indicates a concise but helpful explanation x be-529

fore conclusion y. If ∆(x, y) is large enough, the530

speaker will prefer to say xy as opposed to just y.531

Flipped Test. Let E(x, y) be the desired seman-532

tic value of the entailment test. With an explanatory533

speaker, the test score becomes (see §C):534

Êp(x, y) = E(x, y) + ∆(x, y)−∆(y, y).535

If we assume ∆(x, y) dominates E(x, y), the test536

score can increase when x entails y because x will537

often explain y. This might explain the flipped538

test pattern. However, to be more complete, this539

account should be more precise about what factors540

influence c(y | x) and predict why the original test541

outperformed the flipped test in some cases.542

6.3 Discussion543

Since we found that the entailment test was flipped544

in practice and that there are cases where humans545

are more redundant than Gricean speakers, we ex-546

plored extensions to the Gricean speaker that could547

more accurately account for human redundancy548

and thus better explain the flipped test. We first549

considered a test that accounts for redundancy due550

to noise tolerance, finding that this likely could not551

explain the flipped test. Motivated by §5, we then 552

turned to explanations as another source of human 553

redundancy and showed how accounting for expla- 554

nations might predict the flipped test.5 We take this 555

as encouraging evidence for pursuing pragmatic 556

theories that explicitly account for explanations. 557

Stepping back, we have been able to use LMs as 558

a source of data about sentence co-occurrences to 559

test pragmatics theories and motivate alternatives, 560

in the spirit of Harris (1954)’s idea that corpus data 561

should be the empirical foundation of linguistic the- 562

ory. A fundamental problem with using corpus data 563

has been data sparsity, but LMs can alleviate this 564

by letting us interpolate the likelihood of arbitrary 565

sentences. We believe this could be a promising 566

paradigm for future research in computational prag- 567

matics to complement human subject experiments. 568

7 Conclusion 569

Our results show that sentence co-occurrence prob- 570

abilities computed by LMs can predict entailment 571

relationships, with a stronger effect for better LMs. 572

This suggests these LMs are implicitly modeling se- 573

mantic properties of text to some extent in order to 574

predict the next token, in line with Harris (1954)’s 575

proposal that sentence co-occurrences can serve as 576

data for building a theory of semantics. However, 577

the best empirical test for entailment we found was 578

flipped compared to Merrill et al. (2022)’s theoret- 579

ical test. This suggests a more nuanced theory of 580

pragmatics beyond Gricean speakers is needed to 581

explain how entailment relationships are reflected 582

in sentence co-occurrences. Our corpus study re- 583

vealed that humans in corpora produce more con- 584

textually entailed sentences than idealized Gricean 585

speakers, suggesting pragmatic theories that better 586

handle redundancy might explain our findings. 587

We took a first step by considering how to model 588

redundancy due to noise tolerance and explana- 589

tion, but the job is far from done. Rather, our 590

findings call for future work that more completely 591

accounts for the pragmatics of redundancy, espe- 592

cially concerning explanations. This can both ad- 593

vance linguistic theory and serve as a foundation 594

for understanding how meaning can be inferred 595

from a corpus, as well as as the potential limits of 596

distributional semantics and LMs. 597

5Another reason speakers may be redundant, which we
have not considered, is to trigger the listener to reanalyze the
question under discussion. E.g., Example 2 may prompt the
listener to infer the speaker’s goal is to express frustration
rather than convey the facts of their order.
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Limitations598

Regarding the theoretical foundations for the en-599

tailment test, Merrill et al. (2022) indicate in an600

erratum that the entailment test may have false601

positives for rare sentences pairs that are nearly602

contradictory. Further, the theory may be less ap-603

plicable to LMs that have undergone an alignment604

process like RLHF. Overall, these qualifications to605

the test theory increase the value of our empirical606

study of whether the test works in practice.607

Regarding our analysis of our results, we have608

assumed that the flipped entailment test pattern re-609

flects differences between Gricean speakers and610

human speakers in corpora, but it, in principle, sys-611

tematic estimation errors by LMs could explain the612

flipped entailment test pattern independent of the613

distribution of strings in the training corpus.614
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A Test Derivation for Gricean Speakers 800

As shown by Merrill et al. (2022), the entailment test score Êp(x, y) score defined in terms of co- 801

occurrence log-probabilities is equivalent to the following semantic quantity: 802

E(x, y) ≜ log
Ew[exp(iℓ(xy | w))g(x,w)]
Ew[exp(iℓ(x | w))g(x,w)]

, 803

where g(x,w) captures the normalizing factor from the speaker (cf. Merrill et al., 2022). 804

Proposition 1 (Merrill et al., 2022). Let p be a Gricean speaker. Then, for any x, y, Êp(x, y) = E(x, y). 805

Proof. We recount an abbreviated version of the proof from Merrill et al. (2022, Appendices C and H). 806

We use the fact that, for any x, y, 807

log p(xy)− log p(x$) = E(x, y)− c(xy) + c(x$). 808

Applying this property to both sides of Êp(x, y) yields 809

Êp(x, y) = log p(xy)− log p(x$)− log p(yy) + log p(y$) 810

= E(x, y)− c(xy) + c(x$)−����E(y, y) + c(yy)− c(y$) 811

= E(x, y) +����
c(xy2$) −����

c(xy2$) . 812

We conclude that Êp(x, y) = E(x, y). 813

Crucially, E(x, y) is closely related to entailment. If x entails y, then y conveys no information after x, 814

so E(x, y) = 0. On the other hand, if E(x, y) = 0, then it must either be that a) x entails y or b) y nearly 815

contradicts x, meaning the probability that x, y are consistent is small (Merrill et al., 2022, Erratum). 816

Assuming near contradiction is unlikely, the entailment test (since it computes E) is then effectively a test 817

for entailment defined purely in terms of sentence co-occurrence probabilities. 818

B Noise-Tolerant Speakers 819

We now formalize a model of noise-tolerant speakers that can account for repetition (Example 2). Our 820

speaker is inspired by Degen et al. (2019)’s speaker designed to account for overredundant referring 821

expressions but extends better to multiple sentences. We assume each sentence x has some probability 822

ϵx of not being interpreted. When anticipating the information a listener gains from a text, a speaker 823

marginalizes over the potential interpretations the listener might form by failing to interpret different 824

sentences: 825

p(z | w) ∝ E
e
[exp(iℓ(e | w))] exp(−c(z)), 826

where e is a set of indices for sentences in z that are full comprehended. Formally, e is a subset of z’s 827

indices representing a subsequence. Note that iℓ(e | w) is defined in the natural way: it is the information 828

a listener would get from just the sentences of z activated in e and not the other ones. This implicitly 829

depends on z. The distribution of e is determined by ϵ’s for each sentence in z: 830

p(e | w, z) =
n∏

t=1

{
1− ϵzt if t ∈ e

ϵzt otherwise.
831

B.1 Theoretical Result 832

The original entailment test does not hold for noise-tolerant speakers, but a straightforward extension does. 833

For any n ≥ 1, we define the extended test as 834

Ên
p (x, y) ≜ log p(xny)− log p(xn$)

− log p(yn+1) + log p(yn$).
(2) 835

This extended test (with p as a noise-tolerant speaker) approximates the original test for a Gricean speaker, 836

with error vanishing exponentially in n: 837
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Figure 7: Performance of noise-tolerant (§B) vs. original test on RTE training set and MNLI matched validation set.

Proposition 2. Let p be a noise-tolerant speaker. As n increases, Ên
p (x, y) converges to E(x, y) with838

error vanishing exponentially in n.839

Proof. The idea is that, unlike a Gricean speaker, a noise-tolerant speaker will produce p(ab) to account840

for the chance that a was not interpreted. If a repeats several times, the chance a was not interpreted goes841

to 0.842

In order to show that the original test fails with this speaker and work out an alternative, we first work843

out some basic properties of this speaker’s utility. Let İ(z | w) ≜ Ee[iℓ(e | w)] be the expected utility of844

z. We can first characterize the utility of a 2-gram xy under the noisy-channel speaker:845

İ(xy | w) = ϵxϵy · 0 + (1− ϵx)ϵyiℓ(x | w) + ϵx(1− ϵy)iℓ(y | w) + (1− ϵx)(1− ϵy)iℓ(xy | w)846

= (1− ϵx)ϵyiℓ(x | w) + ϵx(1− ϵy)iℓ(y | w) + (1− ϵx)(1− ϵy)iℓ(xy | w).847

We can apply this to get the expected utility of the utterances xx and x$ under the noisy-channel speaker:848

İ(xx | w) = ϵ2x · 0 + 2(1− ϵx)ϵxiℓ(x | w) + (1− ϵ2x)iℓ(x | w)849

= (1− ϵ2x)iℓ(x | w)850

İ(x$ | w) = (1− ϵx)ϵ$iℓ(x | w) + (1− ϵx)(1− ϵ$)iℓ(x | w)851

= (1− ϵx)iℓ(x | w).852

We can now see that the original test does not work under a noise-tolerant speaker. The original853

entailment theorem worked by checking iℓ(y | x, s) = iℓ(x | x, s) to see whether y is informative after x.854

Naively applying the original entailment test with a noise-tolerant speaker, however, will use İ in place of855

iℓ. We can see that this does not represent the same quantity if ϵx, ϵy are non-negligible:856

İ(x | x,w) = ϵx(1− ϵx)iℓ(x | w)857

İ(y | x,w) = ϵx(1− ϵy)iℓ(y | w) + (1− ϵx)(1− ϵy)iℓ(y | x,w).858

However, for the new test, we find the following:859

İ(x | xn, w) = ϵnx(1− ϵx)iℓ(x | w) ≈ 0860

İ(y | xn, w) = ϵnx(1− ϵy)iℓ(y | w) + (1− ϵnx)(1− ϵy)iℓ(y | x,w) ≈ (1− ϵy)iℓ(y | x,w).861

For large n, this overcomes the ϵ’s since it means the test checks whether iℓ(y | xn, w) is nonzero for all862

w (assuming ϵy < 1, i.e., a human can possibly evaluate y).863

12



Figure 8: Performance of the noise-tolerance test with different numbers of repetitions (values of n in Equation (2)).
The original test is n = 1.

B.2 Empirical Results 864

We compare the noise-tolerant test with n = 5 repetitions against the original test, using the RTE training 865

set and the MNLI matched validation set.6 As shown in Figure 7, the flipped noise-tolerant test consistently 866

detects entailment better than the original flipped test. However, the fact that the test still works better 867

flipped is just as unexpected with the noise-tolerant test as with the original test. 868

We were thus skeptical whether the boost in performance from the noise-tolerant test was due to more 869

realistic speaker assumptions and aimed to access whether there could be a confounding explanation. In 870

particular, in addition to accounting for ways speakers can be redundant, the noise-tolerant grants the LM 871

additional tokens and thus more steps of computation, which could enable more closely approximating 872

each log-likelihood (Goyal et al., 2023). To control for this, we introduce a “pause token” test where, for 873

each term log p(ab), spaces are inserted between a and b to add the same number of tokens that would be 874

added by replacing a with an.7 Assuming spaces carry no semantics, the pause token test should measure 875

the same quantity as the original entailment test, but with more compute than the noise-tolerant test. 876

As shown in Figure 7, the pause token test outperforms the original test, suggesting the computational 877

benefit of additional tokens may explain the test improvement. For many datasets, the pause token test 878

performs slightly worse than the noise-tolerant test, but because the absolute difference is small and not 879

consistent, we do not take this as evidence that the noise-tolerant test provides a benefit beyond more 880

tokens of computation. Further, Figure 8 shows that increasing the number of repetitions yields roughly 881

monotonic but diminishing returns, as might be expected for a computational resource. Overall, we 882

conclude the stronger performance of the noise-tolerant test likely reflects the greater computational power 883

of padding tokens and not better assumptions about human speakers. 884

C Explanatory Speakers 885

The only change we make to the speaker to support explanations is generalizing the cost c(y | x) to 886

depend on the prior context. We assume that c($ | z) = c($) for all z. 887

Proposition 3. Let p be an explanatory speaker. Then, for any x, y, 888

Êp(x, y) = E(x, y) + ∆(x, y)−∆(y, y). 889

Proof. By definition, 890

Êp(x, y) = E(x, y)− c(xy) + c(x$) + c(yy)− c(y$) 891

= E(x, y)− c(y | x) + c($ | x) + c(y | y)− c($ | y). 892

6Due to the repetitions multiplicatively increase sequence length, running this test on the MNLI training set, as we do in the
other experiments, was not feasible for us.

7The tokenizer for Llama models treats 16 consecutive whitespaces as a single token. We hence insert 16 times more
whitespaces for Llama-based models to control for the token count.
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Figure 9: Unflipped entailment test score as a function of the number of distractors in the premise, with <65b
models (left) and ≥65b models (right), for the RTE dataset.

These cost terms do not all cancel out (as for Gricean speakers). Instead, we get893

Êp(x, y) = E(x, y)− c(y | x) +�
��c($) + c(y | y)−�

��c($)894

= E(x, y)− c(y | x) + c(y | y) + c(y)− c(y)895

= E(x, y) + ∆(x, y)−∆(y, y).896

897

C.1 Further Details and Experiments898

To be convincing, the explanatory speaker account should ideally explain why the original test worked899

better than the flipped test for some targeted cases like logical connectives and numbers (Figure 2). The900

connectives could possibly be explained by the fact that the connectives hypotheses introduced new entities901

that did not occur in the premise (cf. Example 13). Because these entities do not exist in the discourse, it902

would be infeasible for a listener to reason about whether they are entailed in advance, making semantic903

priming unlikely. We would thus expect ∆(x, y) and the test to better match E(x, y) in this case.904

The semantic priming account predicts that, for entailed pairs, the test score should reflect how much905

x semantically primes y. Assuming adding distractors to the premise reduces semantic priming, it thus906

predicts that the entailment score should decrease as more distractors are added to the premise. We test907

this by generating entailment pairs with distractors in the premise like the following:908

(5) Olivia lives in Paris. James lives in Tokyo. ⇒Olivia lives in France.909

As shown in Figure 9, this pattern holds for all ∼70b LMs we considered, although the results for LMs of910

smaller scales are more inconsistent. We take this as weak evidence that the speakers LMs are modeling911

(i.e., humans) may be accounting for the reduction in processing time that an explanation can provide.912

D Manual Inspection of Entailment Classified by Models913

The following are examples of premise-hypothesis pairs which were marked as entailment by both914

T5 (Honovich et al., 2022) and RoBERTa (Liu et al., 2019). Through manual inspection, however, we find915

that they were in fact incorrectly classified as such. We include a comprehensive list of those cases as well916

as reasoning as to why we believe the pair is not entailment.917

(6) Multi-News: The man survived the fall and the waters.After he was rescued, he noted that a918

"burning platform" caused a radical change in his behaviour.We too, are standing on a "burning919

platform," and we must decide how we are going to change our behaviour.Over the past few920

months, I’ve shared with you what I’ve heard from our shareholders, operators, developers,921

suppliers and from you.Today, I’m going to share what I’ve learned and what I have come to922

believe. ⇒I have learned that we are standing on a burning platform.923
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The premise does not contain information regarding the fact that the narrator had "learned [they] are 924

standing on a burning platform". 925

(7) Books3: That’s where you’re wrong.I only have negatives.Minus wishes.""E, what are you going 926

on about?"I asked gently, leaning in and wincing as my shirt caught on the dressing. ⇒"I only 927

know what I don’t want. 928

The "I only have negatives" in the premise can be interpreted as the narrator only having things that they 929

don’t want. This is in contrast to the knowledge aspect which is brought up in the hypothesis. 930

(8) Book3: I glance over my shoulder.Liam moves fast too, throwing himself at the hill to catch 931

me.It’s fine, I can outrun him over distance.All I need is a head start.So I push myself, stumbling 932

on the dry churned-up turf. ⇒Behind me, Liam speeds up. 933

The premise indicates that "Liam moves fast...to catch me". It does entail that he "speeds up", which is in 934

the hypothesis. 935

(9) Wikipedia: Henry admits he doesn’t dance, and encourages Minnie to dance with Sidney.Henry 936

thinks Minnie must find life with him dull, and resolves to learn to dance.He keeps this secret 937

from her in order to surprise her on her birthday.He takes private dancing lessons, instructed by 938

Madame Gavarni and her niece.Minnie seems to grow distant. ⇒Henry thinks she is bored, and 939

looks forward to surprising her with dancing. 940

While Henry thinking Minnie is bored and planning on surprising her with dancing, him "[looking] 941

forward to [it]" is new information presented in the hypothesis not in the premise. 942

(10) Wikipedia: "Established in 1923, it has a membership of around 230,000 and is open to past and 943

present members of the UK Civil Service and public sector plus organisations that were formerly 944

part of the British Civil Service, for instance Royal Mail and BT.Relatives of existing members 945

may also join.History Boundless by CSMA is a mutual organisation.It was founded as the Civil 946

Service Motoring Association in 1923 by Frank Vernon Edwards, an executive officer in the 947

Ministry of Labour who had an interest in motorcycle trials.CSMA Club was designed to be a 948

small motorsport organisation of around 300 members, but by 1930 the membership was over 949

5,000." ⇒The membership currently stands over 230,000. 950

The premise does not indicate that there are more than 230,000 members, which means that the hypothesis 951

is adding additional information not contained in the premise. 952

(11) Reuters-21578: "A spokeswoman for the EC Commission said the detailed 25-page report of 953

alleged malpractices was in response to a similar document issued by U.S. Administration officials 954

in November, and updated a previous EC list.EC External Trade Relations Commissioner Willy 955

De Clercq said its object was to show such actions were not solely taken by trading partners 956

of the U.S. And that "the U.S.Were not innocents in the matter."The report covers the entire 957

field of EC-U.S. Commercial relations and lists more than 30 obstacles ranging from tariff 958

measures, import quotas, customs duties, anti-dumping procedures, fiscal barriers and export 959

subsidies.The Commission said not all the barriers mentioned were necessarily inconsistent with 960

U.S. International obligations, and emphasised many of them could be removed at upcoming 961

international trade talks." ⇒The purpose of the report is to make clear that trade practices which 962

impede exports are not a unique problem only faced by U.S. 963

The premise describes something different from the hypothesis in that the objective of the report was to 964

show "such actions were not solely taken by trading partners of the U.S." but also participated in by the 965

U.S. itself. 966

(12) Yelp Review: "While it looks decent on the outside and the inside, the food and service were 967

simply terrible.Chicken was very watered down, the salsa was flavorless, and the service make a 968

fast food chain look really good.Just a poor, poor experience at this location overall.If this was 969
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Figure 10: Frequency of occurrences of entailment categories across data sources.
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Figure 11: Learned logistic regression coefficients for the log-probability features for the broad-coverage datasets.
Each bar represents one LM. For ease of visualization, y-axis is in log scale, except in [−0.1, 0.1] where it is linear;
and it is capped at [−100, 100], requiring truncation in a few cases.

the only El Cancun in Charlotte, I would feel the same way many posters do and just never come970

back. Luckily for me, I live in Rock Hill." ⇒There’s an El Cancun here.971

The hypothesis introduces new information about another El Cancun location being where the speaker is,972

which is not present in the premise.973

E Manual Classification of Entailment Categories974

Based on the filtered manual results described by ∩+ in Table 1, we manually classify results into three975

categories: explanation, repetition, and other. The classification of explanation and repetition were976

determined based on the definition in §6.2 and §6.1, respectively. Results of these classifications across977

data sets are shown in Figure 10.978

F Learned Entailment Test for More Datasets979

In Figure 11, we show the coefficients for the learned entailment test (§4.3). However, we note a caveat980

for the targeted evaluation datasets: because they are manually curated, there are simple dataset artifacts981

that can be used to distinguish between the two classes (for example, some types of hypotheses only exist982

for entailment instances). When we learned a classifier, such artifacts could be exploited (and we do see983

that they are exploited in practice). We thus highlight that the interpretation of the relevant coefficients are984

not straightforward.985

G Synthetic Data for Targeted Evaluation986

The GLUE diagnostics (Wang et al., 2018) are not a public dataset; hence, we make our synthetic targeted987

evaluation data based on the GLUE design principles. We create synthetic data following the following988

templates, where the names and base propositions vary according to a hard-coded list.989
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Dataset # Instances

RTE-train 2,490
MNLI-train 392,702
MNLI-validation-matched 9,815
WaNLI-train 102,885
ANLI-train 100,459
Connectives 1,800
Quantifiers 780
Numbers 260
Passives 2,160
Datives 720

Table 2: The number of instances for each dataset we use.

Connectives. The premise p(a) entails p(a ∨ b) but not p(a ∧ b): 990

(13) I saw James. 991

a. I saw James or Olivia. ✓ 992

b. I saw James and Olivia. ✗ 993

Quantifiers. For a non-empty domain, all a p(a) entails some a p(a) but not no a p(a): 994

(14) All of the crops failed. 995

a. Some of the crops failed. ✓ 996

b. None of the crops failed. ✗ 997

Numbers. Similarly, at least two entails at least one but not at least three: 998

(15) At least two of the crops failed. 999

a. At least one of the crops failed. ✓ 1000

b. At least three of the crops failed. ✗ 1001

Passivization. Given a premise with a transitive verb, the reduced passive with the original object as the 1002

subject is entailed, but the reduced passive with the original subject as the subject is not: 1003

(16) Olivia saw Mia. 1004

a. Mia was seen. ✓ 1005

b. Olivia was seen. ✗ 1006

Datives. Given a sentence with a direct object and an optional indirect object, the sentence with the 1007

indirect object removed is entailed, but the sentence with the direct object is not: 1008

(17) Liam baked Noah a cake. 1009

a. Liam baked a cake. ✓ 1010

b. Liam baked Noah. ✗ 1011

H Language Models We Used 1012

We test a variety of LM families, and for each, we use the smallest and largest public-available variant. 1013

Specifically, we use GPT-2 small (117M parameters) and XL (1.5B), OPT 125M and 66B, Llama-1 7B 1014

and 65B, Vicuna 7B and 13B, Llama-2 7B and 70B, and ChatLlama-2 7B and 70B. 1015

I Dataset Stastics 1016

We report dataset statistics in Table 2. 1017

17


	Introduction
	Distributional Semantics and the Entailment Test
	The Entailment Test

	Evaluating the Entailment Test
	Entailment Datasets
	Models
	Evaluation Metric: Flipped ROC-AUC

	Entailment Test Results
	Flipped Test on Broad-Coverage Data
	Varied Pattern for Targeted Phenomena
	Learning a Distributional Entailment Test

	Corpus Study: Characterizing Naturalistic Linguistic Redundancy
	Towards Accounting for Redundancy
	Redundancy via Noise Tolerance
	Redundancy via Explanations
	Discussion

	Conclusion
	Test Derivation for Gricean Speakers
	Noise-Tolerant Speakers
	Theoretical Result
	Empirical Results

	Explanatory Speakers
	Further Details and Experiments

	Manual Inspection of Entailment Classified by Models
	Manual Classification of Entailment Categories
	Learned Entailment Test for More Datasets
	Synthetic Data for Targeted Evaluation
	Language Models We Used
	Dataset Stastics

