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A: RELATEDWORK
Vision-Language Models
Vision-language models (VLMs), an important research direction
in the field of deep learning, are dedicated to establishing a tight
connection between images and natural language for better un-
derstanding and processing of multi-modality information. The
development of VLMs stems from the urgent need to integrate
visual and linguistic capabilities, and this integration provides a
new paradigm for tasks such as image understanding, automatic
image annotation and visual question answering. Unlike traditional
unimodal models, VLMs process image and text data by learning
together, making the model more capable of understanding the
semantic content in the image. For instance, CLIP [13] employs a
visual-language contrastive learning approach for joint pre-training
on diverse datasets, enabling the model to comprehend images and
text within a unified embedding space. BLIP [9] introduces a novel
vision-language pre-training framework that, through caption boot-
strapping, effectively utilizes noisy web data. BLIP-2 [8] presents a
streamlined vision-language pre-training strategy for BLIP, lever-
aging frozen image encoders and language models.

Prompt Learning
With the in-depth exploration of the field of natural language pro-
cessing, prompt learning has become a highly prominent research
direction in recent years. Prompt learning aims to guide models
in generating more accurate and targeted outputs by designing
effective prompt information. The key idea of this approach is to
improve model performance by directing its attention to specific
information. In text-related tasks, previous works have skillfully
constructed prompts to guide models in targeted text generation,
thereby enhancing task performance. For instance, PET [14] com-
bines pre-trained language models with cloze-style reformulations,
assigning soft labels to unlabeled data. Furthermore, the extension
of this concept has also offered new perspectives for image-related
tasks, enhancing model performance in multi-modality scenarios
by designing prompts suitable for image data. For instance, VPT
[6] introduces an efficient alternative to full fine-tuning for large-
scale Transformer models in computer vision, achieving significant
performance gains and outperforming full fine-tuning in various
scenarios while reducing storage costs. VP [1] adds noise to every
patch so that it can reduce the influence of meaningless patches,
but it may influence the meaningful patches for prompt learning.

Prompt Learning in VLMs
In complex application scenarios, the relationships between images
and language are often difficult to mine, which poses a challenge
to the performance of VLMs. Recent research work aims to enable
models to better understand and capture these complex relation-
ships by introducing prompt learning. Specifically, the introduction
of prompt learning allows models to focus on task-relevant infor-
mation in a targeted manner, helping to more accurately model

the interactions between images and language. This includes the
design of effective prompting strategies applicable to VLMs, as
well as insights into how to fully utilize the potential of prompt
learning in multi-modality tasks. For instance, CoCoOp [19] en-
hances VLMs adaptation by introducing input-conditional tokens,
addressing over-fitting issues, and demonstrating improved per-
formance on unseen classes and domain generalization. MaPLe
[7] dynamically adjusting both vision and language branches, im-
proving alignment, and achieving improved performance across
diverse downstream tasks. In this paper, we follow prior works
on prompt learning [7, 19, 20], utilizing CLIP as the backbone for
multi-modality prompt learning.

B: EXPERIMENTS
Experimental Setting
We evaluate our AMMPL with 7 comparison methods in terms of
one in-sample task (i.e., few-shot learning) and two out-of-sample
tasks (i.e., generalization from base-to-novel classes and cross-data
evaluation) on 9 benchmark datasets.

The used datasets include four fine-grained datasets (i.e., Oxford-
Pets [12], Flowers102 [11], Food101 [2], and FGVCAircraft [10]),
one generic-objects dataset, i.e., Caltech101 [4], one statellite-image
dataset, i.e., EuroSAT [5], one texture dataset, i.e., DTD [3], one
action recognition dataset, i.e., UCF101 [15], and one scene recog-
nition dataset, i.e., Sun397 [17]. Datasets-specific details are shown
in Table 7. The comparison methods include three single-modality
PL methods (i.e., DLP [7], VPT [6], and VP [1]), one non-interactive
multi-modality PLmethod, i.e., IVLP [7], and three interactive multi-
modality PL methods, i.e., CoCoOp [19], DPT [18], and MaPLe [7].
We list the details of the comparison methods as follows:

• DLP introduces learnable tokens in each Transformer [16]
block of the text encoder until a specific depth is reached (i.e.,
5-layer). This innovative method allows the model to adapt
and refine its representations by incorporating learnable
tokens at various levels within the text encoder architecture.

• VPT introduces an efficient alternative to full fine-tuning
for large-scale Transformer models in computer vision. This
groundbreaking methodology not only streamlines the train-
ing process but also significantly optimizes the utilization of
computational resources.

• VP adds noise to every patch so that it can reduce the in-
fluence of meaningless patches, but it may influence the
meaningful patches for prompt learning.

• IVLP combines deep vision and language prompts separately
but lacks synergy between the branches during the learning
of task-relevant context prompts.

• CoCoOp enhances VLMs adaptation by introducing input-
conditional tokens, addressing over-fitting issues, and demon-
strating improved performance on unseen classes and do-
main generalization.

• DPT proposes a dual-modality prompt tuning paradigm,
simultaneously adapting text and visual prompts, with a
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Method Shot Source (OxfordPets)
Target

Caltech101 DTD EuroSAT FGVCAircraft Flowers102 Food101 Sun397 UCF101

CoCoOp 1 91.93(0.5) 84.97(3.5) 36.27(3.4) 37.30(8.7) 15.23(3.3) 53.40(8.3) 67.67(9.6) 50.00(6.2) 56.97(4.6)
MaPLe 1 83.83(5.8) 86.10(2.3) 29.87(2.4) 43.80(7.1) 11.50(6.3) 52.10(9.1) 75.13(3.2) 52.07(4.5) 52.77(7.4)
AMMPL 1 91.10(0.9) 87.53(0.9) 35.87(2.4) 44.70(4.1) 20.90(1.8) 57.90(4.0) 80.15(2.8) 54.80(1.5) 61.20(2.5)

CoCoOp 8 93.17(0.3) 88.47(2.9) 35.47(0.5) 40.20(5.8) 17.60(1.5) 60.47(3.4) 79.70(5.4) 56.87(3.1) 59.87(0.6)
MaPLe 8 92.53(0.8) 88.20(2.9) 41.37(3.3) 35.00(6.1) 18.17(1.9) 58.83(9.8) 76.33(9.0) 55.50(5.2) 58.07(3.1)
AMMPL 8 92.93(1.2) 88.63(1.4) 39.43(1.3) 44.10(3.7) 22.46(2.0) 60.90(3.0) 80.89(1.3) 54.83(1.2) 62.30(1.2)

CoCoOp 16 93.47(0.3) 88.70(1.3) 37.63(3.0) 39.20(8.3) 16.97(2.7) 61.33(1.7) 74.73(3.7) 55.20(1.3) 59.40(0.6)
MaPLe 16 92.50(0.5) 86.93(4.2) 39.00(3.0) 38.77(9.1) 15.63(7.5) 58.40(8.9) 74.90(9.9) 56.43(9.8) 60.40(6.4)
AMMPL 16 93.50(0.3) 88.93(1.2) 40.07(1.8) 42.93(4.9) 22.65(1.5) 60.40(3.2) 78.35(5.1) 55.63(2.1) 61.89(2.1)

Table 1: Classification accuracy (mean and standard deviation) over 3 runs of all interactive multi-modality methods (with
ViT-B/16) in terms of cross-data evaluation with different shot numbers (i.e., 1-shot, 8-shot, and 16-shot) on all datasets.

(a) Caltech101 (b) DTD (c) EuroSAT

Combo Base Novel HM Combo Base Novel HM Combo Base Novel HM

C1 97.77(0.3) 92.97(0.6) 95.31(0.4) C1 77.83(1.2) 54.50(3.0) 64.11(1.7) C1 87.30(1.9) 57.97(1.6) 69.67(1.7)
C3 97.80(0.1) 93.00(0.1) 95.34(0.1) C3 77.30(0.5) 54.57(1.2) 63.97(0.7) C3 85.63(2.7) 60.33(4.5) 70.79(3.4)
C1+C2 97.97(0.1) 93.07(0.7) 95.46(0.2) C1+C2 79.17(0.6) 56.63(6.5) 66.03(1.1) C1+C2 91.38(1.2) 59.38(6.5) 71.98(2.0)

C1+C2+C3 97.99(0.1) 94.59(0.1) 96.25(0.1) C1+C2+C3 78.33(1.5) 58.43(3.1) 66.93(2.0) C1+C2+C3 94.10(2.0) 67.39(6.3) 78.54(3.0)

(d) FGVCAircraft (e) Flowers102 (f) Food101

Combo Base Novel HM Combo Base Novel HM Combo Base Novel HM

C1 35.14(0.6) 33.83(1.3) 34.47(0.8) C1 95.43(0.2) 70.30(1.4) 80.96(0.4) C1 89.07(0.4) 90.90(0.6) 89.98(0.5)
C3 34.37(0.5) 32.70(1.0) 33.51(0.6) C3 94.97(1.2) 71.43(1.4) 81.53(1.3) C3 90.67(0.2) 91.27(0.6) 90.96(0.3)
C1+C2 35.33(1.8) 30.29(9.3) 32.62(3.0) C1+C2 95.37(0.3) 72.17(2.3) 82.16(0.5) C1+C2 89.38(0.3) 91.34(0.5) 90.35(0.4)

C1+C2+C3 35.69(1.6) 35.91(1.3) 35.80(1.4) C1+C2+C3 94.90(1.1) 74.61(1.3) 83.54(1.2) C1+C2+C3 90.90(0.1) 92.10(0.2) 91.50(0.1)

(g) OxfordPets (h) Sun397 (i) UCF101

Combo Base Novel HM Combo Base Novel HM Combo Base Novel HM

C1 94.73(0.1) 97.33(1.3) 96.01(0.2) C1 78.47(0.3) 76.60(0.5) 77.52(0.4) C1 81.47(1.2) 70.13(3.8) 75.38(1.8)
C3 95.20(0.4) 97.89(0.1) 96.52(0.2) C3 81.27(0.5) 78.90(0.7) 80.07(0.6) C3 81.27(0.5) 73.77(2.5) 77.34(0.9)
C1+C2 94.80(0.2) 97.49(0.7) 96.13(0.3) C1+C2 79.00(0.2) 76.73(0.1) 77.85(0.1) C1+C2 82.33(0.3) 72.60(2.4) 77.16(0.5)

C1+C2+C3 96.11(0.3) 98.03(0.1) 97.31(0.1) C1+C2+C3 81.02(0.3) 78.49(0.3) 79.73(0.3) C1+C2+C3 82.58(0.5) 76.72(1.2) 79.54(0.7)

Table 2: Classification accuracy (mean and standard deviation) over 3 runs of AMMPL with different components in generaliza-
tion from base-to-novel classes at 16-shot learning on all datasets. Note that, “Base”, “Novel”, and “HM”, respectively, indicate
the classification accuracy of the base classes, the novel classes, and the harmonic mean.

Combo Source (Food101)
Target

Caltech101 DTD EuroSAT FGVCAircraft Flowers102 OxfordPets Sun397 UCF101

C1 83.13(0.8) 86.50(1.4) 33.27(2.5) 39.37(5.3) 12.53(2.6) 58.17(5.2) 78.00(4.9) 52.60(1.6) 58.60(3.0)
C3 84.90(0.5) 85.80(0.9) 34.80(4.2) 41.27(2.2) 11.40(4.5) 51.83(1.5) 82.70(4.0) 48.27(5.0) 55.37(8.8)
C1+C2 84.23(1.3) 87.63(1.8) 34.27(3.9) 39.20(3.9) 15.13(4.2) 58.37(3.7) 80.83(2.5) 51.60(3.0) 58.83(8.8)
C1+C2+C3 85.17(0.7) 87.23(1.3) 35.30(1.7) 45.90(1.4) 15.53(3.0) 59.70(3.0) 79.03(4.0) 54.53(0.4) 60.55(3.6)

Table 3: Classification accuracy (mean and standard deviation) over 3 runs of AMMPL with different components in cross-data
evaluation with 1-shot learning on all datasets and the bold number represents the results in the whole column.
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Mean Caltech101 DTD EuroSAT FGVCAircraft Flowers102 Food101 OxfordPets Sun397 UCF101

0.60 89.97(1.1) 46.23(1.3) 28.07(9.7) 11.60(9.3) 73.73(2.2) 84.80(0.1) 92.38(0.5) 68.13(0.2) 58.43(9.4)
0.80 92.67(1.0) 48.13(1.3) 37.97(7.9) 19.00(5.3) 73.90(3.4) 84.80(1.1) 91.63(0.8) 68.20(0.4) 71.20(0.4)
0.90 92.47(1.0) 48.07(2.7) 43.30(4.2) 27.60(0.6) 74.30(1.4) 85.30(1.1) 91.20(0.9) 67.80(0.6) 71.33(0.2)
0.93 93.10(2.3) 51.93(1.9) 53.30(7.2) 28.07(0.6) 78.83(0.7) 84.93(1.1) 91.37(0.7) 68.03(0.5) 70.80(1.7)
0.95 93.33(0.1) 49.37(1.4) 59.27(1.2) 28.90(0.4) 75.57(1.1) 85.30(1.1) 91.03(1.1) 68.33(0.1) 72.40(1.1)

Table 4: Classification accuracy (mean and standard deviation) of AMMPL with different mean values of the initialized
probability matrix at 1-shot on all datasets and the bold number represents the best results in the whole column.

(a) Caltech101 (b) DTD (c) EuroSAT

Mean Base Novel HM Mean Base Novel HM Mean Base Novel HM

0.60 96.47(0.5) 93.40(0.2) 94.91(0.3) 0.60 73.27(4.0) 55.53(5.5) 63.17(4.6) 0.60 74.40(5.4) 43.53(9.9) 54.92(7.0)
0.80 97.67(0.1) 93.40(0.4) 95.48(0.2) 0.80 76.53(0.8) 55.80(1.2) 64.54(1.0) 0.80 83.30(8.3) 66.10(3.9) 73.71(5.3)
0.90 97.67(0.2) 94.10(1.4) 95.85(0.4) 0.90 77.53(0.5) 55.90(1.5) 64.96(0.8) 0.90 85.37(1.5) 58.50(5.1) 69.42(2.3)
0.93 97.80(0.4) 94.30(0.9) 96.02(0.6) 0.93 76.93(1.1) 54.23(6.3) 63.62(1.9) 0.93 90.70(1.8) 66.00(5.1) 76.40(2.7)
0.95 97.80(0.3) 94.43(0.6) 96.09(0.4) 0.95 78.40(1.2) 57.23(4.3) 66.16(1.9) 0.95 93.77(1.1) 69.40(4.6) 79.77(1.8)

(d) FGVCAircraft (e) Flowers102 (f) Food101

Mean Base Novel HM Mean Base Novel HM Mean Base Novel HM

0.60 14.00(9.9) 25.17(9.9) 17.99(9.9) 0.60 91.13(0.8) 71.50(3.0) 80.13(1.3) 0.60 86.87(0.3) 91.63(0.2) 89.19(0.2)
0.80 28.77(6.5) 30.32(8.2) 29.52(7.3) 0.80 93.27(1.3) 72.80(1.7) 81.77(1.5) 0.80 89.40(0.1) 91.63(0.6) 90.50(0.2)
0.90 35.43(6.6) 30.60(9.2) 32.84(7.7) 0.90 93.53(0.9) 72.13(0.2) 81.45(0.3) 0.90 90.10(0.1) 91.73(0.3) 90.91(0.2)
0.93 33.50(1.0) 35.03(0.8) 34.25(0.9) 0.93 93.60(0.4) 73.97(0.3) 82.64(0.3) 0.93 90.90(0.1) 92.07(0.2) 91.48(0.1)
0.95 34.50(0.4) 32.43(2.1) 33.43(0.7) 0.95 94.80(0.5) 72.20(1.6) 81.97(0.8) 0.95 90.13(0.1) 91.57(0.5) 90.84(0.2)

(g) OxfordPets (h) Sun397 (i) UCF101

Mean Base Novel HM Mean Base Novel HM Mean Base Novel HM

0.60 92.33(0.4) 97.13(0.7) 94.67(0.5) 0.60 76.60(0.2) 76.83(0.4) 76.71(0.3) 0.60 76.53(1.0) 74.77(2.4) 75.64(1.4)
0.80 94.50(0.6) 97.47(0.5) 95.96(0.5) 0.80 78.00(0.3) 77.27(0.4) 77.63(0.3) 0.80 79.37(0.7) 74.23(1.6) 76.71(1.0)
0.90 95.23(0.3) 96.93(0.8) 96.07(0.4) 0.90 78.37(0.1) 77.53(0.1) 77.94(0.1) 0.90 80.87(1.0) 74.47(2.0) 77.53(1.3)
0.93 95.43(0.1) 97.37(0.5) 96.39(0.2) 0.93 79.03(0.1) 77.27(0.4) 78.14(0.2) 0.93 82.53(0.4) 74.13(1.5) 78.10(0.6)
0.95 96.07(0.3) 98.10(0.1) 97.07(0.2) 0.95 81.01(0.4) 78.50(0.6) 79.74(0.5) 0.95 80.57(0.9) 75.93(1.8) 78.18(1.2)

Table 5: Classification accuracy (mean and standard deviation) over 3 runs of AMMPL with different mean values of the
initialized probability matrix at 16-shot learning on all datasets. Note that, “Base”, “Novel”, and “HM”, respectively, indicate the
classification accuracy of the base classes, the novel classes, and the harmonic mean.

Mean Source (Food101)
Target

Caltech101 DTD EuroSAT FGVCAircraft Flowers102 OxfordPets Sun397 UCF101

0.60 84.80(0.1) 84.67(1.5) 32.97(1.5) 37.07(4.3) 12.30(6.5) 52.07(8.1) 74.53(8.4) 51.13(1.3) 61.70(2.3)
0.80 84.80(1.1) 89.33(2.7) 34.60(3.0) 40.53(6.3) 13.10(0.6) 58.97(6.3) 80.60(3.9) 54.03(2.9) 57.90(5.2)
0.90 85.30(1.1) 88.83(2.5) 38.20(4.8) 42.80(2.8) 14.77(4.9) 62.47(1.8) 80.93(0.5) 52.80(2.9) 60.13(2.3)
0.93 84.93(1.1) 87.07(1.1) 35.43(4.4) 46.37(7.0) 15.53(2.7) 55.97(3.1) 78.97(0.8) 51.90(2.3) 57.90(3.9)
0.95 85.30(1.1) 88.07(1.7) 32.30(1.5) 41.53(5.0) 14.77(3.2) 57.70(8.1) 76.73(1.1) 50.73(4.0) 60.03(4.6)

Table 6: Classification accuracy (mean and standard deviation) over 3 runs of AMMPL with different mean values of the
initialized probability matrix in cross-data evaluation with 1-shot learning on all datasets.
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Figure 1: Visualization of masked patches by our method with increased iteration (to add more detail to Figure 3 in the main
text). Note that, the first column is the training images, and the iterations increase from the 2nd column to the 7th column.

class-aware visual prompt tuning scheme for improved con-
centration on target visual concepts.

• MaPLe dynamically adjusting both vision and language
branches, improving alignment, and achieving improved
performance across diverse downstream tasks. This method
involves real-time adaptation, where the model intelligently
fine-tunes its vision and language components based on the
specific requirements of the given task.

Next, we list the details of the two types of downstream tasks
(i.e., in-sample generalization task and out-of-sample generalization
task) as follows:

• Few-shot Learning. To assess the performance of our pro-
posed AMMPL on in-sample generalization task. We train
the model using 1, 2, 4, 8, and 16 shots, and then evaluate
its performance on a test set with the same classes as the
training samples.

• Base-to-Novel Generalization. To preliminarily assess the
performance of our proposed AMMPL on out-of-sample gen-
eralization tasks. We divide the dataset into base and novel
classes (i.e., no intersection between the two classes). Models
are trained only in the base class and evaluated in the base
and novel classes, respectively. Moreover, we employ a har-
monic mean to comprehensively assess the generalization
of the two types of tasks.

• Generalization from Base-to-Novel Classes. To further
assess the performance of our method on out-of-sample gen-
eralization tasks, we directly evaluated our trainedmodels on

other datasets. Specifically, we employed settings with 1, 8,
and 16 shots to train the models on OxfordPets and Food101
datasets. Then, we performed cross-data evaluations on eight
remaining datasets.

Cross-data Evaluation
We conduct a cross-data evaluation to further evaluate the out-
of-sample generalization of the proposed AMMPL. This requires
model training on one dataset and model evaluation on other
datasets. Specifically, we first train all interactive PL methods (i.e.,
our AMMPL, CoCoOp and MaPLe) on the source dataset (i.e., either
Food101 or OxfordPets) with different shot numbers (i.e., 1, 8, and
16) and then test these methods on the remaining 8 datasets. We
report the results in Table 1 for the source dataset OxfordPets.
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