
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT ADAPTIVE FEDERATED OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive optimization plays a pivotal role in federated learning, where simultane-
ous server and client-side adaptivity have been shown to be essential for maximiz-
ing its performance. However, the scalability of jointly adaptive systems is often
constrained by limited resources in communication and memory. In this paper,
we introduce a class of efficient adaptive algorithms, named FedAda2, designed
specifically for large-scale, cross-device federated environments. FedAda2 op-
timizes communication efficiency by avoiding the transfer of preconditioners be-
tween the server and clients. At the same time, it leverages memory-efficient
adaptive optimizers on the client-side to reduce on-device memory consumption.
Theoretically, we demonstrate that FedAda2 achieves the same convergence rates
for general, non-convex objectives as its more resource-intensive counterparts that
directly integrate joint adaptivity. Empirically, we showcase the benefits of joint
adaptivity and the effectiveness of FedAda2 on both image and text datasets.

1 INTRODUCTION

Federated learning is a distributed learning paradigm which aims to train statistical models across
multiple clients while minimizing raw data exposure (McMahan et al., 2017; Li et al., 2020a; Wang
et al., 2021a). In vanilla federated learning, a central server orchestrates the training process by dis-
tributing the global model to a subsample of thousands or even millions of clients. These clients col-
laboratively perform local stochastic gradient descent while drawing from their private data streams.
After several epochs have elapsed, each client communicates their aggregate updates to the server,
which averages this information to make an informed adjustment to the global model. This algo-
rithm, using non-adaptive weight updates, is called FedAvg (McMahan et al., 2017). A recent trend
is to investigate utilizing adaptive optimizers to support federated learning (Reddi et al., 2021).
Adaptivity can be employed in either the server-side or the client-side, where joint adaptivity (con-
sisting of global and local adaptive updates) has been shown to play a pivotal role in accelerating
convergence and enhancing accuracy (Wang et al., 2021b).

Nevertheless, efficiency challenges remain for the successful deployment of jointly adaptive algo-
rithms in practice, especially in cross-device federated settings (Kairouz et al., 2021). The server,
which collects pseudogradients pushed by participating clients, consolidates a global approximation
of the preconditioners for adaptive model updates. Typically, the server sends the preconditioners
back to the clients to precondition local adaptive updates. However, this can lead to significant com-
munication overhead that detracts from the advantages offered by adaptivity (Wang et al., 2022).
Furthermore, dynamically varying client resource limitations restrict the reliability of client-side
adaptive optimizers in practice, especially when additional memory is required for handling local
preconditioners during each client model update.

In this work, we propose a class of efficient jointly adaptive distributed training algorithms, called
FedAda2, to mitigate the aforementioned communication and memory restrictions while retaining
the benefits of adaptivity. FedAda2 maintains an identical communication complexity as the vanilla
FedAvg algorithm. Instead of transmitting global server-side preconditioners from the server to the
selected clients, we propose the simple strategy of allowing each client to initialize local precon-
ditioners from constants (such as zero), without any extra communication of preconditioners. In
addition, when running local updates, we adopt existing memory-efficient optimizers that factorize
the gradient statistics to reduced dimensions to save on-device memory. We prove that for the gen-
eral, non-convex setting, FedAda2 achieves the same convergence rate as prior adaptive federated
optimizers (e.g., Reddi et al. (2021)). In this paper, we demonstrate that jointly adaptive federated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning, as well as adaptive client-side optimization, are practicable in real-world settings while
sidestepping localized memory restrictions and communication bottlenecks.

Contributions. Motivated by the importance of client-side adaptivity both empirically and theo-
retically (Section 3), we propose a simple and effective algorithm FedAda2 to avoid extra commu-
nication cost and reduce on-device memory while retaining the benefits of joint server- and client-
side adaptive optimization (Section 4). We provide convergence analyses for a class of FedAda2

algorithms instantiated with different server-side and client-side adaptive methods (Section 5). To
the very best of our knowledge, there are no known convergence results on joint adaptive feder-
ated optimization in the general convex or non-convex setting. Empirically, we demonstrate that
FedAda2, without transmitting preconditioners and employing on-device preconditioner compres-
sion, matches the performance of its more expensive counterparts and outperforms baselines without
client or server adaptivity on both image and text datasets (Section 6).

2 RELATED WORK

We now provide a brief overview of related work in adaptive federated learning and memory-
efficient1 preconditioning.

Adaptive Federated Optimization. Adaptive optimization preconditions the gradients to enhance
optimization efficacy, dynamically adjusting the learning rate for each model parameter (e.g., Duchi
et al., 2011; Kingma & Ba, 2015; Reddi et al., 2018). Recent developments in federated learning
have leveraged adaptive methods for server and client model parameter updates. Frameworks such
as FedAdam (Reddi et al., 2021) and FederatedAGM (Tong et al., 2020) focus primarily on server-
side adaptivity while using a constant learning rate for client updates. Additionally, FedCAMS
(Wang et al., 2022) delves into communication-efficient adaptive optimization by implementing er-
ror feedback compression to manage client updates while maintaining adaptivity solely on the server
side. Conversely, methodologies such as FedLALR (Sun et al., 2023), Local AdaAlter (Xie et al.,
2019), and Local AMSGrad (Chen et al., 2020) have adopted client-side adaptivity exclusively.
These approaches involve transmitting both client preconditioners and model parameters for global
aggregation in the server. Moreover, some frameworks have embraced joint adaptivity. Local Adap-
tive FedOPT (Wang et al., 2021b) implements joint adaptivity while incorporating an additional
client correction term. These terms, along with transmitted client pseudogradients, are aggregated
on the server to construct a global preconditioner used to synthesize the subsequent model update.
Alternatively, frameworks such as MIME (Karimireddy et al., 2021; Jin et al., 2022) transmit addi-
tional optimizer state information aggregated in the server to mimic adaptive updates in centralized
settings, while maintaining frozen-state optimizers on the client-side. In contrast with all these
approaches, FedAda2 avoids the transmission of any local/global preconditioners and optimizer
states entirely, maintaining precisely identical communication complexity as vanilla FedAvg despite
leveraging joint adaptivity. We include further discussions in Appendix G.4.

Memory-Efficient Adaptive Optimizers. The implementation of local adaptive methods sub-
stantially increases client memory requirements, as it necessitates the maintenance of local precon-
ditioners. For some models, it has been noted that the gradients combined with optimizer states con-
sume significantly more memory than the actual model parameters themselves (Raffel et al., 2020).
Memory-efficient adaptive optimizers have been extensively studied in prior literature. Algorithms
such as Adafactor (Shazeer & Stern, 2018) address memory reduction by tracking moving averages
of the reduction sums of squared gradients along a singular tensor axis, attaining a low-rank projec-
tion of the exponentially smoothed preconditioners. GaLore (Zhao et al., 2024) targets the low-rank
assumption of the gradient tensor, which reduces memory of both gradients and preconditioners.
Shampoo (Gupta et al., 2018) collapses gradient statistics into separate preconditioning matrices for
each tensor dimension, which is extended via extreme tensoring (Chen et al., 2019). In this paper,

1There are various notions of ‘efficiency’ of adaptive methods in the context of the federated learning, two
of them being communication efficiency and client memory efficiency. Our contribution specifically targets
reducing communication and memory costs incurred by local preconditioners, which is complementary with
works that reduce communication by repeated local updates or model weight/pseudogradient compression (e.g.,
FedCAMS (Wang et al., 2022)) and may, in theory, even be combined.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

we focus on SM3 (Anil et al., 2019) in our implementation and experiments due to its empirical per-
formance; however, our theoretical framework covers a broad class of memory-efficient optimizers
applied on the client-side (Section 5 and Appendix D).

3 IMPORTANCE OF CLIENT-SIDE ADAPTIVITY

In this section, we motivate our work by providing a theoretical description of how leveraging client-
side adaptivity improves distributed learning, which is later validated in experiments (Section 6).
Our analyses are motivated by prior works that uncover critical conditions under which centralized
SGD can diverge, specifically in settings involving heavy-tailed gradient noise (Zhang et al., 2020).
We begin by providing a definition of heavy-tailed noise following previous literature.

Definition 1. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment is
infinite for α ≥ 2. In other words, we say that the stochastic gradient noise g(x)−∇f(x) is heavy-
tailed if E [∥g(x)−∇f(x)∥α] is bounded for α ∈ (0, 2) and unbounded for α ≥ 2, where g(x) is
the stochastic gradient under some model parameter x, and ∇f(x) the full gradient.

We may now present the following proposition.

Proposition 2. There exists a federated learning problem with heavy-tailed client-side gradient
noise such that the following arguments hold:

(i) For vanilla FedAvg, given any client sampling strategy, if the probability pti of client i with heavy-
tailed gradient noise being sampled at communication round t is non-zero, then E∥∇f(xt+1)∥2 =
∞ for any nontrivial learning rate schedule ηtℓ > 0 and global parameter xt+1.

(ii) Under an appropriate learning rate schedule, FedAvg with local adaptivity (i.e., via client-side
AdaGrad) bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

A detailed proof is given by construction on a quadratic objective in Appendix A. We show that even
a single client with heavy-tailed gradient noise is able to instantaneously propagate their volatility
to the global model, which severely destabilizes distributed learning in expectation. Unfortunately,
recent works have observed heavy-tailed gradient noise empirically, especially within model archi-
tectures utilizing attention mechanisms, including transformer-based models (Zhang et al., 2020;
Devlin et al., 2018; Brown et al., 2020; Dosovitskiy et al., 2021; Nguyen et al., 2019; Simsekli
et al., 2019; 2020). Proposition 2 (ii) suggests that client-side adaptivity has the potential to stabi-
lize local model updates pushed from diverse and large-scale distributed sources, if communication
bottlenecks and memory efficiency can be addressed.

The construction of the federated problem in Proposition 2 draws gradient noise from the Student t-
distribution which is heavy-tailed depending on the parameter regime, whose moments are relatively
controlled nevertheless. We may exacerbate the severity of gradient stochasticity by inserting a
singular client with Cauchy-distributed noise, while enforcing all other clients to follow non-heavy-
tailed Gaussian gradient noise. We further detail this setting in Proposition 10, Appendix A.

3.1 DEEP REMORSE OF FEDAVG AND SGD

So far, we have examined toy problems in which heavy-tailed gradient noise is guaranteed to destabi-
lize distributed training in expectation. We now prove that this is an instantiation of a more general
phenomenon in federated learning where a family of online µ-strongly convex global objectives
collapses to the identical failure mode. To our knowledge, this provable limitation of distributed
training resultant from the heavy-tailed noise of a singular client has not previously been established
within the literature. The proofs of all results are given in the appendix.

Definition 3. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret
in expectation. If A is guaranteed to instantly incur such regret due to sampling even a single client
with a heavy-tailed gradient noise distribution, then we say A is resentful of heavy-tailed noise.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 4. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong con-
vexity for t = 1, . . . , T . Assume that the participation probability of a client with a heavy-tailed
stochastic gradient noise distribution is non-zero. Then, FedAvg becomes a deeply remorseful al-
gorithm and is resentful of heavy-tailed noise. Furthermore, if the probability of the heavy-tailed
client being sampled at step t is nontrivial, then the variance of the global objective at t+1 satisfies
E∥ft+1(xt+1)∥2 =∞.

In federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T (i.e., the objective func-
tions are the same across all rounds). Proposition 2 intuits that inserting local adaptivity successfully
breaks the generality of remorse and heavy-tailed resent for FedAvg. A high-level overview is that
client-side AdaGrad clips the local updates of each iteration, which mollifies the impact of stochas-
ticity in perturbing the weight updates. This gives Proposition 5, which is formulated loosely without
utilizing any advantages provided by local adaptivity except for clipping. Given that adaptive meth-
ods inherently include an implicit soft clipping mechanism due to the effects of preconditioning, we
consider them to be preferable to clipped SGD for large-scale applications as they also offer the ben-
efits of adaptivity. This preference holds, provided that the memory and computational constraints
of the clients can be adequately managed.
Proposition 5. Introducing client-side adaptivity via AdaGrad for the setting in Theorem 4 produces
a non-remorseful and a non-resentful algorithm.

We note that Proposition 5 can be straightforwardly extended to jointly adaptive methods as well
as for ft ∈ C(Rd) not necessarily convex. An advantage of federated learning is that when done
tactfully, the large supply of clients enable the trainer to draw from a virtually unlimited stream of
computational power. The downside is that the global model may be strongly influenced by the
various gradient distributions induced by the private client data shards. In this paper, we focus
specifically on adaptive optimization as a countermeasure to stabilize learning. In Section 4, we
propose FedAda2, which utilizes joint adaptivity in an efficient and scalable manner for distributed
or federated training.

4 FEDADA2: EFFICIENT JOINT SERVER- AND CLIENT-SIDE ADAPTIVITY

In federated learning, a typical server-side objective is formed by taking an average of all client
objectives Fi(x) for i ∈ [N ] and x ∈ Rd:

f(x) =
1

N

N∑
i=1

Fi(x). (1)

In the case of unbalanced client data sizes or sampling probabilities, the objective becomes∑N
i=1 piFi(x) on the right hand side where pi is proportional to the local data size of client i,

or the sampling probability. With a slight abuse of notation, we denote Fi(x) = Ez∼Di
[Fi(x, z)]

where Fi(x, z) is the stochastically realized local objective and Di is the data distribution of client
i. The convergence analysis developed in Section 5 holds when Di is taken to be the local popula-
tion distribution, as well as when Di is the local empirical distribution. For analytical purposes, we
assume that the global objective does not diverge to negative infinity and admits a minimzer x∗.

One determining property of cross-device federated settings is that the clients are not able to store or
maintain ‘states’ across communication rounds (Kairouz et al., 2021). To realize joint adaptivity in
federated systems in a stateless way, one natural baseline is to estimate (pseudo)gradient statistics on
the server (i.e., maintaining server-side preconditioners or global preconditioners) and transmit them
to all participating clients at every communication round. Then each selected client performs local
adaptive steps with preconditioners starting from the global ones. This approach enables clients
to utilize global preconditioner information to make informed adjustments to their respective local
models. However, transmitting (pseudo)gradient statistics, such as the second moment, at each
round significantly increases the communication cost. In addition, running adaptive updates locally
based on the local data introduces memory overheads. Next, we discuss two main techniques we
use for efficient federated adaptive optimization with convergence guarantees.

Zero Local Preconditioner Initialization. To enhance the feasibility of jointly adaptive federated
learning in cross-device settings, we first address extra major communication bottlenecks brought

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

by transmitting global preconditioners from the server to a subset of clients. We propose a sim-
ple strategy of uniformly initializing local preconditioners to zero (or some constant vector) at the
beginning of each training round, thus eliminating the need for preconditioner transmission.

To describe the process in more detail, assume Adagrad (with momentum) as the server-side opti-
mizer (Reddi et al., 2021) for illustration purposes. We have the following server update rule (SU)
for −∆t

i the accumulated pseudogradient from client i at step t,

Server Update:

{
∆t =

1
|St|

∑
i∈St ∆t

i, m̃t = β̃1m̃t−1 + (1− β̃1)∆t,

ṽt = ṽt−1 +∆2
t , xt = xt−1 + η m̃t√

ṽt+τ
.

(SU)

Here, ṽt is the sum of squared server-side pseudogradient−∆t, and β̃1 is the momentum coefficient
controlling the moving average m̃t of −∆t. The set St ⊂ [N ] gives the index of all participating
clients at round t, and τ is a constant. An extension to the case when Adam is selected as the
server optimizer is given in Appendix C.2. After obtaining an updated global preconditioner ṽt at
each communication round, in FedAda2, the server does not communicate ṽt to the participating
clients; instead, each client only receives xt and initializes the local preconditioners from zero.
Empirically, we demonstrate this simple strategy does not degrade the performance relative to the
alternative of transmitting global preconditioners, while being communication efficient for adaptive
methods beyond AdaGrad (Section 6.1). In addition to communication reduction, this approach
enables the use of different optimizers on the server and clients, as the server and client can maintain
independent gradient statistics estimates. We discuss the theoretical guarantees/implications of this
general framework in Section 5.1 and Appendix D.

Addressing Client-Side Resource Constraints. To accommodate local memory restrictions, we
employ existing memory-efficient optimizers for all clients. Our framework allows any such opti-
mizer to be used, including a heterogeneous mixture within each communication round. We provide
a convergence guarantee for a very broad class of optimizer strategies in Theorem 6. We note that in
order for convergence to be guaranteed, the memory-efficient optimizer must satisfy the conditions
of Theorem 25, which are non-restrictive2. The FedAda2 framework is summarized in Algorithm 1
below, presented in a simplified form. Local statistics or global statistics refer to those used to
construct preconditioners (e.g., first or second moment).

Algorithm 1 FedAda2: Efficient Jointly Adaptive Optimization Framework (Simplified)

Require: Init model x0, total number of clients N , total rounds T
1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients using any sampling scheme
3: for each client i ∈ St

l (in parallel) do
4: xti,0 ← xt−1

5: (Main Ingredient 1) Zero Local Preconditioner Initialization: local statistics← 0
6: for k = 1, . . . ,K do
7: Draw gradient gti,k ∼ Di,grad(x

t
i,k−1)

8: (Main Ingredient 2) xti,k ← Efficient Adaptive Optim.(xti,k−1, g
t
i,k, local statistics)

9: end for
10: ∆t

i = xti,K − xt−1

11: end for
12: xt ← Adaptive Optim.({∆t

i}i∈St
l
, global statistics) (for example, Eq. (SU))

13: end for

During implementation, we have chosen to instantiate FedAda2 with SM3 (Anil et al., 2019) adap-
tations of Adam and Adagrad as the memory-efficient local optimizers (Appendix B) due to its
strong empirical performance. Intuitively, SM3 exploits natural activation patterns observed in
model gradients to efficiently synthesize a low-rank approximation of the preconditioner. It main-
tains the statistics in the granularity of parameter groups instead of individual coordinates. Our
analyses in Section 5 hold for a class of memory-efficient local optimizers.

2It can easily be shown that Adam, AdaGrad, SGD, as well as their memory-efficient counterparts (Anil
et al., 2019) for the first two, all satisfy the optimizer conditions for guaranteed convergence.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 CONVERGENCE ANALYSES

One of the challenges in proving the convergence bound for jointly adaptive systems lies in handling
local adaptivity with applying multiple updates locally. Furthermore, server adaptivity actively in-
terferes and complicates the analysis. To address these issues, we assume access to full batch client
gradients which are bounded.To proceed with the convergence analysis, we make the following
assumptions where the ℓ2 norm is taken by default.

Assumption 1 (L-smoothness). The local objectives are L-smooth and satisfy ∥∇Fi(x)−
∇Fi(y)∥ ≤ L∥x− y∥ for all x, y ∈ X and i ∈ [N ].

Assumption 2 (Bounded Gradients). The local objective gradient is bounded by∣∣∣[∇Fi(x, z)]j

∣∣∣ ≤ G for j ∈ [d], i ∈ [N ], and z ∼ Di.

These assumptions are standard within the literature and have been used in previous works (Reddi
et al., 2021; Xie et al., 2020; Wang et al., 2020; Li et al., 2020b). We note that Assumption 2 implies
|∇Fi(x)| ≤ G for x ∈ X via Jensen and integrating over z ∼ Di. In particular, this delineates an
L̃-Lipschitz family of client objectives given that the arguments are ηℓεs-bounded away from each
other,

∥∇Fi(x)−∇Fj(y)∥ ≤ L̃∥x− y∥ :=
2
√
dG

ηℓεs
∥x− y∥

for i, j ∈ [N ] and ∥x − y∥ ≥ ηℓεs. Here, εs is an epsilon smoothing term that activates on the
client side. This quantity is used in a gradient clipping step in FedAda2 (full version Algorithm 5),
where if the local gradient update is negligibly small in magnitude, the gradient is autonomously
clipped to 0. ηℓ > 0 is the local learning rate, and in particular, we note that L̃ = Θ(η−1

ℓ ). By taking
εs → 0, our algorithm recovers federated algorithms that do not utilize local gradient clipping. The
definition of εs is for analysis purposes; in experiments, we take εs to be a negligible value so that
mk is not 0.

We now provide a convergence bound for the general, non-convex case under local gradient descent
and partial client participation. The full theorem statement is provided in Appendix D as Theo-
rem 25. The SM3 instantiation of FedAda2, as well as the generalization to the case where we use
Adam as the server/client optimizers are provided in Appendices C.1 and C.2.
Theorem 6 (Simplified). Under Assumptions 1 and 2 as well as some non-restrictive optimizer
update conditions (given in Theorem 25), for any choice of initialization x0, Algorithm 1 determin-
istically satisfies

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6

where asymptotically,

ψ1 = Θ(1), ψ2 = η2η2ℓT, ψ3 = ηη2ℓT, ψ4 = ηηℓ log(1 + Tη2ℓ )

and

ψ5 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

, ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.

We defer the detailed proofs to Appendix C, D. We make no other assumptions on local or global
learning rates to extract the most general use of Theorem 6. We have the following two corollaries.
Corollary 7. Any of the following conditions are sufficient to ensure convergence of Algorithm 1:

(A) : ηℓ ≤ O(T− 1
2 ) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Corollary 8. Algorithm 1 converges at rate O(T−1/2).

In particular, ηℓ must necessarily decay to establish convergence in Theorem 6. However, striking a
balance between local and global learning rates provably allows for greater than Ω(T 1/3) divergence
in the server learning rate without nullifying the desirable convergence property. This theoretically
demonstrates the enhanced resilience of adaptive client-side federated learning algorithms to miti-
gate suboptimal choices of server learning rates.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 DISCUSSION OF CONVERGENCE BOUND

There have been several recent works exploring adaptivity and communication efficiency in fed-
erated learning. The convergence rate in Corollary 8 matches the state of the art for federated
non-convex optimization methods (Reddi et al., 2021; Wang et al., 2022; Tong et al., 2020; Sun
et al., 2023; Xie et al., 2019; Chen et al., 2020). However, to the best of our knowledge, there are no
known convergence results of jointly adaptive federated optimization that explicitly support several
popular methods including Adam and AdaGrad.

Generality of FedAda2: Federated Blended Optimization. The gradient descent setting used
in the analysis of Theorem 6 is conceptually equivalent to accessing oracle client workers capable
of drawing their entire localized empirical data stream. While this constraint is a limitation of
our theory, it enables us to derive stronger results and induce additional adaptive frameworks for
which our analysis generalizes. For instance, our bound deterministically guarantees asymptotic
stabilization of the minimum gradient, regardless of initialization or client subsampling procedure.
In Appendix D, we present the FedAda2 framework under its most general, technical form, which
we also call Federated Blended Optimization (Algorithm 5).

Blended optimization distributes local optimizer strategies during the subsampling process, which
are formalized as functions that take as input the availability of client resources and outputs hyper-
parameters such as delay step size z or choice of optimizer (Adam, AdaGrad, SGD, etc). These may
be chosen to streamline model training based on a variety of factors, such as straggler mitigation or
low availability of local resources. In particular, this framework permits the deployment of differ-
ent adaptive optimizers per device for each round, enhancing the utility of communication-efficient
frameworks that do not retain preconditioners between clients or between the server and client. This
flexibility is especially beneficial in scenarios where there are inconsistencies between server and
client adaptive optimizer choices.

6 EMPIRICAL EVALUATION

In this section, we empirically demonstrate the performance of FedAda2 compared with several
baselines that are either non-adaptive or adaptive but inefficient. We first present our main results
by comparing different instantiations of FedAda2 with more expensive jointly adaptive baselines
and non-jointly adaptive methods in Section 6.1. We then investigate the effects of hyperparameters
in more detail in Section 6.2. We repeat every run for 20 times under different random seeds for
statistical significance, and report 95% confidence intervals as shaded error regions in all plots.

Evaluation Setup. We explore the impact of adaptivity on both text and image datasets, i.e., Stack-
Overflow (Exchange, 2021), CIFAR-100 (Krizhevsky, 2009), and GLD-23K (Weyand et al., 2020).
In StackOverflow, each client is a single user posting on the StackOverflow website. Due to the
sensitivity nature of the data in federated networks, we evaluate FedAda2 in both private and non-
private settings with a logistic regression model. For images, we finetune vision transformers (ViT-
S Sharir et al. (2021)) pretrained on the ImageNet-21K dataset (Ridnik et al., 2021) on the GLD-23K
subset of the Google Landmarks dataset (Weyand et al., 2020), which represents a domain shift onto
natural user-split pictorial data. We use the same model on the CIFAR100 dataset (Krizhevsky,
2009), where we partition the data using LDA (Blei et al., 2003) with α = 0.001. Details for
federated dataset statistics, learning tasks, and hyperparameter tuning are provided in Appendix H.

Description of Baselines. Throughout this section, we compare with the following baselines. Fe-
dAvg is the vanilla FL algorithm introduced in McMahan et al. (2017), without any additional mo-
mentum for the server-side aggregation. FedAdaGrad or FedAdam are two examples of server-only
adaptive federated optimization methods (Reddi et al., 2021), where the server-side model updates
are performed by an adaptive optimizer (e.g., AdaGrad/Adam) instead of vanilla averaging. ‘Direct
Joint Adaptivity’ (named Direct Joint Adap. in the captions) indicates a jointly adaptive training reg-
imen, where server-side preconditioners are transmitted to clients at every communication round.
For instance, we may denote one such setup as ‘AdaGrad-AdaGrad’, where server-side AdaGrad
preconditioners are transmitted to the client-side AdaGrad optimizers as initialization. Removing
server-side preconditioner transmission and using zero initialization of client-side preconditioners
results in the ‘Joint Adaptivity without Preconditioner Communication’ (named Joint Adap. w/o

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Precond. Commu. in the captions) baseline, which is communication-efficient. Further compress-
ing the local preconditioners using SM3 (Anil et al., 2019) to account for client memory resource
limitations gives FedAda2. Therefore, the baselines and FedAda2 may be viewed as naturally
motivated variations via the addition of adaptive updates and memory-efficient optimizers.

6.1 EMPIRICAL PERFORMANCE OF FEDADA2

0 100 200 300 400 500
Communication Rounds

0.16

0.18

0.20

0.22

Te
st

 A
cc

ur
ac

y

DP StackOverflow

FedAvg
FedAdaGrad
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

0 100 200 300 400 500
Communication Rounds

3.75

4.00

4.25

4.50

4.75

5.00

5.25

Te
st

 L
os

s

DP StackOverflow
FedAvg
FedAdaGrad
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

1

2

3

4

5

6

7

8

Te
st

 L
os

s

CIFAR-100
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

1.0

1.5

2.0

2.5

3.0

Te
st

 L
os

s

GLD-23K
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

Figure 1: (Top) Test accuracies on StackOverflow, CIFAR-100, and GLD-23K datasets. For Stack-
Overflow, we evaluate the performance of FedAda2 and baselines under differential privacy (DP)
constraints. If not otherwise specified, StackOverflow uses AdaGrad for adaptivity, while CIFAR-
100 and GLD-23K use Adam. We see that jointly adaptive algorithms demonstrate improved per-
formance over FedAvg and server-only adaptive systems. Further, not transmitting the global pre-
conditioner does not degrade performance, and FedAda2 preserves the benefits of joint adaptivity
while maintaining efficiency. (Bottom) Corresponding test losses for the three datasets of FedAda2

and benchmarks. We also note that on the StackOverflow dataset, there is a mismatch between best-
performing methods in terms of test accuracies and losses.

Results of FedAda2 under Differential Privacy (DP). DP is a mathematical framework that
can quantify the degree to which sensitive information about individual data points may be pur-
posely obscured during model training, providing rigorous privacy measurement (Abadi et al., 2016;
Mironov, 2017; Dwork et al., 2006). For the StackOverflow dataset, we investigate the setting of
noise multiplier σ = 1, which provides a privacy budget of (ε, δ) = (13.1, 0.0025) with optimal
Rényi-Differential Privacy (RDP) (Mironov, 2017) order 2.0 (Appendix H.1). As mentioned in the
beginning of this section, we use AdaGrad to be both server-side and client-side adaptive methods.
Notably, we see in our experiments that the proposed technique of initializing client-side precondi-
tioners from zero can even outperform direct joint adaptivity in this setting, where the latter approach
transmits the server preconditioner to the client for local updates at every round. Further compress-
ing client-side adaptive preconditioning via FedAda2 reduces the performance slightly, but still
performs the best among the FedAvg, FedAdaGrad, Direct Joint Adaptivity (AdaGrad-AdaGrad)
baselines. In Figure 2, we further demonstrate communication-efficiency of FedAda2 by evaluat-
ing convergence versus the number of actual transmitted bits.

FedAda2 for Finetuning Vision Transformer Models. We investigate the performance of fine-
tuning vision transformer models (ViT-S Sharir et al. (2021)) on image data. For all runs on the CI-
FAR100 and GLD-23K datasets, we use Adam as the optimizer everywhere, except for the baseline
of FedAdaGrad. For CIFAR-100 (Figure 1 (middle)), direct joint adaptive and server-only adap-
tive methods (FedAdam and FedAdam) converge faster and achieve higher accuracy than FedAvg.
Methods using joint adaptivity (including FedAda2) convergence faster than FedAdam. While ‘Di-
rect Joint Adap.’ achieves similar performance to FedAda2, FedAda2 is much more memory and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

communication efficient. Similar trends are observed on GLD-23K (the right column). Further-
more, as a side, we propose to incorporate delayed preconditioner updates (Gupta et al., 2018) on
the client-side as an optional step to potentially reduce communication (explained in Appendix B)
and show that FedAda2 is robust to delayed local preconditioner updates as well (Appendix I.2).

0 100 200 300 400 500
Communication Cost

0.16

0.18

0.20

0.22

Te
st

 A
cc

ur
ac

y

DP StackOverflow

FedAvg
FedAdaGrad
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Cost

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Cost

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

Figure 2: Test accuracies against actual communication cost (total transmitted bits normalized to
that of FedAvg) for FedAda2 and baseline methods, using the same settings as in Figure 1. When
compared based on communication cost, both ‘Joint Adaptivity without Preconditioner Transmis-
sion’ and FedAda2 demonstrate the fastest convergence.

Results of Additional Adaptive Setups. Algorithm 1 provides a general framework, and in Fig-
ure 1, we focus on symmetric server-client optimizer configurations (e.g., Adam-Adam, AdaGrad-
AdaGrad). In Appendix I.1, Figure 6, we generalize this setting to examine the performance of
asymmetric server-client adaptivity setups under both jointly adaptive baselines and FedAda2. Our
results show that in the Joint Adaptivity w/o Preconditioner Transmission baseline, employing an
unbalanced preconditioner (e.g., transmitting the server-side Adam preconditioner to client-side
AdaGrad), does not significantly impact performance across a hyperparameter sweep. Similarly,
FedAda2 demonstrates robust training dynamics across various adaptivity instantiations, highlight-
ing its effectiveness in enabling efficient jointly adaptive optimization.

6.2 EFFECTS OF VARYING CONFIGURATIONS

0 50 100 150 200 250 300
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

(a) Single Local Epoch

50 100 150 200
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

(b) 5 Local Epochs

50 100 150 200
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

(c) 20 Local Epochs

0 100 200 300 400
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

FedAvg

0 100 200 300 400
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

FedAdaGrad

0 100 200 300 400
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

Direct Joint Adap.

0 100 200 300 400
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

Joint Adap. w/o P.C.

0 100 200 300 400
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

FedAda2

Figure 3: (Top) Algorithm testing performance comparision under varying client resource lim-
itations (i.e., number of local epochs). When resources are constrained, FedAda2 converges
the fastest, followed closely by FedAdam. Interestingly, the relative performance advantage of
FedAda2 becomes less significant as the number of local epochs increases. (Bottom) We plot
all test accuracies obtained during the hyperparameter sweeps detailed in Appendix H.1, with fixed
client subsampling random seed. The runs are ranked hierarchically from the lowest to the highest
final test loss, with the colors transitioning from lighter to darker shades accordingly.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dynamics of FedAda2 under a Varying Number of Local Epochs. In Figure 3 (top), we study
the transfer learning setting of a vision model under a highly constrained, moderate, and sufficient
client computation budget, corresponding to running 1, 5, and 20 local epochs on the clients. We
see that when the number of epochs is low (Figure 3 (a)), FedAda2 achieves the best performance,
closely followed by FedAdam. Interestingly, as the clients’ computational budget increases, the rela-
tive performance advantage of FedAda2 diminishes. In such scenarios, jointly adaptive benchmarks
outperform FedAdam, although the margin is not substantial.

Sensitivity to Hyperparameters. In Figure 3 (bottom), we plot test accuracies over the hyper-
parameter sweeps detailed in Appendix H for FedAda2 and all baselines. Server-only adaptivity
stabilizes the performance of FedAvg, and direct joint adaptivity further enhances these stabilized
accuracies. However, eliminating server preconditioner transmission destabilizes the accuracy, re-
sulting in significantly poorer performance for the worst losses, while retaining the best performing
losses. Surprisingly, approximating the preconditioners in a memory-efficient manner using SM3
restabilizes the losses, which we hypothesize is due to the denoising effect of projections during
SM3 compression. Interestingly, in the DP setting, zero initialization and compressing gradient
statistics (FedAda2) achieves even better performance than direct joint adaptivity, when test accu-
racies over best-performing hyperparameters are averaged over 20 random seeds for convergence
(Figure 1, top).

Summary. For DP StackOverflow and CIFAR-100 experiments, a natural yet expensive imple-
mentation of joint client- and server-side adaptivity with transmitted global preconditioners sur-
passes the performance of FedAvg and server-only adaptivity. However, full preconditioner trans-
mission incurs significant communication costs, as noted in Section 1. Additionally, the adaptive op-
timizer substantially increases the memory demand on the client due to the maintenance of auxiliary
second-order statistics used to synthesize model updates in every local iteration, which motivates the
development of efficient adaptive frameworks. In our empirical evaluations, we consistently found
that initializing local preconditioners from zero did not underperform direct joint adaptivity (full
server-side preconditioner transmission) after optimal hyperparameter tuning. The performance of
joint adaptivity under differential privacy is notable, where this compromise to reduce communica-
tion cost even achieved better test performance than the more expensive baseline with full precondi-
tioner transmission. In addition, when evaluating convergence in terms of the actual communicated
bits (communication rounds times number of bits per round), FedAda2 significantly outperforms di-
rect joint adaptivity (Figure 2), saving significant communication bandwidth. In general, we observe
that FedAda2 retains the competitive advantage of joint adaptivity while being communication- and
memory-efficient. Empirically, avoiding preconditioner transmission and leveraging client-side pre-
conditioner approximations (i.e., FedAda2) does not substantively harm the performance of its
more expensive variants, and can even surpass the performance of direct joint adaptivity in certain
settings (e.g., StackOverflow and GLD-23K under constrained client resources).

7 CONCLUSION AND FUTURE WORK

In this work, we introduce FedAda2, a class of jointly adaptive algorithms designed to enhance
scalability and performance in large-scale, cross-device federated environments. FedAda2 is con-
ceptually simple and straightforward to implement. In particular, we show that joint adaptivity is
practicable while sidestepping communication bottlenecks and localized memory restrictions. By
optimizing communication efficiency and employing localized memory-efficient adaptive optimiz-
ers, FedAda2 significantly reduces the overhead associated with transferring preconditioners and
extra on-device memory cost without degrading model performance. Our empirical results demon-
strate the practical benefits of FedAda2 in real-world federated learning scenarios. Future research
could explore extensions of FedAda2 (Section 5.1, Appendix D) to study the training dynamics
under alternative, potentially client-specific local optimizer instantiations.

REFERENCES

Martı́n Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (ACM CCS), pp. 308–318, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. Advances in Neural Information
Processing Systems, 2020.

Xiangyi Chen, Xiaoyun Li, and Ping Li. Toward communication efficient adaptive gradient method.
In Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, pp. 119–128,
2020.

Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, and Yi Zhang. Extreme tensoring for
low-memory preconditioning. arXiv preprint arXiv:1902.04620, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. International Conference on Learning Representations, 2021.

Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. ICML Workshop on Advancing Neural Network
Training, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography Conference, 2006.

Stack Exchange. Stack overflow dataset, 2021. URL https://archive.org/details/
stackexchange.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Sami Jaghouar, Jack Min Ong, and Johannes Hagemann. Opendiloco: An open-source framework
for globally distributed low-communication training. ArXiv, 2024.

Jiayin Jin, Jiaxiang Ren, Yang Zhou, Lingjuan Lyu, Ji Liu, and Dejing Dou. Accelerated federated
learning with decoupled adaptive optimization. International Conference on Machine Learning,
2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U.
Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated
learning. 35th Conference on Neural Information Processing Systems, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference for Learning Representations, 2015.

11

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Tian Li, Manzil Zaheer, Ziyu Liu, Sashank Reddi, Brendan McMahan, and Virginia Smith. Differ-
entially private adaptive optimization with delayed preconditioners. International Conference on
Learning Representations, 2023.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. International Conference on Learning Representations, 2020b.

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A. Rusu, Jiajun Shen, Arthur
Szlam, and Marc’Aurelio Ranzato. Asynchronous local-sgd training for language modeling.
ICML Workshop on Advancing Neural Network Training, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

Ilya Mironov. Rényi differential privacy. 2017 IEEE 30th Computer Security Foundations Sympo-
sium, 2017.

Thanh Huy Nguyen, Umut Simsekli, Mert Gurbuzbalaban, and Gael Richard. First exit time analysis
of stochastic gradient descent under heavy-tailed gradient noise. 33rd Conference on Neural
Information Processing Systems, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:1–67, 2020.

Sashank Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. Interna-
tional Conference on Learning Representations, 2018.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecný, San-
jiv Kumar, and Brendan McMahan. Adaptive federated optimization. International Conference
on Learning Representations, 2021.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik. Imagenet-21k pretraining for the
masses. Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks, 2021.

Jae Ro, Theresa Breiner, Lara McConnaughey, Mingqing Chen, Ananda Suresh, Shankar Kumar,
and Rajiv Mathews. Scaling language model size in cross-device federated learning. Proceedings
of the First Workshop on Federated Learning for Natural Language Processing (FL4NLP 2022),
2022.

Gilad Sharir, Asaf Noy, and Lihi Zelnik-Manor. An image is worth 16x16 words, what is a video
worth? arXiv preprint arXiv:2103.13915, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
noise in deep neural networks. Proceedings of the 36 th International Conference on Machine
Learning, 2019.

Umut Simsekli, Lingjiong Zhu, Yee Whye Teh, and Mert Gurbuzbalaban. Fractional underdamped
langevin dynamics: Retargeting sgd with momentum under heavy-tailed gradient noise. Proceed-
ings of the 37 th International Conference on Machine Learning, 2020.

Hao Sun, Li Shen, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong Sun, and Dacheng Tao. Fed-
lalr: Client-specific adaptive learning rates achieve linear speedup for non-iid data. arXiv preprint
arXiv:2309.09719, 2023.

12

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qianqian Tong, Guannan Liang, and Jinbo Bi. Effective federated adaptive gradient methods with
non-iid decentralized data. arXiv preprint arXiv:2009.06557, 2020.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. 34th Conference on Neural In-
formation Processing Systems, 2020.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to feder-
ated optimization. arXiv preprint arXiv:2107.06917, 2021a.

Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary Charles, Luyang Liu, and Gauri Joshi. Local
adaptivity in federated learning: Convergence and consistency. arXiv preprint arXiv:2106.02305,
2021b.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. In
International Conference on Machine Learning, pp. 22802–22838. PMLR, 2022.

Tobias Weyand, André Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 - a large-
scale benchmark for instance-level recognition and retrieval. In CVPR, 2020. URL https:
//arxiv.org/abs/2004.01804.

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local adaalter:
Communication-efficient stochastic gradient descent with adaptive learning rates. arXiv preprint
arXiv:1911.09030, 2019.

Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local adaalter: Communication-
efficient stochastic gradient descent with adaptive learning rates. OPT2020: 12th Annual Work-
shop on Optimization for Machine Learning, 2020.

Jingzhao Zhang, Sai Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar,
and Suvrit Sra. Why are adaptive methods good for attention models? 34th Conference on
Neural Information Processing Systems, 2020.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

13

https://arxiv.org/abs/2004.01804
https://arxiv.org/abs/2004.01804


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPORTANCE OF CLIENT-SIDE APDAPTIVITY

Overview of Student’s t-distribution. For the convenience of the reader, we provide a brief sum-
mary of basic properties of the Student’s t-distribution. Intuitively, the t-distribution can be under-
stood as an approximation of the Gaussian with heavier tails. The density is given by

fν(t) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

where ν ∈ R>0 is the degree of freedom (or normality parameter), and Γ is the gamma function. We
recover the normalized Gaussian as the degree of freedom tends to infinity. The first moment is 0
for ν > 1, and the second moment satisfies ν/(ν − 2) for ν > 2 while being infinite for 1 < ν ≤ 2,
where the heavy-tails are most pronounced. Following the convention of Zhang et al. (2020), we
refer to a distribution as being heavy-tailed if the second moment is infinite.

The following proposition showcases the utility of local adaptivity in federated learning.

Proposition 9. There exists a federated optimization problem with heavy-tailed client noise which
satisfies the following under FedAvg (where appropriate learning rate schedules are chosen for (ii-
iv)):

(i) Given any client sampling strategy, if the probability pti of client i with heavy-tailed gradient
noise being sampled at step t is non-zero, then E∥∇f(xt+1)∥2 = ∞ for any nontrivial learning
rate schedule ηtℓ > 0.

(ii) Local adaptivity via client-side AdaGrad bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

(iii) Furthermore, local adaptivity implicitly constructs a critical Lyapunov stable region which
stabilizes the gradient variance via the following inequality which holds once any learned weight
enters the region:

min
t∈{1,...,T}

E∥∇f(xt)∥2 ≤ O
(
1

T

)
.

(iv) The global gradient variance of the federated problem with heavy-tailed client noise is fully
stabilized via

E[∥∇f(xt)∥2] ≤ 2∥x0∥2 + 2

(∫ ∞

1

1

x2
dx

)2

for ∀t ∈ {1, . . . , T}.

This proposition demonstrates that even a single client with heavy-tailed gradient noise is able to
instantaneously propagate their volatility to the global model, which destabilizes federated training
in expectation. However, recent work (Zhang et al., 2020) has shown that heavy-tailed gradient
distributions appear frequently in language model applications, and more generally within model
architectures utilizing any kind of attention mechanism, including transformers. To our knowledge,
this provable failure mode of distributed training resultant from the unbiased, yet heavy-tailed noise
of a singular client has not previously been reported within the literature.

Proof of (i). Let the local stochastic objectives be given by Fi(x, ξi) = x2/2+ ξix where gradient
noise follows a t-distribution with i + 1 degrees of freedom, ξi ∼ ti+1 for ∀i ∈ {1, . . . , N}. This
construction is chosen to materialize the setting in which only a singular client suffers from heavy-
tailed noise (i = 1). Minibatches are sampled with replacement, which ensures that gradient noise
in each client epoch are independent amongst and in between any two (possibly identical) clients,
and further identically distributed conditional on the client ID i. Clearly, the global objective is

f(x) =
1

N

N∑
i=1

Eξi [fi(x, ξi)] =
1

N
E

[
N

2
x2 +

N∑
i=1

ξix

]
=

1

2
x2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For global step t, we subsample clients St following any sampling strategy, where Ct is the collec-
tion of all possible multisets Str whose elements indicate (possibly repeated) client selection, with
associated probabilities ptC(r) > 0 of realization for r ∈ [|Ct|]. Assume that 1 ∈ Stm for some m.

Then, FedAvg updates may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

which gives the squared length of the global gradient under expectation as

Et∥∇f(xt+1)∥2 = Et

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

= Eξ|tESt|ξ,t

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

|Ct|∑
r=1

Eξ|tp
t
C(r)

∥∥∥∥∥∥xt − ηℓ
|Str|

∑
i∈St

r

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥∥
2

≥ ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
xti,ℓ−1 + ξti,ℓ−1

)∥∥∥∥∥∥
2

where in the second equality we have conditioned on local gradient noise ξ and stochastic realiza-
tions up to timestep t, using the law of iterated expectations. Recursively unravelling xti,ℓ−1 in terms
of sampled noise and xti,0 = xt gives

xti,ℓ−1 = xti,ℓ−2 − ηℓgti,ℓ−2 = xti,0 − ηℓ
ℓ−2∑
p=0

gti,p

= xti,0 − ηℓ

(
ℓ−2∑
p=0

∇f(xti,p) + ξti,p

)

= xti,0 − ηℓ

(
ℓ−2∑
p=0

xti,p + ξti,p

)

= atxt −
ℓ−2∑
p=0

ati,pξ
t
i,p

where at, ati,p ∈ Q[ηℓ] are polynomial functions of the learning rate with rational coefficients.
Therefore, we have for bti,p ∈ Q[ηℓ]

ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
atxt −

ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt +
ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt

∥∥∥∥∥∥
2

+
η2ℓp

t
C(m)

|Stm|2
Eξ|t

∥∥∥∥∥∥
∑
i∈St

m

(
K−2∑
p=0

bti,pξ
t
i,p + ξti,K−1

)∥∥∥∥∥∥
2

≥
η2ℓp

t
C(m)E

∥∥ξt1,K−1

∥∥2
|Stm|2

=∞,

where we have used that ξti,ℓ ∼ ti+1 independently with mean 0, for all permissible i, ℓ, and t.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of (ii). We specialize to the setting with client-side AdaGrad with K = 1. Assume that
clients St have been selected to participate in the round, which gives the update as

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

(2)

= xt −
ηℓ
|St|

∑
i∈St

∇f(xti,0) + ξti,1
∥∇f(xti,0) + ξti,1∥+ ε

= xt

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
− ηℓ
|St|

∑
i∈St

ξi
∥xt + ξi∥+ ε

where we have gradually simplified notation. Noting that∫
1

∥xt + ξi∥+ ε
p(ξi) dξi ≤

1

ε
,

setting ηℓ ≤ ε gives

∥∇f(xt+1)∥ = ∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
+

ηℓ
|St|

∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

. (3)

Using Et to denote expectation conditional over realizations up to step t, we have

Et∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

Et

[∑
i∈St

1

∥xt + ξi∥+ ε

])
+

ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
.

To further bound the right hand side, consider the functional

Ii(ε) :=

∫
1

∥xt + ξi∥+ ε
pi+1(ξi) dξi,

where clearly

Ii(0) ≥
∫ −x+

t

−x−
t

1

∥xt + ξi∥
pi+1(ξi) dξi ≈

∫ 0+

0−

pi+1(−xt)
|x|

dx =∞

and Ii(1) < 1. By continuity and strict decay of Ii(ε), there exists 1≫ ε̂i > 0 and εi ∈ (0, 1] such
that for all i ∈ [N ], we have 1 > Ii(ε) ≥ 1 − ε̂i for ε ∈ [εi, 1]. Taking ε ∈ [maxi∈[N ] εi, 1] and
ε̂ := maxi∈[N ] ε̂i, we thus obtain

Et∥xt+1∥ ≤ ∥xt∥ · (1− ηℓ(1− ε̂)) +
ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
. (4)

To bound the remaining term, it is easy to show that ∥ξi∥pi+1(ξi) is symmetric around the origin O,
and strictly increases from 0 to (3/2+2/(i+1))−1/2 while strictly decreasing afterwards. Defining
the even extension of

hi+1(ξi) =

−
x

(3/2+2/(i+1))−1/2 + supξi∈R ∥ξi∥pi+1(ξi) + ϵ for 0 ≤ ξi ≤
(

3
2 + 2

i+1

)− 1
2

,

∥ξi∥pi+1(ξi) for ξi >
(

3
2 + 2

i+1

)− 1
2

to be hi+1(ξi) for small 1 ≫ ϵ > 0, we note that 1/(∥xt + ξi∥ + ε) analogously is symmetric
around ξi = −xt while decaying with respect to the argument ∥xt + ξi∥. As hi+1(ξi) is symmetric
around O and decays moving to the left and right of O, by matching monotonicity and maxima with
1/(∥xt + ξi∥+ ε), we conclude that the left hand side of (5) is maximized for xt = 0:

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
≤
∫
hi+1(ξi)

∥ξi∥+ ε
dξi = Bi. (5)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Asymptotically as ξi →∞, we have
hi+1(ξi)

∥ξi∥+ ε
≲ pi+1(ξi),

which gives that Bi < ∞. Letting B := maxi∈[N ]Bi and scheduling the learning rate ηtℓ =
1/((t + t0)(1 − ε̂)) where t0 is the smallest positive integer satisfying ηtℓ < ε for all t, we thus
conclude

E∥xt+1∥ ≤
t+ t0 − 1

t+ t0
E∥xt∥+

B

(t+ t0)(1− ε̂)

≤ t+ t0 − 2

t+ t0
E∥xt−1∥+

2B

(t+ t0)(1− ε̂)

≤ · · · ≤ t0 − 1

t+ t0
E∥x0∥+

(t+ 1)B

(t+ t0)(1− ε̂)

≤ O
(
1

t

)
+

B

1− ε̂
.

As this bound holds for any choice of client subsample St, we are done. It is easy to show by
straightforward integration that B < 2

√
3.

Proof of (iii). Our strategy is to locate a 1-shot stabilization regime of the gradient norm that is
formed via client adaptivity, which may be viewed as a Lyapunov stable region of the optimum x∗.
From (3) and Jensen,

∥xt+1∥2 ≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|2

(∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

)2

≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|

∑
i∈St

(
∥ξi∥

∥xt + ξi∥+ ε

)2

.

We now impose ηℓ ≤ 2ε, while letting ∥xt∥ < δ for some δ ∈ R>0. Taking expectations gives

Et∥xt+1∥2 ≤ 2∥xt∥2 +
2η2ℓ
|St|

∑
i∈St

Et

(
∥ξi∥

∥xt + ξi∥+ ε

)2

,

and by similar arguments to the proof of (ii), the summands of the second term are bounded uni-
formly by B̃ which yields

E∥xt+1∥2 ≤ 2δ2 + 2η2ℓ B̃.

Setting δ, ηtℓ ≤ O(1/
√
T ) immediately gives the desired inequality.

Proof of (iv). An advantage of client-side adaptive optimization is the autonomous normalization
and clipping of the stochastic gradients. Let ηtℓ := 1/t2. Telescoping (2) gives

xT+1 = x0 −
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

,

which implies

∥xT+1 − x0∥ =

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ |∥xT+1∥ − ∥x0∥| ≤

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ ∥xT+1∥ ≤ ∥x0∥+

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ E∥xT+1∥2 ≤ 2∥x0∥2 + 2E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Substituting the learning rate schedule gives

E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
T∑

t=1

Kηtℓ

∥∥∥∥∥
2

≤ E
∥∥∥∥K ∫ ∞

1

1

x2
dx

∥∥∥∥2 .
Therefore, we conclude that for any t,

E∥xt∥2 ≤ 2∥x0∥2 + 2K2

(∫ ∞

1

1

x2
dx

)2

.

A.1 EXACERBATION OF SINGULAR CLIENT NOISE

Overview of Cauchy–Lorentz distribution For the convenience of the reader, we provide a brief
description of the Cauchy distribution CL(x0, γ). The density is given by

f (x;x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2] =
1

π

[
γ

(x− x0)2 + γ2

]
,

where x0 is the location parameter and γ > 0 the scale parameter. Note that the Cauchy distribution
is an example of “worst case gradient noise” that a federated problem may encounter in its clients.
That is, the tails are so heavy that the distribution, despite being symmetric around the origin O,
does not admit a mean due to being non-(Lebesgue) integrable. In particular, this indicates that the
law of large numbers cannot be applied due to uncontrolled stochasticity, which lethally destabilizes
pure stochastic gradient descent. Despite this limitation, we provide an example demonstrating that
local adaptivity can be utilized to successfully mollify extreme client noise even in this “worst case”
setting.

Proposition 10. There exists a generalized federated optimization problem which satisfies the fol-
lowing under FedAvg:

(i) Given any client sampling strategy without replacement, if the probability pti of client i with
heavy-tailed gradient noise being sampled at each step t is non-zero, then E∥∇f(xt+1)∥ = ∞ or
E∥∇f(xt)∥ =∞ for any t ∈ Z≥1 and nontrivial learning rate ηtℓ > 0.

(ii) Under local adaptivity via client-side AdaGrad, we have bounded gradient length as

lim
t→∞

E∥∇f(xt)∥ ≤
2

1− ε̂
for some ε̂ ≈ 0.

Proof of (i). We provide a similar construction as in the proof of Theorem 9. Let all local stochastic
objectives be given by Fi(x, ξi) = x2/2+ξixwhere client gradient noise mostly models a Gaussian,
ξi ∼ N (0, σ2

i ) for ∀i ∈ {2, . . . , N} and σi ∈ R. For the first client, we let ξ1 ∼ CL(0, γ)
for any γ ∈ (0, 1/3). We sample minibatches with replacement, but clients are selected without
replacement. In this case, we must consider a generalized version of the federated objective as
strictly speaking, the deterministic local objective

Eξ1 [F1(x, ξ1)] =
1

2
x2 + x

∫
ξ1 dξ1

does not exist due to extreme stochasticity. That is, even though CL(0, γ) is symmetric around O,
Eξ1 [ξ1] is not Lebesgue integrable. Most importantly, this implies that the law of large numbers
cannot be applied. Note that such a construction dislocates this example from the vast majority of
convergence results, as most assume bounded variance or controlled gradient noise which sidesteps
the consideration of the kind of stochasticity that we explore here entirely. To proceed with the
analysis, we use symmetry to define the reasonable objective

E[F1(x, ξ1)] =
1

2
x2

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

which is consistent with the desired population objective that is distributed across all other clients,
though with less noise. As before, we have the convex global objective f(x) = x2/2. Note that it
can be shown that the empirical mean of the Cauchy distribution follows the Cauchy distribution,
that is, the CL-distribution is stable.

As the general case has been handled in Theorem 9 (i), we specialize to K = 1. To simplify
notation, assume that participating clients have been selected as St, where client 1 participates.
Then, the FedAvg update may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

gti,1

which gives the length of the global gradient under expectation as

E∥∇f(xt+1)∥ = E

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥
(
1− ηℓ
|St|

)
xt −

ηℓ
|St|

∑
i∈St\{1}

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥(1− ηℓ)xt − ηℓ
|St|

∑
i∈St\{1}

ξti,1

∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E ∥(1− ηℓ)xt∥ −
ηℓ
|St|

∑
i∈St\{1}

E
∥∥ξti,1∥∥

Note that we allow ηℓ = 1. As E
∥∥ξti,1∥∥ <∞ for i ∈ {2, . . . , N}, we thus have

E∥∇f(xt+1)∥+ |1− ηℓ|E ∥∇f(xt)∥ ≥ ∞

which gives the desired result.

Proof of (ii). As we intervened only on gradient noise while preserving client objectives, an anal-
ogous proof strategy used in Theorem 9 (ii) carries through. The only difference is the value of B,
which may be computed as being upper bounded by 2 for γ < 1/3.

A.2 FEDAVG AND STOCHASTIC GRADIENT DESCENT ARE DEEPLY REMORSEFUL

In Appendix A, we have provided two localized examples of how heavy-tailed gradient noise can
destabilize distributed training. In this subsection, we prove that this is an instantiation of a more
general phenomenon in which federated learning with a µ-strongly convex global objective collapses
to an analogous failure mode. We begin by motivating a precise definition of heavy-tailed noise
previously reported in the literature (Zhang et al., 2020) for completeness.
Definition 11. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment is
infinite for α ≥ 2.

Intuitively, this expresses that the α-moment is not sparsely supported outside a compact interval.
That is,

∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ < ∞ indicates a dense support integrating to infinity in the closed
ball B0(R), and a light tail for B0(R)c. Definition 1 enforces that the noise must not decay rapidly
outside said compact ball, i.e. that light tails must be excluded. This follows from the observation
that

∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ =∞ for all α ≥ 2 and any R ≥ 0 because
∫
∥ξ∥≤R

∥ξ∥αp(ξ) dξ ≤ Rα <

∞ via continuity and the extremal value theorem. By equivalence of norms on Rd and hence their
preserved continuity, we analogously have for ∥ · ∥∞ the supremum norm,∫

∥ξ∥∞>R

cα∥ξ∥α2 p(ξ) dξ ≥
∫
∥ξ∥∞>R

∥ξ∥α∞ p(ξ) dξ =∞

for some c > 0. To proceed with the analysis, we impose an integrability condition on the mean,
which gives E[ξ] = µ ∈ Rd.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Problem Setup. The local objectives are determined by Fi(x) = Ez[Fi(x, z)], where z integrates
over the randomness in the stochastic objective. The gradient noise ξ is additively modeled via a
possibly uncentered random variable with E(ξ) = µ. Minibatches are sampled with replacement,
implying that gradient noise in each client epoch are independent amongst and in between any two
possibly identical clients. We analyze the case where noise is identically distributed conditional on
client ID i. The global objective is given as the expected client objective under the uniform sampling
prior, f(x) =

∑
i∈[N ] Fi(x)/N .

We now present the following definition.

Definition 12. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret
in expectation. If A is guaranteed to instantly incur such regret due to sampling even a single client
with a heavy-tailed stochastic gradient distribution, then we sayA is resentful of heavy-tailed noise.

We are now ready to prove the following theorem.

Theorem 13. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong
convexity for t = 1, . . . , T . Assume that the participation probability of a client with a heavy-tailed
stochastic gradient distribution is non-zero. Then, FedAvg becomes a deeply remorseful algorithm
and is resentful of heavy-tailed noise. Furthermore, if the probability of the heavy-tailed client
being sampled at step t is nontrivial, then the variance of the global objective at t + 1 satisfies
E∥ft+1(xt+1)∥2 =∞.

Proof. Assuming that a heavy-tailed client may be subsampled at step t with non-zero probability,
let us show that the regret

R(T ) :=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗)

is infinite under expectation, assuming it is well-defined. Here, x∗ is taken to be the argument
uniformly minimizing the materialized global objectives up to step T , x∗ := argminx

∑T
t=1 ft(x).

For notational simplicity, we carry out the analysis conditioned on the event that the heavy-tailed
client has been subsampled. We aim to show that E[ft+1(xt+1)] − ft+1(x

∗) = ∞ where x∗ is
arbitrarily fixed and ft+1 satisfies µ-strong convexity. Clearly,

ft+1(xt+1) ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

〉
+

µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

gti,ℓ

∥∥∥∥∥
2

≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)〉

+
µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

.

Denoting Et+ [·] to be the expectation conditional over all stochastic realizations up to step t and
ℓ = K − 1, we have

Et+ [ft+1(xt+1)] ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)〉

−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

Et+
[
ξti,K−1

]〉
+

µη2ℓ
2|St|2

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

. (6)

As the means of all gradient noise are finite (typically centered at 0), it suffices to show that

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=∞.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

However, this is clear as expanding the norm gives

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1)

∥∥∥∥∥
2

+ 2

〈∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1),
∑
i∈St

Et+ [ξ
t
i,K−1]

〉
+
∑
i∈St

E∥ξti,K−1∥2,

where in the final line we used the independence of the noise random variables. As there exists
i ∈ St that satisfies heavy-tailed noise, we obtain

Et+ [ft+1(xt+1)] ≥ ∞.

Taking expectations on both sides gives that E[ft+1(xt+1)] ≥ ∞ under the law of iterated ex-
pectations, assuming that the expectation is well-defined. Thus, FedAvg is deeply resentful of the
influence of heavy-tailed noise.

Now, we change perspectives and write the general form of (6) as

ft+1(y) ≥ ft+1(x) + ⟨∇ft+1(x), y − x⟩+
µ

2
∥y − x∥2

= ft+1(x) +

d∑
j=1

(∇ft+1(x))j(yj − xj) +
µ

2

d∑
j=1

(yj − xj)2.

For any arbitrarily fixed x, there exists ãt+1,j > 0, Rj > 0, and b̃t+1,j < 0 such that

f̃t+1,j(yj) =


ãt+1,j(yj −Rj) for yj > Rj ,

0 for |yj | ≤ Rj ,

b̃t+1,j(yj +Rj) for yj < −Rj ,

(7)

and

0 ≤ f̃t+1,j(yj) ≤
ft+1(x)

d
+ (∇ft+1(x))j(yj − xj) +

µ

2
(yj − xj)2

for |yj | > Rj . Without loss of generality, we may substitute ãt+1,j ← ã = minj ãt+1,j , b̃t+1,j ←
b̃ = maxj b̃t+1,j , and Rj ← R := maxj∈[d]Rj . We thus have

Et+ [∥ft+1(xt+1)∥2] ≥ Et+
[
χ{xt+1 ∈ B∞

R (0)c}∥ft+1(xt+1)∥2
]

where χ is the indicator and B∞
R (0) is the closed ball in Rd under the infinity norm centered at 0.

As ft+1(y) ≥
∑d

j=1 f̃t+1,j(yj) for y ∈ B∞
R (0)c,

Et+ [∥ft+1(xt+1)∥2] ≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j(xt+1)∥2]

≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2].

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The integrand on the final line is non-negatively lower bounded given xt+1 ∈ B∞
R (0)c byc d∑

j=1

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

(ξti,K−1)j

〉

+

d∑
j=1

c2η2ℓ
|St|2

(∑
i∈St

(ξti,K−1)j

)2

where c = min{|ã|, |b̃|}. The sign on Rj is determined by the sign of the value (xt+1)j and
equation (7).

Clearly, there exists compact intervals [āi,j , b̄i,j ] such that with non-zero probability, (ξti,K−1)j ∈
[āi,j , b̄i,j ]. For the setminus operation subtracting only one selection of client i from the multiset St
and 1 ∈ St being the heavy-tailed client, let R̂ be equal to

|St|
ηℓ

|R|+max
i,j

ηℓ max{|āi,j |, |b̄i,j |}
|St|

+

∣∣∣∣∣∣ ηℓ|St|
∑
ĩ∈St

((
K−1∑
ℓ=1

∇f(xt
ĩ,ℓ−1

) + ξt
ĩ,ℓ−1

)
+∇f(xt

ĩ,K−1
)

)
j

∣∣∣∣∣∣
 .

Then as

χ{xt+1 ∈ B∞
R (0)c} ≥ χ{xt+1 ∈ B∞

R (0)c}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j ]}

≥ χ+
j := χ{|(ξt1,K−1)j | > R̂}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j ]},

we may conclude

Et+ [∥ft+1(xt+1)∥2] ≥ Et+

χ+
j ∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2


≥
d∑

j=1

c2Et+[χ
+
j ]

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

Et+[χ
+
j (ξ

t
i,K−1)j ]

〉

+

d∑
j=1

c2η2ℓ
|St|2

Et+

(∑
i∈St

(ξti,K−1)j

)2


≥ C1(t
+) +

d∑
j=1

c2η2ℓ
|St|2

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2


Noting that

Et+[χ
+
j (ξ

t
i,K−1)j ] =

∫ b̄i,j

āi,j

(ξti,K−1)j dp(ξ
t
i,K−1),

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

we deduce that the existence of E(ξti,K−1)j ∈ R (from all noise having finite mean) enforces that
Et+[χ

+
j (ξ

t
i,K−1)j ] must also exist and be finite. Thus, C1(t

+) is finite and well-defined given t+. It
remains to analyze the final term

d∑
j=1

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2
 =

d∑
j=1

Et+

[
χ+
j

∑
i∈St

(ξti,K−1)
2
j

]
+ 2Et+

[
χ+
j

∑
i1<i2

(ξti1,K−1)j(ξ
t
i2,K−1)j

]

=

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
+ 2

∑
i1<i2

Et+

[
χ+
j (ξ

t
i1,K−1)j

]
Et+

[
χ+
j (ξ

t
i2,K−1)j

]
where we used the independence of ξti,ℓ which is preserved across coordinate projections. Finally,
note that for C2 := minj∈[d] Πi∈St\{1}P((ξti,K−1)j ∈ [āi,j , b̄i,j ]) ̸= 0, we have

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
≥ C2

d∑
j=1

∫
|(ξt1,K−1)j |>R̂

∥(ξt1,K−1)j∥2 dp(ξt1,K−1)

≥ C2

∫
∥(ξt1,K−1)∥∞>R̂

∥ξt1,K−1∥2 dp(ξt1,K−1) =∞.

Thus, we have as before
Et+ [∥ft+1(xt+1)∥2] ≥ ∞.

As the variance is well-defined, we conclude that E[∥ft+1(xt+1)∥2] = ∞ under the tower law of
expectation.

For federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T . We saw from Proposi-
tion 9 that inserting local adaptivity successfully breaks the generality of remorse and heavy-tailed
resent for FedAvg. A high-level, intuitive overview is that client-side AdaGrad clips the local up-
dates of each iteration, which mollifies the impact of stochasticity in perturbing the weight updates.
We present the following proposition, formulated loosely without utilizing any advantages provided
via local adaptivity except for clipping which leaves room for far sharper generalization. For this
reason, we view local adaptive methods to be more desirable than clipped SGD in large-scale appli-
cations, if memory and computation constraints of the clients can be addressed.

Proposition 14. Let ft ∈ C(Rd) for t = 1, . . . , T for ft not necessarily convex. Introducing
client-side adaptivity via AdaGrad into the setting in Theorem 4 produces a non-remorseful and a
non-resentful algorithm.

Proof. By Jensen, we have that ∥Ef(xt)∥ ≤ E∥f(xt)∥. Thus, it is enough to show E∥f(xt)∥ <∞
which guarantees that the t-th regret update E[ft(xt)]− ft(x∗) is finite for any x∗ arbitrarily fixed.
However, this is immediate as xt ∈ BKt(x0), where K is the number of local iterations prior to
server synchronization. Thus, by the extremal value theorem, there exists an M ∈ R≥0 such that

0 ≤ E∥f(xt)∥ ≤ E[M ] <∞.

Similarly, we may also show that the variance E∥f(xt)∥2 <∞.

B DETAILED FEDADA2 ALGORITHM DESCRIPTION

In the main text, we have opted to describe the intuitions behind SM3, due to its technical imple-
mentation. In this appendix section, we give a more through walk-through of our algorithm details
for any interested readers wishing to reproduce our proof strategies or implementations.

Addressing Client-Side Resource Constraints. In this paper, we specifically focus on SM3 (Anil
et al., 2019) adaptations of Adam and Adagrad. Intuitively, SM3 exploits natural activation patterns
observed in model gradients to accumulate approximate parameter-wise statistics for precondition-
ing. More precisely, the gradient information in each coordinate element {1, . . . , d} is blanketed
by a cover {S1, . . . , Sq} satisfying

⋃q
b=1 Sb = {1, . . . , d} for which an auxiliary µk(b) is assigned

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2 Adaptive server and client-side ADAGRAD with SM3 (FedAda2)

Require: A full cover {S1, . . . , Sq} ⊂ P([d]) where
⋃q

b=1 Sb = {1, . . . , d}
Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0
Local epsilon smoothing terms εs, ε > 0, global smoothing term τ > 0

Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients using any sampling scheme
3: for each client i ∈ St (in parallel) do
4: Initialize v0 ≥ 0 (default value v0 ← 0), xti,0 ← xt−1

5: for k = 1, . . . ,K do
6: Draw stochastic gradient gti,k ∼ Di,grad(x

t
i,k−1) with mean ∇Fi(x

t
i,k−1) ∈ Rd

7: mk ← gti,k, µk(b)← 0 for ∀b ∈ {1, . . . , q}
8: for j = 1, . . . , d do
9: Approximate Preconditioner (SM3)

10: end for
11: if 0 < ∥mk/(

√
vk + ε)∥ < εs, do mk ← 0

12: xti,k ← xti,k−1 − ηℓ ·mk/(
√
vk + ε)

13: end for
14: ∆t

i = xti,K − xt−1

15: end for
16: Server Update (SU)
17: end for

for each b ∈ [q]. The µk(b) then act to form vk as a coordinate ascent upper bound to the squared
gradient sum

∑k
ℓ=1(g

t
i,ℓ)

2 as SM3 iterates over each j ∈ [d].

As an optional add-on, utilizing the staleness of gradients to construct preconditioners has previ-
ously been suggested as a strategy to accelerate adaptive optimization without hurting the perfor-
mance (Gupta et al., 2018; Li et al., 2023). Therefore, we may optionally further mollify the burden
of client-side adaptive optimizers by enforcing delayed preconditioner updates (Appendix I.2). This
is given by the following SM3 update rule (SM3) which incorporates delay step z,

SM3 Update:


vk(j)← minb:Sb∋j µk−1(b) +

(
gti,k(j)

)2
µk(b)← max{µk(b), vk(j)}, for ∀b : Sb ∋ j

for k−1
z ∈ Z

vk(j)← vk−1(j) otherwise

(SM3)

where k is the index of local iteration (starting from 1). These methodologies are consolidated into
FedAda2, Algorithm 2. For simplicity, we describe the variant in which both the client and server
employ AdaGrad as the adaptive optimizers. However, we present other instantiations of FedAda2

with different adaptive methods in Appendix D and I.1.

We now present a description of SM3-I/II with delayed preconditioner updates as Algorithms 3
and 4. SM3-II capitalizes on a tighter approximation of the second moment, and empirically demon-
strates better results. We have opted to implement a smoothing term ε instead of treating any zero
denominator as zero as done in the original work. In this paper, we provide the analysis for SM3-II
which generalizes the analysis for SM3-I.

C DETAILED PROOFS

To enhance clarity, we present several lemmas before giving the proof of Theorem 20. Note that
Lemma 15 is written in broadcasting notation, where the scalars in the right hand side have 1 ∈ Rd

implicitly multiplied and the inequality holds coordinatewise. For notational convenience, we will
view ΦK

1 , ΦK
2 as vectors.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 Delayed preconditioner SM3-I

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: if (t− 1)/z ∈ Z then
5: for r = 1, . . . , k do
6: µt(r)← µt−1(r) + maxj∈Sr

g2t (j)
7: end for
8: end if
9: for j = 1, . . . , d do

10: νt(j)← minr:Sr∋j µt(r) (minimum taken over all r such that j ∈ Sr)
11: xt+1(j)← xt(j)− ηℓgt(j)√

νt(j)+ε

12: end for
13: end for

Algorithm 4 Delayed preconditioner SM3-II

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ′

0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: µ′

t(r)← 0 for ∀r ∈ [k]
5: for j = 1, . . . , d do
6: if (t− 1)/z ∈ Z then
7: ν′t(j)← minr:Sr∋j µ

′
t−1(r) + g2t (j)

8: for all r : Sr ∋ j do
9: set µ′

t(r)← max{µ′
t(r), ν

′
t(j)}

10: end for
11: else
12: ν′t(j)← ν′t−1(j)
13: end if
14: xt+1(j)← xt(j)− ηℓgt(j)√

ν′
t(j)+ε

15: end for
16: end for

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma 15. Under Algorithm 2, |∆t
i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓ

(√⌈
K

z

⌉
· log

1
2

(
1 +

⌈
K
z

⌉
G2

ε2

)
+
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

)
.

Proof. Forming a bound for the pseudogradients is not trivial due to delayed preconditioner updates.
We begin by noting that delayed gradient updates are initiated at local timesteps k = nz + 1 for
n ∈ Z≥0. We now split cases k/z /∈ Z and k/z ∈ Z. In the first case, there exists n ∈ Z≥0 such that
nz + 1 ≤ k < (n + 1)z, and the latest preconditioner update by client step k is given at timestep
(⌈k/z⌉ − 1)z + 1 = ⌊k/z⌋z + 1. In the second case, if z ̸= 1, then step k is just one step shy of
a preconditioner update. The latest update is therefore held at step (⌈k/z⌉ − 1)z + 1 which is no
longer identical to ⌊k/z⌋z + 1.

With this observation, it is easy to show by induction that

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K}.

Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = xti,K − xti,0. By telescoping for K local steps and the
definition of gradient updates in AdaSquare-SM3, we obtain

|∆t
i| =

∣∣∣∣∣
K∑

p=1

ηℓ
mp√
vp + ε

∣∣∣∣∣ ≤ ηℓ
K∑

p=1

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌈K/z⌉ − 1}z + 1, we thus have that

|∆t
i| ≤ ηℓ

∑
p∈F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

+ ηℓ
∑

p∈[K]\F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉], p ∈ [K] \ F . Therefore, we form the upper bound (where

∑0
1 := 0

by definition)

∣∣∆t
i

∣∣ ≤ ηℓ ∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε︸ ︷︷ ︸

T1

+
ηℓ√
v0 + ε

 ∑
p∈[K]\F

∣∣gti,p∣∣
 (8)

≤ ηℓT1 +
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

.

As 0 is trivially bounded by any non-negative upper bound, we may without loss of generality
assume that gti,(r−1)z+1 ̸= 0 for at least one r ∈ [⌈pz ⌉]. We further bound T1 as follows:

T1 ≤
∑
p∈F

|gti,p|√
|gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

≤
∑
p∈F

√
|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2

≤
√
|F|

√√√√√
∑

p∈F

|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2


≤

√⌈
K

z

⌉
· log

1
2

1 +
∑
p∈F

|gti,p|2

ε2



26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Note the use of Cauchy Schwartz in the third inequality. A detailed proof of the log inequality used
in the third line may be found as part of the proof of Theorem 20, equation (13) which uses similar
techniques. By Assumption 2, we are done.

The server-side pseudogradient updates may also be bounded as follows.

Lemma 16. Under Algorithm 2, each server step size is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Without loss of generality, we may let τ = 0 when forming the first upper bound for exposi-
tory purposes.

η
|m̃t|√
ṽt + τ

≤
η(1− β̃1)

∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|√∑t

ℓ=1 ∆
2
ℓ + τ2 + τ

≤
η(1− β̃1)

(∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|

)√∑t
ℓ=1 β̃

2t−2ℓ
1√∑t

ℓ=1 ∆
2
ℓ

√∑t
ℓ=1 β̃

2t−2ℓ
1

≤ η
√

1− β̃1
√

1− β̃2
1

√√√√ t∑
ℓ=1

β̃2t−2ℓ
1

= η

√
1− β̃1

√
1− β̃2t

1 .

Note that the final inequality is obtained using Cauchy-Schwartz, while the second bound in the
lemma statement follows from the first inequality and Lemma 15.

Finally, we form a loose upper bound for the gradient variance.

Lemma 17. For k ∈ {1, . . . ,K}, the uncentered variance estimate vk as well as µk in Algorithm 2
are bounded by

(B1) : 0 ≤ µk(b) ≤ dkG2 for and b ∈ {1, . . . , q},
(B2) : 0 ≤ vk(j) ≤ dkG2 for j ∈ {1, . . . , d}.

Proof. Non-negativity of the variance estimates vk is trivial and implies the non-negativity of µk,
thus we focus on the upper bound for which we use dual induction. The case k = 1 is satisfied by
zero initialization. Assuming the inequality holds for k ← k − 1, we have for each j

vk(j) = min
b:Sb∋j

µk−1(b) +
(
gti,k(j)

)2 ≤ d(k − 1)G2 +G2 ≤ dkG2.

Now, µk is initialized to zero at the start of each step k and its entries are increased while broadcast-
ing over each coordinate j ∈ {1, . . . , d} by

µk(b)← max{µk(b), vk(j)} for ∀b : j ∈ Sb.

For j = 1, it is clear that

µk(b)← vk(j) ≤ dkG2 for ∀b ∈ {1, . . . , q}.

For j ≥ 2, inductively, we have

µk(b)← max{µk(b), vk(j)} ≤ dkG2

as both arguments of the maximum function are upper bounded by dkG2. This completes the proof.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.1 PRECOMPACT CONVERGENCE ANALYSIS

We aim to analyze the convergence of learning algorithms under the general, non-convex setting.
However, extremely popular and well known adaptive optimizers such as Adam whose efficacy
is strongly supported by empirical evidence have been shown to fail to converge even for convex
settings (Reddi et al., 2018). Therefore, recent works have investigated the asymptotic stabilization
of gradients, instead of requiring strict convergence to local or global optima of the objective (Reddi
et al., 2021; Wang et al., 2022; Tong et al., 2020; Sun et al., 2023; Xie et al., 2019; Chen et al., 2020;
Zhang et al., 2020). Such convergence bounds are of the form mint ∥∇f(xt)∥ ≤ O(T−α), and are
interpreted via the following lemma:
Lemma 18. For xt the t-step parameters of any objective f(x) learned by an algorithm, let
min1≤t≤T ∥∇f(xt)∥ ≤ O(T−α) for α > 0. Then, there exists a learning algorithm which out-
puts parameters {x̃1, x̃2, . . .} such that ∥∇f(x̃t)∥ → 0 as t→∞.

Proof. Assuming otherwise gives that ∥∇f(xt)∥ is ε-bounded away from 0 for some ε > 0, for
any parameter xt realized by the algorithm. Clearly, min1≤t≤T ∥∇F (xt)∥ → 0 as T → ∞ gives
a contradiction. More constructively, note that ∀ε > 0, ∃ T̃ (ε) ∈ N such that T ≥ T̃ (ε) =⇒
min1≤t≤T ∥∇f(xt)∥ < ε. Letting ε = 1/n for n ∈ N and Tn := T̃ (1/n), we have that there
exists tn ∈ [Tn] such that ∥∇f(xtn)∥ < 1/n. Letting x̃i := xti extracts the desired parameter
sequence.

This notion of convergence can be formalized as precompact convergence which is consistent with
sequence properties of precompact normed sets. In this paper, we explicitly formalize the conven-
tions used in prior works, and take the term convergence to mean precompact convergence unless
stated otherwise.
Definition 19 (Precompact convergence). A sequence {yn}n∈N in a normed space Y is said to
converge precompactly to y ∈ Y if there exists φ : N→ N such that yφ(n) → y.

Our goal is to develop principled federated algorithms whose global gradients are guaranteed to
converge precompactly to 0 regardless of parameter initialization, in the general, non-convex setting.
Note that precompact convergence must allow for convergence to each element yn of the sequence.
Now, we are ready to present the following theorem.
Theorem 20. In Algorithm 2, we have that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where
Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

Proof. To enhance readability, we use both coordinatewise and broadcasting notation, where a [·]j
subscript is attached for the j-th coordinate. In particular, the arguments are detailed mostly in the
latter notation as it significantly clarifies the intuitions behind the proof. By L-smoothness, we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= f(xt−1) + η

〈
∇f(xt−1),

β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

〉
+
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

= f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(9)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
. (10)

Note that T0,0 can only decay exponentially as training progresses, as
√
ṽt is monotonically increas-

ing with respect to t and ∇f(xt−1) is coordinatewise bounded by G. We decompose T0,r further
by

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

.

A bound for T1,r can be obtained as:

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(
√
ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t

(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉

≤ β̃t−r
1

〈
|∇f(xt−1)| ,

|∆r|∆2
t

(ṽt + τ2)(
√
ṽt−1 + τ)

〉

≤ β̃t−r
1

d∑
j=1

G

[
|∆r|∆2

t

(ṽt + τ2)(
√
ṽt−1 + τ)

]
j

≤ ∥Φ
K
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Lemma 30 is used to obtain the final inequality. For T2,r, we apply a further decomposition for
γr > 0 allowed to be arbitrary within a compact interval ϵηℓ-bounded away from 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

For expository purposes, we present the case in which local gradient clipping is not triggered. The
analysis directly generalizes to the setting where clipping activates. Unraveling the definition of ∆r

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

gives

∆r =
−ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

gri,p√
vri,p + ε

,

which intuits the following value

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

1√
vri,p + ε

.

We have by Assumption 2 and Lemma 17 that

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

K∑
p=1

1√
v0 + dKG2 + ε

,
ηℓK√
v0 + ε

]
.

Expanding T 1
2,r for αr > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1

|Sr|
∑
i∈Sr

K∑
p=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓ
(
∇f(xt−1)− gri,p

)
√
vp + ε

〉

≤ ηℓβ̃
t−r
1 αrK

2|Sr|
∑
i∈Sr

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αr

∑
i∈Sr

K∑
p=1

∥∥∥∥∥∥
(
∇f(xt−1)−∇Fi(x

r
i,p−1)

)√√
ṽt−1 + τ

(√
vp + ε

)
∥∥∥∥∥∥
2

≤ ηℓβ̃
t−r
1 αrK

2

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 .
where in the first inequality we drew the deterministic gradient instead of accessing the stochastic
sample via full gradient descent. The first term is controlled by setting

αr =
γr

2ηℓK
∈ [α̃1, α̃2] :=

[
1

2
√
v0 + dKG2 + 2ε

,
1

2
√
v0 + 2ε

]
.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

We aim to bound the second term via majorization and telescoping arguments. We have by L-
smoothness, Lemmas 15, 16, and Assumption 2 that

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 ≤ 1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi(x
r
i,p−1)

)∥∥2
=

1

N

∑
i′∈[N ]

∥∥(∇Fi′(xt−1)−∇Fi′(xr−1) +∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

)∥∥2
≤ 2

N

∑
i′∈[N ]

(
∥∇Fi′(xt−1)−∇Fi′(xr−1)∥2 +

∥∥∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

∥∥2)

≤ 2L

N

∑
i′∈[N ]

∥xt−1 − xr−1∥2 +
2L̃

N

∑
i′∈[N ]

∥xri,p−1 − xri,0∥2

= 2L ∥xt−1 − xr−1∥2 + 2L̃
∥∥xri,p−1 − xri,0

∥∥2
≤ 2L(t− r)

t−1∑
o=r

∥xo − xo−1∥2 + 2L̃∥Φp
1∥2

≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Note that the first inequality was obtained by Jensen, while the third inequality uses that the client
weights xri,0 are synchronized to the global weights xr−1 for ∀i ∈ [N ] at the start of training. Now,
we have

ηℓβ̃
t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

(
2L(t− r)2∥ΦK

2 ∥2 + 2L̃∥ΦK
1 ∥2

)
≤ ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

.

Collecting terms gathered thus far gives

(1− β̃1)η
t∑

r=1

T0,r ≤ (1− β̃1)η
t∑

r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

− 3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2


+ (1− β̃1)η
t∑

r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)
.

Now, let us bound the final term in equation (9),∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 maxr∈[t] |∆r|√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃t
1)√

ṽt + τ

∥∥∥∥∥
2

∥ΦK
1 ∥2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2d
∥ΦK

1 ∥2

τ2
.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Substituting into equation (9) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)η

t∑
r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (11)

Note that the exponential decay caused by β̃1 in the third term will expectedly dominate the effect of
first order moment initialization m̃0 as training progresses, and summation over t ∈ [T ] givesO(1).
We initialize m̃0 ← 0 to further simplify the equations. We also further exacerbate the upper bound
by substituting γ̃1, α̃1 into γr, αr respectively, which achieves independence from r. Telescoping
equation (11) then gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+

(1− β̃1)ηηℓK
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (12)

To complete the proof, we aim to ease a logarithm out from the third term on the right hand side.
For this purpose, we induce a recursion with a log bound

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤
T∑

t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ aT + cT log (1 + bT ) . (13)

Setting T = 1 gives

(1− β̃1)
∆2

1,j

∆2
1,j + τ2

≤ a1 + c1 log(1 + b1),

and setting aT = 1 − β̃1 satisfies this inequality (among other choices). Assuming formula (13)
holds for T , let us explore the induction condition for T + 1, which is

T∑
t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

+ (1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ aT+1 + cT+1 log (1 + bT+1) .

For simplicity, we impose that ct is a monotonically increasing non-negative sequence of t. We
intend to contain the increase in the left hand side as T grows in the log argument only, in the
right hand side. Therefore, we select aT+1 = aT . For a suitable choice of bT+1 satisfying strong
induction, it is enough to resolve

(1− β̃T+1
1 )

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1 log

(
1 + bT+1

1 + bT

)
= cT+1 log

(
1 +

bT+1 − bT
1 + bT

)
.

Here, we used monotonicity of ct. Noting that log(1+x) ≥ x/(1+x), it is again enough to resolve

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1(bT+1 − bT )
bT+1 + 1

⇐⇒
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2
+ cT+1bT ≤

(
cT+1 −

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

)
bT+1.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

By positivity of bt for t > 1, a necessary condition is therefore that

cT+1 ≥
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2

In order to enhance the tightness of our bound, we choose the minimal permissible value ct = 1
uniformly, which is attained as a suprema. In this setting, we are left with a recursion

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

=
bT+1 − bT
bT+1 + 1

,

and collecting the terms in the form bT+1 = bTω1(∆)+ω2(∆) would provide an optimal recursive
bound given our simplifying assumptions, starting with b1 = 0. A less optimal but simpler bound
can be formed by selecting bT+1 = bT +∆2

T+1,j/τ
2 for b1 = ∆2

1,j/τ
2. Therefore, we arrive at

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∑
ℓ=1

(
∆ℓ,j

τ

)2
)

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
. (14)

The remaining term to be bounded in equation (12) is given

(1− β̃1)ηηℓKL
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
β̃t−r
1 (t− r)2∥ΦK

2 ∥2
)
.

The trick is to notice that the explosion of the series caused by double summation is culled selectively
in reverse chronological order by the exponential, rendering the tail end asymptotically vacuous.
Note that (1 − β̃1) stabilizes the divergence as β̃1 → 1− in the limit. By a change of variable
u = t− r,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 = (1− β̃1)

T−1∑
u=0

β̃u
1 u

2(T − u).

Defining

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

let

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, we claim that

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ (1− β̃1)c(β̃1)T.

We prove this by induction. The case T = 1 is trivial. Now, assume the desired inequality holds
until T . For T + 1, we want to show

(1− β̃1)
T∑

u=0

β̃u
1 u

2(T − u+ 1) ≤ (1− β̃1)c(β̃1)(T + 1)

⇐⇒ (1− β̃1)
T−1∑
u=0

β̃u
1 u

2(T − u) + (1− β̃1)
T∑

u=0

β̃u
1 u

2 ≤ (1− β̃1)c(β̃1)(T + 1)

and thus by the inductive hypothesis it is enough to show

T∑
u=0

β̃u
1 u

2 ≤ c(β̃1).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

However, this is trivial by the definition of c(β̃1). Upon substitution into equation (12) and noting
that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2

we simplify as

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+
(1− β̃T

1 )ηηℓKTL̃∥ΦK
1 ∥2

α̃1τ(v0 + ε)2
+

(1− β̃1)ηηℓKTLc(β̃1)∥ΦK
2 ∥2

α̃1τ(v0 + ε)2
(15)

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

Therefore, we immediately conclude that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1 )ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

This concludes the proof.

Note that we have also shown the following two useful lemmas:

Lemma 21. For β̃1 ∈ [0, 1) and T ∈ Z≥0, let

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

and

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Then, we have that

T∑
t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ c(β̃1)T.

Lemma 22. Let ∆ℓ,j ∈ R, β̃1 ∈ [0, 1), and T ∈ Z≥0. Then,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
.

We present the following corollary.

Corollary 23. Any of the following conditions are sufficient to ensure convergence of Algorithm 2:

(A) : ηℓ ≤ O(T−1/2) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100 ) for Ω(T− 1

2 ) < η < O(T 12
25 ).

Proof. The proof is formed by comparing orders of T . Recall that γ̃1 = Θ(ηℓ) and L̃ = Θ(η−1
ℓ ).

As ΦK
1 = Θ(ηℓ) and ΦK

2 = Θ(min {η, ηηℓ}), we have for η = Θ(T p1) and ηℓ = Θ(T p2),

ψ1 = Θ(1)

ψ2 = η2η2ℓT

ψ3 = ηη2ℓT

ψ4 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

ψ5 = ηηℓ log(1 + Tη2ℓ )

ψ6 =

{
ηηℓT if O(Tη2ℓ ) ≤ O(1)
η
√
T if Θ(Tη2ℓ ) > Ω(1)

.

If O(Tη2ℓ ) ≤ O(1), then O(ηℓ) ≤ O(1) which implies

ψ1

ψ6
: (ηηℓT )

−1 = Θ
(
T−(p1+p2+1)

)
ψ2

ψ6
: ηηℓ = Θ

(
T p1+p2

)
ψ3

ψ6
: ηℓ = Θ(T p2)

ψ4

ψ6
: η2η2ℓ = Θ

(
T 2p1+2p2

)
ψ5

ψ6
:
log(1 + Tη2ℓ )

T
= O(T−1)

This implies that we must have that p2 ≤ −1/2 and −1 < p1 + p2 < 0 for guaranteed convergence.
Thus, ηℓ ≤ O(T−1/2) such that Ω(T−1) < ηηℓ < O(1) is a sufficient condition. For instance, let
ηℓ = Θ(T−1/2) and Ω(T−1/2) < η < O(T 1/2).

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Now, assume Θ(Tη2ℓ ) > Ω(1). If Θ(ηℓ) > Ω(1), Ψ3/Ψ6 diverges. Therefore, let ηℓ ≤ O(1). We
have

ψ1

ψ6
: (η
√
T )−1 = Θ(T−p1− 1

2 )

ψ2

ψ6
: ηη2ℓ

√
T = Θ(T p1+2p2+

1
2 )

ψ3

ψ6
: η2ℓ
√
T = Θ(T 2p2+

1
2 )

ψ4

ψ6
: η2η3ℓ

√
T = Θ(T 2p1+3p2+

1
2 )

ψ5

ψ6
:
ηℓ log(1 + Tη2ℓ )√

T
< O(T− 1

2+p2)

Therefore, it suffices to satisfy

−1

2
< p2 ≤ −

1

4
, −1

2
< p1, p1 + 2p2 < −

1

2
, 2p1 + 3p2 < −

1

2
.

An example satisfying these conditions are

ηℓ = Θ(T− 49
100 ), Ω(T− 1

2 ) < η < O(T 12
25 ).

Note that for all cases, ηℓ must decay to establish convergence. However, striking a balance between
local and global learning rates provably allows for greater than Ω(T 1/3) divergence in the server
learning rate without nullifying desirable convergence properties. This theoretically demonstrates
the enhanced robustness properties of adaptive client-side federated learning algorithms to mitigate
suboptimal choices of server learning rates.

Corollary 24. Algorithm 2 converges at rate O(T−1/2).

Proof. If O(Tη2ℓ ) ≤ O(1), then we juxtapose ψ1/ψ6 and ψ2/ψ6. It is clear that the minimax value
of the respective powers are attained at p1 + p2 = −1/2, realized by p2 = −1/2 and p1 = 0. In this
case, clearly Θ(ψi/ψ6) ≤ O(T−1/2) for 1 ≤ i ≤ 5. If Θ(Tη2ℓ ) > Ω(1), then our strategy should
be to minimize p2 due to positive coefficients in the powers ψi/ψ6. Thus, let p2 = −1/2 + ε for
1 ≫ ε > 0. Then, the order of decay in ψ2/ψ6 is p1 − 1/2 + 2ε, which is once again matched
against −p1− 1/2, the power of ψ1/ψ6. Taking the limit ε→ 0+, minimax{p1− 1/2,−p1− 1/2}
for the range −1/2 < p1 is attained at p1 = 0. This sets the maximal decay rate to O(T−1/2) for
the second case.

C.2 EXTENSION TO ADAM

The extension to the case where Adam is selected as the optimizer for the server, or for both the
server and client is straightforward. We present the latter as it generalizes the former analysis. As in
Lemma 15, we have the following bound for the compressed SM3 estimates of the second moment,

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K},

which allows bounds to be established for the local and global pseudogradients following analogous
logic as Lemmas 16, 28. As before, we arrive at equation (10) where due to exponential moving
averaging on the server side, we have

ṽt = β̃t
2ṽ0 + (1− β̃2)

t∑
ℓ=1

β̃t−r
2 ∆ℓ.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Now, decompose T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

where T1,r may be bounded via

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(

√
β̃2ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t (1− β̃2)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)(

√
β̃2ṽt−1 +

√
ṽt)

〉

≤ ∥Φ
K
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Due to the exponential decay parameter in the first pseudogradient moment, we have

η

T∑
t=1

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

≤ η
T∑

t=1

t∑
r=1

∥ΦK
1 ∥3Gβ̃t−r

1 (1− β̃2)
τ2

≤ η∥ΦK
1 ∥3GT (1− β̃2)

τ2
.

An analogue of the arguments made in the proof of Theorem 6 with appropriate modifications, e.g.,

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

(1− β1)
∑p

ℓ=1 β
p−ℓ
1√

(1− β2)
∑⌈ p

z ⌉
ℓ=1 β

⌈ p
z ⌉−ℓ

2 (gri,(ℓ−1)z+1)
2 + ε

,

gives the main change as the asymptotic behavior of Ψ5, which now satisfies

Ψ5 = Θ
(
ηη3ℓT

)
.

The convergence rate is still dominated by Ψ1, Ψ2 as in Corollary 24, which gives O(T−1/2).

D FEDERATED BLENDED OPTIMIZATION (GENERAL/FULL FORM OF
FEDADA2)

In federated blended optimization, we distribute local optimizer strategies during the subsampling
process which may be formalized as functions that take as input the availability of client resources,
and outputs the number of local epochs, K(Oi

l), as well as additional hyperparameters such as delay
step size z or preconditioner initialization. These may be chosen to streamline model training based
on a variety of factors, such as straggler mitigation or dynamically restricted availability of local
resources.

In the general formulation of FedAda2, blended optimization allows the trainer to utilize the unique
strengths of each individual optimizer, balancing resource constraints and client noise. Each client
has the option to run different optimizer strategies as the training rounds progress, depending on
varying individual resource constraints or distribution shift in the local data stream. This faithfully
corresponds to real-world settings where the availability of local resources are actively dynamic.
Future work will provide empirical results on the performance of blended optimization, includ-
ing identifying the settings in which mixing optimizer strategies are advantageous for distributed
learning. The following theorem shows that under certain non-restrictive conditions, blended opti-
mization still allows for convergence of the global gradient objective.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Algorithm 5 Server-side ADAGRAD and client-side optimizer mixture (FedAda2)

Require: Local optimizer strategies O1, . . . , OOp (e.g. Adam, AdaGrad, SGD...)
Require: Initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)
1: for t = 1, . . . , T do
2: Sample participating client multiset St

l for each optimizer strategy l ∈ [Op]
3: for each sampled client collection l ∈ [Op] (in parallel) do
4: for each client i ∈ St

l (in parallel) do
5: xt,li,0 ← xt−1

6: xt,l
i,K(Oi

l )
← Optimize(Ol, i, x

t,l
i,0, Clip = True)

7: ∆t,l
i = w(Ol)

(
xt,l
i,K(Oi

l )
− xt−1

)
8: end for
9: end for

10: S ←
∑

l∈[Op] |St
l |

11: ∆t =
1
S

∑
l∈[Op]

∑
i∈St

l
∆t,l

i

12: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

13: ṽt = ṽt−1 +∆2
t

14: xt = xt−1 + η m̃t√
ṽt+τ

15: end for

Theorem 25. Given client i ∈ [N ], strategy l ∈ [Op], global timestep r, and local timestep p,
assume that the optimizer strategies satisfy the parameter update rule

xr,li,p = xr,li,p−1 − ηℓ
p∑

ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

where
0 < ml ≤ ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ) ≤Ml and 0 < al ≤ ar,li,ℓ ≤ Al

for all possible values of i, ℓ, r, l. If 1 ≤ K(Oi
l) ≤ K and 0 < Ξ− < w(Oi

l) < Ξ+, then Algorithm 5
admits an identical convergence bound as Theorem 20, with Ψ3, Ψ4 replaced by

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

C =
(Ξ+)2K(K + 1)(maxl∈[Op]A

2
l )

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

We have opted to provide a looser bound for expository purposes, and the proof straightforwardly
generalizes to finer bounds that depend on the individual characteristics of the optimizer strategy
(e.g. ml,Ml, Al, etc). The extension to server-side Adam updates follows analogous steps to Sec-
tion C.2.

It is easy to show that under the bounded gradient assumption (Assumption 2), Adam, AdaGrad,
and SGD (including under SM3 for the former two) all satisfy the optimizer condition depicted in
Theorem 25. In Appendix E and F, we materialize two realizations of this framework as additional
examples, using client-side Adam and AdaGrad with delayed preconditioner updates. Note that de-
layed updates require the debiasing term in Adam to be adjusted accordingly. To prove Theorem 25,
we begin with the following lemma.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Lemma 26. Under Algorithm 5, |∆t,l
i | is bounded by

ΦK
1 := ηℓΞ

+K(K + 1)maxl∈[Op]AlG

2minl∈[Op]ml
,

and the server-side pseudogradient is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1 ),
η

τ
ΦK

1

}
.

Proof. Unraveling the definition of ∆t,l
i , we have

∆t,l
i := −ηℓw(Ol)

K(Oi
l )∑

p=1

p∑
ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

 ,

which immediately gives

|∆t,l
i | ≤ ηℓΞ

+

(
K∑

p=1

p∑
ℓ=1

AlG

ml

)
= ηℓΞ

+K(K + 1)AlG

2ml
.

For the server bound, the proof is identical to Lemma 16.

We are now ready to prove Theorem 25.

Proof. As the proof follows a similar structure to Theorem 6, we provide only an outline for repeti-
tive steps while focusing on differing aspects. As before, L-smoothness gives that

f(xt) ≤ f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(16)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
.

Decomposing T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

T1,r is bounded by

T1,r ≤
∥ΦK

1 ∥Gβ̃t−r
1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

For T2,r, we aim to apply a further decomposition for γr > 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

Unraveling the definition of ∆r gives

∆r =
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

∆r,l
i =

−ηℓ∑
l∈[Op] |Sr

l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓg

r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

,

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

which induces the following value

γr :=
ηℓ∑

l∈[Op] |St
l |
∑

l∈[Op]

∑
i∈St

l

K(Oi
l )∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

=
∑

l∈[Op]

γlr.

For the purposes of the proof, we shall consider a local device to have been dropped and unsampled
if any runs less than 1 epoch. Then, we have

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

Ξ− minl∈[Op] al

maxl∈[Op]Ml
, ηℓ

Ξ+K(K + 1)maxl∈[Op] al

2minl∈[Op]Ml

]
.

Expanding T 1
2,r for αl

r > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓw(Ol)a

r,l
i,ℓ(∇f(xt−1)− gr,li,ℓ)

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

〉

≤ ηℓβ̃
t−r
1

4
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

αl
r

∑
i∈Sr

l

K(Oi
l)(K(Oi

l) + 1)

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

1

αl
r

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∥∥∥
w(Ol)a

r,l
i,ℓ

(
∇f(xt−1)−∇Fi(x

r,l
i,ℓ−1)

)
ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ)
√√

ṽt−1 + τ

∥∥∥∥∥∥
2

≤
ηℓβ̃

t−r
1 maxl∈[Op] α

l
rK(K + 1)

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2

We aim to control the first term by setting for all l ∈ [Op]

αl
r =

γr
ηℓK(K + 1)

∈ [α̃1, α̃2] :=

[
Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
,
Ξ+K(K + 1)maxl∈[Op] al

2K(K + 1)minl∈[Op]Ml

]
.

Via gradient clipping as before, we have∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2 ≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Noting that

ηℓβ̃
t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l )∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2
≤
ηℓ(Ξ

+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
,

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

collecting terms into equation (16) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j


+ (1− β̃1)ηηℓ

t∑
r=1

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l︸ ︷︷ ︸

C

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (17)

By initializing m̃0 ← 0 and enhancing the upper bound by substituting γ̃1 into γr, telescoping gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+ (1− β̃1)ηηℓC

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (18)

Again by noting that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ,

Lemmas 21 and 22 give that

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T ]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+ (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2 + (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

.

This implies that

min
t∈[T ]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 = (1− β̃T
1 )ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) ,
C =

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l )

2α̃1τ minl∈[Op]m
2
l

.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

E ADAM DELAYED MOMENT UPDATES (ADMU)

We begin with a brief description of ADAM (Kingma & Ba, 2015).

Algorithm 6 Adam Optimization Algorithm

Require: ηℓ: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: ε > 0: Smoothing term
Require: x0: Initial parameter vector

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2t
9: m̂t ← mt/(1− βt

1)
10: v̂t ← vt/(1− βt

2)
11: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

12: end while
13: return xt

Considering client-side resource constraints in the federated setting, we propose an adapted ver-
sion of Adam with delayed precondtioner updates aimed at relieving the cost of moment estimate
computation in Algorithm 7 which we call ADMU.

Following Kingma & Ba (2015), we provide an intuitive justification for the initialization bias cor-
rection employed in ADMU. Recall that the motivation for adaptive step-size in ADAM is updating
the parameters via empirical estimates of the pseudo-gradient E[g]/

√
E[g2], which allows for both

momentum and autonomous annealing near steady states. The square root is taken in the denom-
inator to homogenize the degree of the gradient. Bias correction for ADMU adheres to the same
principle, while requiring an additional assumption of gradient stabilization during the z-step pre-
conditioner update delay. An equivalent formulation of the moment estimates in Algorithm 7 for
general t is given

mt = m0β
t
1 + (1− β1)

t∑
r=1

βt−r
1 · gr,

vt = v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

t∑
r=1

β
⌊ t−1

z ⌋+1−⌈ r
z ⌉

2 · g⌈ r
z ⌉z−z+1 ⊙ g⌈ r

z ⌉z−z+1 · χ{ r−1
z ∈Z≥0}

= v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 g(r−1)z+1 ⊙ g(r−1)z+1. (19)

We work with vt as the proof for mt is analogous with z = 1. Assume that the gradients g1, . . . , gt
are drawn from a latent gradient distribution gi ∼ D̃(gi). We aim to extract a relation between
the expected delayed exponential moving average of the second moment E[vt] and the true gradient

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Algorithm 7 Adam with Delayed Moment Updates (ADMU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: m̂t ← mt/(1− βt

1)
9: if (t− 1)/z ∈ Z then

10: vt ← β2 · vt−1 + (1− β2) · g2t
11: v̂t ← vt/(1− β

⌊ t−1
z ⌋+1

2 )
12: else
13: v̂t ← v̂t−1

14: end if
15: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

16: end while
17: return xt

expectation E[g2t ]. Taking expectation of both sides in equation (19),

E[vt] = v0β
⌊ t−1

z ⌋+1

1 + (1− β2)
⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 E
[
g2(r−1)z+1

]

≈ ζ + (1− β2)E
[
g2t
] ⌈ t

z ⌉∑
r=1

β
⌈ t
z ⌉−r

2

≈ E[g2t ]
(
1− β⌊

t−1
z ⌋+1

1

)
.

Here, we have used zero initialization for the first moment estimate, while accumulating any error
terms in ζ. Several assumptions can lead to small ζ. As in Kingma & Ba (2015), we assume that β1
is chosen small enough that the exponential moving average decay undermines the influence of non-
recent gradients gi for i <

⌈
t
z

⌉
z−z+1. A second assumption is that the latent gradient distribution

remains stable during the z-step delay as training progresses, allowing the approximation E[gt] ≈
E[g⌈ t

z ⌉z−z+1]. This leaves the residual scaling of the true gradient second moment of the form

1−βφ, which is caused by (zero) initialization as setting v0 = E[g2t ] eliminates βφ. Therefore, bias
correction is enforced by scaling the empirical vt estimate by the inverse. We note that v0 need not

be initialized to 0, in which case we should additionally translate vt by −v0β
⌊ t−1

z ⌋+1

1 prior to the
inverse scaling.

E.1 NON-CONVEX CONVERGENCE ANALYSIS

A description of FedAdaAdam is given as Algorithm 8. A few remarks are in order. Firstly, to allow
for straggler mitigation, we allow the number of client i epochs K

t

i at timestep t to vary among the
clients i ∈ Si. Although Algorithm 8 sets a schedule for client epochs and pseudogradient weights
for clarity of exposition, dynamic allocation still allows the convergence proof to go through, as long
as the schedule weights are bounded. By default, we set K

t
= K and Ξt = B = 1 to avoid tuning a

large number of hyperparameters or having to sample from a client epoch count distribution for the
client subsampling case.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Algorithm 8 Adaptive server-side ADAGRAD and client-side ADAM (FedAdaAdam)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global and local decay parameters β̃1, β̃2, β1, β2 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · ×Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize m0, v0 ≥ 0 with default values m0, v0 ← 0

6: for k = 1, . . . ,K
t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← β1 ·mk−1 + (1− β1) · gti,k
9: m̂k ← mk/(1− βk

1 )
10: if (k − 1)/z ∈ Z then
11: vk ← β2 · vk−1 + (1− β2) · gti,k ⊙ gti,k
12: v̂k ← vk/(1− β

⌊ k−1
z ⌋+1

2 )
13: else
14: vk ← vk−1

15: end if
16: if 0 < ∥m̂k/(

√
v̂k + ϵ)∥ < εs then

17: mk ← 0
18: end if
19: xti,k ← xti,k−1 − ηℓ · m̂k/(

√
v̂k + ϵ)

20: end for
21: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
22: end for
23: ∆t =

1
|St|

∑
i∈St ∆t

i

24: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

25: ṽt = ṽt−1 +∆2
t

26: xt = xt−1 + η m̃t√
ṽt+τ

27: end for

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Secondly, for the purposes of the proof we shall consider a local device to have been dropped and
unsampled if any runs less than 1 epoch. We also enforce that pseudogradient weights are bounded
positively from below, i.e. Ξt

i > εw > 0. We now provide a convergence bound for the general,
non-convex case which holds for both full and partial client participation.

Corollary 27. For Algorithm 8, we have an identical bound to Theorem 6 with Ψ3,Ψ4 replaced by

Ψ3 =
(1− β̃T

1 )ηηℓ(1− β2K
1 )KL̃B2T∥ΦK

1 ∥2

2α̃1τε2
,

Ψ4 =
(1− β̃1)ηηℓ(1− β2K

1 )KLTB2c(β̃1)∥ΦK
2 ∥2

2α̃1τε2
.

Here, the intermediary γ̃1, α̃1 values are defined for K− := mini,tK
t

i ≥ 1 as

γ̃1 := ηℓεw

K−∑
p=1

1− βp
1

G

√
1− β⌈ p

z ⌉
2 + ε

, α̃1 :=

K−∑
p=1

εw (1− βp
1)(

G

√
1− β⌈ p

z ⌉
2 + ε

)
(K + 1)2

.

The proof is subsumed by or analogous to Theorems 6 and 25, with changes summarized in the
following lemma.

Lemma 28. Under Algorithm 8, |∆t
i| is bounded by

|∆t
i| ≤ Φ

K
t
i

1 := |Ξt
i| ·

ηℓKt

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+Φ
K

t
i

0


where

Φ
K

t
i

0 :=
K

t

iGηℓ(1− β
K

t
i

1 )

ε
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in ADMU, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

m̂p√
v̂p + ε

= −ηℓΞt
i

K
t
i∑

p=1

m0β
p
1 + (1− β1)

∑p
r=1 β

p−r
1 · gti,r√

v0β
⌊ p−1

z ⌋+1
2 + (1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

We assume m0, v0 ← 0 for expository purposes, although v0 > 0 also suffices for the analysis

(ending in a slightly different ΦK
t
i

1 ). This gives that

∆t
i = −ηℓΞt

i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r√

(1− β2)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

= −ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 · gti,(r−1)z+1√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

− ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r · χ{ p−1

z /∈Z}√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the intermediary upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}

 . (20)

Note that the first term is 0 in the worst-case scenario above, which implies that any non-negative
upper bound is trivially satisfied. Therefore, we may assume without loss of generality that at least
one sampled gradient gti,(r−1)z+1 is nontrivial and remove ε from the denominator to obtain an upper
bound. By Cauchy-Schwartz, we have⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2

⌈ p
z ⌉∑

r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

 ≥
⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣
2

which implies

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}



≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β1)
ε

· (1− β
K

t
i

1 )

(1− β1)

≤ ηℓ|Ξt
i|K

t

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β

K
t
i

1 )

ε
.

It can be shown that case of no update delay z = 1 allows for ΦK
t
i

0 = 0, following a similar proof

to the one given above. Note that ΦK
t
i

0 handles the superfluous gradient terms cemented by delaying
preconditioner updates for the second moment, while moving averaging is performed for the first
moment estimate. It also follows that ∆t is also upper bounded by the identical bound scaled by
maxt ∥Ξt∥∞ ≤ B, as the average of the ∆t

i.

F ADAGRAD WITH DELAYED UPDATES (AGDU)

We present AdaGrad with delayed preconditioner as Algorithm 9 for completeness.

Note that due to delayed updates, local gradient updates are not necessarily elementwise bounded in
absolute value by ηℓ. We may expand the delayed updates for vt as

vt = v0 +

⌈ t
z ⌉∑

r=1

g(r−1)z+1 ⊙ g(r−1)z+1.

We have the following convergence bound.

Corollary 29. Let K− := mini,tK
t

i ≥ 1 and

γ̃1 := ηℓεw

K−∑
p=1

1√
v0 + ⌈Kz ⌉G2 + ε

, α̃1 :=
εwK

−

2K
(√

v0 + ⌈Kz ⌉G2 + ε
) .

Then Algorithm 10 has an identical convergence bound to Theorem 6.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Algorithm 9 AdaGrad with Delayed Updates (AGDU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize v0 ← 0 (2nd moment vector)
2: Initialize t← 0 (Timestep)
3: while not converged do
4: t← t+ 1
5: gt ← ∇xft(xt−1)
6: if (t− 1)/z ∈ Z then
7: vt ← vt−1 + g2t
8: else
9: vt ← vt−1

10: end if
11: xt ← xt−1 − ηℓ · gt/(

√
vt + ε)

12: end while
13: return xt

Algorithm 10 Adaptive server and client-side ADAGRAD (FedAdaAdagrad)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1×· · ·×ΞT ∈ R|S1|×· · ·×R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · ×Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T ]
Require: Local epsilon smoothing term εs > 0, global smoothing term τ > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N ] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize v0 ≥ 0 with default value v0 ← 0 (what if use τ here?)
6: for k = 1, . . . ,K

t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← gti,k
9: if (k − 1)/z ∈ Z then

10: vk ← vk−1 + gti,k ⊙ gti,k
11: else
12: vk ← vk−1

13: end if
14: if 0 < ∥mk/(

√
vk + ϵ)∥ < εs then

15: mk ← 0
16: end if
17: xti,k ← xti,k−1 − ηℓ ·mk/(

√
vk + ϵ)

18: end for
19: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
20: end for
21: ∆t =

1
|St|

∑
i∈St ∆t

i

22: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

23: ṽt = ṽt−1 +∆2
t

24: xt = xt−1 + η m̃t√
ṽt+τ

25: end for

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Similar to delayed Adam, the proof is analogous to Theorem 6 with changes summarized in the
following lemma.
Lemma 30. Under Algorithm 10, |∆t

i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓB

(⌊
K − 1

z

⌋
+ 1 +

KG
√
v0 + ε

)
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i

local steps and the definition of gradient updates in FedAdaAdagrad, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

mp√
vp + ε

= −ηℓΞt
i

K
t
i∑

p=1

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌊(Kt

i − 1)/z⌋}z + 1, we thus have that

∆t
i = −ηℓΞt

i

∑
p∈F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

− ηℓΞt
i

∑
p∈[K

t
i]\F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that
gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉]. Therefore, we form the upper bound∣∣∆t

i

∣∣ ≤ ηℓ|Ξt
i|
∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|√
v0 + ε

 ∑
p∈[K

t
i]\F

∣∣gti,p∣∣
 (21)

≤ ηℓ|Ξt
i|
(⌊

K − 1

z

⌋
+ 1

)
+
ηℓ|Ξt

i|KG√
v0 + ε

where the last line uses that the local epoch schedules are upper bounded by K. Noting that
∥Ξt

i∥∞ ≤ B, we are done.

G DATASETS, MODELS, AND BASELINES

Below, we summarize the dataset statistics and provide a more in-depth description.

Table 1: Summary of datasets and models.

Datasets # Devices Non-IID Partition Model Tasks

StackOverflow (Exchange, 2021) 400 Natural Logistic Regression 500-Class Tag Classification
CIFAR-100 (Krizhevsky, 2009) 1000 LDA ViT-S 100-Class Image Classification
GLD-23K (Weyand et al., 2020) 233 Natural ViT-S 203-Class Image Classification

G.1 STACKOVERFLOW DATASET

The StackOverflow dataset (Exchange, 2021) is a language dataset composed of questions and an-
swers extracted from the StackOverflow online community. Each data entry includes associated
metadata such as tags (e.g., “python”), the time the post was created, the title of the question, the
score assigned to the question, and the type of post (question or answer). The dataset is partitioned
by users, with each client representing an individual user and their collection of posts. This dataset
exhibits significant imbalance, with some users contributing only a few posts while others have a
much larger number of entries. In this paper, we work with a randomly selected 400-client subset of
the full StackOverflow Dataset, with a client participation fraction of 0.1.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

G.2 GLD-23K DATASET

The GLD-23k dataset is a subset of the GLD-160k dataset introduced in Weyand et al. (2020). It
contains 23,080 training images, 203 landmark labels, and 233 clients. Compared to CIFAR-10/100,
the landmarks dataset consists of images of far higher quality and resolution, and therefore represents
a more challenging learning task. The client particiation fraction for all GLD-23K experiments are
set to 0.01.

50 100 150 200
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

2

3

4

5

Te
st

 L
os

s

GLD-23K
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

0.5

1.0

1.5

2.0

2-N
or

m
 M

ea
n

Pseudo-Gradient
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

0.0

0.2

0.4

0.6

0.8

2-N
or

m
 S

D

Pseudo-Gradient
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

GLD-23K

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

1

2

3

4

5

Te
st

 L
os

s

GLD-23K
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

0.0

0.5

1.0

1.5

2.0

2-N
or

m
 M

ea
n

Pseudo-Gradient
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

100 200 300 400
Communication Rounds

0.0

0.2

0.4

0.6

0.8

2-N
or

m
 S

D

Pseudo-Gradient
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

Figure 4: (Top) Additional results for the experiments in Figure 3 (b), where clients train over
5 epochs. (Bottom) Analogous experiments for full fine-tuning, where the entire net is unfrozen
after replacing the classification layer. All adaptive optimizers are instantiated with Adam, with the
exception of FedAdaGrad where the server-side adaptive optimizer is AdaGrad.

G.3 CIFAR-100 DATASET

The CIFAR-10/100 datasets (Krizhevsky, 2009) consist of 32 × 32 × 3 images. In the smaller variant
CIFAR-10, there are 10 labels, with 50,000 training images and 10,000 test images. The 10 classes
represent common objects: airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and
trucks. CIFAR-100 is meant to be an extension of CIFAR-10, consisting of 60,000 color images,
but with 100 classes instead of 10. Each class in CIFAR-100 contains 600 images, and the dataset
is similarly split into 50,000 training images and 10,000 test images. Unlike CIFAR-10, every class
in CIFAR-100 is subsumed by one of 20 superclasses, and each image is provided a fine label and a
coarse label that represents the former and latter (super-)class. In this paper, we train and evaluate all
algorithms against the fine label. In Figure 5, we show the convergence of FedAda2 as compared
to all other adaptive or non-adaptive benchmarks using CIFAR-100.

50 100 150 200
Communication Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

1

2

3

4

5

6

7

8

Te
st

 L
os

s

CIFAR-100
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Ac

cu
ra

cy

CIFAR-100

FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

50 100 150 200
Communication Rounds

1

2

3

4

5

6

7

8

Tr
ai

n 
Lo

ss

CIFAR-100
FedAvg
FedAdaGrad
FedAdam
Direct Joint Adap.
Joint Adap. w/o
Precond. Commu.
FedAda2

Figure 5: Training and testing accuracies of optimal hyperparameters for CIFAR-100. At each
logging step, train/test accuracy and loss evaluation is done over all of training and testing data,
disjointly, resulting in robust and similar-looking curves. Averaged over 20 random seeds for better
convergence. Adaptive optimizer instantiation conventions are identical with Figure 4.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

G.4 DESCRIPTIONS OF BASELINES

In the original FedAvg algorithm introduced by McMahan et al. (2017), the server-side aggrega-
tion is performed without any additional momentum, relying solely on simple averaging. On the
other hand, algorithms like FedAdaGrad and FedAdam represent examples of server-only adaptive
approaches (Reddi et al., 2021), where the server employs adaptive optimizers such as AdaGrad or
Adam instead of vanilla averaging. We note that server-only adaptive frameworks such as FedAdam
and FedAdaGrad are optimizer-specific instantiations of FedOpt (Reddi et al., 2021), a competitive
framework that has been utilized in recent works to develop leading applications (e.g., by Google
Deepmind to develop DiLoCo (Douillard et al., 2024; Liu et al., 2024; Jaghouar et al., 2024)). The
concept of ‘Direct Joint Adaptivity’ (Direct Joint Adap.) refers to a training paradigm where the
server’s adaptive preconditioners are shared with clients during each communication round. An
example of this is the AdaGrad-AdaGrad setup used as a differential privacy baseline in the Stack-
Overflow task, where the server-side AdaGrad preconditioners are applied to client-side AdaGrad
optimizers, guiding client model updates.

Alternatively, by eliminating the transmission of server-side preconditioners and initializing client-
side preconditioners to zero, we derive the ’Joint Adaptivity without Preconditioner Communica-
tion’ (Joint Adap. w/o Precond. Commu.) baseline, which is more communication-efficient. Fur-
ther, compressing local preconditioners to align with client memory constraints leads to the develop-
ment of FedAda2. Thus, FedAda2 and the various baselines can be viewed as logically motivated
extensions, incorporating adaptive updates and memory-efficient strategies. We provide compre-
hensive evaluations of all 15 algorithms (including 12 jointly adaptive methods tailored to each
adaptive optimizer, 2 server-only adaptive methods, and 1 non-adaptive method) in Section 6 and in
the Appendix G, I.

Below, we include a table to summarize the communication complexity and memory efficiency
of FedAda2 and baselines, compared to alternative adaptive frameworks such as MIME or
MIMELite (Karimireddy et al., 2021; Ro et al., 2022) (evaluation not included in paper).

Table 2: Comparison of Baselines versus FedAda2 with AdaGrad instantiations. d denotes the
model dimensions.

Method Joint Adaptivity Communication Computation (#gradient calls) Memory (client)
FedAvg N 2d 1 d
FedAdaGrad N 2d 1 d
DJA Y 3d 1 2d
FedAda2 Y 2d 1 2d
MIME/MIMELite N 5d / 4d 3/2 4d / 3d

H HYPERPARAMETER SELECTION

H.1 HYPERPARAMETERS FOR DP STACKOVERFLOW

We use a subsampling rate of 0.1, for a total of 400 clients and 500 communication rounds. We
investigate the setting of noise multiplier σ = 1, which provides a privacy budget of (ε, δ) =
(13.1, 0.0025) with optimal Rényi-Differential Privacy (RDP) order 2.0. We sweep over the follow-
ing hyperparameters:

c ∈ {0.1, 0.5, 1} ,
ηl ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1} ,
τl ∈

{
10−7, 10−5, 10−3

}
,

τs ∈
{
10−7, 10−5, 10−3

}
,

where c is the gradient clip value. Here, ηl, ηs indicates the client and server learning rates, while
τl, τs represents their respective adaptivity parameters. In the case of singular adaptivity, we ignore
the irrelevant terms (i.e. client adaptivity parameter for FedAdaGrad). For FedAvg only, we select

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

best hyperparameters using the expanded local learning rate grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160} .
The optimal hyperparameters are summarized in Table 3, which were chosen based on optimal test
accuracy over a running average of the last 10 logged datapoints. In Figure 3 (bottom), we see
that adaptive optimization on either the client or server induces varying model training dynamics.
Notably, we see in our experiments that for this privacy budget, removing preconditioners from
jointly adaptive systems supercedes the performance of direct joint adaptivity. Compressing client
adaptive preconditioning (FedAda2) reduces the performance slightly, but still performs the best
among all other baselines.

Table 3: Best performing hyperparameters for DP StackOverflow with σ = 1

FedAvg FedAdaGrad Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

c 1.0 0.1 0.5 0.5 0.1
ηs N/A 1.0 1.0 1.0 1.0
ηl 20.0 1.0 1.0 0.1 0.1
τs N/A 1e-3 1e-3 1e-5 1e-5
τl N/A N/A 1e-3 1e-3 1e-3

H.2 HYPERPARAMETERS FOR IMAGE DATASETS

For all ViT experiments, images were resized to 224 × 224 pixels, and the client optimizer em-
ployed a linear learning rate warm-up, increasing from 0 to the final value over the first 10 local
backpropagation steps. The local batch size was consistently set to 32 across all datasets used in
this paper. Due to better empirical performance, Adam was selected as the main optimizer strategy
for ViT fine-tuning against the image datasets. We utilized prior work (Reddi et al., 2021) as well
as small-scale experiments regarding server-only adaptivity to guide the selection of the momentum
parameters β1 = 0.9, β2 = 0.999 for server Adam. The identical parameters were selected for
client Adam, and better choices may exist for either the server or client. In order to determine suit-
able learning rates and adaptivity parameters, we conduct extensive hyperparameter sweeps using a
two-step procedure.

(Step 1) The first step involved a symmetric sweep over the values

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
ηs ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20} ,
τl ∈

{
10−9, 10−7, 10−5, 10−3

}
,

τs ∈
{
10−9, 10−7, 10−5, 10−3

}
.

Similar to the StackOverflow case, ηl, ηs indicates the client and server learning rates, while τl, τs
represents their respective adaptivity parameters. For FedAvg only, we probe over the expanded grid

ηl ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 20, 40, 80, 160, 320} .

(Step 2) Based on the sweep results over all 10 algorithm and dataset combinations, a second
asymmetric search was launched over the most promising hyperparameter regions, which probed
over the following:

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−7, 10−6, 10−5, 10−4, 10−3, 10−2

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
.

Afterwards, the best performing hyperparameters were selected. For FedAvg only, the final grid
increased additively by 10−3 from 10−3 to 10−2, then by 10−2 onward until the largest value 10−1.
That is, we sweep over the following:

ηl ∈ {0.001, 0.002, 0.003, . . . , 0.009, 0.01, 0.02, . . . , 0.09, 0.1} .

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

For server-only adaptivity or FedAvg, any irrelevant hyperparameters were ignored during the
sweep. In Tables 4 and 5, we summarize the best performing learning rates and adaptivity pa-
rameters. In this subsection, any notion of adaptivity in jointly adaptive systems refers to the Adam
optimizer, and 5 local epochs were taken prior to server synchronization. Full fine-tuning indicates
that the entire net was unfrozen after replacement of the linear classification layer. For FedAdaGrad,
full fine-tuning, Step 2 utilized an expanded hyperparameter grid search due to poor performance.

Table 4: Server/Client Learning Rates ηs/ηl

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

CIFAR-100 N/A / 1e-1 1e-2 / 1e-5 1e-3 / 1e-3 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K N/A / 0.04 1e-2 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2 1e-3 / 1e-2
GLD-23K (Full) N/A / 0.02 1e-4 / 1e-2 1e-4 / 1e-2 1e-4 / 1e-4 1e-4 / 1e-2 1e-4 / 1e-4

Table 5: Server/Client Adaptivity Parameters τs/τl

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

CIFAR-100 N/A / N/A 1e-10 / N/A 1e-5 / N/A 1e-5 / 1.0 1e-5 / 1.0 1e-5 / 1.0
GLD-23K N/A / N/A 1e-5 / N/A 1e-5 / N/A 1e-5 / 0.1 1e-5 / 0.1 1e-5 / 0.1
GLD-23K (Full) N/A / N/A 1e-2 / N/A 1e-5 / N/A 1e-5 / 1e-3 1e-5 / 1 1e-5 / 1e-3

Hyperparameters for varying client resources, GLD-23K. Analogous sweeps as in (Step 1)
above for the limited and sufficient client resource settings (locally training over 1, 20 local epochs
prior to server synchronization) were taken. For the constrained setting, there were no changes to
the (Step 2) grid. In the abundant setting, the modified final search space for adaptive methods was

ηl ∈
{
10−6, 10−5, 10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−3, 10−2, 10−1, 1, 4, 16, 32

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−12, 10−11, 10−10, 10−9, 10−5

}
,

and the optimal hyperparameters are summarized in Table 6.

Table 6: Hyperparameters for GLD-23K under restricted/sufficient client resource settings

FedAvg FedAdaGrad FedAdam Direct Joint Adap. Joint Adap. w/o Precond. Commu. FedAda2

ηs N/A / N/A 1e-2 / 1e-2 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3 1e-3 / 1e-3
ηl 7e-2 / 1e-2 1e-2 / 1e-2 1e-1 / 1e-2 1e-2 / 1e-3 1e-2 / 1e-3 1e-1 / 1e-3
τs N/A / N/A 1e-9 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7 1e-5 / 1e-7
τl N/A / N/A N/A / N/A N/A / N/A 1e-3 / 1e-1 1e-3 / 1e-1 1e-1 / 1e-1

H.3 COMPUTE RESOURCES

Experiments were performed on a computing cluster managed by Slurm, consisting of nodes with
various configurations. The cluster includes nodes with multiple GPU types, including NVIDIA
RTX 2080 Ti, A40, and H100 GPUs. The total compute utilized for this project, including prelimi-
nary experiments, amounted to approximately 6 GPU-years.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

I ADDITIONAL EXPERIMENTS

I.1 DYNAMICS OF HETEROGENEOUS CLIENT-SERVER ADAPTIVITY

In Figure 6, we display the effects of heterogeneous client-server adaptivity in the setting of ViT
fine-tuning over GLD-23K. All hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
,

τs ∈
{
10−7, 10−5, 10−3, 10−1, 1

}
.

(22)

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc
ur

ac
y

Adam-Adam

Figure 6: Each test accuracy is color-coded and ranked based on the final test loss, and lighter colors
indicate lower loss. Algorithm title colors are also consistent with labels; green for Direct Joint
Adaptivity (top), magenta for Joint Adaptivity without Preconditioner Transmission (middle), and
red for FedAda2 (bottom). Title ordering indicates server- and client-side optimizers, respectively;
i.e. AdaGrad-Adam uses server AdaGrad and client Adam. In the case of Direct Joint Adaptivity
with heterogeneous client-server optimizers, we transmit the mismatched server-side preconditioner
to the client, which to our surprise demonstrates considerable performance. For FedAda2, we add
SM3 compression to the client-side optimizer after zero initialization of the local preconditioner.

I.2 EFFECT OF DELAYED UPDATES

Similar to Figure 6, we demonstrate the effects of delayed updates in Figure 7. Hyperparameter
configuration for delayed updates is identical to Figure 3 (b), except that client-side preconditioner
updates are delayed. Hyperparameter sweeps were done over the following grid:

ηl ∈
{
10−4, 10−3, 10−2, 10−1

}
,

ηs ∈
{
10−4, 10−3, 10−2, 10−1

}
,

τl ∈
{
10−3, 10−1, 1

}
,

τs ∈
{
10−5, 10−3, 10−1

}
.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

We see that delaying the computation of the preconditioners does not significantly degrade the per-
formance.

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y
AdaGrad-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

AdaGrad-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-AdaGrad

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Adam-Adam

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

1 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Te

st
 A

cc
ur

ac
y

1 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

1 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

1 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

3 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

3 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

3 Epoch Delay

0 50 100 150 200 250
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

3 Epoch Delay

Figure 7: After updating preconditioners per every local backpropagation step for the first client
epoch, preconditioners are periodically frozen for the next 1 (middle), 3 (bottom) epochs, respec-
tively, for each communication round. Algorithms are consistent across columns, and the top row is
identical to the FedAda2 results in Figure 6 with hyperparameter sweep (22).

54


	Introduction
	Related Work
	Importance of Client-Side Adaptivity
	Deep Remorse of FedAvg and SGD

	FedAda2: Efficient Joint Server- and Client-Side Adaptivity
	Convergence Analyses
	Discussion of Convergence Bound

	Empirical Evaluation
	Empirical Performance of FedAda2
	Effects of Varying Configurations

	Conclusion and Future Work
	Importance of Client-Side Apdaptivity
	Exacerbation of singular client noise
	FedAvg and Stochastic Gradient Descent are deeply remorseful

	Detailed FedAda2 Algorithm Description
	Detailed Proofs
	Precompact Convergence Analysis
	Extension to Adam

	Federated Blended Optimization (General/Full Form of FedAda2)
	Adam Delayed Moment Updates (ADMU)
	Non-convex convergence analysis

	AdaGrad with Delayed Updates (AGDU)
	Datasets, Models, and Baselines
	StackOverflow Dataset
	GLD-23K Dataset
	CIFAR-100 Dataset
	Descriptions of Baselines

	Hyperparameter Selection
	Hyperparameters for DP StackOverflow
	Hyperparameters for Image Datasets
	Compute Resources

	Additional Experiments
	Dynamics of Heterogeneous Client-Server Adaptivity
	Effect of Delayed Updates


