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A IMPLEMENTATION DETAILS

This appendix provides further details on our model architecture and the training protocols employed
for Perceptual Initialization (PI) and related experiments, supplementing the information presented in
the main paper. Full training code for PI is available in our public repositoryﬂ

A.1 ARCHITECTURAL FOUNDATION AND BASELINE CLIP PRINCIPLES

Table 1: Training hyper-parameters and compute budget for each stage.

Scale Model Train MACs GPUs #Samples LR B2 Warm-up Batch
PI Stage | ViT-B/32 1.15 x 10*¢ 6 4.35x10%° 5x10™* 0.999 150 768
PI Stage 2 ViT-B/32 7.10 x 10'8 6 4.80 x 10 5x107* 0.98 2500 30720
Baseline  ViT-B/32 7.10 x 108 6 4.80 x 10 5x107* 0.98 2500 30720
PFT ViT-B/32 (QKV) 2.87 x 105 6 1.09 x 10° 3x10™* 0.999 150 96

Our work builds upon the core concepts of Contrastive Language-Image Pre-training (CLIP) (Radford
et al.| 2021)), which utilizes a dual-encoder architecture to learn joint representations of images and
text. The original CLIP framework typically involves an image encoder (either a ResNet variant
or a Vision Transformer) and a Transformer text encoder (He et al., 2015 |Dosovitskiy et al.l 2021}
Vaswani et al.|[2023). These encoders project images and their corresponding textual descriptions into
a shared embedding space. Alignment is achieved by maximizing the similarity of true image-text
pairs while minimizing it for incorrect pairings, often using a symmetric InfoNCE loss (Gutmann
& Hyvirinen, [2010; van den Oord et al., 2018)). This pre-training is performed on vast web-scale
datasets of image-text pairs (Thomee et al.,2016}Schuhmann et al., 2021} Desai et al., 2021} Radford
et al.l 2021} [Schuhmann et al.| [2022).

For our experiments, including the Perceptual Initialization stages, we employ a ViT based architecture
for the image encoder and a Transformer-based text encoder. Specifically, our ViT model is a ViT-
B/32, characterized by 12 layers, a hidden width of 768, and 12 attention heads with each head
width of 64. It processes 224 x 224 images divided into 32 x 32 patches. The architecture includes
patch embeddings, a learnable class [CLS] token, learnable positional embeddings, and standard
Transformer blocks consisting of multi-head self-attention and MLP sub-layers. Layer normalization
is applied, and GELU activation functions are used (Hendrycks & Gimpell 2023). The text encoder
is a 12-layer Transformer with a hidden width of 512 and 8 attention heads, processing tokenized
text sequences up to a context length of 77 tokens, using a vocabulary of 49,408 BPE tokens.
Both encoders output 512-dimensional embeddings, which are Ls-normalized before similarity
computation. A learnable temperature parameter scales the logits in the contrastive loss. Our
implementation is adapted from |Cherti et al.[|(2023]) and |Li et al.| (2022); please refer to our public
repository for further details.

1https ://anonymous.4open.science/r/perceptual-pretrain-5D4F/
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A.2 PERCEPTUAL INITIALIZATION (PI) TRAINING STRATEGY

PI Stage 1: Perceptual Initialization on NIGHTS. The first stage of PI aims to imbue the vision
encoder with foundational human perceptual understanding. We train the ViT-B/32 image encoder
using the NIGHTS dataset (see Appendix for details). This dataset, comprising image triplets,
facilitates learning through a triplet similarity objective. The model is trained to minimize a triplet
loss with a specified margin (0.05 in our configuration, using cosine distance), encouraging it to learn
visual features that align with human perceptual judgments of similarity. For this stage, we use an
AdamW optimizer with a learning rate of 5 x 107%, 81 = 0.9, and B2 = 0.999. A cosine learning
rate decay schedule is applied following a warm-up phase of 150 iterations. Training is conducted
with a global batch size of 768 across 6 GPUs, processing approximately 4.35 x 10° image samples.
Further details on computational budget (MACs) are provided in Table[I]

PI Stage 2: Large-Scale Vision-Language Pre-training on YFCC15M. Following perceptual
initialization on NIGHTS, the initialized ViT-B/32 vision encoder, along with the text encoder,
undergoes large-scale contrastive pre-training on the YFCC15M dataset (see Appendix [B.2)). This
stage aligns the perceptually-grounded visual features with language representations using a standard
InfoNCE contrastive loss. The optimizer remains AdamW, with a learning rate of 5 x 1074, p1=0.9,
but 35 is set to 0.98 for this stage, aligning with practices for large-scale ViT training. The learning
rate schedule includes a longer warm-up of 2,500 iterations followed by cosine decay. This stage uses
a significantly larger global batch size of 30,720, distributed across 6 GPUs, and processes around
4.80 x 10® image-text samples. Computational details are summarized in Table

A.3 COMPARATIVE BASELINES AND FINE-TUNING IMPLEMENTATIONS

To evaluate the efficacy of PI, we implement and train several comparative models.

Baseline Training. A baseline ViT-B/32 model is trained from scratch directly on the YFCC15M
dataset using the same contrastive vision-language pre-training setup as PI Stage 2. This includes
the same optimizer (AdamW, LR 5 x 1074, 8 = 0.98), learning rate schedule (2,500 warm-up
iterations, cosine decay), global batch size (30,720), and number of samples (4.80 x 10%) as detailed
in Table [I] This allows for a direct comparison against a standard CLIP-style training approach
without perceptual initialization.

Perceptual Fine-Tuning (PFT). We also investigate a Perceptual Fine-Tuning (PFT) approach
following |Sundaram et al.| (2024). In this setup, a ViT-B/32 model, pre-trained on YFCC15M
(analogous to our "Baseline" or the result of PI Stage 2), has its Query, Key, and Value (QKV)
projection matrices within the self-attention mechanisms of its Transformer blocks fine-tuned on the
NIGHTS dataset using the triplet loss objective. For PFT, we use an Adam optimizer with a learning
rate of 3 x 1074, 8, = 0.9, and B2 = 0.999. The learning rate schedule incorporates a 150-iteration
warm-up followed by cosine decay. Training is performed with a global batch size of 96 on 6 GPUs,
processing approximately 1.09 x 10° samples from the NIGHTS dataset. Specifics are listed in Table
[

A.4 GENERAL TRAINING ENVIRONMENT AND PARAMETERS

Across all training stages detailed above and in Table[I] we utilize BF16 mixed-precision training to
accelerate computation and reduce memory footprint without significant loss in model performance.
Gradient checkpointing is employed within the Transformer blocks during training to further manage
memory consumption, allowing for larger models or batch sizes. Our implementations are built using
PyTorch and leverage PyTorch Lightning for organizing the training loops, distributed training, and
logging (Paszke et al.,[2019; [Falcon & the PyTorch Lightning Team, 2019). All models are trained
with a weight decay, the specific value of which can vary by stage (e.g., 0.1 for YFCC15M stages,
potentially different for NIGHTS stages as per detailed configurations). The number of training
epochs for the primary stages (PI Stage 1, PI Stage 2, Baseline) is typically 32, though effective
training duration is also a function of dataset size and batch size. Gradient norms are clipped to
prevent exploding gradients, with specific clipping values adjusted per stage, 6.0 for YFCC15M
pre-training, 3.0 for NIGHTS-based training/fine-tuning.
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B DATASETS REVIEW

B.1 THE NIGHTS DATASET

The NIGHTS dataset comprises approximately 20,000 image triplets. Each triplet consists of a
reference image and two synthetically generated variations. Human participants performed two-
alternative forced-choice (2AFC) similarity judgments, indicating which variation was perceived as
more similar to the reference image. These judgments yield a binary label for each triplet (Fu et al.,
2023).

A defining feature of NIGHTS is its focus on mid-level visual properties such as color, pose, layout,
and shape, while generally preserving the semantic content within each triplet. This design allows the
dataset to capture fine-grained perceptual nuances often missed by metrics focused on pixel-level or
high-level categorical similarity (Sundaram et al.|[2024)). The primary aim of NIGHTS is to enable the
learning of novel dimensions of human visual similarity through synthetic data, specifically targeting
"cognitively impenetrable"” judgments—those that are rapid, consistent across individuals, and robust
to changes in mental representation (Fu et al.| [2023).

NIGHTS was generated using advanced text-to-image models, notably Stable Diffusion v1.4 (Rom+
bach et al2022)), to create synthetic image pairs with systematic perturbations along various visual
dimensions. The generation process involved iterative filtering and prompting diffusion models
with categories from established datasets like ImageNet (Russakovsky et al.,|2015)), CIFAR-10/100
(Krizhevsky & Hintonl [2009), Oxford 102 Flowers (Nilsback & Zisserman) 2008b)), and Food-101
(Bossard et al.| |[2014a). For each triplet, multiple (up to 10) similarity judgments were collected,
and the dataset was subsequently filtered to retain only unanimous examples, thereby enhancing
sample quality by removing ambiguous cases . The reliability of these 2AFC judgments was further
supported by Just Noticeable Difference (JND) studies. This synthetic generation approach offers
scalability and precise control over visual attributes, which is crucial for studying human perception
effectively (Fu et al.| 2023).

B.2 THE YFCCI15M DATASET: LARGE-SCALE IMAGE-TEXT PRETRAINING

After perceptual initialization with NIGHTS, the YFCC15M dataset serves as the large-scale web
dataset for the second stage of joint vision-language pretraining. YFCC15M is a curated subset of the
Yahoo Flickr Creative Commons 100 Million (YFCC100M) dataset (Thomee et al.,|2016), containing
approximately 15 million image-text pairs. The original YFCC100M dataset is a vast multimedia
collection of nearly 100 million photos and videos uploaded to Flickr between 2004 and 2014, each
with associated metadata (e.g., title, description, tags) (Thomee et al.|[2016).

The YFCC15M subset used in our work was filtered by |L1 et al.| (2022) and enhanced by (Gu et al.
(2024). This enhancement involved a "diverse description generation framework" that leverages
Large Language Models (LLMs) to combine and refine information from raw web image-text pairs,
synthetically generated captions via OFA, and fine-grained detection tags from RAM++ (Wang et al.,
2022; Huang et al., 2023} (Gu et al.,[2024). The goal of this framework is to mitigate noise inherent
in web-crawled data and improve the semantic accuracy and richness of the image descriptions (Gu
et al.,2024). This meticulous curation is vital for robust vision-language representation learning,
especially for our second stage large-scale pretraining experiment.

B.3 OTHER PERCEPTUAL DATASETS

While NIGHTS and YFCC15M are central to our work, the landscape of perceptual data is broader.
Understanding other datasets helps contextualize our choices and highlights avenues for future
exploration.

* THINGS Dataset: Contains 4.7 million pairwise similarity judgments for 1,854 everyday
objects, along with interpretable SPoSE (Sparse Positive Similarity Embedding) embeddings
(Hebart et al., [2019; 2023)). It primarily uses an "odd-one-out" task to capture human
judgments about object similarity and aims for a broad, systematic sampling of object
representations. The SPoSE model derives interpretable behavioral dimensions (e.g., 66
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dimensions from the full dataset) representing perceptual and conceptual object properties
(Hebart et al., [2020).

* BAPPS Dataset: The Berkeley Adobe Perceptual Patch Similarity (BAPPS) dataset is a
benchmark for evaluating perceptual image similarity metrics (Zhang et al., 2018]). It uses a
2AFC test where participants identify which of two distorted images is more similar to a
reference, focusing on low-level distortions. The Learned Perceptual Image Patch Similarity
(LPIPS) metric was trained using BAPPS data (Zhang et al.,[2018). M-BAPPS extends this
with text descriptions for multimodal Image Quality Assessment (IQA) (You et al., 2024).

» STUFF Dataset: Focuses on material representations, comprising 1.87 million triplet simi-
larity judgments on an image collection of 200 systematically sampled material categories
(600 photos) (Schmidt et al., 2025). It aims to uncover latent dimensions of human material
perception, with images depicting materials in their typical aggregate state.

The selection of NIGHTS for our Perceptual Initialization stage was intuitive. Its synthetic genera-
tion allows controlled variation of mid-level visual properties, and the 2AFC task on "cognitively
impenetrable" judgments provides a clean, consistent human signal crucial for effective initialization
(Fu et al.| 2023 |Sundaram et al.| 2024)). This aligns with our core hypothesis that "beginning with
you" embedding human perceptual structure early yields more robust and aligned vision-language
representations.
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C COMPLETE SCALING CURVES
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Figure 1: Per-dataset scaling laws for zero-shot classification. Top-1 and Top-5 accuracy for
each of the 29 benchmark datasets are plotted against the log number of pre-training samples. Blue:
Perceptual Initialization (PI). Orange: web-only baseline. The fitted power-law exponent 5 annotates
each curve. PI typically starts higher and scales faster, showing the benefit of injecting human
perceptual priors at the very start of training.
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D COMPLETE RESULTS TABLES

Table 2: Zero-shot classification results by bucket. Values show Top-1 and Top-5 accuracies for
Perceptual-Initialization (PI@K), the web-only baseline (Base @K), and Perceptual Fine-Tuning
(PFT@K). Bold indicates the best performance per metric. We include PFT’s failure cases where
human-aligned finetuning disrupts the model’s image—text alignment and yields near random accuracy
to illustrate the breakdown of this approach.

Dataset #Test #Cls PI@1 Base@1l PFT@1 PI@5 Base@5 PFT@5
ImageNet

ImageNet-1k 41 50000 1000 18.9 15.1 0.1 39.0 33.3 0.5
ImageNet OOD

ImageNet-A 24 7500 200 5.3 4.0 0.4 19.0 16.0 2.7
ImageNet-O 24 2000 200 21.6 14.3 0.4 46.2 31.9 1.6
ImageNet-R 23 30000 200 15.0 10.3 0.5 34.7 24.6 2.1
ImageNet-Sketch52] 50889 1000 4.1 3.0 0.0 11.7 9.1 0.4
ImageNet-V2[39 10000 1000 13.1 8.3 0.1 30.6 20.0 0.5
ObjectNet |8 18574 113 7.3 5.5 1.1 20.5 17.8 4.1
VTAB

CIFAR-100[28 10000 100 35.9 33.0 1.1 67.5 64.9 4.8
Caltech-1011[12 6085 102 44.7 47.9 3.6 82.7 80.9 8.5

CLEVR-Dist. 26 15000 6 158 16.1 206  90.7 91.0 79.3
CLEVR-Count |26 15000 8 16.1 11.5 124 61.8 65.3 61.7

KITTI-CVD[14 711 4 321 31.5 22.1 — — —

DTDI5 1880 47 143 10.4 1.4 344 28.0 11.8
EuroSAT 21 5400 10 24.7 19.6 13.7 76.2 69.0 58.4
Flowers-102[34 6149 102 26.7 18.7 1.5 52.3 40.9 3.7

Oxford-IIIT Pet 36 3669 37 17.2 11.6 24 38.8 29.1 13.5
RESISC45 3 6300 45 17.6 15.9 24 45.2 37.1 11.5
SVHN33 26032 10 11.0 11.3 7.4 61.0 54.5 49.1
PCAM 51 32768 2 505 50.8 50.6 — — —

Fine-grained & Specialty

Stanford Cars 27 8041 196 1.7 1.5 0.7 6.9 6.9 2.9

Food-10112 25250 101 121 8.3 0.9 35.8 26.0 4.5

FGVC-Aircraft[32 3333 100 1.6 1.7 1.3 6.5 5.7 4.8

PASCAL VOC 07[10] 14976 20 46.6 38.4 3.9 74.8 73.3 29.1
Misc. / Domain & Small

CIFAR-10128 10000 10 69.5 62.4 10.8 95.9 95.7 525
Country211/54 21100 211 3.5 3.0 0.5 11.3 10.4 22
GTSRB 46 12630 43 7.0 59 4.2 35.0 32.8 18.0
MNIST 29 10000 10 124 11.6 10.1 551 55.0 57.2
Rendered-SST2 45 1821 2 499 49.9 50.1 — — —
STL-10l6 8000 10 73.2 58.6 7.1 98.0 96.8 454
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E EXTENDED QUALITATIVE EXAMPLES

E.1 CLASSIFICATION TASKS

To better understand the differences between our proposed Perceptual Initialization, and the standard
baseline, we perform a qualitative analysis across five diverse image classification benchmarks:
Food-101 (Bossard et al., 2014b), ImageNet-1K (Russakovsky et al.,2015)), CIFAR-100 (Krizhevsky:
& Hinton, 2009)), Caltech-101 (Fei-Fei et al.,[2004), and ImageNet-V2 (Recht et al.,[2019).

For each dataset, we examine two categories of examples: (1) cases where PI predicts the correct
class while the baseline fails, and (2) cases where the baseline succeeds and PI does not. Within each
category, we select representative examples showing the largest confidence gaps between the models’
top predictions to emphasize where their decisions diverge most significantly.

For each selected image, we visualize the top 5 predicted classes for both models, annotated with
their associated confidence scores. Correct classes, when present in the top 5, are highlighted in
green. This visualization provides a comparative view of not just prediction correctness, but also the
models’ relative confidence in those predictions.

Several key trends emerge from this analysis. First, in datasets like Food-101 and Caltech-101,
PI demonstrates improved robustness by elevating fine-grained or semantically similar classes in
its top predictions, even when the baseline misclassifies with high confidence. Second, in harder
benchmarks like ImageNet-V2 and CIFAR-100, while the overall performance margins are smaller, PI
still exhibits better calibration—assigning a more conservative confidence score to incorrect guesses,
reducing overconfidence. Interestingly, in some baseline-correct examples, PI’s top-5 predictions
include semantically adjacent classes, suggesting misclassifications that are less egregious than they
appear numerically.

The full set of examples for each dataset is presented on separate pages (Figures 2] through [6)).



Under review as a conference paper at ICLR 2026

Dataset: food101

Pl Top-5 Predictions

spaghetti bolognese: 0.43
poutine: 0.40
risotto: 0.40

pho: 0.40

paella: 0.40

spaghetti bolognese: 0.43
pho: 0.40

ramen: 0.40
risotto: 0.40
pad thai: 0.40

mussels: 0.40
ravioli: 0.38
seaweed salad: 0.38
oysters: 0.38

panna cotta: 0.38

mussels: 0.42
pho: 0.41

anna cotta: 0.40

aby back ribs: 0.40
pulled pork sandwich: 0.40

mussels: 0.42

baby back ribs: 0.40

grilled cheese sandwich: 0.39
grilled salmon: 0.39

panna cotta: 0.39

Top-5 Pr

fried rice: 0.41
guacamole: 0.41
chicken curry: 0.40
seaweed salad: 0.40
paella: 0.40

fried rice: 0.42

spaghetti carbonara: 0.40
caesar salad: 0.40
guacamole: 0.40
spaghetti bolognese: 0.40

beet salad: 0.38
escargots: 0.38

mussels: 0.38

oysters: 0.38

spaghetti carbonara: 0.38

grilled salmon: 0.40
guacamole: 0.40
beet salad: 0.40
chicken wings: 0.40
mussels: 0.40

grilled salmon: 0.39
mussels: 0.39

spaghetti carbonara: 0.39
guacamole: 0.39
bibimbap: 0.39

(a) Cases Where PI Outperformed Baseline

Pl Top-5 Predictions

risotto: 0.39

spaghetti bolognese: 0.39
fried rice: 0.39

lasagna: 0.39

seaweed salad: 0.38

sushi: 0.39
sashimi: 0.38
tuna tartare: 0.38
rilled salmon: 0.38
ef tartare: 0.38

takoyaki: 0.37
gyoza: 0.37
bibimbap: 0.37
falafel: 0.37
ceviche: 0.37

caesar salad: 0.38

baklava: 0.38
uacamole: 0.38

foie gras: 0.37

seaweed salad: 0.37

cheesecake: 0.38
fried rice: 0.38
french toast: 0.37
panna cotta: 0.37
"4 guacamole: 0.37

Top-5 Pi

fried rice: 0.43
caesar salad: 0.41
seaweed salad: 0.41
cheese plate: 0.40
beet salad: 0.40

sashimi: 0.43
sushi: 0.41
beet salad: 0.41

steak: 0.40
takoyaki: 0.40
paella: 0.41
sashimi: 0.41
garlic bread: 0.41

seaweed salad: 0.40
carrot cake: 0.

guacamole: 0.42

breakfast burrito: 0.41

beet salad: 0.40

fried rice: 0.40

grilled cheese sandwich: 0.40

guacamole: 0.41
tuna tartare: 0.40
cheese plate: 0.40
caprese salad: 0.40
beef tartare: 0.40

(b)Cases Where Baseline Outperformed PI

Figure 2: Representative examples on the Food-101 dataset comparing predictions from the
Perceptual Initialization (PI) model and the baseline. Each row shows the query image followed
by the top-5 predicted classes with associated confidence scores. (a) PI predicts the correct label (in
green) while the baseline does not. (b) Baseline predicts the correct label while PI fails.
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Dataset: imagenetik

Pl Top-5 Predictions Top-5P
zebra: 0.38 African bush elephant: 0.35
impala (antelope): 0.37 desert grassland whiptail lizard: 0.34
cheetah: 0.36 rugby ball: 0.34
African bush elephant: 0.36 African wild dog: 0.34
Gila monster: 0.36 vulture: 0.34

zebra: 0.39

impala (antelope): 0.37
Scottish Deerhound 0.37
cheetah: 0

African wnld dog 0.36

king penguin: 0.41
white stork: 0.37
black stork: 0.37
mongoose: 0.37
great egret: 0.36

snow leopard: 0.40
leopard: 0.38
cheetah: 0.38
tabby cat: 0.38
tiger cat: 0.38

cheetah: 0.39
leopard: 0.38
prairie grouse: 0.37
snow leopard: 0.37
Gila monster: 0.36

English Springer Spaniel: 0.36
Welsh Springer Spanlel 0.35

Irish Water Spaniel: 0.35

desert grassland whiptail lizard: 0.35
African bush elephant: 0.35

Australian Sllky Terrier: 0.37

white stork: 0.37

desert grassland whiptail lizard: 0.37
meerkat: 0.37

black stork: 0.37

Gila monster: 0.36

Geoffroy's sp|der monkey: 0.36
tabby cat:

Siberian Husky 0.36

snow leopard: 0.35

deserl grassland whiptail lizard: 0.35
tabby c:

Sussex Spamel 0.35

peafowl: 0.35

guinea pig: 0.35

(a) Cases Where PI Outperformed Baseli

Pl Top-5 Predictions Baseline Top-5 P
cello: 0.
acoustic gunar 0.38
drum: 0.
acoustic guitar: 0.35 carved pumpkin: 0.37
ping-pong ball: 0.35 violin: 0.37

stingray: 0.35
water jug: 0.35

go-kart: 0.40 chainsaw: 0.44
messenger bag: 0.40 revolver: 0.42
ﬁower drill: 0.39 forklift: 0.42
air dryer: 0.39 backpack: 0.42
tool kit: 0.39 vacuum cleaner: 0.41
hot tub: 0.38 bathtub: 0.41
chenmoya (custard apple): 0.37 cherimoya (custard apple): 0.39
bathtub: 0. hamster: 0.39
hamster: 0. 37 loggerhead sea turtle: 0.39
toucan: 0.37 dung beetle: 0.39
' hot tub: 0.38 bathtub: 0.42
bathtub: 0.37 hot tub: 0.40
swim trunks / shorts: 0.36 dough: 0.39

swim trunks / shorts: 0.39
dowitcher: 0.39

little blue heron: 0.37 pelican: 0.41
pelican: 0.36 black swan: 0.40
spoonbi 0. 36 crane bird: 0.38

crane bird: 0.
black slork: 0.36

red-breasted merganser: 0.38
sulphur-crested cockatoo: 0.38

(b)Cases Where Baseline Outperformed PI

Figure 3: Representative examples on the ImageNet-1k dataset illustrating qualitative differ-
ences between the PI and baseline models. Each row shows the query image followed by the top-5
predicted classes with associated confidence scores. (a) PI predicts the correct label (in green) while
the baseline does not. (b) Baseline predicts the correct label while PI fails.
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Dataset: vtab-cifar100

snail: 0.35

kangaroo: 0.37

Query Pl Top-5 Predictions Baseline Top-5 Predicti
palm_tree: 0.39 sunflower: 0.36
pine_tree: 0.37 rocket: 0.36

s rocket: 0.37 caterpillar: 0.36
cloud: 0.37 snail: 0.36
willow_tree: 0.36 mountain: 0.35
squirrel: 0.40 hamster: 0.37
lizard: 0.37 squirrel: 0.36
maple_tree: 0.37 kangaroo: 0.36
oak_tree: 0.37 caterpillar: 0.36
snail: 0.36 snail: 0.35
leopard: 0.38 hamster: 0.35
mushroom: 0.37 kangaroo: 0.35
tiger: 0.36 turtle: 0.35
squirrel: 0.36 leopard: 0.34
cattle: 0.36 squirrel: 0.34
tiger: 0.37 leopard: 0.33
leopard: 0.36 kangaroo: 0.33
cattle: 0.34 lion: 0.33
chimpanzee: 0.34 caterpillar: 0.33
kangaroo: 0.34 lobster: 0.33

1 | | palm_tree: 0.39 sunflower: 0.36

4 cloud: 0.37 rocket: 0.36
pine_tree: 0.36 snail: 0.35
rocket: 0.36 kangaroo: 0.35
skyscraper: 0.36 mountain: 0.35
(a) Cases Where PI Outperformed Baseline
Pl Top-5 Predictions Baseline Top-5 Predicti

orange: 0.37 woman: 0.41
hamster: 0.37 girl: 0.41
rabbit: 0.36 hamster: 0.40
bowl: 0.36 orange: 0.40
pear: 0.36 poppy: 0.40
aquarium_fish: 0.37 sunflower: 0.41
sunflower: 0.36 tulip: 0.38
orange: 0.35 orchid: 0.38
chimpanzee: 0.35 orange: 0.38
poppy: 0.35 aquarium_fish: 0.37
squirrel: 0.36 tulip: 0.43
tulip: 0.36 sunflower: 0.40
chimpanzee: 0.36 poppy: 0.39
snail: 0.36 orange: 0.39
skunk: 0.36 caterpillar: 0.39
poppy: 0.37 sunflower: 0.41
sunflower: 0.37 tulip: 0.39
orange: 0.37 orange: 0.38
tulip: 0.36 poppy: 0.37
mushroom: 0.35 mushroom: 0.36
butterfly: 0.37 tulip: 0.42
tulip: 0.36 orchid: 0.39
skunk: 0.35 mushroom: 0.38
orange: 0.35 skunk: 0.37

(b)Cases Where Baseline Outperformed PI

Figure 4: Representative examples on the CIFAR-100 dataset illustrating qualitative differences
between the PI and baseline models. Each row shows the query image followed by the top-5
predicted classes with associated confidence scores. (a) PI predicts the correct label (in green) while
the baseline does not. (b) Baseline predicts the correct label while PI fails.
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Dataset: vtab-caltech101

\ Pl Top-5 Predictions Baseline Top-5 Predicti
okapi: 0.38 body of a cougar cat: 0.35
leopard: 0.35 face of a cougar cat: 0.35
wild cat: 0.34 okapi: 0.35
brontosaurus: 0.33 kangaroo: 0.35
panda: 0.33 wild cat: 0.35
joshua tree: 0.35 kangaroo: 0.32
euphonium: 0.34 euphonium: 0.31
sea horse: 0.32 bonsai: 0.31
bonsai: 0.32 sunflower: 0.31
pyramid: 0.31 leopard: 0.31
joshua tree: 0.35 kangaroo: 0.33
euphoniul 34 bonsai: 0.32
sea horse 2 sunflower: 0.32
brontosaurus: 0.31 leopard: 0.32
emu: 0.31 euphonium: 0.32
okapi: 0.39 kangaroo: 0.36
crayfish: 0.37 rhino: 0.36
brontosaurus: 0.37 emu: 0.36
wild cat: 0.37 wild cat: 0.36
stegosaurus: 0.36 ibis: 0.35
panda: 0.37 face of a cougar cat: 0.34
okapi: 0.35 wild cat: 0.34
dalmatian: 0.35 llama: 0.34
soccer ball: 0.35 soccer ball: 0.33
llama: 0.34 panda: 0.33

(a) Cases Where PI Outperformed Baseline

Pl Top-5 Predictions Baseline Top-5 Predi
cannon: 0.37 revolver: 0.43
revolver: 0.37 motorbike: 0.41
electric guitar: 0.37 wrench: 0.41
stapler: 0.37 helicopter: 0.40
mandolin: 0.37 headphone: 0.40
- wheelchair: 0.36 motorbike: 0.43
< 88  side of a car: 0.36 wheelchair: 0.41
% motorbike: 0.36 1 0.40
& mandolin: 0.35 helicopter: 0.40
gramophone: 0.35 flamingo: 0.40
wheelchair: 0.37 motorbike: 0.42
motorbike: 0.36 wheelchair: 0.40
side of a car: 0.36 lotus: 0.38
_ lotus:0.35 inline skate: 0.38
sea horse: 0.34 platypus: 0.38
wheelchair: 0.37 motorbike: 0.42
side of a car: 0.37 wheelchair: 0.40
E motorbike: 0.36 rhino: 0.40
C o lotus: 0.36 inline skate: 0.39
euphonium: 0.35 lotus: 0.39
5 Wheelchair: 0.39 motorbike: 0.44
motorbike: 0.38 wheelch
£ side of a car: 0.36 flamingo:
sea horse: 0.36 lobster: 0.41
euphonium: 0.36 strawberry: 0.40

(b)Cases Where Baseline Outperformed PI

Figure 5: Representative examples on the Caltech-101 dataset illustrating qualitative differences
between the PI and baseline models. Each row shows the query image followed by the top-5
predicted classes with associated confidence scores. (a) PI predicts the correct label (in green) while
the baseline does not. (b) Baseline predicts the correct label while PI fails.
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Dataset: imagenetv2

Query Pl Top-5 Predictions Baseline Top-5 Predicti
semi-trailer truck: 0.44 tow truck: 0.39
tow truck: 0.41 semi-trailer truck: 0.38
garbage truck: 0.40 garbage truck: 0.38
recreational vehicle: 0.40 jeeE: 0.37
pickup truck: 0.39 pickup truck: 0.37
impala (antelope) 0 42 red wolf or maned wolf: 0.36
African wild dog: 0. desert grassland whiptail lizard: 0.35
African bush elephant 0.38 black stork: 0.35
arabian camel: 0.37 Welsh Springer Spaniel: 0.35
ostrich: 0.37 arabian camel: 0.35
impala (antelope): 0.39 red wolf or maned wolf: 0.36
red wolf or maned wolf: 0.35 flamingo: 0.35
prairie grouse: 0.35 desert grassland whnptall lizard: 0.34
African wild dog: 0.35 oystercatcher: 0.3
African bush elephant: 0.35 impala (antelope): 0 34
% ';' & impala (antelope): 0.41 red wolf or maned wolf: 0.37
- arabian camel: 0.36 desert grassland whiptail lizard: 0.36
|- -« | African wild dog: 0.35 Siberian Husky: 0.36

| wild boar: 0.35 black stork: 0.36
ostrich: 0.35 Welsh Springer Spaniel: 0.36
impala (antelope): 0.41 desert grassland whiptail lizard: 0.37
prairie grouse: 0.37 red wolf or maned wolf: 0.37

| | African wild dog: 0.36 crane bird: 0.36
mongoose: 0.36 impala (antelope): 0.36
desert grassland whiptail lizard: 0.36 kite (bird of prey): 0.36

(a) Cases Where PI Outperformed Baseli

Pl Top-5 Predictions Baseline Top-5 Predicti
acorn squash 0.39 monarch bunerﬂy 0.43
zebra: 0. baguette:
monarch bunerﬂy 0.38 spiral or coll 0 39
carved pumpkin: 0.38 centipede: 0.38
spiral or coil: 0.38 spaghetti squash: 0.38
Cardigan Welsh Corgl 0.35 pool table 0.40
hockey puc trifle:
leelan Mastlff 0 39
Entlebucher Sennenhund: 0.35 hockey puck: 0.3
Afghan Hound: 0.35 Bullmastiff: 0.38
barbershop: 0.36 restaurant: 0.39
restaurant: 0.36 shoji screen / room divider: 0.39
bookstore: 0.35 movie theater: 0.39
movie theater: 0.35 gymnastic honzontal bar: 0.39
menu: 0.35 barbershop: 0.
beer bottle: 0.39 product packet / packaging: 0.43
soda bottle: 0.39 ruler measuring stick: 0.41
totem pole: 0.39 military hat (bearskin or shako): 0.41
Gila monster: 0.39 revolver: 0.41
! smooth green snake: 0.38 sidewinder rattlesnake: 0.41
SIS sewing machine: 0.40 revolver: 0.43
adlock: 0.40 fishing casting reel 0 43
ladle: 0.39 electrical switch: 0
spindle: 0.39 sewing machine: 0. 2
magnetic compass: 0.39 gas mask or respuamr: 0.42

(b)Cases Where Baseline Outperformed PI

Figure 6: Representative examples on the ImageNet-v2 dataset illustrating qualitative differ-
ences between the PI and baseline models. Each row shows the query image followed by the top-5
predicted classes with associated confidence scores. (a) PI predicts the correct label (in green) while
the baseline does not. (b) Baseline predicts the correct label while PI fails.

E.2 RETRIEVAL TASKS

To assess the behavioral differences between Perceptual Initialization (PI) and the baseline in cross-
modal retrieval, we present qualitative comparisons for both text-to-image and image-to-text retrieval
on a subset of 5000 images from MS-COCO 2015), which contains diverse natural photos.
For each modality, we present two types of examples: (1) cases where PI retrieves semantically more
aligned results than the baseline, and (2) failure cases where PI performs worse than the baseline.

In text-to-image retrieval, PI consistently ranks semantically aligned images higher than the baseline,
especially in challenging scenes involving object co-occurrence or nuanced spatial relations (e.g.,
“two elephants walk in the grass together by trees” or “a woman rolling down a sand dune with a
red frisbee”). Even in failure cases, PI’s top-5 often contain visually coherent distractors, reflecting
better alignment despite slight ranking losses. Conversely, baseline retrieval failures tend to retrieve
visually dissimilar or irrelevant content, particularly in cluttered or complex scenes.

In image-to-text retrieval, PI excels at capturing fine-grained semantics, such as actions or contextual
modifiers (e.g., “a surfer in a wetsuit riding a wave” or “man and woman with luggage near a doorway
on a city street”), which the baseline frequently overlooks. When PI fails, the mismatches are often
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subtle, involving minor contextual confusions. Overall, PI demonstrates improved grounding and
compositional understanding, especially under ambiguous or high-entropy query scenarios. Visual
comparisons across representative examples Figures[7]and [T0] highlight PI's stronger semantic fidelity
and retrieval confidence under both modalities.

Query Caption

Two elephants walk in the
grass together by trees.

A skateboard on top of a
surfboard on a beach.

A woman rolling down a
sand dune with a red
frisbee.

A pair of zebra's leaning
over eating grass in a
field.

A woman standing on a
tennis court holding a
racquet.

A group of zebra standin,
on top of a dry grass field.

The beach chair with the
umbrella is empty on the
beach.

Baseline (Top-5) o A ‘
core

0.035

0.400 0.400 0.399 0.396 0.395
0.031

0.029

0.398 0.397 0.393 0.392 0.390

2§ 0.029 |
A —{-)
0

0.402 0.398 0.397 0.394 0.392

0.020
0.020

0.020

A herd of zebra standing
next to each other.

A giraffe standing in front
of green brush.

A horse standing in the
grass near trees in the
woods.

0.408 0.407 0.397 0.388

0.019
il

- 2
| 0395 |

0.015

0.014

0.391 0.391 0.389 0.388 0.385 0.384 0.384  0.383 0.383

Figure 7: Representative examples where Perceptual Initialization (PI) outperforms the Baseline
on text-to-image retrieval. Each row shows a query caption, the ground-truth image, and top-5
retrieved images from PI and Baseline models with similarity scores. Green boxes indicate correct
retrievals. Overall PI more consistently retrieves semantically accurate and visually aligned results.
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Failure Case: Pl Fails, Baseline Succeeds

Query Caption Ground Perceptual-Initialization (Top-5) Baseline (Top-5) A
Truth Score

0.010

A little girl holding a red
frisbee standing on a lush
green field.

0.433 0.392 0.384 0.380

A man rides a large . | i ? 3 = -0.021
motorcycle on a freeway. y e | 1

0.399

A cat wearing a neck tie
laying on top of a pillow.

-0.022

0.427 0.424

The man is playing tennis on
the court.

0.002

Inside of a kitchen with a
refrigerator and counter top.

-0.031

0.403 0.396 0.394 0.393 0.389 m 0.422 0.417 0.416 0.415

Figure 8: Failure cases where the Baseline model correctly retrieves the ground-truth image,
while Perceptual Initialization (PI) fails. Although it may fail to retrieve the exact ground-truth, PI
frequently presents visually coherent alternatives, demonstrating its semantic sensitivity even when
strict retrieval rankings are not met.
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Ground Truth

_ A train on a track traveling through a

countryside.

Commuter train on tracks in rural area on
clear d:

A high speed passenger train that is goin
down mé’uacf 9 gome

A long train going down the train track.
A train is moving on tracks in an open
field.

A young black bear moves across a

grassy Tiel

A large black bear walking across a lush
green field.

A bear that is walking in a field.

Small black bear in the middle of a
flowered field.

A black bear walklng around in the
grass during the day.

The man is taking a photo with his cel
phone.

;_X man getting ready to take a picture in a
ield.

A man in a field takes a picture with his
phone.

A man in a field holding up his cell phone.
A man is taking a picture with a cell
phone.

Agrou
grass fi

Some very cute zebras in a field of tall
grass.

p of zebra standing on top of a dry

A group of zebras that are standing in the
grass.

Four zebras standing in the tall dry grass

Zebras standin,
the tourists

g in tall dry grass look at

A stop slgn a( (he intersection of lyndon
ave and s

A road and stop sign at an intersection by

) alarge tree.

A stop sign in foreground of a tree in fall

A stop sign on the corner of lynden
avenue and south street.

A close up of a stop sign under a street
sign

Two people outside of a stone building
near a red fire hydrant.

There are two people standing on the side
of a street.

A woman is pulling luggage on to a
sidewalk neapr a Iﬁe h?rg gnt

Man and woman with luggage near a
doorway on a city streef.

A city scene of a sidewalk with a red fire
hydrant on a sidewalk next to an atm

A blue and yellow lraln pullinguptoa
station on a sunny day.

A bluish train car pulls into a station.
A passenger train on a track next to a
station.

A blue and yellow train in the train
station.

A commuter train pulling into the train
station

A young man riding a skateboard up a
black ram

A skaleboardlng boy is about to go onto
the red skate b

A skateboarder stamng ajumpona
homemade ramp.

A person standing on a skateboard and
perlormmg a stunt on a platform in the

A man i a skateboard up a ramp
ona street m ront of a truck.

A one way n pointing to the left; the ski
is blue in he%agkgmug Y

A group of different road sngns one of
which is a one way only si

A one way sign mounted to the side of a
pole.

A close up of a one way sign on a pole.

A pole with a one way street sign as
well as a few other:

A man riding a wave on top of a surfboard.

A male surfer dressed in black riding a
white surfboard.

The man is riding the waves on his surf
board.

A man in a wet suit surfs a wave.
A surfer in a wetsuit riding a wave

Perceptual-Initialization (Top-5)

A purple train traveling down tracks near a
platform. (0.436)

Atrain is traveling along train tracks under
a signal. (0.425)

A blue train going down the train tracks.
(0.421)

Train puling up on the tracks next ta a
stationary double decker train (0.421)

A train on a track traveling through a
countryside. (0.420)

A black bear walking around in the
grass during the day. (0.427)

A black bear that is walking on a rock
pathway. (0.394)

Small black bear in the middle of a
flowered field. (0.392)

{\Baby elephant ollowing it parent
through a freld. (0 91sP

Several sheep in a grassy field near a
Grow in fight (0.388) -

‘A man sits on a pile of logs beside his
horse. (0.410)

A manin a field takes a picture with his
phone. (0.407)

A woman Is slnln al a park bench holding

er purse her other hand is
pointing Ber flnger u‘? noxi 30 & bronze
statue of a man.

A man in blue shm {eeding a giraffe
behind a fence. (0.399)

Man in black shirt holding out his hand to
a cow. (0.397)

Some very cute zebras in a field of tall
grass. (0.441)

Zebras stand
the tourists (0.

&Ln) tall dry grass look at
(A bun(;h of zebras are standing in a field
Two zebras are feedmg on the grass by
themselves. (0.425)

A giraffe and a zebra are standing in a
field (0.422)

A four- waY)stop sign is at the corner of
delta and bridge sfreet. (0.434)

Four way stop sign at street mtevsemmn
and two street signs above (0.423)

A street sign at an intersection of library
way and madison avenue (0.418)

A close up of a stop sign under a street
sign (0. g)

The cars has stopped at the red stop sign
0413 PP P sigH

Man and woman with luggage near a
doorway on a city slree!g ?0%09

Two people sitting at a bench on a city
strex ? 9102 9 Y
A boy rides a skateboard next to men
walking down a street. (0.399)

A building standing in front of a street with
a crossing section (0.398)

Three stop lights and a woman walking
across a street. (0.397)

A blue and yellow train pulling up to a
station on aysunny day. (0. R .42& P

A blue and
station. (0.

A blue train going down the train tracks.
(0.396)

el)low train in the train

A train with bright yellow en lne on tracks
beside tall Ieag trees. ((

A black tram and orange train cars on
tracks. (0.391)

A worker driving a cart rulllng a trailer
loaded with cargo. ({

A man holding glass near a pick up truck
on the street. %g 411) P P

A man is riding a skateboard ug aramp
on a street in front of a truck. (0.407)

Two boys moving along outsnde durmg the
?ay or)\e of them has a skatebo:

A man is trying to pull off a skateboarding
trick on his’ramp. (0.398)

Four way stop sign at street intersection
and two street signs above (0.436)

A close up a street pole with a homemade
street sign. (0.425)

A one way, left turn only, straight only. no
ght turn, street sign and traffic light.

A pole with a one wa street sign as
well as a few others

A street sign at an |ntersec1|on of library
way and madison avenue (0.422)

A person in a wetsuit riding a wave on a
surfboard. (0.433)

A surfer in a wetsuit rides on a wave.
.430)

A surfer in a wetsuit riding a wave

(0.430)

A man on a surfboard riding the waves in
the ocean (0.422)

Two people riding surf boards on a wave
(A ore e

Baseline (Top-5) A
Score
Train pulling up on the tracks next g 2 0.012
stationary double decker train (0.424)

A long yellow and red train traveling down
tracks, (0.421)

Ared train traveling down the tracks past
grass and trees. (0.416)

A red and black train is coming down the
tracks (0.416)

A couple of large long trains on a track.
YiE) 9¢ long
Several sheep in a grassy field near a 0.011
Crow in fhght. (0.416)

A black bear that is walking on a rock
pathway. (0.409)

A bAIacl)( and white cow standing in a field.

©

A black and white cow is looking through a
fence. (0.405)

A black and white dog with a frisbee in its
mouth. (0.404)
Woman taking a selfie with a giraffe inan  0.008
enclosure. (0.401)

Woman and man feeding giraffes behind a
fence outside. (0.401)

A flock of sheep with a young boy holdin
one (0.400) P Lantohacd 9
A woman is sitting at a park bench holding

her purse and with her other hand is
pointing her ﬁnger ué: next to a bronze
statue of a man.

A bearded shmless man cuddling with a
teddy bear. (0.396)

iraffe and a zebra are standing in a
ot 0558y

A herd of zebras standing in a dirt field.
(0.428)

0.008

A bunch of zebras are standing in a field
(0.423)

A giraffe and a zebra eating together in a
park. (0.418)

S_omegazelle and a zebra standing in a
field. (0.414)

A closeup of a street sign for "main street"
\(mlh a )sngn for the wisconsin state fair

0.007

Four way stop sign at street intersection
and two street signs above (0.421)

A street sn(‘;n above a speed limit sign on a
rural streef. (0.421)

A one-way sign at library way and
madison gveg(o 421) Iy way

A fire hydrant and a street sign are on the
side of a street. (0.421)

A motorcycle is pictured outside of a
bmldm;; with a man walking away from it.

0.006

A person and some cones on a city street.

(0:407)

A group of le walking past the front of
a sglcre (0.39 gego{) 9

A comer of a street next to a building
0.397)

Two men wearing back packs walklng
through a park in the city. (0.396)

A train with bright yellow en lne ontracks 0.005
beside tall Ieaﬁ? trees. (0.4

A black train and orange train cars on

tracks. (0.422)

A yellow and black train is coming down
the tracks (0.421)

Train pulling up on the tracks next to a
stationary double decker train (0.417)

A large blue passenger train pulling into a

iraih Staton, ‘Zo 41 2)g pulling

A oouple ol men are loading a truck with
glass (0.407)

Two women eat chili dogs on a city
sidewalk. (0.404)

A woman riding a bike down the street

(0.403)

Two boys l?enmg ready to go down the
kateboav ramp on their skateboards.

0.004

A man and woman loading a surfboard on
a motorcycle outside with other riders
nearby (0.402)

A pole holding the street sign for queen

street is decorated with a painting of a
queen. (0.432)

0.004

Street Ilght with street signs that restrict
traffic.

Someone walking down the street and
street I)lgh(s and a one way street sign

Four way stop sign at street intersection
and two street signs above (0.429)

A closeup of a street sign for "main street"
\(Mth a )slgn for the wisconsin state fair

A man on a surfboard surfs through the 0.004

waves of a windy coast. (0.429)
A man)on a surfboard riding a wave

(0.428)

A man surfing on his surf board against
the waves (0.428)

A young male ndlng an ocean wave on a
surfboard (0.428)

A man riding
4

a wave on a surfboard in the
ocean. (0.427)

Figure 9: Representative examples where Perceptual Initialization (PI) outperforms the Baseline
on image-to-text retrieval. Each row shows a query image, the ground-truth caption, and the top-5
retrieved captions from PI and Baseline models along with similarity scores. Bold text indicates
correct retrievals. PI frequently retrieves captions that are more descriptive or semantically grounded,

often outperforming the baseline in nuanced language alignment.
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Failure Case: PI Fails, Baseline Succeeds

Ground Truth

A piece of partially-eaten cake sits on a paper
e.

A desert topped with gummy bears sits on a
yellow and orange plate.

a close up of a plate of food with a fork

A slice of chocolate cake with dark
chocolate glaze.

A slice of chocolate cake with dark
chocolate icing.

A shirtless man playing tennis on a blue
court.

an image of a shirtless man hitting tennis
racket

A man is standing on a court with a tennis
racket.

A man on a court swinging a tennis racket.

This man is playing tennis without a shirt.

" A man walking behind a row of parked cars
holding an umbrella.

It is a good thing he has his umbrella while
walking in the parking lot.

A sullta?( man walks through a crowded
parking lot with his striped umbrella.

A man holding a white and black umbrella in a
large parking lot.

A man with an umbrella walks along a row of
cars.

The striped cat is sitting on top of the car.
a cat sitting on a car engine with the hood up

someone opened a hood on a car and he cat
jumped up on the edge

Black cat sitting on the engine of a black car.

A gray cat is walking next to a truck.

a couple of people that are surfing in some
water

Surfers on surfboards are riding a wave
together.

Several people ride surfboards in the ocean
waves.

Surfers braves the waves on the choppy
blue ocean.

The people are surfing the ways on the water.

Perceptual-Initialization (Top-5)
A large piece of blueberry cake on a plate.
(0.409)
A plate with some meat sitting on top of it
(0.405)

Picture of food in restaurant - grilled meat on
vg)h‘i‘tgoplate with orange drink and side dish

A plate filled with french toast sitting next to a
drink. (0.398)

Two slices of cake sitting on top of a white
plate. (0.398)

Man on a tennis court holding a racket and
playing badminton (0.406)

Aman 'umging up to hit a tennis ball with a
racket (0.381)

The woman are playing tennis on the court.
(0.381)

The man is playing tennis on the court. (0.380)
A woman swinging a tennis racket during a
match. (0.380)

A large boat and two smaller boats in a row.
(0.420)

row ((

A number ofgeople on a beach holding surf
boards (0.403)

There are many people and umbrellas on the
beach (0.402)

The boat includes several rows of orange
chaird. (0.401)

A dog on a leash sniffing at a door. (0.406)
A man holdlng a black umbrella walks near a
man who has two dogs on leashes down a
park path. (0.402)

A cat is walking across the dash of a car

(0.400)

A little dog on a leash is sniffing at a door.
.396)

A do%on a leash standing at a doorway.
(0.396)

A man on a surfboard surfs through the waves
of a windy coast. (0.424)

A man on a surfboard, surfing in the ocean.
(0.412)

A person that is surfboarding through the
waves in the ocean. (0.411)

A man surfing waves on his surf board (0.411)

A man surfing on his surf board against the
waves (0.41

A back aIIX neighborhood with motor bikes in a

Baseline (Top-5) A
Score

A large piece of blueberry cake on a plate. -0.031
(0.4490)

A slice of chocolate cake with dark
chocolate glaze. (0.439)

A slice of chocolate cake with dark
chocolate icing. (0.432)

A chocolate and vanilla birthday cake sitting on
a white table. (0.432)

A piece of white cake with a topping sits on a
white plate on a table. (0.426)

A shirtless man playing tennis on a blue -0.018

court. (0.4:

A woman tennis player playing tennis in the
stadium. (0.421)

‘Women on a tennis court playing a doubles
match. (0.421)

A woman is holding a tennis racket on a court
(0.418)
Female)a tennis player playing on a tennis court

(0.416)

A man walking behind a row of parked cars 0.007
holding an umbrella. (0.413)

A row of mopeds parked outside of a building.
(0.412)

There are many people and umbrellas on the
beach (0.412)

A solitary man walks through a crowded
&aal:i{l)g ot with his striped umbrella.

A row of motorcycles parked in front of a
building. (0.409)

A gray cat is walking next to a truck. (0.432) -0.026
A black and white cow stands in an enclosure.

(0.416)

A cat standing next to an open box with pizza

init. (0.413)

A cat stands next to an open pizza box.
(0.413)

A cat watches as its owner uses the laptop.
(0.413)

A person riding a surf board on a wave (0.424) -0.000
A person riding a surf board on a wave (0.424)

A man on a surfboard surfs through the waves
of a windy coast. (0.419)

Surfers braves the waves on the choppy
blue ocean. (0.416)

A man surfing on his surf board against the
waves (0.41

Figure 10: Failure cases where Perceptual Initialization (PI) fails but the Baseline succeeds
on image-to-text retrieval. In several cases, PI retrieves captions that are visually relevant but
semantically offset, suggesting opportunities for further improving alignment in edge cases.
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