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1. Additional Related Works013

Neuro-symbolic representations integrates neural net-014
works’ perceptual abilities with the symbolic reasoning for015
robots in complex and dynamic environments. Prior works016
explored understanding scenes and describing robotic skills017
in symbolic texts to interpret demonstrations [1, 2], ground018
abstract actions for robotic primitives [3] and generate ac-019
tion plans [4–7]. Our proposed framework also constructs020
symbolic representations of the environment, but in the form021
of action-conditioned scene graphs for robotic manipulation.022

Active perception aims to select specific actions for an023
agent to improve its ability to perceive and understand the024
environment [8, 9]. Unlike passive perception, actions offer025
more flexibility, such as control over better viewpoints [10–026
12], sensor configurations [13, 14], or adjustments to en-027
vironmental configurations [15]. It can also reveal certain028
scene properties that cannot be perceived in a passive manner,029
such as dynamic parameters [16, 17] or articulation [18–20].030
Previous studies have explored active perception in 3D re-031
construction [21–25], object recognition [26–28], camera032
localization [29], and robotic manipulation [30, 31]. Our033

work falls into the category of actively exploring the environ- 034
ment to reveal what’s inside or underneath objects. Differ- 035
ing from most previous active perception efforts, which are 036
driven by handcrafted rules [32], information gain [33, 34], 037
or reinforcement learning [16, 35], our approach to active 038
perception is guided by grounding the rich commonsense 039
knowledge encoded in a large language model into an ex- 040
plicit scene graph representation. 041

Language models for robotics. Large language 042
models (LLMs) [36–38] and large multimodality models 043
(LMMs) [39, 40] are bringing overwhelming influence into 044
the robotics field, for their strong capacity in common-sense 045
knowledge and long-horizon reasoning. Previous studies 046
have harnessed the common-sense knowledge of such large 047
models to generate action candidates [41] and action se- 048
quences for task planning [38, 42–44], and generate code 049
for robotic control and manipulation [45–47]. More recently, 050
VILA [48] utilized GPT-4V [39, 40] for vision-language 051
planning. In our RoboEXP system, we leverage GPT-4V 052
for decision-making in two crucial roles. First, as the ac- 053
tion proposer, it ensures both effectiveness and efficiency in 054
proposing appropriate strategies to expand potential nodes 055
in our action-conditioned 3D scene graph. Second, as the 056
action verifier, it ensures the plausibility and smoothness of 057
actions and operations in our system. Moreover, instead of 058
memorizing everything using large models in a brute force 059
way, our system employs explicit memory to enhance the 060
decision-making process. 061

2. Additional Details of Problem Statement 062

Due to space constraints, we did not include a comprehen- 063
sive explanation of the algorithm proposed in the problem 064
statement, but include more details here for clarity. We for- 065
mulate the interactive scene exploration task into an active 066
perception and exploration problem to construct the action- 067
conditioned 3D scene graph (ACSG). 068

The algorithm shown in the main paper simply mentions 069
“add spatial relations” and “add action preconditions” as part 070
of the function of the memory module, but without detailed 071
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explanation. In the algorithm, we have demonstrated how072
to construct the edges from objects to actions eo→a and073
from actions to objects eo→a; however, there is a lack of074
description for the other two types of edges.075

Add Spatial Relations. The logic involves analyzing the076
spatial relationships among objects using spatial heuristics077
and incorporating the resulting spatial relation edges between078
objects eo→o (see Algorithm 1).

Algorithm 1 Add Spatial Relations

1: input: Gt−1 = (Vt−1,Et−1)
2: Et = Et−1

3: for o ∈ Vt−1 do % check relations
4: if relation from o to oi then % memory
5: Et = Et ∪ {eo→oi} % add edge
6: end if
7: if relation from oi to o then
8: Et = Et ∪ {eoi→o} % add edge
9: end if

10: end for
11: output: Gt % new scene graph

079
Add Action Preconditions. The approach is to assess080

the feasibility of implementing the actions. We utilize the081
decision-making module to verify whether there are any082
prerequisite actions that need to be completed beforehand,083
and then adjust the plan accordingly (see Algorithm 2).084

Algorithm 2 Add Action Preconditions

1: input: Gt−1 = (Vt−1,Et−1),Ut−1

2: if object o obstruct then % decision-making
3: choose action a
4: Vt = Vt−1 ∪ {a}, Ut−1 ∪ {a} % add node
5: Et = Et−1 ∪ {eo→a} % add edge
6: Et = Et−1 ∪ {ea→ak} % add edge
7: end if
8: output: Gt,Ut % new scene graph & plan

3. Additional Details of RoboEXP system085

In this section, we provide additional details of the decision086
module and action module. We then discuss our system’s087
design for the interactive scene exploration task and the088
usage of our system in following sections, focusing on its089
application in closed-loop exploration processes that may re-090
quire multi-step or recursive reasoning and handle potential091
interventions.092

3.1. Details of the Modules093

Decision-Making Module. As illustrated in the main paper,094
the decision-making module fulfills two crucial functions095
within our system. The first function serves as an action pro-096
poser (Fig. 1a), proposing the appropriate skill for the query097

object node. The subsequent role functions as the action 098
verifier (Fig. 1b), tasked with confirming the feasibility of 099
implementing the action and determining the action precon- 100
ditions. The complete prompts for both roles are detailed in 101
Fig. 1. 102

Action Module. The action module focuses on pro- 103
viding useful action primitives to aid in constructing our 104
ACSG. We have designed seven action primitives: “open the 105
[door]”, “open the [drawer]”, “close the [door]”, “close 106
the [drawer]”, “pick [object] to idle space”, “pick back 107
[object]”, “move wrist camera to [position]”. To fully 108
support autonomous actions, we employ a heuristic-based 109
algorithm leveraging geometric cues. 110

For the door and drawer relevant primitives, engagement 111
with handles is required. In our implementation, we exploit 112
the handle’s position and geometry to discern its motion type 113
(prismatic or revolute) and motion parameters (motion axis 114
and motion origin). Executing this action involves utiliz- 115
ing the detected handle and its geometry to adeptly open 116
doors or drawers. Upon identifying the specific handle to 117
be operated, our system retrieves the point cloud converted 118
from our voxel-based representation corresponding to that 119
handle from our memory module. Subsequently, we employ 120
Principal Component Analysis (PCA) to determine the prin- 121
cipal direction of the handle, aiding in aligning the gripper 122
for optimal engagement. Additionally, understanding the 123
opening direction is pivotal for effectively handling doors or 124
drawers. To ascertain this, we analyze neighboring points 125
and deduce the most common normal as the opening di- 126
rection. The combined information of the handle direction 127
and the opening direction provides sufficient guidance for 128
our robot arm to grasp the handle and open the prismatic 129
part. However, in the case of a revolute joint, the motion 130
becomes more intricate. Therefore, we further utilize the 131
motion parameters inferred from the geometry to simulate 132
the evolving opening direction based on the revolute joint’s 133
opening process. This well-designed heuristic empowers 134
our system to reliably open drawers or doors in our tabletop 135
setting. 136

For the pickup-related primitives, we simplify the pickup 137
logic to exclusively consider a top-down direction. Con- 138
sequently, our focus narrows down to acquiring essential 139
information such as the object’s height and xy location. We 140
achieve this by extracting the object’s point cloud from its 141
associated voxel-based representation. Subsequently, we 142
pinpoint the highest points within the cloud, calculating their 143
mean to determine the optimal pickup point. This calculated 144
point serves as a precise reference for our gripping mecha- 145
nism, facilitating the successful grasping of objects in the 146
specified direction. 147

Regarding viewpoint change, the primitive is parameter- 148
ized with the expected pose. For example, after opening 149
the door/drawer, to see inside, we develop the heuristic to 150
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System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects 
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense 
knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step 
thoughtfully, and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your 
instructions.

User: Analyze and provide your final answer for each new query object/part category, considering the given surrounding objects and observations in the tabletop 
scene from different viewpoints. The query object/part will be enclosed in a green bounding box, though it may not always be fully accurate. Format your responses 
as follows: "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <skill>". Be comprehensive and avoid repeating my question. Choose from three skills: 1. Open 
the doors or drawers. 2. Pick up / Open the top object. 3. No action. The primary goal is to select an action that has the potential to reveal hidden objects. The 
secondary goal is to act efficiently, performing only necessary actions to uncover hidden objects. For example, if an object contains doors or drawers and can 
potentially store something inside, opt for the first skill "Open the doors or drawers". If an object has no bottom side and can potentially cover something beneath it, 
choose the second skill " Pick up / Open the top object"; otherwise, select the third skill "No action" to ensure efficiency.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

System: You are an assistant tasked with evaluating the feasibility of actions within a tabletop environment. Your role is to select suitable objects that could obstruct 
open actions based on queries and current observations. Provide guidance for a robot's planning process. Approach each step thoughtfully, analyzing the underlying 
problem thoroughly while considering potential vagueness or inaccuracy in the queries. Follow the provided formats in your instructions.

User: Provide an analysis and your final answer each time I present a new query object/part category, the list of surrounding objects you need to consider and 
observations of the corresponding in the tabletop scene from different viewpoints. The query object/part is enclosed in a green bounding box, which may not always 
be fully accurate. Present your reasoning process and final answer in the format "[Analysis]: <your reasoning process>; \n\n [Final Answer]: <list of objects>". Be 
comprehensive and avoid repeating my question. Use the given list of surrounding objects, maintaining the provided names. Only consider the surrounding objects in 
the given list. The objective is to identify all objects that could potentially block open actions. If an object obstructs the door or drawer from opening, include it in the 
final list of objects. Analyze the action movement and identify the blocking objects. 

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the object but not others and follow the output format.
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User: [Query Object] + [Query Images]

Assistant: [Reply from GPT-4V]

Figure 1. Prompts of the Decision-Making module. We present the full prompts for the two pivotal roles of our decision-making module,
proposer in (a), verifier in (b). The prompts are used for all our experiments without modification and extra examples.

System: You are an assistant tasked with aiding in the construction of a complete scene graph for a tabletop environment. The objective is to identify all objects 
hidden from the current observation in the tabletop setting. Your role involves selecting appropriate actions or opting not to take any action based on commonsense 
knowledge in response to queries with current observations. Your responses will guide a robot in efficiently exploring the environment. Approach each step thoughtfully, 
and analyze the fundamental problem deeply, considering the potential vagueness or inaccuracy in the queries. Adhere to the provided formats in your instructions.

User: Analyze and provide the current scene graph and your final answer for the next action given the latest observations in the tabletop scene from different 
viewpoints. Each time you need to pick an action to do or choose "Done" to terminate. The action you can choose should be composed of (<object/part>, <skill>). Be 
specific on which object or part you refer to. The skills you can choose: [1. Open the door. 2. Close the door. 3. Open the drawer. 4. Close the drawer. 5. Pick up the 
object to idle space. 6. Pick back the object from the idle space].  Each time after you choose an action, you will receive the new observations after the action. Format 
your responses as follows: "[Analysis]: <your reasoning process>; \n\n [Scene Graph]: <current scene graph> \n\n [Final Answer]: <skill>". Be comprehensive and 
avoid repeating my question. The primary goal is to select an action that has the potential to reveal hidden objects. The secondary goal is to act efficiently, performing 
only necessary actions to uncover hidden objects. The third goal is to make the object go back to the initial state after exploration. For the output scene graph, you 
need to output all the objects in the scene, including those found during the exploration process.

Assistant: Got it. I will output the reasoning process step-by-step, explain why I choose the skill but not others and follow the output format.

User: [Query Images]

Assistant: [Reply from GPT-4V]

User: [Query Images]

Assistant: [Reply from GPT-4V]
...

Figure 2. Prompts of the GPT-4V baseline. To ensure fairness in comparison to this baseline, we choose to use similar prompts, employing
the chain-of-thoughts technique to enhance its performance.

choose the proper viewpoint from the open direction as the151
parameter for the primitive, allowing for the implementation152
of the action primitive.153

3.2. Other Design in Interactive Exploration154

One desiderata for robot exploration is the ability to handle155
scenarios that necessitate multi-step or recursive reasoning.156
An example of this is the Matryoshka doll case, which cannot157
be addressed using previous one-step LLM-based code gen-158

eration approaches [46, 48]. In contrast, our modular design 159
allows agents to dynamically plan and adapt in a closed-loop 160
manner, enabling continuous LLM-based exploration based 161
on environmental feedback. 162

To manage multi-step reasoning, our system incorporates 163
an action stack as a simple but effective “planning” module. 164
Guided by decisions from the decision module, the stack 165
structure adeptly organizes the order of actions. For instance, 166
upon picking up the top Matryoshka doll, if the perception 167
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Figure 3. Qualitative Results on Different Intervention Scenarios. (a) This scenario involves adding a cabinet to the tabletop setting, and
our system can auto-detect the new cabinet and explore the objects inside. (b) This scenario includes removing and adding objects from and
into the cabinet. Our system can monitor hand interactions and re-explore the corresponding doors.

and memory modules identify another smaller Matryoshka168
doll in the environment, the decision module determines to169
pick it up. Our action stack dynamically adds this pickup170
action to the top of the stack, prioritizing the new action171
over picking back the previous, larger Matryoshka doll. This172
stack structure facilitates multi-step reasoning and constructs173
the system’s logic in a deep and coherent structure.174

Moreover, for the interactive scene exploration task, main-175
taining scene consistency is crucial in practice (e.g., the176
agent should close the fridge after exploring it). We em-177
ploy a greedy strategy returning objects to their original178
states. This approach keeps the environment close to its179
pre-exploration state, making RoboEXP more practical for180
real-world applications.181

3.3. Usage of ACSG182

The ACSG constructed during the exploration stage shows183
beneficial for scenarios that require a comprehensive under-184
standing of scene content and structure, such as household185
environments like kitchens and living rooms, office environ-186
ments, etc. We list several examples illustrating the potential187
usage of the scene graph in various tasks.188

Judging Object Existence. A direct application of our189
ACSG is to determine the presence or absence of specific190
objects in the current environment. For instance, during the191
exploitation stage of the scenario (Sec. 5) to set the dining192

table, if the spoon is missing, the robot can further seek 193
human assistance. 194

Object Retrieval. One notable advantage of our ACSG 195
is its ability to capture all actions and their preconditions. 196
Utilizing this information, retrieving any object becomes 197
straightforward by following the graph structure and execut- 198
ing actions in topological order along the paths from the root 199
to the target object node. For example, in the obstruction 200
scenario (Sec. 5), the ACSG can provide the sequence of 201
actions required to fetch the tape: 1) removing the condi- 202
ment blocking the cabinet door, 2) opening the cabinet via 203
the door handle, and 3) retrieving the tape. Such insights are 204
crucial for tasks like cooking. 205

Advanced Usage. The high-level representation of the 206
environment provided by our ACSG serves as a simplified 207
yet effective model. Similar to the approach proposed by Gu 208
et al. [49], integrating the scene graph with Large Language 209
Models (LLM) or Large Multi-modal Models (LMM) offers 210
enhanced capabilities, including natural language interaction. 211
This enables the robot to respond to human preferences 212
expressed in natural language (e.g., fetching a coke when 213
the person is thirsty) or through visual cues (e.g., fetching a 214
mug when the table is dirty). 215
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Figure 4. All Testing Objects. We present various objects utilized
in our work, encompassing different types of cabinets, fruits, dolls,
condiments, beverages, food items, tapes, tableware, and fabric.

4. Additional Details of Experiments216

4.1. Robot and Environment Setups217

All our experiments are conducted in a real-world setting.218
In these scenarios, we mount one RealSense-D455 camera219
on the wrist of the robot arm to collect RGBD observations,220
with the execution of actions performed by the UFACTORY221
xArm 7. The end effector for our robot arm is the soft222
gripper. Our experimental setup encompasses a diverse range223
of objects, as illustrated in Fig. 4. To assess the effectiveness224
of our system, we devised five types of experiments, each225
encompassing 10 distinct settings. These settings vary in226
terms of object number, type, and layout, as illustrated in227
Fig. 5.228

Baseline. We employ the pure GPT-4V as our baseline229
model along with the chain-of-thoughts (CoT) to enhance its230
capabilities, as outlined in a method similar to that proposed231
by Hu et al. [48]. This baseline operates in a closed-loop232
fashion, receiving three RGB observations from different233
viewpoints during each iteration. At each turn, it generates234
the current scene graph, encompassing hidden objects, and235
suggests the next action to be taken. Upon determining236
that all tasks are completed, the model outputs “Done” (re-237
fer to the complete prompts in the Appendix). To ensure238
the baseline is robust, we utilize manual actions as ground239
truth references for the proposed actions. For instance, if240
the baseline suggests opening a specific drawer, we manu-241
ally perform the action and prompt the model with the new242
observation to generate another action. In contrast, in the ex-243
ploration experiments described below, all actions from our244
system are automatically executed by our action module on245
the physical robot. The full prompt of the GPT-4V baseline246
is illustrated in Fig. 2.247

Evaluation. As mentioned in the main paper, we have248

designed five key metrics. To assess the effectiveness and 249
efficiency of ACSG, we engage human evaluators in the 250
tasks to construct the ground truth version of ACSG. The 251
five main metrics employed for evaluation are as follows: 252

1) Success: This metric evaluates the success percentage 253
across 10 variants for each task. We define success for each 254
experiment as 1 when the final outputted ACSG exactly 255
matches the GT version, and 0 otherwise. 256

2) Object Recovery: This metric quantifies the percent- 257
age of hidden objects successfully identified. 258

3) State Recovery: A binary value indicates whether the 259
final state resembles the original state before exploration. 260
This includes considerations for partial states and object 261
positions (e.g., in the top drawer of a cabinet or on the table). 262

4) Unexplored Space: Evaluating the percentage of 263
successfully explored need-to-explore space to reduce the 264
robot’s uncertainty about the scene. The identification of the 265
need-to-explore space relies on human annotation. 266

5) Graph Edit Distance (GED): GED measures the 267
disparity between the outputted graph and the GT graph. We 268
adopt a simplified version of GED with six operations—three 269
for nodes (add, delete, edit) and three for edges (add, delete, 270
edit), with each operation incurring a cost of 1. 271

These metrics provide a comprehensive evaluation of 272
the method’s performance. Additionally, we visualize the 273
number of objects and actions during the exploration process 274
to show the exploration strategies employed by different 275
methods. 276

4.2. Human Intervention 277

Our RoboEXP system possesses the capability to au- 278
tonomously adapt to changes in the environment. We employ 279
two types of human interventions to demonstrate these points 280
(refer to Sec. 5). 281

The first type of intervention (Fig. 3a) involves adding 282
new cabinets to the scene. In this scenario, we add a cabinet 283
to the explored area, allowing our system to automatically 284
explore the newly added cabinets and update the ACSG. 285

The second type of intervention (Fig. 3b) involves adding 286
new objects to or removing existing ones from the cabinets 287
in the current scene. Our system can monitor human in- 288
teractions and discern which objects require re-exploration. 289
Subsequently, it autonomously updates the ACSG based on 290
re-exploration. 291

4.3. Remaining Challenges 292

Although our system has proven effective, there is room 293
for improvement. The breakdown of the failure rate in the 294
quantitative results suggests that failures primarily arise from 295
detection and segmentation errors within the perception mod- 296
ule. To address this issue, we envision two future directions: 297
1) enhancing the capabilities of visual foundation models for 298
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open-world semantic understanding, and 2) utilizing tempo-299
ral cues and semantic fusion techniques to improve percep-300
tion robustness through continuous observations.301

Furthermore, our system would benefit from enhanced302
LMM capacities and the integration of sophisticated skill303
modules, including learning-based or model-based path plan-304
ning. Such improvements would improve both the decision-305
making and action modules, thereby further reducing failure306
cases.307

5. Video Timeline308

Scenario A. Exploration-Exploitation309
Exploration: 00:43 - 01:16310
Exploitation: 01:17 - 01:37311
Scenario B. Recursive Reasoning312
Exploration: 01:49 - 02:26 (Two scenarios)313
Scenario C. Obstruction314
Exploration: 02:33 - 02:59315
Scenario D. Intervention316
Exploration: 03:05 - 04:09 (Two scenarios)317
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Figure 5. Experiment Settings. Varied object numbers, types, and layouts in our experimental settings of the quantitative results.
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