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ABSTRACT

Adaptive optimization plays a pivotal role in federated learning, where simultane-
ous server and client-side adaptivity have been shown to be essential for maximiz-
ing its performance. However, the scalability of jointly adaptive systems is often
constrained by limited resources in communication and memory. In this paper,
we introduce a class of efficient adaptive algorithms, named FedAda2, designed
specifically for large-scale, cross-device federated environments. FedAda2 op-
timizes communication efficiency by avoiding the transfer of preconditioners be-
tween the server and clients. At the same time, it leverages memory-efficient
adaptive optimizers on the client-side to reduce on-device memory consumption.
Theoretically, we demonstrate that FedAda2 achieves the same convergence rates
for general, non-convex objectives as its more resource-intensive counterparts that
directly integrate joint adaptivity. Empirically, we showcase the benefits of joint
adaptivity and the effectiveness of FedAda2 on both image and text datasets.

1 INTRODUCTION

Federated learning is a distributed learning paradigm which aims to train statistical models across
multiple clients while minimizing raw data exposure (McMahan et al., 2017; Li et al., 2020a; Wang
et al., 2021a). In vanilla federated learning, a central server orchestrates the training process by dis-
tributing the global model to a subsample of thousands or even millions of clients. These clients col-
laboratively perform local stochastic gradient descent while drawing from their private data streams.
After several epochs have elapsed, each client communicates their aggregate updates to the server,
which averages this information to make an informed adjustment to the global model. This algo-
rithm, using non-adaptive weight updates, is called FedAvg (McMahan et al., 2017). A recent trend
is to investigate utilizing adaptive optimizers to support federated learning (Reddi et al., 2021).
Adaptivity can be employed in either the server-side or the client-side, where joint adaptivity (con-
sisting of global and local adaptive updates) has been shown to play a pivotal role in accelerating
convergence and enhancing accuracy (Wang et al., 2021b).

Nevertheless, efficiency challenges remain for the successful deployment of jointly adaptive algo-
rithms in practice, especially in cross-device federated settings (Kairouz et al., 2021). The server,
which collects pseudogradients pushed by participating clients, consolidates a global approximation
of the preconditioners for adaptive model updates. Typically, the server sends the preconditioners
back to the clients to precondition local adaptive updates. However, this can lead to significant com-
munication overhead that detracts from the advantages offered by adaptivity (Wang et al., 2022).
Furthermore, dynamically varying client resource limitations restrict the reliability of client-side
adaptive optimizers in practice, especially when additional memory is required for handling local
preconditioners during each client model update.

In this work, we propose a class of efficient jointly adaptive distributed training algorithms, called
FedAda2, to mitigate the aforementioned communication and memory restrictions while retaining
the benefits of adaptivity. FedAda2 maintains an identical communication complexity as the vanilla
FedAvg algorithm. Instead of transmitting global server-side preconditioners from the server to the
selected clients, we propose the simple strategy of allowing each client to initialize local precon-
ditioners from constants (such as zero), without any extra communication of preconditioners. In
addition, when running local updates, we adopt existing memory-efficient optimizers that factorize
the gradient statistics to reduced dimensions to save on-device memory. We prove that for the gen-
eral, non-convex setting, FedAda2 achieves the same convergence rate as prior adaptive federated
optimizers (e.g., Reddi et al. (2021)). In this paper, we demonstrate that jointly adaptive federated
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learning, as well as adaptive client-side optimization, are practicable in real-world settings while
sidestepping localized memory restrictions and communication bottlenecks.

Contributions. Motivated by the importance of client-side adaptivity both empirically and theo-
retically (Section 3), we propose a simple and effective algorithm FedAda2 to avoid extra commu-
nication cost and reduce on-device memory while retaining the benefits of joint server- and client-
side adaptive optimization (Section 4). We provide convergence analyses for a class of FedAda2

algorithms instantiated with different server-side and client-side adaptive methods (Section 5). To
the very best of our knowledge, there are no known convergence results on joint adaptive feder-
ated optimization in the general convex or non-convex setting. Empirically, we demonstrate that
FedAda2, without transmitting preconditioners and employing on-device preconditioner compres-
sion, matches the performance of its more expensive counterparts and outperforms baselines without
client or server adaptivity on both image and text datasets (Section 6).

2 RELATED WORK

We now provide a brief overview of related work in adaptive federated learning and memory-
efficient1 preconditioning.

Adaptive Federated Optimization. Adaptive optimization preconditions the gradients to enhance
optimization efficacy, dynamically adjusting the learning rate for each model parameter (e.g., Duchi
et al., 2011; Kingma & Ba, 2015; Reddi et al., 2018). Recent developments in federated learning
have leveraged adaptive methods for server and client model parameter updates. Frameworks such
as FedAdam (Reddi et al., 2021) and FederatedAGM (Tong et al., 2020) focus primarily on server-
side adaptivity while using a constant learning rate for client updates. Additionally, FedCAMS
(Wang et al., 2022) delves into communication-efficient adaptive optimization by implementing er-
ror feedback compression to manage client updates while maintaining adaptivity solely on the server
side. Conversely, methodologies such as FedLALR (Sun et al., 2023), Local AdaAlter (Xie et al.,
2019), and Local AMSGrad (Chen et al., 2020) have adopted client-side adaptivity exclusively.
These approaches involve transmitting both client preconditioners and model parameters for global
aggregation in the server. Moreover, some frameworks have embraced joint adaptivity. Local Adap-
tive FedOPT (Wang et al., 2021b) implements joint adaptivity while incorporating an additional
client correction term. These terms, along with transmitted client pseudogradients, are aggregated
on the server to construct a global preconditioner used to synthesize the subsequent model update.
Alternatively, frameworks such as MIME (Karimireddy et al., 2021; Jin et al., 2022) transmit addi-
tional optimizer state information aggregated in the server to mimic adaptive updates in centralized
settings, while maintaining frozen-state optimizers on the client-side. In contrast with all these
approaches, FedAda2 avoids the transmission of any local/global preconditioners and optimizer
states entirely, maintaining precisely identical communication complexity as vanilla FedAvg despite
leveraging joint adaptivity. We include further discussions in Appendix G.4.

Memory-Efficient Adaptive Optimizers. The implementation of local adaptive methods sub-
stantially increases client memory requirements, as it necessitates the maintenance of local precon-
ditioners. For some models, it has been noted that the gradients combined with optimizer states con-
sume significantly more memory than the actual model parameters themselves (Raffel et al., 2020).
Memory-efficient adaptive optimizers have been extensively studied in prior literature. Algorithms
such as Adafactor (Shazeer & Stern, 2018) address memory reduction by tracking moving averages
of the reduction sums of squared gradients along a singular tensor axis, attaining a low-rank projec-
tion of the exponentially smoothed preconditioners. GaLore (Zhao et al., 2024) targets the low-rank
assumption of the gradient tensor, which reduces memory of both gradients and preconditioners.
Shampoo (Gupta et al., 2018) collapses gradient statistics into separate preconditioning matrices for
each tensor dimension, which is extended via extreme tensoring (Chen et al., 2019). In this paper,

1There are various notions of ‘efficiency’ of adaptive methods in the context of the federated learning, two
of them being communication efficiency and client memory efficiency. Our contribution specifically targets
reducing communication and memory costs incurred by local preconditioners, which is complementary with
works that reduce communication by repeated local updates or model weight/pseudogradient compression (e.g.,
FedCAMS (Wang et al., 2022)) and may, in theory, even be combined.
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we focus on SM3 (Anil et al., 2019) in our implementation and experiments due to its empirical per-
formance; however, our theoretical framework covers a broad class of memory-efficient optimizers
applied on the client-side (Section 5 and Appendix D).

3 IMPORTANCE OF CLIENT-SIDE ADAPTIVITY

In this section, we motivate our work by providing a theoretical description of how leveraging client-
side adaptivity improves distributed learning, which is later validated in experiments (Section 6).
Our analyses are motivated by prior works that uncover critical conditions under which centralized
SGD can diverge, specifically in settings involving heavy-tailed gradient noise (Zhang et al., 2020).
We begin by providing a definition of heavy-tailed noise following previous literature.

Definition 1. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment is
infinite for α ≥ 2. In other words, we say that the stochastic gradient noise g(x)−∇f(x) is heavy-
tailed if E [∥g(x)−∇f(x)∥α] is bounded for α ∈ (0, 2) and unbounded for α ≥ 2, where g(x) is
the stochastic gradient under some model parameter x, and ∇f(x) the full gradient.

We may now present the following proposition.

Proposition 2. There exists a federated learning problem with heavy-tailed client-side gradient
noise such that the following arguments hold:

(i) For vanilla FedAvg, given any client sampling strategy, if the probability pti of client i with heavy-
tailed gradient noise being sampled at communication round t is non-zero, then E∥∇f(xt+1)∥2 =
∞ for any nontrivial learning rate schedule ηtℓ > 0 and global parameter xt+1.

(ii) Under an appropriate learning rate schedule, FedAvg with local adaptivity (i.e., via client-side
AdaGrad) bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

A detailed proof is given by construction on a quadratic objective in Appendix A. We show that even
a single client with heavy-tailed gradient noise is able to instantaneously propagate their volatility
to the global model, which severely destabilizes distributed learning in expectation. Unfortunately,
recent works have observed heavy-tailed gradient noise empirically, especially within model archi-
tectures utilizing attention mechanisms, including transformer-based models (Zhang et al., 2020;
Devlin et al., 2018; Brown et al., 2020; Dosovitskiy et al., 2021; Nguyen et al., 2019; Simsekli
et al., 2019; 2020). Proposition 2 (ii) suggests that client-side adaptivity has the potential to stabi-
lize local model updates pushed from diverse and large-scale distributed sources, if communication
bottlenecks and memory efficiency can be addressed.

The construction of the federated problem in Proposition 2 draws gradient noise from the Student t-
distribution which is heavy-tailed depending on the parameter regime, whose moments are relatively
controlled nevertheless. We may exacerbate the severity of gradient stochasticity by inserting a
singular client with Cauchy-distributed noise, while enforcing all other clients to follow non-heavy-
tailed Gaussian gradient noise. We further detail this setting in Proposition 10, Appendix A.

3.1 DEEP REMORSE OF FEDAVG AND SGD

So far, we have examined toy problems in which heavy-tailed gradient noise is guaranteed to destabi-
lize distributed training in expectation. We now prove that this is an instantiation of a more general
phenomenon in federated learning where a family of online µ-strongly convex global objectives
collapses to the identical failure mode. To our knowledge, this provable limitation of distributed
training resultant from the heavy-tailed noise of a singular client has not previously been established
within the literature. The proofs of all results are given in the appendix.

Definition 3. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret
in expectation. If A is guaranteed to instantly incur such regret due to sampling even a single client
with a heavy-tailed gradient noise distribution, then we say A is resentful of heavy-tailed noise.

3
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Theorem 4. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong con-
vexity for t = 1, . . . , T . Assume that the participation probability of a client with a heavy-tailed
stochastic gradient noise distribution is non-zero. Then, FedAvg becomes a deeply remorseful al-
gorithm and is resentful of heavy-tailed noise. Furthermore, if the probability of the heavy-tailed
client being sampled at step t is nontrivial, then the variance of the global objective at t+1 satisfies
E∥ft+1(xt+1)∥2 =∞.

In federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T (i.e., the objective func-
tions are the same across all rounds). Proposition 2 intuits that inserting local adaptivity successfully
breaks the generality of remorse and heavy-tailed resent for FedAvg. A high-level overview is that
client-side AdaGrad clips the local updates of each iteration, which mollifies the impact of stochas-
ticity in perturbing the weight updates. This gives Proposition 5, which is formulated loosely without
utilizing any advantages provided by local adaptivity except for clipping. Given that adaptive meth-
ods inherently include an implicit soft clipping mechanism due to the effects of preconditioning, we
consider them to be preferable to clipped SGD for large-scale applications as they also offer the ben-
efits of adaptivity. This preference holds, provided that the memory and computational constraints
of the clients can be adequately managed.
Proposition 5. Introducing client-side adaptivity via AdaGrad for the setting in Theorem 4 produces
a non-remorseful and a non-resentful algorithm.

We note that Proposition 5 can be straightforwardly extended to jointly adaptive methods as well
as for ft ∈ C(Rd) not necessarily convex. An advantage of federated learning is that when done
tactfully, the large supply of clients enable the trainer to draw from a virtually unlimited stream of
computational power. The downside is that the global model may be strongly influenced by the
various gradient distributions induced by the private client data shards. In this paper, we focus
specifically on adaptive optimization as a countermeasure to stabilize learning. In Section 4, we
propose FedAda2, which utilizes joint adaptivity in an efficient and scalable manner for distributed
or federated training.

4 FEDADA2: EFFICIENT JOINT SERVER- AND CLIENT-SIDE ADAPTIVITY

In federated learning, a typical server-side objective is formed by taking an average of all client
objectives Fi(x) for i ∈ [N ] and x ∈ Rd:

f(x) =
1

N

N∑
i=1

Fi(x). (1)

In the case of unbalanced client data sizes or sampling probabilities, the objective becomes∑N
i=1 piFi(x) on the right hand side where pi is proportional to the local data size of client i,

or the sampling probability. With a slight abuse of notation, we denote Fi(x) = Ez∼Di
[Fi(x, z)]

where Fi(x, z) is the stochastically realized local objective and Di is the data distribution of client
i. The convergence analysis developed in Section 5 holds when Di is taken to be the local popula-
tion distribution, as well as when Di is the local empirical distribution. For analytical purposes, we
assume that the global objective does not diverge to negative infinity and admits a minimzer x∗.

One determining property of cross-device federated settings is that the clients are not able to store or
maintain ‘states’ across communication rounds (Kairouz et al., 2021). To realize joint adaptivity in
federated systems in a stateless way, one natural baseline is to estimate (pseudo)gradient statistics on
the server (i.e., maintaining server-side preconditioners or global preconditioners) and transmit them
to all participating clients at every communication round. Then each selected client performs local
adaptive steps with preconditioners starting from the global ones. This approach enables clients
to utilize global preconditioner information to make informed adjustments to their respective local
models. However, transmitting (pseudo)gradient statistics, such as the second moment, at each
round significantly increases the communication cost. In addition, running adaptive updates locally
based on the local data introduces memory overheads. Next, we discuss two main techniques we
use for efficient federated adaptive optimization with convergence guarantees.

Zero Local Preconditioner Initialization. To enhance the feasibility of jointly adaptive federated
learning in cross-device settings, we first address extra major communication bottlenecks brought
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by transmitting global preconditioners from the server to a subset of clients. We propose a sim-
ple strategy of uniformly initializing local preconditioners to zero (or some constant vector) at the
beginning of each training round, thus eliminating the need for preconditioner transmission.

To describe the process in more detail, assume Adagrad (with momentum) as the server-side opti-
mizer (Reddi et al., 2021) for illustration purposes. We have the following server update rule (SU)
for −∆t

i the accumulated pseudogradient from client i at step t,

Server Update:

{
∆t =

1
|St|

∑
i∈St ∆t

i, m̃t = β̃1m̃t−1 + (1− β̃1)∆t,

ṽt = ṽt−1 +∆2
t , xt = xt−1 + η m̃t√

ṽt+τ
.

(SU)

Here, ṽt is the sum of squared server-side pseudogradient−∆t, and β̃1 is the momentum coefficient
controlling the moving average m̃t of −∆t. The set St ⊂ [N ] gives the index of all participating
clients at round t, and τ is a constant. An extension to the case when Adam is selected as the
server optimizer is given in Appendix C.2. After obtaining an updated global preconditioner ṽt at
each communication round, in FedAda2, the server does not communicate ṽt to the participating
clients; instead, each client only receives xt and initializes the local preconditioners from zero.
Empirically, we demonstrate this simple strategy does not degrade the performance relative to the
alternative of transmitting global preconditioners, while being communication efficient for adaptive
methods beyond AdaGrad (Section 6.1). In addition to communication reduction, this approach
enables the use of different optimizers on the server and clients, as the server and client can maintain
independent gradient statistics estimates. We discuss the theoretical guarantees/implications of this
general framework in Section 5.1 and Appendix D.

Addressing Client-Side Resource Constraints. To accommodate local memory restrictions, we
employ existing memory-efficient optimizers for all clients. Our framework allows any such opti-
mizer to be used, including a heterogeneous mixture within each communication round. We provide
a convergence guarantee for a very broad class of optimizer strategies in Theorem 6. We note that in
order for convergence to be guaranteed, the memory-efficient optimizer must satisfy the conditions
of Theorem 25, which are non-restrictive2. The FedAda2 framework is summarized in Algorithm 1
below, presented in a simplified form. Local statistics or global statistics refer to those used to
construct preconditioners (e.g., first or second moment).

Algorithm 1 FedAda2: Efficient Jointly Adaptive Optimization Framework (Simplified)

Require: Init model x0, total number of clients N , total rounds T
1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients using any sampling scheme
3: for each client i ∈ St

l (in parallel) do
4: xti,0 ← xt−1

5: (Main Ingredient 1) Zero Local Preconditioner Initialization: local statistics← 0
6: for k = 1, . . . ,K do
7: Draw gradient gti,k ∼ Di,grad(x

t
i,k−1)

8: (Main Ingredient 2) xti,k ← Efficient Adaptive Optim.(xti,k−1, g
t
i,k, local statistics)

9: end for
10: ∆t

i = xti,K − xt−1

11: end for
12: xt ← Adaptive Optim.({∆t

i}i∈St
l
, global statistics) (for example, Eq. (SU))

13: end for

During implementation, we have chosen to instantiate FedAda2 with SM3 (Anil et al., 2019) adap-
tations of Adam and Adagrad as the memory-efficient local optimizers (Appendix B) due to its
strong empirical performance. Intuitively, SM3 exploits natural activation patterns observed in
model gradients to efficiently synthesize a low-rank approximation of the preconditioner. It main-
tains the statistics in the granularity of parameter groups instead of individual coordinates. Our
analyses in Section 5 hold for a class of memory-efficient local optimizers.

2It can easily be shown that Adam, AdaGrad, SGD, as well as their memory-efficient counterparts (Anil
et al., 2019) for the first two, all satisfy the optimizer conditions for guaranteed convergence.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 CONVERGENCE ANALYSES

One of the challenges in proving the convergence bound for jointly adaptive systems lies in handling
local adaptivity with applying multiple updates locally. Furthermore, server adaptivity actively in-
terferes and complicates the analysis. To address these issues, we assume access to full batch client
gradients which are bounded.To proceed with the convergence analysis, we make the following
assumptions where the ℓ2 norm is taken by default.

Assumption 1 (L-smoothness). The local objectives are L-smooth and satisfy ∥∇Fi(x)−
∇Fi(y)∥ ≤ L∥x− y∥ for all x, y ∈ X and i ∈ [N ].

Assumption 2 (Bounded Gradients). The local objective gradient is bounded by∣∣∣[∇Fi(x, z)]j

∣∣∣ ≤ G for j ∈ [d], i ∈ [N ], and z ∼ Di.

These assumptions are standard within the literature and have been used in previous works (Reddi
et al., 2021; Xie et al., 2020; Wang et al., 2020; Li et al., 2020b). We note that Assumption 2 implies
|∇Fi(x)| ≤ G for x ∈ X via Jensen and integrating over z ∼ Di. In particular, this delineates an
L̃-Lipschitz family of client objectives given that the arguments are ηℓεs-bounded away from each
other,

∥∇Fi(x)−∇Fj(y)∥ ≤ L̃∥x− y∥ :=
2
√
dG

ηℓεs
∥x− y∥

for i, j ∈ [N ] and ∥x − y∥ ≥ ηℓεs. Here, εs is an epsilon smoothing term that activates on the
client side. This quantity is used in a gradient clipping step in FedAda2 (full version Algorithm 5),
where if the local gradient update is negligibly small in magnitude, the gradient is autonomously
clipped to 0. ηℓ > 0 is the local learning rate, and in particular, we note that L̃ = Θ(η−1

ℓ ). By taking
εs → 0, our algorithm recovers federated algorithms that do not utilize local gradient clipping. The
definition of εs is for analysis purposes; in experiments, we take εs to be a negligible value so that
mk is not 0.

We now provide a convergence bound for the general, non-convex case under local gradient descent
and partial client participation. The full theorem statement is provided in Appendix D as Theo-
rem 25. The SM3 instantiation of FedAda2, as well as the generalization to the case where we use
Adam as the server/client optimizers are provided in Appendices C.1 and C.2.
Theorem 6 (Simplified). Under Assumptions 1 and 2 as well as some non-restrictive optimizer
update conditions (given in Theorem 25), for any choice of initialization x0, Algorithm 1 determin-
istically satisfies

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6

where asymptotically,

ψ1 = Θ(1), ψ2 = η2η2ℓT, ψ3 = ηη2ℓT, ψ4 = ηηℓ log(1 + Tη2ℓ )

and

ψ5 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

, ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.

We defer the detailed proofs to Appendix C, D. We make no other assumptions on local or global
learning rates to extract the most general use of Theorem 6. We have the following two corollaries.
Corollary 7. Any of the following conditions are sufficient to ensure convergence of Algorithm 1:

(A) : ηℓ ≤ O(T− 1
2 ) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Corollary 8. Algorithm 1 converges at rate O(T−1/2).

In particular, ηℓ must necessarily decay to establish convergence in Theorem 6. However, striking a
balance between local and global learning rates provably allows for greater than Ω(T 1/3) divergence
in the server learning rate without nullifying the desirable convergence property. This theoretically
demonstrates the enhanced resilience of adaptive client-side federated learning algorithms to miti-
gate suboptimal choices of server learning rates.

6
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5.1 DISCUSSION OF CONVERGENCE BOUND

There have been several recent works exploring adaptivity and communication efficiency in fed-
erated learning. The convergence rate in Corollary 8 matches the state of the art for federated
non-convex optimization methods (Reddi et al., 2021; Wang et al., 2022; Tong et al., 2020; Sun
et al., 2023; Xie et al., 2019; Chen et al., 2020). However, to the best of our knowledge, there are no
known convergence results of jointly adaptive federated optimization that explicitly support several
popular methods including Adam and AdaGrad.

Generality of FedAda2: Federated Blended Optimization. The gradient descent setting used
in the analysis of Theorem 6 is conceptually equivalent to accessing oracle client workers capable
of drawing their entire localized empirical data stream. While this constraint is a limitation of
our theory, it enables us to derive stronger results and induce additional adaptive frameworks for
which our analysis generalizes. For instance, our bound deterministically guarantees asymptotic
stabilization of the minimum gradient, regardless of initialization or client subsampling procedure.
In Appendix D, we present the FedAda2 framework under its most general, technical form, which
we also call Federated Blended Optimization (Algorithm 5).

Blended optimization distributes local optimizer strategies during the subsampling process, which
are formalized as functions that take as input the availability of client resources and outputs hyper-
parameters such as delay step size z or choice of optimizer (Adam, AdaGrad, SGD, etc). These may
be chosen to streamline model training based on a variety of factors, such as straggler mitigation or
low availability of local resources. In particular, this framework permits the deployment of differ-
ent adaptive optimizers per device for each round, enhancing the utility of communication-efficient
frameworks that do not retain preconditioners between clients or between the server and client. This
flexibility is especially beneficial in scenarios where there are inconsistencies between server and
client adaptive optimizer choices.

6 EMPIRICAL EVALUATION

In this section, we empirically demonstrate the performance of FedAda2 compared with several
baselines that are either non-adaptive or adaptive but inefficient. We first present our main results
by comparing different instantiations of FedAda2 with more expensive jointly adaptive baselines
and non-jointly adaptive methods in Section 6.1. We then investigate the effects of hyperparameters
in more detail in Section 6.2. We repeat every run for 20 times under different random seeds for
statistical significance, and report 95% confidence intervals as shaded error regions in all plots.

Evaluation Setup. We explore the impact of adaptivity on both text and image datasets, i.e., Stack-
Overflow (Exchange, 2021), CIFAR-100 (Krizhevsky, 2009), and GLD-23K (Weyand et al., 2020).
In StackOverflow, each client is a single user posting on the StackOverflow website. Due to the
sensitivity nature of the data in federated networks, we evaluate FedAda2 in both private and non-
private settings with a logistic regression model. For images, we finetune vision transformers (ViT-
S Sharir et al. (2021)) pretrained on the ImageNet-21K dataset (Ridnik et al., 2021) on the GLD-23K
subset of the Google Landmarks dataset (Weyand et al., 2020), which represents a domain shift onto
natural user-split pictorial data. We use the same model on the CIFAR100 dataset (Krizhevsky,
2009), where we partition the data using LDA (Blei et al., 2003) with α = 0.001. Details for
federated dataset statistics, learning tasks, and hyperparameter tuning are provided in Appendix H.

Description of Baselines. Throughout this section, we compare with the following baselines. Fe-
dAvg is the vanilla FL algorithm introduced in McMahan et al. (2017), without any additional mo-
mentum for the server-side aggregation. FedAdaGrad or FedAdam are two examples of server-only
adaptive federated optimization methods (Reddi et al., 2021), where the server-side model updates
are performed by an adaptive optimizer (e.g., AdaGrad/Adam) instead of vanilla averaging. ‘Direct
Joint Adaptivity’ (named Direct Joint Adap. in the captions) indicates a jointly adaptive training reg-
imen, where server-side preconditioners are transmitted to clients at every communication round.
For instance, we may denote one such setup as ‘AdaGrad-AdaGrad’, where server-side AdaGrad
preconditioners are transmitted to the client-side AdaGrad optimizers as initialization. Removing
server-side preconditioner transmission and using zero initialization of client-side preconditioners
results in the ‘Joint Adaptivity without Preconditioner Communication’ (named Joint Adap. w/o
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Precond. Commu. in the captions) baseline, which is communication-efficient. Further compress-
ing the local preconditioners using SM3 (Anil et al., 2019) to account for client memory resource
limitations gives FedAda2. Therefore, the baselines and FedAda2 may be viewed as naturally
motivated variations via the addition of adaptive updates and memory-efficient optimizers.

6.1 EMPIRICAL PERFORMANCE OF FEDADA2
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Figure 1: (Top) Test accuracies on StackOverflow, CIFAR-100, and GLD-23K datasets. For Stack-
Overflow, we evaluate the performance of FedAda2 and baselines under differential privacy (DP)
constraints. If not otherwise specified, StackOverflow uses AdaGrad for adaptivity, while CIFAR-
100 and GLD-23K use Adam. We see that jointly adaptive algorithms demonstrate improved per-
formance over FedAvg and server-only adaptive systems. Further, not transmitting the global pre-
conditioner does not degrade performance, and FedAda2 preserves the benefits of joint adaptivity
while maintaining efficiency. (Bottom) Corresponding test losses for the three datasets of FedAda2

and benchmarks. We also note that on the StackOverflow dataset, there is a mismatch between best-
performing methods in terms of test accuracies and losses.

Results of FedAda2 under Differential Privacy (DP). DP is a mathematical framework that
can quantify the degree to which sensitive information about individual data points may be pur-
posely obscured during model training, providing rigorous privacy measurement (Abadi et al., 2016;
Mironov, 2017; Dwork et al., 2006). For the StackOverflow dataset, we investigate the setting of
noise multiplier σ = 1, which provides a privacy budget of (ε, δ) = (13.1, 0.0025) with optimal
Rényi-Differential Privacy (RDP) (Mironov, 2017) order 2.0 (Appendix H.1). As mentioned in the
beginning of this section, we use AdaGrad to be both server-side and client-side adaptive methods.
Notably, we see in our experiments that the proposed technique of initializing client-side precondi-
tioners from zero can even outperform direct joint adaptivity in this setting, where the latter approach
transmits the server preconditioner to the client for local updates at every round. Further compress-
ing client-side adaptive preconditioning via FedAda2 reduces the performance slightly, but still
performs the best among the FedAvg, FedAdaGrad, Direct Joint Adaptivity (AdaGrad-AdaGrad)
baselines. In Figure 2, we further demonstrate communication-efficiency of FedAda2 by evaluat-
ing convergence versus the number of actual transmitted bits.

FedAda2 for Finetuning Vision Transformer Models. We investigate the performance of fine-
tuning vision transformer models (ViT-S Sharir et al. (2021)) on image data. For all runs on the CI-
FAR100 and GLD-23K datasets, we use Adam as the optimizer everywhere, except for the baseline
of FedAdaGrad. For CIFAR-100 (Figure 1 (middle)), direct joint adaptive and server-only adap-
tive methods (FedAdam and FedAdam) converge faster and achieve higher accuracy than FedAvg.
Methods using joint adaptivity (including FedAda2) convergence faster than FedAdam. While ‘Di-
rect Joint Adap.’ achieves similar performance to FedAda2, FedAda2 is much more memory and
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communication efficient. Similar trends are observed on GLD-23K (the right column). Further-
more, as a side, we propose to incorporate delayed preconditioner updates (Gupta et al., 2018) on
the client-side as an optional step to potentially reduce communication (explained in Appendix B)
and show that FedAda2 is robust to delayed local preconditioner updates as well (Appendix I.2).
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Figure 2: Test accuracies against actual communication cost (total transmitted bits normalized to
that of FedAvg) for FedAda2 and baseline methods, using the same settings as in Figure 1. When
compared based on communication cost, both ‘Joint Adaptivity without Preconditioner Transmis-
sion’ and FedAda2 demonstrate the fastest convergence.

Results of Additional Adaptive Setups. Algorithm 1 provides a general framework, and in Fig-
ure 1, we focus on symmetric server-client optimizer configurations (e.g., Adam-Adam, AdaGrad-
AdaGrad). In Appendix I.1, Figure 6, we generalize this setting to examine the performance of
asymmetric server-client adaptivity setups under both jointly adaptive baselines and FedAda2. Our
results show that in the Joint Adaptivity w/o Preconditioner Transmission baseline, employing an
unbalanced preconditioner (e.g., transmitting the server-side Adam preconditioner to client-side
AdaGrad), does not significantly impact performance across a hyperparameter sweep. Similarly,
FedAda2 demonstrates robust training dynamics across various adaptivity instantiations, highlight-
ing its effectiveness in enabling efficient jointly adaptive optimization.

6.2 EFFECTS OF VARYING CONFIGURATIONS
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(c) 20 Local Epochs
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Figure 3: (Top) Algorithm testing performance comparision under varying client resource lim-
itations (i.e., number of local epochs). When resources are constrained, FedAda2 converges
the fastest, followed closely by FedAdam. Interestingly, the relative performance advantage of
FedAda2 becomes less significant as the number of local epochs increases. (Bottom) We plot
all test accuracies obtained during the hyperparameter sweeps detailed in Appendix H.1, with fixed
client subsampling random seed. The runs are ranked hierarchically from the lowest to the highest
final test loss, with the colors transitioning from lighter to darker shades accordingly.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dynamics of FedAda2 under a Varying Number of Local Epochs. In Figure 3 (top), we study
the transfer learning setting of a vision model under a highly constrained, moderate, and sufficient
client computation budget, corresponding to running 1, 5, and 20 local epochs on the clients. We
see that when the number of epochs is low (Figure 3 (a)), FedAda2 achieves the best performance,
closely followed by FedAdam. Interestingly, as the clients’ computational budget increases, the rela-
tive performance advantage of FedAda2 diminishes. In such scenarios, jointly adaptive benchmarks
outperform FedAdam, although the margin is not substantial.

Sensitivity to Hyperparameters. In Figure 3 (bottom), we plot test accuracies over the hyper-
parameter sweeps detailed in Appendix H for FedAda2 and all baselines. Server-only adaptivity
stabilizes the performance of FedAvg, and direct joint adaptivity further enhances these stabilized
accuracies. However, eliminating server preconditioner transmission destabilizes the accuracy, re-
sulting in significantly poorer performance for the worst losses, while retaining the best performing
losses. Surprisingly, approximating the preconditioners in a memory-efficient manner using SM3
restabilizes the losses, which we hypothesize is due to the denoising effect of projections during
SM3 compression. Interestingly, in the DP setting, zero initialization and compressing gradient
statistics (FedAda2) achieves even better performance than direct joint adaptivity, when test accu-
racies over best-performing hyperparameters are averaged over 20 random seeds for convergence
(Figure 1, top).

Summary. For DP StackOverflow and CIFAR-100 experiments, a natural yet expensive imple-
mentation of joint client- and server-side adaptivity with transmitted global preconditioners sur-
passes the performance of FedAvg and server-only adaptivity. However, full preconditioner trans-
mission incurs significant communication costs, as noted in Section 1. Additionally, the adaptive op-
timizer substantially increases the memory demand on the client due to the maintenance of auxiliary
second-order statistics used to synthesize model updates in every local iteration, which motivates the
development of efficient adaptive frameworks. In our empirical evaluations, we consistently found
that initializing local preconditioners from zero did not underperform direct joint adaptivity (full
server-side preconditioner transmission) after optimal hyperparameter tuning. The performance of
joint adaptivity under differential privacy is notable, where this compromise to reduce communica-
tion cost even achieved better test performance than the more expensive baseline with full precondi-
tioner transmission. In addition, when evaluating convergence in terms of the actual communicated
bits (communication rounds times number of bits per round), FedAda2 significantly outperforms di-
rect joint adaptivity (Figure 2), saving significant communication bandwidth. In general, we observe
that FedAda2 retains the competitive advantage of joint adaptivity while being communication- and
memory-efficient. Empirically, avoiding preconditioner transmission and leveraging client-side pre-
conditioner approximations (i.e., FedAda2) does not substantively harm the performance of its
more expensive variants, and can even surpass the performance of direct joint adaptivity in certain
settings (e.g., StackOverflow and GLD-23K under constrained client resources).

7 CONCLUSION AND FUTURE WORK

In this work, we introduce FedAda2, a class of jointly adaptive algorithms designed to enhance
scalability and performance in large-scale, cross-device federated environments. FedAda2 is con-
ceptually simple and straightforward to implement. In particular, we show that joint adaptivity is
practicable while sidestepping communication bottlenecks and localized memory restrictions. By
optimizing communication efficiency and employing localized memory-efficient adaptive optimiz-
ers, FedAda2 significantly reduces the overhead associated with transferring preconditioners and
extra on-device memory cost without degrading model performance. Our empirical results demon-
strate the practical benefits of FedAda2 in real-world federated learning scenarios. Future research
could explore extensions of FedAda2 (Section 5.1, Appendix D) to study the training dynamics
under alternative, potentially client-specific local optimizer instantiations.
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A IMPORTANCE OF CLIENT-SIDE APDAPTIVITY

Overview of Student’s t-distribution. For the convenience of the reader, we provide a brief sum-
mary of basic properties of the Student’s t-distribution. Intuitively, the t-distribution can be under-
stood as an approximation of the Gaussian with heavier tails. The density is given by

fν(t) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

where ν ∈ R>0 is the degree of freedom (or normality parameter), and Γ is the gamma function. We
recover the normalized Gaussian as the degree of freedom tends to infinity. The first moment is 0
for ν > 1, and the second moment satisfies ν/(ν − 2) for ν > 2 while being infinite for 1 < ν ≤ 2,
where the heavy-tails are most pronounced. Following the convention of Zhang et al. (2020), we
refer to a distribution as being heavy-tailed if the second moment is infinite.

The following proposition showcases the utility of local adaptivity in federated learning.

Proposition 9. There exists a federated optimization problem with heavy-tailed client noise which
satisfies the following under FedAvg (where appropriate learning rate schedules are chosen for (ii-
iv)):

(i) Given any client sampling strategy, if the probability pti of client i with heavy-tailed gradient
noise being sampled at step t is non-zero, then E∥∇f(xt+1)∥2 = ∞ for any nontrivial learning
rate schedule ηtℓ > 0.

(ii) Local adaptivity via client-side AdaGrad bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

(iii) Furthermore, local adaptivity implicitly constructs a critical Lyapunov stable region which
stabilizes the gradient variance via the following inequality which holds once any learned weight
enters the region:

min
t∈{1,...,T}

E∥∇f(xt)∥2 ≤ O
(
1

T

)
.

(iv) The global gradient variance of the federated problem with heavy-tailed client noise is fully
stabilized via

E[∥∇f(xt)∥2] ≤ 2∥x0∥2 + 2

(∫ ∞

1

1

x2
dx

)2

for ∀t ∈ {1, . . . , T}.

This proposition demonstrates that even a single client with heavy-tailed gradient noise is able to
instantaneously propagate their volatility to the global model, which destabilizes federated training
in expectation. However, recent work (Zhang et al., 2020) has shown that heavy-tailed gradient
distributions appear frequently in language model applications, and more generally within model
architectures utilizing any kind of attention mechanism, including transformers. To our knowledge,
this provable failure mode of distributed training resultant from the unbiased, yet heavy-tailed noise
of a singular client has not previously been reported within the literature.

Proof of (i). Let the local stochastic objectives be given by Fi(x, ξi) = x2/2+ ξix where gradient
noise follows a t-distribution with i + 1 degrees of freedom, ξi ∼ ti+1 for ∀i ∈ {1, . . . , N}. This
construction is chosen to materialize the setting in which only a singular client suffers from heavy-
tailed noise (i = 1). Minibatches are sampled with replacement, which ensures that gradient noise
in each client epoch are independent amongst and in between any two (possibly identical) clients,
and further identically distributed conditional on the client ID i. Clearly, the global objective is

f(x) =
1

N

N∑
i=1

Eξi [fi(x, ξi)] =
1

N
E

[
N

2
x2 +

N∑
i=1

ξix

]
=

1

2
x2.
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For global step t, we subsample clients St following any sampling strategy, where Ct is the collec-
tion of all possible multisets Str whose elements indicate (possibly repeated) client selection, with
associated probabilities ptC(r) > 0 of realization for r ∈ [|Ct|]. Assume that 1 ∈ Stm for some m.

Then, FedAvg updates may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

which gives the squared length of the global gradient under expectation as

Et∥∇f(xt+1)∥2 = Et

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

= Eξ|tESt|ξ,t

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

|Ct|∑
r=1

Eξ|tp
t
C(r)

∥∥∥∥∥∥xt − ηℓ
|Str|

∑
i∈St

r

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥∥
2

≥ ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
xti,ℓ−1 + ξti,ℓ−1

)∥∥∥∥∥∥
2

where in the second equality we have conditioned on local gradient noise ξ and stochastic realiza-
tions up to timestep t, using the law of iterated expectations. Recursively unravelling xti,ℓ−1 in terms
of sampled noise and xti,0 = xt gives

xti,ℓ−1 = xti,ℓ−2 − ηℓgti,ℓ−2 = xti,0 − ηℓ
ℓ−2∑
p=0

gti,p

= xti,0 − ηℓ

(
ℓ−2∑
p=0

∇f(xti,p) + ξti,p

)

= xti,0 − ηℓ

(
ℓ−2∑
p=0

xti,p + ξti,p

)

= atxt −
ℓ−2∑
p=0

ati,pξ
t
i,p

where at, ati,p ∈ Q[ηℓ] are polynomial functions of the learning rate with rational coefficients.
Therefore, we have for bti,p ∈ Q[ηℓ]

ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
atxt −

ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt +
ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt

∥∥∥∥∥∥
2

+
η2ℓp

t
C(m)

|Stm|2
Eξ|t

∥∥∥∥∥∥
∑
i∈St

m

(
K−2∑
p=0

bti,pξ
t
i,p + ξti,K−1

)∥∥∥∥∥∥
2

≥
η2ℓp

t
C(m)E

∥∥ξt1,K−1

∥∥2
|Stm|2

=∞,

where we have used that ξti,ℓ ∼ ti+1 independently with mean 0, for all permissible i, ℓ, and t.
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Proof of (ii). We specialize to the setting with client-side AdaGrad with K = 1. Assume that
clients St have been selected to participate in the round, which gives the update as

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

(2)

= xt −
ηℓ
|St|

∑
i∈St

∇f(xti,0) + ξti,1
∥∇f(xti,0) + ξti,1∥+ ε

= xt

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
− ηℓ
|St|

∑
i∈St

ξi
∥xt + ξi∥+ ε

where we have gradually simplified notation. Noting that∫
1

∥xt + ξi∥+ ε
p(ξi) dξi ≤

1

ε
,

setting ηℓ ≤ ε gives

∥∇f(xt+1)∥ = ∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
+

ηℓ
|St|

∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

. (3)

Using Et to denote expectation conditional over realizations up to step t, we have

Et∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

Et

[∑
i∈St

1

∥xt + ξi∥+ ε

])
+

ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
.

To further bound the right hand side, consider the functional

Ii(ε) :=

∫
1

∥xt + ξi∥+ ε
pi+1(ξi) dξi,

where clearly

Ii(0) ≥
∫ −x+

t

−x−
t

1

∥xt + ξi∥
pi+1(ξi) dξi ≈

∫ 0+

0−

pi+1(−xt)
|x|

dx =∞

and Ii(1) < 1. By continuity and strict decay of Ii(ε), there exists 1≫ ε̂i > 0 and εi ∈ (0, 1] such
that for all i ∈ [N ], we have 1 > Ii(ε) ≥ 1 − ε̂i for ε ∈ [εi, 1]. Taking ε ∈ [maxi∈[N ] εi, 1] and
ε̂ := maxi∈[N ] ε̂i, we thus obtain

Et∥xt+1∥ ≤ ∥xt∥ · (1− ηℓ(1− ε̂)) +
ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
. (4)

To bound the remaining term, it is easy to show that ∥ξi∥pi+1(ξi) is symmetric around the origin O,
and strictly increases from 0 to (3/2+2/(i+1))−1/2 while strictly decreasing afterwards. Defining
the even extension of

hi+1(ξi) =

−
x

(3/2+2/(i+1))−1/2 + supξi∈R ∥ξi∥pi+1(ξi) + ϵ for 0 ≤ ξi ≤
(

3
2 + 2

i+1

)− 1
2

,

∥ξi∥pi+1(ξi) for ξi >
(

3
2 + 2

i+1

)− 1
2

to be hi+1(ξi) for small 1 ≫ ϵ > 0, we note that 1/(∥xt + ξi∥ + ε) analogously is symmetric
around ξi = −xt while decaying with respect to the argument ∥xt + ξi∥. As hi+1(ξi) is symmetric
around O and decays moving to the left and right of O, by matching monotonicity and maxima with
1/(∥xt + ξi∥+ ε), we conclude that the left hand side of (5) is maximized for xt = 0:

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
≤
∫
hi+1(ξi)

∥ξi∥+ ε
dξi = Bi. (5)
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Asymptotically as ξi →∞, we have
hi+1(ξi)

∥ξi∥+ ε
≲ pi+1(ξi),

which gives that Bi < ∞. Letting B := maxi∈[N ]Bi and scheduling the learning rate ηtℓ =
1/((t + t0)(1 − ε̂)) where t0 is the smallest positive integer satisfying ηtℓ < ε for all t, we thus
conclude

E∥xt+1∥ ≤
t+ t0 − 1

t+ t0
E∥xt∥+

B

(t+ t0)(1− ε̂)

≤ t+ t0 − 2

t+ t0
E∥xt−1∥+

2B

(t+ t0)(1− ε̂)

≤ · · · ≤ t0 − 1

t+ t0
E∥x0∥+

(t+ 1)B

(t+ t0)(1− ε̂)

≤ O
(
1

t

)
+

B

1− ε̂
.

As this bound holds for any choice of client subsample St, we are done. It is easy to show by
straightforward integration that B < 2

√
3.

Proof of (iii). Our strategy is to locate a 1-shot stabilization regime of the gradient norm that is
formed via client adaptivity, which may be viewed as a Lyapunov stable region of the optimum x∗.
From (3) and Jensen,

∥xt+1∥2 ≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|2

(∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

)2

≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|

∑
i∈St

(
∥ξi∥

∥xt + ξi∥+ ε

)2

.

We now impose ηℓ ≤ 2ε, while letting ∥xt∥ < δ for some δ ∈ R>0. Taking expectations gives

Et∥xt+1∥2 ≤ 2∥xt∥2 +
2η2ℓ
|St|

∑
i∈St

Et

(
∥ξi∥

∥xt + ξi∥+ ε

)2

,

and by similar arguments to the proof of (ii), the summands of the second term are bounded uni-
formly by B̃ which yields

E∥xt+1∥2 ≤ 2δ2 + 2η2ℓ B̃.

Setting δ, ηtℓ ≤ O(1/
√
T ) immediately gives the desired inequality.

Proof of (iv). An advantage of client-side adaptive optimization is the autonomous normalization
and clipping of the stochastic gradients. Let ηtℓ := 1/t2. Telescoping (2) gives

xT+1 = x0 −
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

,

which implies

∥xT+1 − x0∥ =

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ |∥xT+1∥ − ∥x0∥| ≤

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ ∥xT+1∥ ≤ ∥x0∥+

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ E∥xT+1∥2 ≤ 2∥x0∥2 + 2E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

.
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Substituting the learning rate schedule gives

E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
T∑

t=1

Kηtℓ

∥∥∥∥∥
2

≤ E
∥∥∥∥K ∫ ∞

1

1

x2
dx

∥∥∥∥2 .
Therefore, we conclude that for any t,

E∥xt∥2 ≤ 2∥x0∥2 + 2K2

(∫ ∞

1

1

x2
dx

)2

.

A.1 EXACERBATION OF SINGULAR CLIENT NOISE

Overview of Cauchy–Lorentz distribution For the convenience of the reader, we provide a brief
description of the Cauchy distribution CL(x0, γ). The density is given by

f (x;x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2] =
1

π

[
γ

(x− x0)2 + γ2

]
,

where x0 is the location parameter and γ > 0 the scale parameter. Note that the Cauchy distribution
is an example of “worst case gradient noise” that a federated problem may encounter in its clients.
That is, the tails are so heavy that the distribution, despite being symmetric around the origin O,
does not admit a mean due to being non-(Lebesgue) integrable. In particular, this indicates that the
law of large numbers cannot be applied due to uncontrolled stochasticity, which lethally destabilizes
pure stochastic gradient descent. Despite this limitation, we provide an example demonstrating that
local adaptivity can be utilized to successfully mollify extreme client noise even in this “worst case”
setting.

Proposition 10. There exists a generalized federated optimization problem which satisfies the fol-
lowing under FedAvg:

(i) Given any client sampling strategy without replacement, if the probability pti of client i with
heavy-tailed gradient noise being sampled at each step t is non-zero, then E∥∇f(xt+1)∥ = ∞ or
E∥∇f(xt)∥ =∞ for any t ∈ Z≥1 and nontrivial learning rate ηtℓ > 0.

(ii) Under local adaptivity via client-side AdaGrad, we have bounded gradient length as

lim
t→∞

E∥∇f(xt)∥ ≤
2

1− ε̂
for some ε̂ ≈ 0.

Proof of (i). We provide a similar construction as in the proof of Theorem 9. Let all local stochastic
objectives be given by Fi(x, ξi) = x2/2+ξixwhere client gradient noise mostly models a Gaussian,
ξi ∼ N (0, σ2

i ) for ∀i ∈ {2, . . . , N} and σi ∈ R. For the first client, we let ξ1 ∼ CL(0, γ)
for any γ ∈ (0, 1/3). We sample minibatches with replacement, but clients are selected without
replacement. In this case, we must consider a generalized version of the federated objective as
strictly speaking, the deterministic local objective

Eξ1 [F1(x, ξ1)] =
1

2
x2 + x

∫
ξ1 dξ1

does not exist due to extreme stochasticity. That is, even though CL(0, γ) is symmetric around O,
Eξ1 [ξ1] is not Lebesgue integrable. Most importantly, this implies that the law of large numbers
cannot be applied. Note that such a construction dislocates this example from the vast majority of
convergence results, as most assume bounded variance or controlled gradient noise which sidesteps
the consideration of the kind of stochasticity that we explore here entirely. To proceed with the
analysis, we use symmetry to define the reasonable objective

E[F1(x, ξ1)] =
1

2
x2
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which is consistent with the desired population objective that is distributed across all other clients,
though with less noise. As before, we have the convex global objective f(x) = x2/2. Note that it
can be shown that the empirical mean of the Cauchy distribution follows the Cauchy distribution,
that is, the CL-distribution is stable.

As the general case has been handled in Theorem 9 (i), we specialize to K = 1. To simplify
notation, assume that participating clients have been selected as St, where client 1 participates.
Then, the FedAvg update may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

gti,1

which gives the length of the global gradient under expectation as

E∥∇f(xt+1)∥ = E

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥
(
1− ηℓ
|St|

)
xt −

ηℓ
|St|

∑
i∈St\{1}

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥(1− ηℓ)xt − ηℓ
|St|

∑
i∈St\{1}

ξti,1

∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E ∥(1− ηℓ)xt∥ −
ηℓ
|St|

∑
i∈St\{1}

E
∥∥ξti,1∥∥

Note that we allow ηℓ = 1. As E
∥∥ξti,1∥∥ <∞ for i ∈ {2, . . . , N}, we thus have

E∥∇f(xt+1)∥+ |1− ηℓ|E ∥∇f(xt)∥ ≥ ∞

which gives the desired result.

Proof of (ii). As we intervened only on gradient noise while preserving client objectives, an anal-
ogous proof strategy used in Theorem 9 (ii) carries through. The only difference is the value of B,
which may be computed as being upper bounded by 2 for γ < 1/3.

A.2 FEDAVG AND STOCHASTIC GRADIENT DESCENT ARE DEEPLY REMORSEFUL

In Appendix A, we have provided two localized examples of how heavy-tailed gradient noise can
destabilize distributed training. In this subsection, we prove that this is an instantiation of a more
general phenomenon in which federated learning with a µ-strongly convex global objective collapses
to an analogous failure mode. We begin by motivating a precise definition of heavy-tailed noise
previously reported in the literature (Zhang et al., 2020) for completeness.
Definition 11. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment is
infinite for α ≥ 2.

Intuitively, this expresses that the α-moment is not sparsely supported outside a compact interval.
That is,

∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ < ∞ indicates a dense support integrating to infinity in the closed
ball B0(R), and a light tail for B0(R)c. Definition 1 enforces that the noise must not decay rapidly
outside said compact ball, i.e. that light tails must be excluded. This follows from the observation
that

∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ =∞ for all α ≥ 2 and any R ≥ 0 because
∫
∥ξ∥≤R

∥ξ∥αp(ξ) dξ ≤ Rα <

∞ via continuity and the extremal value theorem. By equivalence of norms on Rd and hence their
preserved continuity, we analogously have for ∥ · ∥∞ the supremum norm,∫

∥ξ∥∞>R

cα∥ξ∥α2 p(ξ) dξ ≥
∫
∥ξ∥∞>R

∥ξ∥α∞ p(ξ) dξ =∞

for some c > 0. To proceed with the analysis, we impose an integrability condition on the mean,
which gives E[ξ] = µ ∈ Rd.
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Problem Setup. The local objectives are determined by Fi(x) = Ez[Fi(x, z)], where z integrates
over the randomness in the stochastic objective. The gradient noise ξ is additively modeled via a
possibly uncentered random variable with E(ξ) = µ. Minibatches are sampled with replacement,
implying that gradient noise in each client epoch are independent amongst and in between any two
possibly identical clients. We analyze the case where noise is identically distributed conditional on
client ID i. The global objective is given as the expected client objective under the uniform sampling
prior, f(x) =

∑
i∈[N ] Fi(x)/N .

We now present the following definition.

Definition 12. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret
in expectation. If A is guaranteed to instantly incur such regret due to sampling even a single client
with a heavy-tailed stochastic gradient distribution, then we sayA is resentful of heavy-tailed noise.

We are now ready to prove the following theorem.

Theorem 13. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong
convexity for t = 1, . . . , T . Assume that the participation probability of a client with a heavy-tailed
stochastic gradient distribution is non-zero. Then, FedAvg becomes a deeply remorseful algorithm
and is resentful of heavy-tailed noise. Furthermore, if the probability of the heavy-tailed client
being sampled at step t is nontrivial, then the variance of the global objective at t + 1 satisfies
E∥ft+1(xt+1)∥2 =∞.

Proof. Assuming that a heavy-tailed client may be subsampled at step t with non-zero probability,
let us show that the regret

R(T ) :=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗)

is infinite under expectation, assuming it is well-defined. Here, x∗ is taken to be the argument
uniformly minimizing the materialized global objectives up to step T , x∗ := argminx

∑T
t=1 ft(x).

For notational simplicity, we carry out the analysis conditioned on the event that the heavy-tailed
client has been subsampled. We aim to show that E[ft+1(xt+1)] − ft+1(x

∗) = ∞ where x∗ is
arbitrarily fixed and ft+1 satisfies µ-strong convexity. Clearly,

ft+1(xt+1) ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

〉
+

µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

gti,ℓ

∥∥∥∥∥
2

≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)〉

+
µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

.

Denoting Et+ [·] to be the expectation conditional over all stochastic realizations up to step t and
ℓ = K − 1, we have

Et+ [ft+1(xt+1)] ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)〉

−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

Et+
[
ξti,K−1

]〉
+

µη2ℓ
2|St|2

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

. (6)

As the means of all gradient noise are finite (typically centered at 0), it suffices to show that

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=∞.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

However, this is clear as expanding the norm gives

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1)

∥∥∥∥∥
2

+ 2

〈∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1),
∑
i∈St

Et+ [ξ
t
i,K−1]

〉
+
∑
i∈St

E∥ξti,K−1∥2,

where in the final line we used the independence of the noise random variables. As there exists
i ∈ St that satisfies heavy-tailed noise, we obtain

Et+ [ft+1(xt+1)] ≥ ∞.

Taking expectations on both sides gives that E[ft+1(xt+1)] ≥ ∞ under the law of iterated ex-
pectations, assuming that the expectation is well-defined. Thus, FedAvg is deeply resentful of the
influence of heavy-tailed noise.

Now, we change perspectives and write the general form of (6) as

ft+1(y) ≥ ft+1(x) + ⟨∇ft+1(x), y − x⟩+
µ

2
∥y − x∥2

= ft+1(x) +

d∑
j=1

(∇ft+1(x))j(yj − xj) +
µ

2

d∑
j=1

(yj − xj)2.

For any arbitrarily fixed x, there exists ãt+1,j > 0, Rj > 0, and b̃t+1,j < 0 such that

f̃t+1,j(yj) =


ãt+1,j(yj −Rj) for yj > Rj ,

0 for |yj | ≤ Rj ,

b̃t+1,j(yj +Rj) for yj < −Rj ,

(7)

and

0 ≤ f̃t+1,j(yj) ≤
ft+1(x)

d
+ (∇ft+1(x))j(yj − xj) +

µ

2
(yj − xj)2

for |yj | > Rj . Without loss of generality, we may substitute ãt+1,j ← ã = minj ãt+1,j , b̃t+1,j ←
b̃ = maxj b̃t+1,j , and Rj ← R := maxj∈[d]Rj . We thus have

Et+ [∥ft+1(xt+1)∥2] ≥ Et+
[
χ{xt+1 ∈ B∞

R (0)c}∥ft+1(xt+1)∥2
]

where χ is the indicator and B∞
R (0) is the closed ball in Rd under the infinity norm centered at 0.

As ft+1(y) ≥
∑d

j=1 f̃t+1,j(yj) for y ∈ B∞
R (0)c,

Et+ [∥ft+1(xt+1)∥2] ≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j(xt+1)∥2]

≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2].
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The integrand on the final line is non-negatively lower bounded given xt+1 ∈ B∞
R (0)c byc d∑

j=1

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

(ξti,K−1)j

〉

+

d∑
j=1

c2η2ℓ
|St|2

(∑
i∈St

(ξti,K−1)j

)2

where c = min{|ã|, |b̃|}. The sign on Rj is determined by the sign of the value (xt+1)j and
equation (7).

Clearly, there exists compact intervals [āi,j , b̄i,j ] such that with non-zero probability, (ξti,K−1)j ∈
[āi,j , b̄i,j ]. For the setminus operation subtracting only one selection of client i from the multiset St
and 1 ∈ St being the heavy-tailed client, let R̂ be equal to

|St|
ηℓ

|R|+max
i,j

ηℓ max{|āi,j |, |b̄i,j |}
|St|

+

∣∣∣∣∣∣ ηℓ|St|
∑
ĩ∈St

((
K−1∑
ℓ=1

∇f(xt
ĩ,ℓ−1

) + ξt
ĩ,ℓ−1

)
+∇f(xt

ĩ,K−1
)

)
j

∣∣∣∣∣∣
 .

Then as

χ{xt+1 ∈ B∞
R (0)c} ≥ χ{xt+1 ∈ B∞

R (0)c}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j ]}

≥ χ+
j := χ{|(ξt1,K−1)j | > R̂}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j ]},

we may conclude

Et+ [∥ft+1(xt+1)∥2] ≥ Et+

χ+
j ∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2


≥
d∑

j=1

c2Et+[χ
+
j ]

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

Et+[χ
+
j (ξ

t
i,K−1)j ]

〉

+

d∑
j=1

c2η2ℓ
|St|2

Et+

(∑
i∈St

(ξti,K−1)j

)2


≥ C1(t
+) +

d∑
j=1

c2η2ℓ
|St|2

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2


Noting that

Et+[χ
+
j (ξ

t
i,K−1)j ] =

∫ b̄i,j

āi,j

(ξti,K−1)j dp(ξ
t
i,K−1),
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we deduce that the existence of E(ξti,K−1)j ∈ R (from all noise having finite mean) enforces that
Et+[χ

+
j (ξ

t
i,K−1)j ] must also exist and be finite. Thus, C1(t

+) is finite and well-defined given t+. It
remains to analyze the final term

d∑
j=1

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2
 =

d∑
j=1

Et+

[
χ+
j

∑
i∈St

(ξti,K−1)
2
j

]
+ 2Et+

[
χ+
j

∑
i1<i2

(ξti1,K−1)j(ξ
t
i2,K−1)j

]

=

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
+ 2

∑
i1<i2

Et+

[
χ+
j (ξ

t
i1,K−1)j

]
Et+

[
χ+
j (ξ

t
i2,K−1)j

]
where we used the independence of ξti,ℓ which is preserved across coordinate projections. Finally,
note that for C2 := minj∈[d] Πi∈St\{1}P((ξti,K−1)j ∈ [āi,j , b̄i,j ]) ̸= 0, we have

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
≥ C2

d∑
j=1

∫
|(ξt1,K−1)j |>R̂

∥(ξt1,K−1)j∥2 dp(ξt1,K−1)

≥ C2

∫
∥(ξt1,K−1)∥∞>R̂

∥ξt1,K−1∥2 dp(ξt1,K−1) =∞.

Thus, we have as before
Et+ [∥ft+1(xt+1)∥2] ≥ ∞.

As the variance is well-defined, we conclude that E[∥ft+1(xt+1)∥2] = ∞ under the tower law of
expectation.

For federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T . We saw from Proposi-
tion 9 that inserting local adaptivity successfully breaks the generality of remorse and heavy-tailed
resent for FedAvg. A high-level, intuitive overview is that client-side AdaGrad clips the local up-
dates of each iteration, which mollifies the impact of stochasticity in perturbing the weight updates.
We present the following proposition, formulated loosely without utilizing any advantages provided
via local adaptivity except for clipping which leaves room for far sharper generalization. For this
reason, we view local adaptive methods to be more desirable than clipped SGD in large-scale appli-
cations, if memory and computation constraints of the clients can be addressed.

Proposition 14. Let ft ∈ C(Rd) for t = 1, . . . , T for ft not necessarily convex. Introducing
client-side adaptivity via AdaGrad into the setting in Theorem 4 produces a non-remorseful and a
non-resentful algorithm.

Proof. By Jensen, we have that ∥Ef(xt)∥ ≤ E∥f(xt)∥. Thus, it is enough to show E∥f(xt)∥ <∞
which guarantees that the t-th regret update E[ft(xt)]− ft(x∗) is finite for any x∗ arbitrarily fixed.
However, this is immediate as xt ∈ BKt(x0), where K is the number of local iterations prior to
server synchronization. Thus, by the extremal value theorem, there exists an M ∈ R≥0 such that

0 ≤ E∥f(xt)∥ ≤ E[M ] <∞.

Similarly, we may also show that the variance E∥f(xt)∥2 <∞.

B DETAILED FEDADA2 ALGORITHM DESCRIPTION

In the main text, we have opted to describe the intuitions behind SM3, due to its technical imple-
mentation. In this appendix section, we give a more through walk-through of our algorithm details
for any interested readers wishing to reproduce our proof strategies or implementations.

Addressing Client-Side Resource Constraints. In this paper, we specifically focus on SM3 (Anil
et al., 2019) adaptations of Adam and Adagrad. Intuitively, SM3 exploits natural activation patterns
observed in model gradients to accumulate approximate parameter-wise statistics for precondition-
ing. More precisely, the gradient information in each coordinate element {1, . . . , d} is blanketed
by a cover {S1, . . . , Sq} satisfying

⋃q
b=1 Sb = {1, . . . , d} for which an auxiliary µk(b) is assigned
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Algorithm 2 Adaptive server and client-side ADAGRAD with SM3 (FedAda2)

Require: A full cover {S1, . . . , Sq} ⊂ P([d]) where
⋃q

b=1 Sb = {1, . . . , d}
Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0
Local epsilon smoothing terms εs, ε > 0, global smoothing term τ > 0

Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients using any sampling scheme
3: for each client i ∈ St (in parallel) do
4: Initialize v0 ≥ 0 (default value v0 ← 0), xti,0 ← xt−1

5: for k = 1, . . . ,K do
6: Draw stochastic gradient gti,k ∼ Di,grad(x

t
i,k−1) with mean ∇Fi(x

t
i,k−1) ∈ Rd

7: mk ← gti,k, µk(b)← 0 for ∀b ∈ {1, . . . , q}
8: for j = 1, . . . , d do
9: Approximate Preconditioner (SM3)

10: end for
11: if 0 < ∥mk/(

√
vk + ε)∥ < εs, do mk ← 0

12: xti,k ← xti,k−1 − ηℓ ·mk/(
√
vk + ε)

13: end for
14: ∆t

i = xti,K − xt−1

15: end for
16: Server Update (SU)
17: end for

for each b ∈ [q]. The µk(b) then act to form vk as a coordinate ascent upper bound to the squared
gradient sum

∑k
ℓ=1(g

t
i,ℓ)

2 as SM3 iterates over each j ∈ [d].

As an optional add-on, utilizing the staleness of gradients to construct preconditioners has previ-
ously been suggested as a strategy to accelerate adaptive optimization without hurting the perfor-
mance (Gupta et al., 2018; Li et al., 2023). Therefore, we may optionally further mollify the burden
of client-side adaptive optimizers by enforcing delayed preconditioner updates (Appendix I.2). This
is given by the following SM3 update rule (SM3) which incorporates delay step z,

SM3 Update:


vk(j)← minb:Sb∋j µk−1(b) +

(
gti,k(j)

)2
µk(b)← max{µk(b), vk(j)}, for ∀b : Sb ∋ j

for k−1
z ∈ Z

vk(j)← vk−1(j) otherwise

(SM3)

where k is the index of local iteration (starting from 1). These methodologies are consolidated into
FedAda2, Algorithm 2. For simplicity, we describe the variant in which both the client and server
employ AdaGrad as the adaptive optimizers. However, we present other instantiations of FedAda2

with different adaptive methods in Appendix D and I.1.

We now present a description of SM3-I/II with delayed preconditioner updates as Algorithms 3
and 4. SM3-II capitalizes on a tighter approximation of the second moment, and empirically demon-
strates better results. We have opted to implement a smoothing term ε instead of treating any zero
denominator as zero as done in the original work. In this paper, we provide the analysis for SM3-II
which generalizes the analysis for SM3-I.

C DETAILED PROOFS

To enhance clarity, we present several lemmas before giving the proof of Theorem 20. Note that
Lemma 15 is written in broadcasting notation, where the scalars in the right hand side have 1 ∈ Rd

implicitly multiplied and the inequality holds coordinatewise. For notational convenience, we will
view ΦK

1 , ΦK
2 as vectors.
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Algorithm 3 Delayed preconditioner SM3-I

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: if (t− 1)/z ∈ Z then
5: for r = 1, . . . , k do
6: µt(r)← µt−1(r) + maxj∈Sr

g2t (j)
7: end for
8: end if
9: for j = 1, . . . , d do

10: νt(j)← minr:Sr∋j µt(r) (minimum taken over all r such that j ∈ Sr)
11: xt+1(j)← xt(j)− ηℓgt(j)√

νt(j)+ε

12: end for
13: end for

Algorithm 4 Delayed preconditioner SM3-II

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ′

0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: µ′

t(r)← 0 for ∀r ∈ [k]
5: for j = 1, . . . , d do
6: if (t− 1)/z ∈ Z then
7: ν′t(j)← minr:Sr∋j µ

′
t−1(r) + g2t (j)

8: for all r : Sr ∋ j do
9: set µ′

t(r)← max{µ′
t(r), ν

′
t(j)}

10: end for
11: else
12: ν′t(j)← ν′t−1(j)
13: end if
14: xt+1(j)← xt(j)− ηℓgt(j)√

ν′
t(j)+ε

15: end for
16: end for
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Lemma 15. Under Algorithm 2, |∆t
i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓ

(√⌈
K

z

⌉
· log

1
2

(
1 +

⌈
K
z

⌉
G2

ε2

)
+
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

)
.

Proof. Forming a bound for the pseudogradients is not trivial due to delayed preconditioner updates.
We begin by noting that delayed gradient updates are initiated at local timesteps k = nz + 1 for
n ∈ Z≥0. We now split cases k/z /∈ Z and k/z ∈ Z. In the first case, there exists n ∈ Z≥0 such that
nz + 1 ≤ k < (n + 1)z, and the latest preconditioner update by client step k is given at timestep
(⌈k/z⌉ − 1)z + 1 = ⌊k/z⌋z + 1. In the second case, if z ̸= 1, then step k is just one step shy of
a preconditioner update. The latest update is therefore held at step (⌈k/z⌉ − 1)z + 1 which is no
longer identical to ⌊k/z⌋z + 1.

With this observation, it is easy to show by induction that

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K}.

Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = xti,K − xti,0. By telescoping for K local steps and the
definition of gradient updates in AdaSquare-SM3, we obtain

|∆t
i| =

∣∣∣∣∣
K∑

p=1

ηℓ
mp√
vp + ε

∣∣∣∣∣ ≤ ηℓ
K∑

p=1

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌈K/z⌉ − 1}z + 1, we thus have that

|∆t
i| ≤ ηℓ

∑
p∈F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

+ ηℓ
∑

p∈[K]\F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉], p ∈ [K] \ F . Therefore, we form the upper bound (where

∑0
1 := 0

by definition)

∣∣∆t
i

∣∣ ≤ ηℓ ∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε︸ ︷︷ ︸

T1

+
ηℓ√
v0 + ε

 ∑
p∈[K]\F

∣∣gti,p∣∣
 (8)

≤ ηℓT1 +
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

.

As 0 is trivially bounded by any non-negative upper bound, we may without loss of generality
assume that gti,(r−1)z+1 ̸= 0 for at least one r ∈ [⌈pz ⌉]. We further bound T1 as follows:

T1 ≤
∑
p∈F

|gti,p|√
|gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

≤
∑
p∈F

√
|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2

≤
√
|F|

√√√√√
∑

p∈F

|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2


≤

√⌈
K

z

⌉
· log

1
2

1 +
∑
p∈F

|gti,p|2

ε2


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Note the use of Cauchy Schwartz in the third inequality. A detailed proof of the log inequality used
in the third line may be found as part of the proof of Theorem 20, equation (13) which uses similar
techniques. By Assumption 2, we are done.

The server-side pseudogradient updates may also be bounded as follows.

Lemma 16. Under Algorithm 2, each server step size is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Without loss of generality, we may let τ = 0 when forming the first upper bound for exposi-
tory purposes.

η
|m̃t|√
ṽt + τ

≤
η(1− β̃1)

∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|√∑t

ℓ=1 ∆
2
ℓ + τ2 + τ

≤
η(1− β̃1)

(∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|

)√∑t
ℓ=1 β̃

2t−2ℓ
1√∑t

ℓ=1 ∆
2
ℓ

√∑t
ℓ=1 β̃

2t−2ℓ
1

≤ η
√

1− β̃1
√

1− β̃2
1

√√√√ t∑
ℓ=1

β̃2t−2ℓ
1

= η

√
1− β̃1

√
1− β̃2t

1 .

Note that the final inequality is obtained using Cauchy-Schwartz, while the second bound in the
lemma statement follows from the first inequality and Lemma 15.

Finally, we form a loose upper bound for the gradient variance.

Lemma 17. For k ∈ {1, . . . ,K}, the uncentered variance estimate vk as well as µk in Algorithm 2
are bounded by

(B1) : 0 ≤ µk(b) ≤ dkG2 for and b ∈ {1, . . . , q},
(B2) : 0 ≤ vk(j) ≤ dkG2 for j ∈ {1, . . . , d}.

Proof. Non-negativity of the variance estimates vk is trivial and implies the non-negativity of µk,
thus we focus on the upper bound for which we use dual induction. The case k = 1 is satisfied by
zero initialization. Assuming the inequality holds for k ← k − 1, we have for each j

vk(j) = min
b:Sb∋j

µk−1(b) +
(
gti,k(j)

)2 ≤ d(k − 1)G2 +G2 ≤ dkG2.

Now, µk is initialized to zero at the start of each step k and its entries are increased while broadcast-
ing over each coordinate j ∈ {1, . . . , d} by

µk(b)← max{µk(b), vk(j)} for ∀b : j ∈ Sb.

For j = 1, it is clear that

µk(b)← vk(j) ≤ dkG2 for ∀b ∈ {1, . . . , q}.

For j ≥ 2, inductively, we have

µk(b)← max{µk(b), vk(j)} ≤ dkG2

as both arguments of the maximum function are upper bounded by dkG2. This completes the proof.
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C.1 PRECOMPACT CONVERGENCE ANALYSIS

We aim to analyze the convergence of learning algorithms under the general, non-convex setting.
However, extremely popular and well known adaptive optimizers such as Adam whose efficacy
is strongly supported by empirical evidence have been shown to fail to converge even for convex
settings (Reddi et al., 2018). Therefore, recent works have investigated the asymptotic stabilization
of gradients, instead of requiring strict convergence to local or global optima of the objective (Reddi
et al., 2021; Wang et al., 2022; Tong et al., 2020; Sun et al., 2023; Xie et al., 2019; Chen et al., 2020;
Zhang et al., 2020). Such convergence bounds are of the form mint ∥∇f(xt)∥ ≤ O(T−α), and are
interpreted via the following lemma:
Lemma 18. For xt the t-step parameters of any objective f(x) learned by an algorithm, let
min1≤t≤T ∥∇f(xt)∥ ≤ O(T−α) for α > 0. Then, there exists a learning algorithm which out-
puts parameters {x̃1, x̃2, . . .} such that ∥∇f(x̃t)∥ → 0 as t→∞.

Proof. Assuming otherwise gives that ∥∇f(xt)∥ is ε-bounded away from 0 for some ε > 0, for
any parameter xt realized by the algorithm. Clearly, min1≤t≤T ∥∇F (xt)∥ → 0 as T → ∞ gives
a contradiction. More constructively, note that ∀ε > 0, ∃ T̃ (ε) ∈ N such that T ≥ T̃ (ε) =⇒
min1≤t≤T ∥∇f(xt)∥ < ε. Letting ε = 1/n for n ∈ N and Tn := T̃ (1/n), we have that there
exists tn ∈ [Tn] such that ∥∇f(xtn)∥ < 1/n. Letting x̃i := xti extracts the desired parameter
sequence.

This notion of convergence can be formalized as precompact convergence which is consistent with
sequence properties of precompact normed sets. In this paper, we explicitly formalize the conven-
tions used in prior works, and take the term convergence to mean precompact convergence unless
stated otherwise.
Definition 19 (Precompact convergence). A sequence {yn}n∈N in a normed space Y is said to
converge precompactly to y ∈ Y if there exists φ : N→ N such that yφ(n) → y.

Our goal is to develop principled federated algorithms whose global gradients are guaranteed to
converge precompactly to 0 regardless of parameter initialization, in the general, non-convex setting.
Note that precompact convergence must allow for convergence to each element yn of the sequence.
Now, we are ready to present the following theorem.
Theorem 20. In Algorithm 2, we have that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where
Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}
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and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

Proof. To enhance readability, we use both coordinatewise and broadcasting notation, where a [·]j
subscript is attached for the j-th coordinate. In particular, the arguments are detailed mostly in the
latter notation as it significantly clarifies the intuitions behind the proof. By L-smoothness, we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= f(xt−1) + η

〈
∇f(xt−1),

β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

〉
+
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

= f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(9)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
. (10)

Note that T0,0 can only decay exponentially as training progresses, as
√
ṽt is monotonically increas-

ing with respect to t and ∇f(xt−1) is coordinatewise bounded by G. We decompose T0,r further
by

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

.

A bound for T1,r can be obtained as:

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(
√
ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t

(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉

≤ β̃t−r
1

〈
|∇f(xt−1)| ,

|∆r|∆2
t

(ṽt + τ2)(
√
ṽt−1 + τ)

〉

≤ β̃t−r
1

d∑
j=1

G

[
|∆r|∆2

t

(ṽt + τ2)(
√
ṽt−1 + τ)

]
j

≤ ∥Φ
K
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Lemma 30 is used to obtain the final inequality. For T2,r, we apply a further decomposition for
γr > 0 allowed to be arbitrary within a compact interval ϵηℓ-bounded away from 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

For expository purposes, we present the case in which local gradient clipping is not triggered. The
analysis directly generalizes to the setting where clipping activates. Unraveling the definition of ∆r
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gives

∆r =
−ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

gri,p√
vri,p + ε

,

which intuits the following value

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

1√
vri,p + ε

.

We have by Assumption 2 and Lemma 17 that

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

K∑
p=1

1√
v0 + dKG2 + ε

,
ηℓK√
v0 + ε

]
.

Expanding T 1
2,r for αr > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1

|Sr|
∑
i∈Sr

K∑
p=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓ
(
∇f(xt−1)− gri,p

)
√
vp + ε

〉

≤ ηℓβ̃
t−r
1 αrK

2|Sr|
∑
i∈Sr

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αr

∑
i∈Sr

K∑
p=1

∥∥∥∥∥∥
(
∇f(xt−1)−∇Fi(x

r
i,p−1)

)√√
ṽt−1 + τ

(√
vp + ε

)
∥∥∥∥∥∥
2

≤ ηℓβ̃
t−r
1 αrK

2

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 .
where in the first inequality we drew the deterministic gradient instead of accessing the stochastic
sample via full gradient descent. The first term is controlled by setting

αr =
γr

2ηℓK
∈ [α̃1, α̃2] :=

[
1

2
√
v0 + dKG2 + 2ε

,
1

2
√
v0 + 2ε

]
.
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We aim to bound the second term via majorization and telescoping arguments. We have by L-
smoothness, Lemmas 15, 16, and Assumption 2 that

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 ≤ 1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi(x
r
i,p−1)

)∥∥2
=

1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi′(xr−1) +∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

)∥∥2
≤ 2

N

∑
i′∈[N ]

(
∥∇Fi′(xt−1)−∇Fi′(xr−1)∥2 +

∥∥∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

∥∥2)

≤ 2L

N

∑
i′∈[N ]

∥xt−1 − xr−1∥2 +
2L̃

N

∑
i′∈[N ]

∥xri,p−1 − xri,0∥2

= 2L ∥xt−1 − xr−1∥2 + 2L̃
∥∥xri,p−1 − xri,0

∥∥2
≤ 2L(t− r)

t−1∑
o=r

∥xo − xo−1∥2 + 2L̃∥Φp
1∥2

≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Note that the first inequality was obtained by Jensen, while the third inequality uses that the client
weights xri,0 are synchronized to the global weights xr−1 for ∀i ∈ [N ] at the start of training. Now,
we have

ηℓβ̃
t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

(
2L(t− r)2∥ΦK

2 ∥2 + 2L̃∥ΦK
1 ∥2

)
≤ ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

.

Collecting terms gathered thus far gives

(1− β̃1)η
t∑

r=1

T0,r ≤ (1− β̃1)η
t∑

r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

− 3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2


+ (1− β̃1)η
t∑

r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)
.

Now, let us bound the final term in equation (9),∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 maxr∈[t] |∆r|√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃t
1)√

ṽt + τ

∥∥∥∥∥
2

∥ΦK
1 ∥2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2d
∥ΦK

1 ∥2

τ2
.
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Substituting into equation (9) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)η

t∑
r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (11)

Note that the exponential decay caused by β̃1 in the third term will expectedly dominate the effect of
first order moment initialization m̃0 as training progresses, and summation over t ∈ [T ] givesO(1).
We initialize m̃0 ← 0 to further simplify the equations. We also further exacerbate the upper bound
by substituting γ̃1, α̃1 into γr, αr respectively, which achieves independence from r. Telescoping
equation (11) then gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+

(1− β̃1)ηηℓK
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (12)

To complete the proof, we aim to ease a logarithm out from the third term on the right hand side.
For this purpose, we induce a recursion with a log bound

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤
T∑

t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ aT + cT log (1 + bT ) . (13)

Setting T = 1 gives

(1− β̃1)
∆2

1,j

∆2
1,j + τ2

≤ a1 + c1 log(1 + b1),

and setting aT = 1 − β̃1 satisfies this inequality (among other choices). Assuming formula (13)
holds for T , let us explore the induction condition for T + 1, which is

T∑
t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

+ (1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ aT+1 + cT+1 log (1 + bT+1) .

For simplicity, we impose that ct is a monotonically increasing non-negative sequence of t. We
intend to contain the increase in the left hand side as T grows in the log argument only, in the
right hand side. Therefore, we select aT+1 = aT . For a suitable choice of bT+1 satisfying strong
induction, it is enough to resolve

(1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1 log

(
1 + bT+1

1 + bT

)
= cT+1 log

(
1 +

bT+1 − bT
1 + bT

)
.

Here, we used monotonicity of ct. Noting that log(1+x) ≥ x/(1+x), it is again enough to resolve

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1(bT+1 − bT )
bT+1 + 1

⇐⇒
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2
+ cT+1bT ≤

(
cT+1 −

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

)
bT+1.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

By positivity of bt for t > 1, a necessary condition is therefore that

cT+1 ≥
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2

In order to enhance the tightness of our bound, we choose the minimal permissible value ct = 1
uniformly, which is attained as a suprema. In this setting, we are left with a recursion

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

=
bT+1 − bT
bT+1 + 1

,

and collecting the terms in the form bT+1 = bTω1(∆)+ω2(∆) would provide an optimal recursive
bound given our simplifying assumptions, starting with b1 = 0. A less optimal but simpler bound
can be formed by selecting bT+1 = bT +∆2

T+1,j/τ
2 for b1 = ∆2

1,j/τ
2. Therefore, we arrive at

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∑
ℓ=1

(
∆ℓ,j

τ

)2
)

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
. (14)

The remaining term to be bounded in equation (12) is given

(1− β̃1)ηηℓKL
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
β̃t−r
1 (t− r)2∥ΦK

2 ∥2
)
.

The trick is to notice that the explosion of the series caused by double summation is culled selectively
in reverse chronological order by the exponential, rendering the tail end asymptotically vacuous.
Note that (1 − β̃1) stabilizes the divergence as β̃1 → 1− in the limit. By a change of variable
u = t− r,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 = (1− β̃1)

T−1∑
u=0

β̃u
1 u

2(T − u).

Defining

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

let

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, we claim that

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ (1− β̃1)c(β̃1)T.

We prove this by induction. The case T = 1 is trivial. Now, assume the desired inequality holds
until T . For T + 1, we want to show

(1− β̃1)
T∑

u=0

β̃u
1 u

2(T − u+ 1) ≤ (1− β̃1)c(β̃1)(T + 1)

⇐⇒ (1− β̃1)
T−1∑
u=0

β̃u
1 u

2(T − u) + (1− β̃1)
T∑

u=0

β̃u
1 u

2 ≤ (1− β̃1)c(β̃1)(T + 1)

and thus by the inductive hypothesis it is enough to show

T∑
u=0

β̃u
1 u

2 ≤ c(β̃1).
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However, this is trivial by the definition of c(β̃1). Upon substitution into equation (12) and noting
that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2

we simplify as

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+
(1− β̃T

1 )ηηℓKTL̃∥ΦK
1 ∥2

α̃1τ(v0 + ε)2
+

(1− β̃1)ηηℓKTLc(β̃1)∥ΦK
2 ∥2

α̃1τ(v0 + ε)2
(15)

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

Therefore, we immediately conclude that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

This concludes the proof.

Note that we have also shown the following two useful lemmas:

Lemma 21. For β̃1 ∈ [0, 1) and T ∈ Z≥0, let

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

and

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.
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Then, we have that

T∑
t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ c(β̃1)T.

Lemma 22. Let ∆ℓ,j ∈ R, β̃1 ∈ [0, 1), and T ∈ Z≥0. Then,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
.

We present the following corollary.

Corollary 23. Any of the following conditions are sufficient to ensure convergence of Algorithm 2:

(A) : ηℓ ≤ O(T−1/2) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Proof. The proof is formed by comparing orders of T . Recall that γ̃1 = Θ(ηℓ) and L̃ = Θ(η−1
ℓ ).

As ΦK
1 = Θ(ηℓ) and ΦK

2 = Θ(min {η, ηηℓ}), we have for η = Θ(T p1) and ηℓ = Θ(T p2),

ψ1 = Θ(1)

ψ2 = η2η2ℓT

ψ3 = ηη2ℓT

ψ4 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

ψ5 = ηηℓ log(1 + Tη2ℓ )

ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.

If O(Tη2ℓ ) ≤ O(1), then O(ηℓ) ≤ O(1) which implies

ψ1

ψ6
: (ηηℓT )

−1 = Θ
(
T−(p1+p2+1)

)
ψ2

ψ6
: ηηℓ = Θ

(
T p1+p2

)
ψ3

ψ6
: ηℓ = Θ(T p2)

ψ4

ψ6
: η2η2ℓ = Θ

(
T 2p1+2p2

)
ψ5

ψ6
:
log(1 + Tη2ℓ )

T
= O(T−1)

This implies that we must have that p2 ≤ −1/2 and −1 < p1 + p2 < 0 for guaranteed convergence.
Thus, ηℓ ≤ O(T−1/2) such that Ω(T−1) < ηηℓ < O(1) is a sufficient condition. For instance, let
ηℓ = Θ(T−1/2) and Ω(T−1/2) < η < O(T 1/2).
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Now, assume Θ(Tη2ℓ ) > Ω(1). If Θ(ηℓ) > Ω(1), Ψ3/Ψ6 diverges. Therefore, let ηℓ ≤ O(1). We
have

ψ1

ψ6
: (η
√
T )−1 = Θ(T−p1− 1

2 )

ψ2

ψ6
: ηη2ℓ

√
T = Θ(T p1+2p2+

1
2 )

ψ3

ψ6
: η2ℓ
√
T = Θ(T 2p2+

1
2 )

ψ4

ψ6
: η2η3ℓ

√
T = Θ(T 2p1+3p2+

1
2 )

ψ5

ψ6
:
ηℓ log(1 + Tη2ℓ )√

T
< O(T− 1

2+p2)

Therefore, it suffices to satisfy

−1

2
< p2 ≤ −

1

4
, −1

2
< p1, p1 + 2p2 < −

1

2
, 2p1 + 3p2 < −

1

2
.

An example satisfying these conditions are

ηℓ = Θ(T− 49
100 ), Ω(T− 1

2 ) < η < O(T 12
25 ).

Note that for all cases, ηℓ must decay to establish convergence. However, striking a balance between
local and global learning rates provably allows for greater than Ω(T 1/3) divergence in the server
learning rate without nullifying desirable convergence properties. This theoretically demonstrates
the enhanced robustness properties of adaptive client-side federated learning algorithms to mitigate
suboptimal choices of server learning rates.

Corollary 24. Algorithm 2 converges at rate O(T−1/2).

Proof. If O(Tη2ℓ ) ≤ O(1), then we juxtapose ψ1/ψ6 and ψ2/ψ6. It is clear that the minimax value
of the respective powers are attained at p1 + p2 = −1/2, realized by p2 = −1/2 and p1 = 0. In this
case, clearly Θ(ψi/ψ6) ≤ O(T−1/2) for 1 ≤ i ≤ 5. If Θ(Tη2ℓ ) > Ω(1), then our strategy should
be to minimize p2 due to positive coefficients in the powers ψi/ψ6. Thus, let p2 = −1/2 + ε for
1 ≫ ε > 0. Then, the order of decay in ψ2/ψ6 is p1 − 1/2 + 2ε, which is once again matched
against −p1− 1/2, the power of ψ1/ψ6. Taking the limit ε→ 0+, minimax{p1− 1/2,−p1− 1/2}
for the range −1/2 < p1 is attained at p1 = 0. This sets the maximal decay rate to O(T−1/2) for
the second case.

C.2 EXTENSION TO ADAM

The extension to the case where Adam is selected as the optimizer for the server, or for both the
server and client is straightforward. We present the latter as it generalizes the former analysis. As in
Lemma 15, we have the following bound for the compressed SM3 estimates of the second moment,

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K},

which allows bounds to be established for the local and global pseudogradients following analogous
logic as Lemmas 16, 28. As before, we arrive at equation (10) where due to exponential moving
averaging on the server side, we have

ṽt = β̃t
2ṽ0 + (1− β̃2)

t∑
ℓ=1

β̃t−r
2 ∆ℓ.
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Now, decompose T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

where T1,r may be bounded via

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(

√
β̃2ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t (1− β̃2)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)(

√
β̃2ṽt−1 +

√
ṽt)

〉

≤ ∥Φ
K
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Due to the exponential decay parameter in the first pseudogradient moment, we have

η

T∑
t=1

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

≤ η
T∑

t=1

t∑
r=1

∥ΦK
1 ∥3Gβ̃t−r

1 (1− β̃2)
τ2

≤ η∥ΦK
1 ∥3GT (1− β̃2)

τ2
.

An analogue of the arguments made in the proof of Theorem 6 with appropriate modifications, e.g.,

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

(1− β1)
∑p

ℓ=1 β
p−ℓ
1√

(1− β2)
∑⌈ p

z ⌉
ℓ=1 β

⌈ p
z ⌉−ℓ

2 (gri,(ℓ−1)z+1)
2 + ε

,

gives the main change as the asymptotic behavior of Ψ5, which now satisfies

Ψ5 = Θ
(
ηη3ℓT

)
.

The convergence rate is still dominated by Ψ1, Ψ2 as in Corollary 24, which gives O(T−1/2).

D FEDERATED BLENDED OPTIMIZATION (GENERAL/FULL FORM OF
FEDADA2)

In federated blended optimization, we distribute local optimizer strategies during the subsampling
process which may be formalized as functions that take as input the availability of client resources,
and outputs the number of local epochs, K(Oi

l), as well as additional hyperparameters such as delay
step size z or preconditioner initialization. These may be chosen to streamline model training based
on a variety of factors, such as straggler mitigation or dynamically restricted availability of local
resources.

In the general formulation of FedAda2, blended optimization allows the trainer to utilize the unique
strengths of each individual optimizer, balancing resource constraints and client noise. Each client
has the option to run different optimizer strategies as the training rounds progress, depending on
varying individual resource constraints or distribution shift in the local data stream. This faithfully
corresponds to real-world settings where the availability of local resources are actively dynamic.
Future work will provide empirical results on the performance of blended optimization, includ-
ing identifying the settings in which mixing optimizer strategies are advantageous for distributed
learning. The following theorem shows that under certain non-restrictive conditions, blended opti-
mization still allows for convergence of the global gradient objective.
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Algorithm 5 Server-side ADAGRAD and client-side optimizer mixture (FedAda2)

Require: Local optimizer strategies O1, . . . , OOp (e.g. Adam, AdaGrad, SGD...)
Require: Initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample participating client multiset St

l for each optimizer strategy l ∈ [Op]
3: for each sampled client collection l ∈ [Op] (in parallel) do
4: for each client i ∈ St

l (in parallel) do
5: xt,li,0 ← xt−1

6: xt,l
i,K(Oi

l )
← Optimize(Ol, i, x

t,l
i,0, Clip = True)

7: ∆t,l
i = w(Ol)

(
xt,l
i,K(Oi

l )
− xt−1

)
8: end for
9: end for

10: S ←
∑

l∈[Op] |St
l |

11: ∆t =
1
S

∑
l∈[Op]

∑
i∈St

l
∆t,l

i

12: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

13: ṽt = ṽt−1 +∆2
t

14: xt = xt−1 + η m̃t√
ṽt+τ

15: end for

Theorem 25. Given client i ∈ [N ], strategy l ∈ [Op], global timestep r, and local timestep p,
assume that the optimizer strategies satisfy the parameter update rule

xr,li,p = xr,li,p−1 − ηℓ
p∑

ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

where
0 < ml ≤ ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ) ≤Ml and 0 < al ≤ ar,li,ℓ ≤ Al

for all possible values of i, ℓ, r, l. If 1 ≤ K(Oi
l) ≤ K and 0 < Ξ− < w(Oi

l) < Ξ+, then Algorithm 5
admits an identical convergence bound as Theorem 20, with Ψ3, Ψ4 replaced by

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

C =
(Ξ+)2K(K + 1)(maxl∈[Op]A

2
l )

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

We have opted to provide a looser bound for expository purposes, and the proof straightforwardly
generalizes to finer bounds that depend on the individual characteristics of the optimizer strategy
(e.g. ml,Ml, Al, etc). The extension to server-side Adam updates follows analogous steps to Sec-
tion C.2.

It is easy to show that under the bounded gradient assumption (Assumption 2), Adam, AdaGrad,
and SGD (including under SM3 for the former two) all satisfy the optimizer condition depicted in
Theorem 25. In Appendix E and F, we materialize two realizations of this framework as additional
examples, using client-side Adam and AdaGrad with delayed preconditioner updates. Note that de-
layed updates require the debiasing term in Adam to be adjusted accordingly. To prove Theorem 25,
we begin with the following lemma.
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Lemma 26. Under Algorithm 5, |∆t,l
i | is bounded by

ΦK
1 := ηℓΞ

+K(K + 1)maxl∈[Op]AlG

2minl∈[Op]ml
,

and the server-side pseudogradient is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Unraveling the definition of ∆t,l
i , we have

∆t,l
i := −ηℓw(Ol)

K(Oi
l )∑

p=1

p∑
ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

 ,

which immediately gives

|∆t,l
i | ≤ ηℓΞ

+

(
K∑

p=1

p∑
ℓ=1

AlG

ml

)
= ηℓΞ

+K(K + 1)AlG

2ml
.

For the server bound, the proof is identical to Lemma 16.

We are now ready to prove Theorem 25.

Proof. As the proof follows a similar structure to Theorem 6, we provide only an outline for repeti-
tive steps while focusing on differing aspects. As before, L-smoothness gives that

f(xt) ≤ f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(16)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
.

Decomposing T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

T1,r is bounded by

T1,r ≤
∥ΦK

1 ∥Gβ̃t−r
1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

For T2,r, we aim to apply a further decomposition for γr > 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

Unraveling the definition of ∆r gives

∆r =
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

∆r,l
i =

−ηℓ∑
l∈[Op] |Sr

l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓg

r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

,
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which induces the following value

γr :=
ηℓ∑

l∈[Op] |St
l |
∑

l∈[Op]

∑
i∈St

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

=
∑

l∈[Op]

γlr.

For the purposes of the proof, we shall consider a local device to have been dropped and unsampled
if any runs less than 1 epoch. Then, we have

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

Ξ− minl∈[Op] al

maxl∈[Op]Ml
, ηℓ

Ξ+K(K + 1)maxl∈[Op] al

2minl∈[Op]Ml

]
.

Expanding T 1
2,r for αl

r > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓw(Ol)a

r,l
i,ℓ(∇f(xt−1)− gr,li,ℓ)

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

〉

≤ ηℓβ̃
t−r
1

4
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

αl
r

∑
i∈Sr

l

K(Oi
l)(K(Oi

l) + 1)

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

1

αl
r

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∥∥∥
w(Ol)a

r,l
i,ℓ

(
∇f(xt−1)−∇Fi(x

r,l
i,ℓ−1)

)
ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ)
√√

ṽt−1 + τ

∥∥∥∥∥∥
2

≤
ηℓβ̃

t−r
1 maxl∈[Op] α

l
rK(K + 1)

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2

We aim to control the first term by setting for all l ∈ [Op]

αl
r =

γr
ηℓK(K + 1)

∈ [α̃1, α̃2] :=

[
Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
,
Ξ+K(K + 1)maxl∈[Op] al

2K(K + 1)minl∈[Op]Ml

]
.

Via gradient clipping as before, we have∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2 ≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Noting that

ηℓβ̃
t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2
≤
ηℓ(Ξ

+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
,
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collecting terms into equation (16) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)ηηℓ

t∑
r=1

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l︸ ︷︷ ︸

C

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (17)

By initializing m̃0 ← 0 and enhancing the upper bound by substituting γ̃1 into γr, telescoping gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+ (1− β̃1)ηηℓC

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (18)

Again by noting that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ,

Lemmas 21 and 22 give that

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+ (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2 + (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

.

This implies that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) ,
C =

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

.
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The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

E ADAM DELAYED MOMENT UPDATES (ADMU)

We begin with a brief description of ADAM (Kingma & Ba, 2015).

Algorithm 6 Adam Optimization Algorithm

Require: ηℓ: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: ε > 0: Smoothing term
Require: x0: Initial parameter vector

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2t
9: m̂t ← mt/(1− βt

1)
10: v̂t ← vt/(1− βt

2)
11: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

12: end while
13: return xt

Considering client-side resource constraints in the federated setting, we propose an adapted ver-
sion of Adam with delayed precondtioner updates aimed at relieving the cost of moment estimate
computation in Algorithm 7 which we call ADMU.

Following Kingma & Ba (2015), we provide an intuitive justification for the initialization bias cor-
rection employed in ADMU. Recall that the motivation for adaptive step-size in ADAM is updating
the parameters via empirical estimates of the pseudo-gradient E[g]/

√
E[g2], which allows for both

momentum and autonomous annealing near steady states. The square root is taken in the denom-
inator to homogenize the degree of the gradient. Bias correction for ADMU adheres to the same
principle, while requiring an additional assumption of gradient stabilization during the z-step pre-
conditioner update delay. An equivalent formulation of the moment estimates in Algorithm 7 for
general t is given

mt = m0β
t
1 + (1− β1)

t∑
r=1

βt−r
1 · gr,

vt = v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

t∑
r=1

β
⌊ t−1

z ⌋+1−⌈ r
z ⌉

2 · g⌈ r
z ⌉z−z+1 ⊙ g⌈ r

z ⌉z−z+1 · χ{ r−1
z ∈Z≥0}

= v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 g(r−1)z+1 ⊙ g(r−1)z+1. (19)

We work with vt as the proof for mt is analogous with z = 1. Assume that the gradients g1, . . . , gt
are drawn from a latent gradient distribution gi ∼ D̃(gi). We aim to extract a relation between
the expected delayed exponential moving average of the second moment E[vt] and the true gradient
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Algorithm 7 Adam with Delayed Moment Updates (ADMU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: m̂t ← mt/(1− βt

1)
9: if (t− 1)/z ∈ Z then

10: vt ← β2 · vt−1 + (1− β2) · g2t
11: v̂t ← vt/(1− β

⌊ t−1
z ⌋+1

2 )
12: else
13: v̂t ← v̂t−1

14: end if
15: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

16: end while
17: return xt

expectation E[g2t ]. Taking expectation of both sides in equation (19),

E[vt] = v0β
⌊ t−1

z ⌋+1

1 + (1− β2)
⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 E
[
g2(r−1)z+1

]

≈ ζ + (1− β2)E
[
g2t
] ⌈ t

z ⌉∑
r=1

β
⌈ t
z ⌉−r

2

≈ E[g2t ]
(
1− β⌊

t−1
z ⌋+1

1

)
.

Here, we have used zero initialization for the first moment estimate, while accumulating any error
terms in ζ. Several assumptions can lead to small ζ. As in Kingma & Ba (2015), we assume that β1
is chosen small enough that the exponential moving average decay undermines the influence of non-
recent gradients gi for i <

⌈
t
z

⌉
z−z+1. A second assumption is that the latent gradient distribution

remains stable during the z-step delay as training progresses, allowing the approximation E[gt] ≈
E[g⌈ t

z ⌉z−z+1]. This leaves the residual scaling of the true gradient second moment of the form

1−βφ, which is caused by (zero) initialization as setting v0 = E[g2t ] eliminates βφ. Therefore, bias
correction is enforced by scaling the empirical vt estimate by the inverse. We note that v0 need not

be initialized to 0, in which case we should additionally translate vt by −v0β
⌊ t−1

z ⌋+1

1 prior to the
inverse scaling.

E.1 NON-CONVEX CONVERGENCE ANALYSIS

A description of FedAdaAdam is given as Algorithm 8. A few remarks are in order. Firstly, to allow
for straggler mitigation, we allow the number of client i epochs K

t

i at timestep t to vary among the
clients i ∈ Si. Although Algorithm 8 sets a schedule for client epochs and pseudogradient weights
for clarity of exposition, dynamic allocation still allows the convergence proof to go through, as long
as the schedule weights are bounded. By default, we set K

t
= K and Ξt = B = 1 to avoid tuning a

large number of hyperparameters or having to sample from a client epoch count distribution for the
client subsampling case.
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Algorithm 8 Adaptive server-side ADAGRAD and client-side ADAM (FedAdaAdam)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global and local decay parameters β̃1, β̃2, β1, β2 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · ×Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize m0, v0 ≥ 0 with default values m0, v0 ← 0

6: for k = 1, . . . ,K
t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← β1 ·mk−1 + (1− β1) · gti,k
9: m̂k ← mk/(1− βk

1 )
10: if (k − 1)/z ∈ Z then
11: vk ← β2 · vk−1 + (1− β2) · gti,k ⊙ gti,k
12: v̂k ← vk/(1− β

⌊ k−1
z ⌋+1

2 )
13: else
14: vk ← vk−1

15: end if
16: if 0 < ∥m̂k/(

√
v̂k + ϵ)∥ < εs then

17: mk ← 0
18: end if
19: xti,k ← xti,k−1 − ηℓ · m̂k/(

√
v̂k + ϵ)

20: end for
21: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
22: end for
23: ∆t =

1
|St|

∑
i∈St ∆t

i

24: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

25: ṽt = ṽt−1 +∆2
t

26: xt = xt−1 + η m̃t√
ṽt+τ

27: end for
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Secondly, for the purposes of the proof we shall consider a local device to have been dropped and
unsampled if any runs less than 1 epoch. We also enforce that pseudogradient weights are bounded
positively from below, i.e. Ξt

i > εw > 0. We now provide a convergence bound for the general,
non-convex case which holds for both full and partial client participation.

Corollary 27. For Algorithm 8, we have an identical bound to Theorem 6 with Ψ3,Ψ4 replaced by

Ψ3 =
(1− β̃T

1 )ηηℓ(1− β2K
1 )KL̃B2T∥ΦK

1 ∥2

2α̃1τε2
,

Ψ4 =
(1− β̃1)ηηℓ(1− β2K

1 )KLTB2c(β̃1)∥ΦK
2 ∥2

2α̃1τε2
.

Here, the intermediary γ̃1, α̃1 values are defined for K− := mini,tK
t

i ≥ 1 as

γ̃1 := ηℓεw

K−∑
p=1

1− βp
1

G

√
1− β⌈ p

z ⌉
2 + ε

, α̃1 :=

K−∑
p=1

εw (1− βp
1)(

G

√
1− β⌈ p

z ⌉
2 + ε

)
(K + 1)2

.

The proof is subsumed by or analogous to Theorems 6 and 25, with changes summarized in the
following lemma.

Lemma 28. Under Algorithm 8, |∆t
i| is bounded by

|∆t
i| ≤ Φ

K
t
i

1 := |Ξt
i| ·

ηℓKt

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+Φ
K

t
i

0


where

Φ
K

t
i

0 :=
K

t

iGηℓ(1− β
K

t
i

1 )

ε
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in ADMU, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

m̂p√
v̂p + ε

= −ηℓΞt
i

K
t
i∑

p=1

m0β
p
1 + (1− β1)

∑p
r=1 β

p−r
1 · gti,r√

v0β
⌊ p−1

z ⌋+1
2 + (1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

We assume m0, v0 ← 0 for expository purposes, although v0 > 0 also suffices for the analysis

(ending in a slightly different ΦK
t
i

1 ). This gives that

∆t
i = −ηℓΞt

i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r√

(1− β2)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

= −ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 · gti,(r−1)z+1√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

− ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r · χ{ p−1

z /∈Z}√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

.
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To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the intermediary upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}

 . (20)

Note that the first term is 0 in the worst-case scenario above, which implies that any non-negative
upper bound is trivially satisfied. Therefore, we may assume without loss of generality that at least
one sampled gradient gti,(r−1)z+1 is nontrivial and remove ε from the denominator to obtain an upper
bound. By Cauchy-Schwartz, we have⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2

⌈ p
z ⌉∑

r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

 ≥
⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣
2

which implies

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}



≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β1)
ε

· (1− β
K

t
i

1 )

(1− β1)

≤ ηℓ|Ξt
i|K

t

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β

K
t
i

1 )

ε
.

It can be shown that case of no update delay z = 1 allows for ΦK
t
i

0 = 0, following a similar proof

to the one given above. Note that ΦK
t
i

0 handles the superfluous gradient terms cemented by delaying
preconditioner updates for the second moment, while moving averaging is performed for the first
moment estimate. It also follows that ∆t is also upper bounded by the identical bound scaled by
maxt ∥Ξt∥∞ ≤ B, as the average of the ∆t

i.

F ADAGRAD WITH DELAYED UPDATES (AGDU)

We present AdaGrad with delayed preconditioner as Algorithm 9 for completeness.

Note that due to delayed updates, local gradient updates are not necessarily elementwise bounded in
absolute value by ηℓ. We may expand the delayed updates for vt as

vt = v0 +

⌈ t
z ⌉∑

r=1

g(r−1)z+1 ⊙ g(r−1)z+1.

We have the following convergence bound.

Corollary 29. Let K− := mini,tK
t

i ≥ 1 and

γ̃1 := ηℓεw

K−∑
p=1

1√
v0 + ⌈Kz ⌉G2 + ε

, α̃1 :=
εwK

−

2K
(√

v0 + ⌈Kz ⌉G2 + ε
) .

Then Algorithm 10 has an identical convergence bound to Theorem 6.
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Algorithm 9 AdaGrad with Delayed Updates (AGDU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize v0 ← 0 (2nd moment vector)
2: Initialize t← 0 (Timestep)
3: while not converged do
4: t← t+ 1
5: gt ← ∇xft(xt−1)
6: if (t− 1)/z ∈ Z then
7: vt ← vt−1 + g2t
8: else
9: vt ← vt−1

10: end if
11: xt ← xt−1 − ηℓ · gt/(

√
vt + ε)

12: end while
13: return xt

Algorithm 10 Adaptive server and client-side ADAGRAD (FedAdaAdagrad)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · ×Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0, global smoothing term τ > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize v0 ≥ 0 with default value v0 ← 0 (what if use τ here?)
6: for k = 1, . . . ,K

t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← gti,k
9: if (k − 1)/z ∈ Z then

10: vk ← vk−1 + gti,k ⊙ gti,k
11: else
12: vk ← vk−1

13: end if
14: if 0 < ∥mk/(

√
vk + ϵ)∥ < εs then

15: mk ← 0
16: end if
17: xti,k ← xti,k−1 − ηℓ ·mk/(

√
vk + ϵ)

18: end for
19: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
20: end for
21: ∆t =

1
|St|

∑
i∈St ∆t

i

22: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

23: ṽt = ṽt−1 +∆2
t

24: xt = xt−1 + η m̃t√
ṽt+τ

25: end for
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Similar to delayed Adam, the proof is analogous to Theorem 6 with changes summarized in the
following lemma.
Lemma 30. Under Algorithm 10, |∆t

i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓB

(⌊
K − 1

z

⌋
+ 1 +

KG
√
v0 + ε

)
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in FedAdaAdagrad, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

mp√
vp + ε

= −ηℓΞt
i

K
t
i∑

p=1

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌊(Kt

i − 1)/z⌋}z + 1, we thus have that

∆t
i = −ηℓΞt

i

∑
p∈F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

− ηℓΞt
i

∑
p∈[K

t
i]\F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the upper bound∣∣∆t

i

∣∣ ≤ ηℓ|Ξt
i|
∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|√
v0 + ε

 ∑
p∈[K

t
i]\F

∣∣gti,p∣∣
 (21)

≤ ηℓ|Ξt
i|
(⌊

K − 1

z

⌋
+ 1

)
+
ηℓ|Ξt

i|KG√
v0 + ε

where the last line uses that the local epoch schedules are upper bounded by K. Noting that
∥Ξt

i∥∞ ≤ B, we are done.

G DATASETS, MODELS, AND BASELINES

Below, we summarize the dataset statistics and provide a more in-depth description.

Table 1: Summary of datasets and models.

Datasets # Devices Non-IID Partition Model Tasks

StackOverflow (Exchange, 2021) 400 Natural Logistic Regression 500-Class Tag Classification
CIFAR-100 (Krizhevsky, 2009) 1000 LDA ViT-S 100-Class Image Classification
GLD-23K (Weyand et al., 2020) 233 Natural ViT-S 203-Class Image Classification

G.1 STACKOVERFLOW DATASET

The StackOverflow dataset (Exchange, 2021) is a language dataset composed of questions and an-
swers extracted from the StackOverflow online community. Each data entry includes associated
metadata such as tags (e.g., “python”), the time the post was created, the title of the question, the
score assigned to the question, and the type of post (question or answer). The dataset is partitioned
by users, with each client representing an individual user and their collection of posts. This dataset
exhibits significant imbalance, with some users contributing only a few posts while others have a
much larger number of entries. In this paper, we work with a randomly selected 400-client subset of
the full StackOverflow Dataset, with a client participation fraction of 0.1.
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G.2 GLD-23K DATASET

The GLD-23k dataset is a subset of the GLD-160k dataset introduced in Weyand et al. (2020). It
contains 23,080 training images, 203 landmark labels, and 233 clients. Compared to CIFAR-10/100,
the landmarks dataset consists of images of far higher quality and resolution, and therefore represents
a more challenging learning task. The client particiation fraction for all GLD-23K experiments are
set to 0.01.
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Figure 4: (Top) Additional results for the experiments in Figure 3 (b), where clients train over
5 epochs. (Bottom) Analogous experiments for full fine-tuning, where the entire net is unfrozen
after replacing the classification layer. All adaptive optimizers are instantiated with Adam, with the
exception of FedAdaGrad where the server-side adaptive optimizer is AdaGrad.

G.3 CIFAR-100 DATASET

The CIFAR-10/100 datasets (Krizhevsky, 2009) consist of 32 × 32 × 3 images. In the smaller variant
CIFAR-10, there are 10 labels, with 50,000 training images and 10,000 test images. The 10 classes
represent common objects: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. CIFAR-100 is meant to be an extension of CIFAR-10, consisting of 60,000 color images,
but with 100 classes instead of 10. Each class in CIFAR-100 contains 600 images, and the dataset
is similarly split into 50,000 training images and 10,000 test images. Unlike CIFAR-10, every class
in CIFAR-100 is subsumed by one of 20 superclasses, and each image is provided a fine label and a
coarse label that represents the former and latter (super-)class. In this paper, we train and evaluate all
algorithms against the fine label. In Figure 5, we show the convergence of FedAda2 as compared
to all other adaptive or non-adaptive benchmarks using CIFAR-100.

50 100 150 200
Communication Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

1

2

3

4

5

6

7

8

Te
st

 L
os

s

CIFAR-100
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Ac

cu
ra

cy

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

1

2

3

4

5

6

7

8

Tr
ai

n 
Lo

ss

CIFAR-100
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

Figure 5: Training and testing accuracies of optimal hyperparameters for CIFAR-100. At each
logging step, train/test accuracy and loss evaluation is done over all of training and testing data,
disjointly, resulting in robust and similar-looking curves. Averaged over 20 random seeds for better
convergence. Adaptive optimizer instantiation conventions are identical with Figure 4.
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G.4 DESCRIPTIONS OF BASELINES

In the original FedAvg algorithm introduced by McMahan et al. (2017), the server-side aggrega-
tion is performed without any additional momentum, relying solely on simple averaging. On the
other hand, algorithms like FedAdaGrad and FedAdam represent examples of server-only adaptive
approaches (Reddi et al., 2021), where the server employs adaptive optimizers such as AdaGrad or
Adam instead of vanilla averaging. We note that server-only adaptive frameworks such as FedAdam
and FedAdaGrad are optimizer-specific instantiations of FedOpt (Reddi et al., 2021), a competitive
framework that has been utilized in recent works to develop leading applications (e.g., by Google
Deepmind to develop DiLoCo (Douillard et al., 2024; Liu et al., 2024; Jaghouar et al., 2024)). The
concept of ‘Direct Joint Adaptivity’ (Direct Joint Adap.) refers to a training paradigm where the
server’s adaptive preconditioners are shared with clients during each communication round. An
example of this is the AdaGrad-AdaGrad setup used as a differential privacy baseline in the Stack-
Overflow task, where the server-side AdaGrad preconditioners are applied to client-side AdaGrad
optimizers, guiding client model updates.

Alternatively, by eliminating the transmission of server-side preconditioners and initializing client-
side preconditioners to zero, we derive the ’Joint Adaptivity without Preconditioner Communica-
tion’ (Joint Adap. w/o Precond. Commu.) baseline, which is more communication-efficient. Fur-
ther, compressing local preconditioners to align with client memory constraints leads to the develop-
ment of FedAda2. Thus, FedAda2 and the various baselines can be viewed as logically motivated
extensions, incorporating adaptive updates and memory-efficient strategies. We provide compre-
hensive evaluations of all 15 algorithms (including 12 jointly adaptive methods tailored to each
adaptive optimizer, 2 server-only adaptive methods, and 1 non-adaptive method) in Section 6 and in
the Appendix G, I.

Below, we include a table to summarize the communication complexity and memory efficiency
of FedAda2 and baselines, compared to alternative adaptive frameworks such as MIME or
MIMELite (Karimireddy et al., 2021; Ro et al., 2022) (evaluation not included in paper).

Table 2: Comparison of Baselines versus FedAda2 with AdaGrad instantiations. d denotes the
model dimensions.

Method Joint Adaptivity Communication Computation (#gradient calls) Memory (client)
FedAvg N 2d 1 d
FedAdaGrad N 2d 1 d
DJA Y 3d 1 2d
FedAda2 Y 2d 1 2d
MIME/MIMELite N 5d / 4d 3/2 4d / 3d

H HYPERPARAMETER SELECTION

H.1 HYPERPARAMETERS FOR DP STACKOVERFLOW

We use a subsampling rate of 0.1, for a total of 400 clients and 500 communication rounds. We
investigate the setting of noise multiplier σ = 1, which provides a privacy budget of (ε, δ) =
(13.1, 0.0025) with optimal Rényi-Differential Privacy (RDP) order 2.0. We sweep over the follow-
ing hyperparameters:

c ∈ {0.1, 0.5, 1} ,
ηl ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
τl ∈

{
10−7, 10−5, 10−3

}
,

τs ∈
{
10−7, 10−5, 10−3

}
,

where c is the gradient clip value. Here, ηl, ηs indicates the client and server learning rates, while
τl, τs represents their respective adaptivity parameters. In the case of singular adaptivity, we ignore
the irrelevant terms (i.e. client adaptivity parameter for FedAdaGrad). For FedAvg only, we select
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best hyperparameters using the expanded local learning rate grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160} .
The optimal hyperparameters are summarized in Table 3, which were chosen based on optimal test
accuracy over a running average of the last 10 logged datapoints. In Figure 3 (bottom), we see
that adaptive optimization on either the client or server induces varying model training dynamics.
Notably, we see in our experiments that for this privacy budget, removing preconditioners from
jointly adaptive systems supercedes the performance of direct joint adaptivity. Compressing client
adaptive preconditioning (FedAda2) reduces the performance slightly, but still performs the best
among all other baselines.

Table 3: Best performing hyperparameters for DP StackOverflow with σ = 1

FedAvg FedAdaGrad Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

c 1.0 0.1 0.5 0.5 0.1
ηs N/A 1.0 1.0 1.0 1.0
ηl 20.0 1.0 1.0 0.1 0.1
τs N/A 1e-3 1e-3 1e-5 1e-5
τl N/A N/A 1e-3 1e-3 1e-3

H.2 HYPERPARAMETERS FOR IMAGE DATASETS

For all ViT experiments, images were resized to 224 × 224 pixels, and the client optimizer em-
ployed a linear learning rate warm-up, increasing from 0 to the final value over the first 10 local
backpropagation steps. The local batch size was consistently set to 32 across all datasets used in
this paper. Due to better empirical performance, Adam was selected as the main optimizer strategy
for ViT fine-tuning against the image datasets. We utilized prior work (Reddi et al., 2021) as well
as small-scale experiments regarding server-only adaptivity to guide the selection of the momentum
parameters β1 = 0.9, β2 = 0.999 for server Adam. The identical parameters were selected for
client Adam, and better choices may exist for either the server or client. In order to determine suit-
able learning rates and adaptivity parameters, we conduct extensive hyperparameter sweeps using a
two-step procedure.

(Step 1) The first step involved a symmetric sweep over the values

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
τl ∈

{
10−9, 10−7, 10−5, 10−3

}
,

τs ∈
{
10−9, 10−7, 10−5, 10−3

}
.

Similar to the StackOverflow case, ηl, ηs indicates the client and server learning rates, while τl, τs
represents their respective adaptivity parameters. For FedAvg only, we probe over the expanded grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160, 320} .

(Step 2) Based on the sweep results over all 10 algorithm and dataset combinations, a second
asymmetric search was launched over the most promising hyperparameter regions, which probed
over the following:

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−7, 10−6, 10−5, 10−4, 10−3, 10−2

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
.

Afterwards, the best performing hyperparameters were selected. For FedAvg only, the final grid
increased additively by 10−3 from 10−3 to 10−2, then by 10−2 onward until the largest value 10−1.
That is, we sweep over the following:

ηl ∈ {0.001, 0.002, 0.003, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1} .
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For server-only adaptivity or FedAvg, any irrelevant hyperparameters were ignored during the
sweep. In Tables 4 and 5, we summarize the best performing learning rates and adaptivity pa-
rameters. In this subsection, any notion of adaptivity in jointly adaptive systems refers to the Adam
optimizer, and 5 local epochs were taken prior to server synchronization. Full fine-tuning indicates
that the entire net was unfrozen after replacement of the linear classification layer. For FedAdaGrad,
full fine-tuning, Step 2 utilized an expanded hyperparameter grid search due to poor performance.

Table 4: Server/Client Learning Rates ηs/ηl

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

CIFAR-100 N/A / 1e-1 1e-2 / 1e-5 1e-3 / 1e-3 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K N/A / 0.04 1e-2 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K (Full) N/A / 0.02 1e-4 / 1e-2 1e-4 / 1e-2 1e-4 / 1e-4 1e-4 / 1e-2 1e-4 / 1e-4

Table 5: Server/Client Adaptivity Parameters τs/τl

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

CIFAR-100 N/A / N/A 1e-10 / N/A 1e-5 / N/A 1e-5 / 1.0 1e-5 / 1.0 1e-5 / 1.0
GLD-23K N/A / N/A 1e-5 / N/A 1e-5 / N/A 1e-5 / 0.1 1e-5 / 0.1 1e-5 / 0.1
GLD-23K (Full) N/A / N/A 1e-2 / N/A 1e-5 / N/A 1e-5 / 1e-3 1e-5 / 1 1e-5 / 1e-3

Hyperparameters for varying client resources, GLD-23K. Analogous sweeps as in (Step 1)
above for the limited and sufficient client resource settings (locally training over 1, 20 local epochs
prior to server synchronization) were taken. For the constrained setting, there were no changes to
the (Step 2) grid. In the abundant setting, the modified final search space for adaptive methods was

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−3, 10−2, 10−1, 1, 4, 16, 32

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
,

and the optimal hyperparameters are summarized in Table 6.

Table 6: Hyperparameters for GLD-23K under restricted/sufficient client resource settings

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

ηs N/A / N/A 1e-2 / 1e-2 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3
ηl 7e-2 / 1e-2 1e-2 / 1e-2 1e-1 / 1e-2 1e-2 / 1e-3 1e-2 / 1e-3 1e-1 / 1e-3
τs N/A / N/A 1e-9 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7
τl N/A / N/A N/A / N/A N/A / N/A 1e-3 / 1e-1 1e-3 / 1e-1 1e-1 / 1e-1

H.3 COMPUTE RESOURCES

Experiments were performed on a computing cluster managed by Slurm, consisting of nodes with
various configurations. The cluster includes nodes with multiple GPU types, including NVIDIA
RTX 2080 Ti, A40, and H100 GPUs. The total compute utilized for this project, including prelimi-
nary experiments, amounted to approximately 6 GPU-years.
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I ADDITIONAL EXPERIMENTS

I.1 DYNAMICS OF HETEROGENEOUS CLIENT-SERVER ADAPTIVITY

In Figure 6, we display the effects of heterogeneous client-server adaptivity in the setting of ViT
fine-tuning over GLD-23K. All hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
.
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Figure 6: Each test accuracy is color-coded and ranked based on the final test loss, and lighter colors
indicate lower loss. Algorithm title colors are also consistent with labels; green for Direct Joint
Adaptivity (top), magenta for Joint Adaptivity without Preconditioner Transmission (middle), and
red for FedAda2 (bottom). Title ordering indicates server- and client-side optimizers, respectively;
i.e. AdaGrad-Adam uses server AdaGrad and client Adam. In the case of Direct Joint Adaptivity
with heterogeneous client-server optimizers, we transmit the mismatched server-side preconditioner
to the client, which to our surprise demonstrates considerable performance. For FedAda2, we add
SM3 compression to the client-side optimizer after zero initialization of the local preconditioner.

I.2 EFFECT OF DELAYED UPDATES

Similar to Figure 6, we demonstrate the effects of delayed updates in Figure 7. Hyperparameter
configuration for delayed updates is identical to Figure 3 (b), except that client-side preconditioner
updates are delayed. Hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−3, 10−1, 1

}
,

τs ∈
{
10−5, 10−3, 10−1

}
.
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We see that delaying the computation of the preconditioners does not significantly degrade the per-
formance.
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Figure 7: After updating preconditioners per every local backpropagation step for the first client
epoch, preconditioners are periodically frozen for the next 1 (middle), 3 (bottom) epochs, respec-
tively, for each communication round. Algorithms are consistent across columns, and the top row is
identical to the FedAda2 results in Figure 6 with hyperparameter sweep (22).
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