
A Proof of Theorem 5.2 for p = 2 in a simple scenario

Setup To make our arguments clear, we illustrate the proof of Theorem 5.2 on the simplest non-
trivial case, with only a single matrix A = A1, a single initial vector g1 ∼ N (0, I), and with c1, c2,
and g3 ignored. The objects of the interpolated program (Definition 5.1) are as follows:

g2(t) = A(t)ϕ(g1(t)), c(t) =
1

n

n∑
α=1

xα(t), where xα(t) = ψ(g1α(t), g
2
α(t))

where, for brevity, we have shorthanded c = c3, x = x3, ϕ = ϕ1, and ψ = ϕ3.23

For simplicity, we will assume ϕ and ψ have derivatives of all orders bounded by 1 in absolute value.
Our goal in this section is to demonstrate Theorem 5.2 with p = 2:

sup
t

E ċ(t)2 = O(n−1). (8)

In what follows, we will only talk about the interpolated program, so we will suppress the argument
(t) to lighten notation.

A.1 Bounding Derivatives of c against A

We will denote x′α
def
= ∂g2αψ(g

1
α, g

2
α), x

′′
α

def
= ∂2g2α

ψ(g1α, g
2
α), and so on, which shall cause no confusion

because we will never take other derivatives of x or ψ. Then we can calculate
∂c

∂Aαβ
=

1

n
x′αϕ(g

1
β),

∂2c

(∂Aαβ)2
=

1

n
x′′αϕ(g

1
β)

2, etc. (9)

By the assumption that ψ and ϕ have derivatives of any order bounded by 1, this shows c’s derivative
againstAαβ of any order≥ 1 is bounded in absolute value by 1/n. Generalizing the above calculation
to mixed derivatives, one can easily see more generally,

|∂rc| ≤ 1/n for any order r ≥ 1 mixed derivative ∂r in entries of A. (10)

If we allow ψ and ϕ to be polynomially smooth in general, then this is still true in expectation, up to
multiplicative constants; see Lemma K.6.

A.2 Expanding ċ2

At this point, it helps to think of the entries of A as a big vector a of size N = n2. We will index
entries of a using letters like κ, which stands for a pair (α, β) ∈ [n]2. We also let D ∈ RN be the
vector of derivatives Dκ

def
= ∂aκc (with exact values given by Eq. (9)), so that, by chain rule,

ċ =
∑
κ

Dκȧκ.

Squaring this sum, we get

ċ2 =
∑
κ,λ

DκDλȧκȧλ =
∑
κ

D2
κȧ

2
κ +

∑
κ̸=λ

DκDλȧκȧλ

To show Eq. (8), it suffices to show that both sums
∑
κ and

∑
κ̸=λ in expectation can be bounded by

O(n−1) with a constant independent of t ∈ [0, 1].

A.3 Bounding
∑
κD

2
κȧ

2
κ.

Because κ ranges over a set of size N = n2, we have

E
∑
κ

D2
κȧ

2
κ ≤ n2 max

κ
ED2

κȧ
2
κ.

So it suffices to show ED2
κȧ

2
κ is bounded by Cn−3 where C is a constant independent of κ and

t ∈ [0, 1]. But by Cauchy-Schwarz,

ED2
κȧ

2
κ ≤

√
ED4

κ ·
√

E ȧ4κ = n−2 ·O(n−1) = O(n−3)

where we used Eq. (10) and Lemma 5.3. The hidden constant is independent of κ and t, as desired.
23So we would have M0 = 1, M = 3, but these values are not important for our purposes.

14

A.4 Bounding
∑
κ̸=λDκDλȧκȧλ

Because (κ, λ) ranges over a set of size ≤ N2 = n4, we have

E
∑
κ̸=λ

DκDλȧκȧλ ≤ n4 max
κ̸=λ

EDκDλȧκȧλ.

So it suffices to show EDκDλȧκȧλ is bounded by Cn−5 where C is a constant independent of κ, λ
(as long as κ ̸= λ) and t ∈ [0, 1].

Taylor Expansion Now DκDλ is a function of a. In particular, we will think of it as a function
of aκ and aλ, keeping other entries of a fixed. To this end, we will write DκDλ = f(aκ, aλ). To
reduce the amount of subscripts, denote y = aκ, z = aλ. Then Taylor expanding f to some order K
to be specified below, we have

f(y, z) =
∑

i+j≤K

yizj∆ij +
∑

i+j=K+1

yizjRij(y, z)

where ∆ij =
1

(i+j)!

(
i+j
i

)
∂iy∂

j
zf(0, 0) and Rij(y, z) = 1

K!

(
K+1
i

) ∫ 1

0
(1− ξ)K∂iy∂jzf(ξy, ξz)dξ.

This may look like a big scary expression, but as we will see soon enough, the exact form of ∆ij

does not matter beyond the fact that it is independent from y and z, and we can easily bound Rij
using Eq. (10).

Cancellation Using Independence and Zero-Mean Since ∆ij is independent from y and z (as
random variables), we have

E ẏżyizj∆ij = (E ẏyi)(E żzj)E∆ij . (11)

We see immediately that if i < 2 or j < 2 then this expectation will vanish due to Lemma 5.3. This
motivates us to take K (the order of Taylor expansion) to be 3, so that

E ẏżf(y, z) = E ẏy2żz2Rij(y, z)

Now Rij(y, z) is not independent from y and z unlike ∆ij , but by Cauchy-Schwarz, we have

E ẏy2żz2Rij(y, z) ≤
√

E (ẏy2żz2)2
√

ERij(y, z)2

By Eq. (10) and the product rule, we see all order-(K + 1) (mixed) derivatives of f are bounded
by (K + 2)/n2 = 5/n2, so that Rij(y, z) ≤ C/n2 for some absolute constant C. This implies√
ERij(y, z)2 ≤ C/n2 as well.

Finally, by Lemma 5.3, E (ẏy2żz2)2 = E (ẏy2)2E (żz2)2 = O(n−6) independent of κ and λ. So
altogether,

E ẏy2żz2Rij(y, z) ≤ O(n−3)O(n−2) = O(n−5)

with a constant independent of t, κ, and λ. This finishes the proof of Theorem 5.2 with p = 2 in our
simple scenario.

From this example, one can see the importance of E aȧ = 0 in Lemma 5.3: had it not been the case,
then Eq. (11) could be nonvanishing for i = 2, j = 0, so we could only Taylor expand f to order 1
instead of 3, losing a factor of n in the final bound as a result.

A.5 Going Beyond This Simple Example

To get the full result of Theorem 5.2, we need to extend this argument to 1) all powers p instead of
just 2 (i.e., bounding E |ċ|p), and to 2) all polynomially smooth nonlinearities.

For 1), the extension follows more or less the line of reasoning demonstrated here, which can be
extracted as a general moment argument which we explain in Appendix I.

For 2), significant effort is needed to establish the property corresponding to Eq. (10). In fact, this is
the bulk of the technical content of our work, done in Appendix J and Appendix K.1, culminating in
Lemma K.6 that generalizes Eq. (10).

15

B Gaussian smoothing makes polynomially bounded nonlinearities
polynomially smooth

Lemma B.1. Let ϕ : Rk → R. Then for any δ > 0 there exists ϕδ ∈ C∞(Rk) such that

1. For any x ∈ Rk,
|ϕ(x)− ϕδ(x)| ≤ sup

x1,x2∈B̄δ(x)

|ϕ(x1)− ϕ(x2)|,

where B̄δ(x) is a closed δ-vicinity of x;

2. If ϕ is polynomially bounded then ϕδ is polynomially smooth;

3. If ϕ is Lipschitz with a Lipschitz constant λ, then ϕδ is also Lipschitz with a Lipschitz
constant λ and

sup
x∈Rk

|ϕ(x)− ϕδ(x)| ≤ 2λδ.

Proof. Let ζ be a standard bump function with k arguments:

ζ(z) = Ce
− 1

1−∥z∥22 I(∥z∥2 ≤ 1). (12)
It is a non-negative C∞(Rk) function that is supported supported on a unit ball. We choose the
constant C so that ζ sums to one.

Claim 1 Let ζδ(x) def
= (1/δ)kζ(x/δ). Set ϕδ(x) def

= [ϕ ∗ ζδ](x). Then

ϕδ(x) =

∫
Rk

ζδ(y)ϕ(x− y) dy

= (1/δ)k
∫
Rk

ζ(y/δ)ϕ(x− y) dy

=

∫
Rk

ζ(z)ϕ(x− zδ) dz.

We have for any x ∈ Rk,

|ϕδ(x)− ϕ(x)| =
∣∣∣∣∫

Rk

ζ(z) (ϕ(x− zδ)− ϕ(x)) dz
∣∣∣∣

≤

∣∣∣∣∣
∫
∥z∥2≤1

ζ(z) dz

∣∣∣∣∣ sup
∥z∥2≤1

|ϕ(x− zδ)− ϕ(x)|

≤ sup
x1,x2∈B̄δ(x)

|ϕ(x1)− ϕ(x2)|.

Claim 2 Suppose ϕ is polynomially bounded, i.e. |ϕ(x)| ≤ C(1 + ∥x∥pp) for some p ≥ 1. For any
r ≥ 0 and any j1, . . . , jr ∈ [k],

∂j1,...,jrϕ
δ(x) = (1/δ)k+

∑r
i=1 ji

∫
Rk

∂j1,...,jrζ((x− y)/δ)ϕ(y) dy

= (1/δ)k+
∑r

i=1 ji

∫
∥y∥2≤δ

∂j1,...,jrζ(y/δ)ϕ(x− y) dy

= (1/δ)k
∫
∥z∥2≤1

∂j1,...,jrζ(z)ϕ(x− zδ) dz.

Therefore,∣∣∂j1,...,jrϕδ(x)∣∣ ≤ (1/δ)k sup
∥z∥2≤1

|ϕ(x− zδ)|

∣∣∣∣∣
∫
∥z∥2≤1

∂j1,...,jrζ(z) dz

∣∣∣∣∣
≤ C(1/δ)k sup

∥z∥2≤1

(1 + ∥x− zδ∥pp) ≤ C(1/δ)k sup
∥z∥2≤1

(1 + 2p∥x∥pp + 2pδp∥z∥pp)

≤ C(1/δ)k sup
∥z∥2≤1

(1 + 2p∥x∥pp + 2pδppp∥z∥p∞) ≤ C(1/δ)k(1 + 2p∥x∥pp + (2pδ)p),

16

which implies that ∂j1,...,jrϕ
δ is polynomially bounded.

Claim 3 Suppose ϕ is Lipschitz with a Lipschitz constant λ. Let us check that ϕδ is also Lipschitz
with a Lipschitz constant λ:

|ϕδ(x1)− ϕδ(x2)| =
∣∣∣∣∫

Rk

ζ(z) (ϕ(x1 − zδ)− ϕ(x2 − zδ)) dz
∣∣∣∣

≤ λ|x1 − x2|
∫
Rk

ζ(z) dz = λ|x1 − x2|.

Then for any x ∈ Rk,

|ϕ(x)− ϕδ(x)| ≤ sup
x1,x2∈B̄δ(x)

|ϕ(x1)− ϕ(x2)| ≤ λ sup
x1,x2∈B̄δ(x)

∥x1 − x2∥2 ≤ 2λδ. (13)

C Additional applications of Theorem 3.7

TP3 demonstrated the following applications of Theorem 3.4: the semi-circle law for Gaussian
orthogonal ensembles (GOE), the Marchenko-Pastur law for Gaussian Wishart ensembles, and the
free independence principle for neural nets with Gaussian initialization. Here we generalize all the
above results to non-Gaussian weight initializations.

C.1 Semicircle law for non-Gaussian Wigner ensembles

The semicircle law for GOE proven in [31] is the following result:
Theorem C.1. For each n ≥ 1, define the random matrixA =W+W⊤ for iid Gaussian matrixW ∈
Rn×n, Wαβ ∼ N (0, 1/2n). Let λ1, . . . , λn ∈ R be the eigenvalues of A and µn = 1

n

∑n
α=1 δλα be

their empirical distribution. Then µn
a.s.−→ µsc, where µsc is the distribution with density ∝

√
4− x2.

Here by almost sure (weak) convergence of measures we mean that for every compactly supported,
continuous ϕ : R→ R, as n→∞, we have

1

n

n∑
α=1

ϕ(λα)
a.s.−→ E λ∼µscϕ(λ). (14)

In order to be able to apply Tensor Programs machinery to prove this result, [31] used the moment
method which states that it suffices to prove almost sure convergene of moments of µn:

E λ∼µn
λr =

1

n

n∑
α=1

λrα = n−1 tr(Ar)
a.s.−→ E λ∼µsc

λr ∀r ∈ N. (15)

The trace can be expressed as tr(Ar) = E z[z
⊤Arz] for zα ∼ N (0, 1) iid for each α ∈ [n]. For

Gaussian z, Arz can be expressed as a vector in the following Tensor Program:

g1 = z, g2 =Wz, g3 =W⊤z, (16)

g2k =W (g2k−1 + g2k−2), g2k+1 =W⊤(g2k−1 + g2k−2) ∀k ∈ [2 : r]. (17)
Here each nonlinearity simply adds two vectors. Note that these nonlinearities are linear polynomials.
Then we get

n−1 tr(Ar) =
1

n
E z∼N (0,1)[z

⊤Arz] =

=
1

n

n∑
α=1

E g1α∼N (0,1)

[
g1α
(
g2rα + g2r+1

α

)]
=

1

n

n∑
α=1

E g1α∼N (0,1)ψ(g
1
α, . . . , g

2r+1
α), (18)

where ψ(x1, . . . , x2r+1) = x1(x2r + x2r+1) — a quadratic polynomial.

The only thing that prevents us from directly applying Theorem 3.4 to the expression above is
conditional expectation. [31] proves the following conditional theorem:

17

Theorem C.2 (Gaussian Conditional Master Theorem, [31]). Consider Setup 3.3 and assume ψ to be
quadratically bounded and all the nonlinearities to be linearly bounded. Let S be a subset of initial
vectors. Then, as n→∞,

1

n

n∑
α=1

E Sψ
(
g1α, . . . , g

M
α , c

1, . . . , cM
) a.s.−→ Ψ̊, (19)

where Ψ̊ is the same as in Theorem 3.2.

We had to come back to the original form of Master theorems (see Theorem 3.2) since there is a
distinction between nonlinearities (which have to be linearly bounded) and test functions ψ, which
could be quadratically bounded.

The above conditional theorem implies n−1 tr(Ar)
a.s.−→ Ψ̊ for certain Ψ̊. Comparing with Eq. (15),

what remains to establish Theorem C.1, is to prove that Ψ̊ equals to the r-th moment of the semicircle
law. One can find the proof in [31]; we do not reproduce it here.

Non-Gaussian conditional Master theorem. Consider Setup 3.6 and let S be a subset of initial
vectors. Then for any scalar ci in the program, E |E Sc

i − c̊i|p ≤ E |ci − c̊i|p, which converges to
zero by Theorem 3.7. Therefore E Sc

i converges to c̊i in Lp.

Consider now the same interpolation between Gaussian and non-Gaussian weights Al(t) as in the
proof of Theorem 3.7, see Section 5. Theorem 5.2 then gives supt E |E Sc

i(t)|p ≤ supt E |ci(t)|p =
O(n−p/2) for any p ∈ [1,∞). Following the argument in Section 5, we get E Sc

i(1)−E Sc
i(0)

a.s.−→ 0.
Assuming the conditions of the above Gaussian theorem, Theorem C.2, namely, that ϕi is quadratically
bounded, while ϕj for all j < i are linearly bounded, we get E Sc

i(0)
a.s.−→ c̊i, and therefore

E Sc
i(1)

a.s.−→ c̊i:

Theorem C.3 (Non-Gaussian Conditional Master Theorem, ours). Consider Setup 3.6 and let S
be a subset of initial vectors. Then every scalar ci conditioned on S converges to the same c̊i as in
Theorem 3.4 in Lp for any p ∈ [1,∞):

E Sc
i Lp

−−→ c̊i ∀p ∈ [1,∞). (20)

If moreover all the nonlinearities are linearly bounded then for any quadratically bounded polynomi-
ally smooth ψ,

1

n

n∑
α=1

E Sψ
(
g1α, . . . , g

M
α , c

1, . . . , cM
) a.s.−−→ Ψ̊ (21)

as n→∞, where Ψ̊ is the same as in Theorem 3.2.

Since the program used to compute the moments conforms not only Setup 3.3 but also a stronger
Setup 3.6, we get a full analogue of Theorem C.1:

Theorem C.4. For each n ≥ 1, define the random matrix A = W +W⊤ for W being an n × n
matrix with iid entries with zero mean, variance 1/(2n), and with all higher moments existing. Let
λ1, . . . , λn ∈ R be the eigenvalues of A and µn = 1

n

∑n
α=1 δλα

be their empirical distribution. Then
µn

a.s.−→ µsc, where µsc is the distribution with density ∝
√
4− x2.

Relaxing boundedness. Could we relax the assumption on linear and quadratic boundedness
in our Theorem C.3? Inspired by Central Limit Theorem and our matrix derivative bound below,
Lemma K.6, we conjecture the following moment bound that quantifies the rate of Lp convergence:

Conjecture C.5. Under Setup C.6 below, E |ci − c̊i|p = O(n−p/2) for any scalar ci in the program
and the corresponding almost sure limit c̊i, and any p ∈ [1,∞).

Setup C.6. Consider Setup 3.6 but replace 5) with 5*) for any initial scalar ci and any p ∈ [1,∞),
E |ci − c̊i|p = O(n−p/2), where c̊i is the almost sure limit of ci which exists due to 2).

If the above conjecture holds, we will get a similar bound for scalars conditioned on S, i.e. E |E Sc
i−

c̊i|p = O(n−p/2), which will imply E Sc
i a.s.−→ c̊i by Borel-Cantelli lemma:

18

Conjecture C.7. Consider Setup C.6 and let S be a subset of initial vectors. Then every scalar
ci conditioned on S converges to the same c̊i as in Theorem 3.4 almost surely and in Lp for any
p ∈ [1,∞):

E Sc
i a.s. & Lp

−−−−−−→ c̊i ∀p ∈ [1,∞). (22)

We leave proving Conjecture C.5 for future work.

C.2 Marchenko-Pastur law for non-Gaussian Wishart ensembles

Using exactly the same machinery as for the semi-circle law, [31] proves the Marchenko-Pastur law
for Wishart ensembles, i.e. for matrices of the form AA⊤, where A is an m×n Gaussian matrix with
zero mean and variance n−1, and m/n→ ρ ∈ (0,∞) as n→∞. Our Theorem 3.7 (with a remark
on programs with variable dimensions, see Section 3) gives a similar result with no assumptions on
Gaussianity of A:

Theorem C.8 (Ours). For each n ≥ 1, let A be an m × n matrix with iid entries with zero mean,
variance 1/n, and with all higher moments existing. Let λ1, . . . , λn ∈ R be the eigenvalues of AA⊤

and µn = 1
n

∑n
α=1 δλα

be their empirical distribution. Let m go to infinity as n → ∞ such that
m/n→ ρ ∈ (0,∞). Then µn

a.s.−→ µmp, where µmp has “density” pmp(x) given below:

pmp(x) = max(0, 1− ρ−1)δ(x) +
1

ρ2πx

√
(b− x)(x− a)1x∈[a,b], (23)

where δ(x) is the Dirac Delta, a = (1−√ρ)2, and b = (1 +
√
ρ)2.

C.3 Free Indepedence Principle for Tensor Programs with non-Gaussian weights

Using the same machinery again, [31] proves Free Independence Principle for Tensor Programs:

Theorem C.9 ([31]). Consider Setup 3.3 and assume all nonlinearities to be linearly bounded. Let
D denote the collection of diagonal matrices formed from bounded coordinatewise images of vectors
in the program:

D =
{
diag

(
ψ
(
g1, . . . , gM

))
: ψ : RM → R is bounded

}
. (24)

Then D, along with the random matrix collections {A,A⊤} for all matrices in the program are
almost surely asymptotically free as n→∞.

Here by almost sure asymptotical freeness we mean the following:

Definition C.10. Fix k. Consider collections of random matricesW1
n, . . . ,Wk

n ⊆ Rn×n for each
n ≥ 1, of constant cardinalities (with n). We say W1

n, . . . ,Wk
n are almost surely asymptotically

freely independent (or just almost surely asymptotically free), if

n−1 tr

(
k∏
i=1

(
Pi(Wji

n)− τiI
)) a.s.−→ 0, (25)

where τi = n−1 tr(Pi(Wji
n)), Pi is a non-commutative polynomial in |Wji

n | variables, j1, . . . , jk ∈
[k] are indices with no two adjacent ji equal, and {Pi}i, {ji}i independent on n.

The proof strategy for Theorem C.9 is very similar to the one of Theorem C.1. The trace in each
τi can be expressed as an expectation E z∼N (0,1)[z

⊤Pi(Wji
n)z] and Pi(Wji

n)z can be expressed as
a vector in a program with linearly bounded nonlinearities (that’s the reason why we require ψ in
the definition of D to be bounded). Therefore each τi converges by Theorem C.2, and therefore can
be thought as a scalar in a new Tensor Program. The “outer” trace in Eq. (25) can be expressed as
conditional expectation using the same trick, and the corresponding Eq. (25) again converges by
Theorem C.2. We refer the reader to [31] for details.

Simply replacing Theorem C.2 in the above reasoning with its non-Gaussian analogue, Theorem C.3,
we get a non-Gaussian analogue of Theorem C.9:

19

Theorem C.11 (Ours). Consider Setup 3.6 and assume all nonlinearities to be linearly bounded. Let
D denote the collection of diagonal matrices formed from bounded polynomially smooth coordinate-
wise images of vectors in the program:

D =
{
diag

(
ψ
(
g1, . . . , gM

))
: ψ : RM → R is bounded and polynomially smooth

}
. (26)

Then D, along with the random matrix collections {A,A⊤} for all matrices in the program are
almost surely asymptotically free as n→∞.

We had to require all nonlinearities to be linearly bounded and the functions ψ in the definition of dig-
onal matrices D to be bounded in order to apply a conditional theorem, Theorem C.2 or Theorem C.3.
Note that our original non-Gaussian Master theorem, Theorem 3.7, gives also convergence in L1,
which implies convergence of (full, non-conditional) expectations without requiring linearly bounded
nonlinearities24. Convergence of full expectations allows us to prove more traditional asymptotic
freeness in expectation in our non-Gaussian case:

Definition C.12. Fix k. Consider collections of random matricesW1
n, . . . ,Wk

n ⊆ Rn×n for each
n ≥ 1, of constant cardinalities (with n). We sayW1

n, . . . ,Wk
n are asymptotically freely independent

in expectation (or just asymptotically free), if

n−1E

[
tr

(
k∏
i=1

(
Pi(Wji

n)− τiI
))]

→ 0, (27)

where τi = n−1E tr(Pi(Wji
n)), Pi is a non-commutative polynomial in |Wji

n | variables, j1, . . . , jk ∈
[k] are indices with no two adjacent ji equal, and {Pi}i, {ji}i independent on n.

Theorem C.13 (Ours). Consider Setup 3.6. Let D denote the collection of diagonal matrices
formed from polynomially smooth (not necessarily bounded) coordinatewise images of vectors in the
program:

D =
{
diag

(
ψ
(
g1, . . . , gM

))
: ψ : RM → R is polynomially smooth

}
. (28)

Then D, along with the random matrix collections {A,A⊤} for all matrices in the program are
asymptotically free in expectation as n→∞.

We use the same tensor program to compute ci = 1
n

∑
α∈[n] z

i
α(Pi(Wji

n)zi)α required to compute
the traces τi = E zi∼N (0,I)c

i. Since we now rely on a theorem that does not require linearly
bounded nonlinearities, the nonlinearities of the program at hand and ψ in the definition of D can be
polynomially smooth. We embed the programs for Pi(Wji

n)z into the ”outer” program that computes
the scalar 1

n

∑
α∈[n] z̄α

(∏k
i=1

(
Pi(Wji

n)− ciI
)
z̄
)
α

. Taking the expectation over all randomness
and applying Theorem C.3 gives Eq. (27).

D Non-Gaussian Master theorem for Lipschitz nonlinearities

One of the limitations of our Theorem 3.7 is smoothness requirement. In the present section, we
prove a similar result that assumes nonlinearities to be Lipschitz but not necessarily smooth:

Setup D.1. Consider Setup 3.6, but replace 3*) and 4*) with the following: 3**) all matrices Ai
have independent entries drawn from sub-Gaussian distributions with zero mean and variance n−1;
4**) all the nonlinearities ϕ are Lipschitz (but not necessarily smooth).

Theorem D.2 (Non-Gaussian Master theorem for Lipschitz nonlinearities). Consider Setup D.1.
Then, as n→∞, every scalar ci converges to the same c̊i as in Theorem 3.4 almost surely and in
mean:

ci
a.s. & L1

−−−−−−→ c̊i.

The following result is an immediate consequence of the above theorem:

24This proves Conjecture A.4 of [31] for polynomially smooth nonlinearities

20

Corollary D.3 (Convergence to GP at initialization). Consider a neural network whose forward pass
can be expressed as Eq. (4) with each matrix W i corresponding to some Aj but not its transposed.
Suppose 1) all the activation functions are Lipschitz; 2) input and output layer weights are initialized
with iid standard Gaussian images; 3) entries of all hidden bias vectors are initialized with iid
standard Gaussians; 4) weights of any other layer are initialized according to 3**) of Setup D.1; 5)
output layer bias vector entries are initialized with zeros. Then at initialization, as width tends to
infinity, the pre-activation output of any hidden neuron of any layer except for the first one converges
weakly to a Gaussian Process (GP).

Proof. We use the fact that when all matrices in Eq. (4) are not transposed, the limit in Theorem 3.4
(and hence in our Theorem D.2) takes the form Ψ̊ = E z∼N (µ,Σ)ψ(z), where µ and Σ are computed
using a certain recurrent formula; see [29].

Let g1, . . . , gB be the pre-activation outputs of a given layer on a batch of inputs of size B. Let ψ be
Lipschitz and bounded, and depend only on these B vectors. Then for any α ∈ [n], by symmetry of
neurons, E [ψ(g1α, . . . , g

B
α)] → E z∼N (µ,Σ)ψ(z) from Theorem D.2. This means that on any batch

of inputs of size B, outputs of a given neuron g1α, . . . , g
B
α converge weakly to a Gaussian vector.

This means that the output of this neuron converges weakly to a Gaussian process as a function of
network’s input.

Proof of Theorem D.2. Let λ be the maximal Lipschitz constant among all ϕi in the program. Fix
some δ > 0. Let ϕi,δ be the corresponding polynomially smooth Lipschitz functions given by
Lemma B.1. W.l.o.g., we substitute δ with δ/2L so that supx∈R2(i−1) |ϕi,δ(x)− ϕi(x)| ≤ δ.

Define the “smoothed” version of the given Tensor Program:

gi,δα ←
n∑
β=1

W i
αβx

i,δ
β , ci,δ ← 1

n

n∑
β=1

xi,δβ , where xi,δα = ϕi(g1,δα , . . . , gi−1,δ
α ; c1,δ, . . . , ci−1,δ).

(29)
for i ∈ [M0 + 1 :M], where all W i are the same as in the original program. All input vectors and
scalars coincide with the original program: gi,δ = gi, ci,δ = ci for i ∈ [M0].

We consider the same weight interpolation Al(t) as in the main: Al(0) corresponds to Gaussian
weights Ãl with the same mean and variance as Al, while Al(1) corresponds to the original weights
Al. Consequently, gi,δ(t) denotes a vector obtained using A1(t), . . . , AL(t), and similarly for ci,δ(t).

Lemma D.4. Under premise of Theorem D.2, for any i ∈ [M0 + 1,M], there exists a polynomial P i
such that for any n ≥ 1, any δ > 0, and any t ∈ [0, 1],∥∥xi(t)− xi,δ(t)∥∥

2
≤
√
nδP i

(
λ∥A1(t)∥2, . . . , λ∥AL(t)∥2

)
. (30)

Proof. We will drop the t-argument in the proof to lighten the exposition. We prove the statement by
induction on i.

Induction base: since g1 = g1,δ, . . . , gM0 = gM0,δ ,∥∥xM0+1(t)− xM0+1,δ(t)
∥∥
2
≤

≤
∥∥ϕM0+1(g1, . . . , gM0 ; c1, . . . , cM0)− ϕM0+1,δ(g1,δ, . . . , gM0,δ, c1,δ, . . . , cM0,δ)

∥∥
2
≤
√
nδ.

(31)

Here PM0+1 ≡ 1; in particular, it does not depend on t.

Suppose the induction hypothesis holds for i. Then we get the following for i+ 1:∥∥xi+1 − xi+1,δ
∥∥
2
=
∥∥ϕi(g1, . . . , gi; c1, . . . , ci)− ϕi,δ(g1,δ, . . . , gi,δ; c1,δ, . . . , ci,δ)∥∥

2
≤

≤
∥∥ϕi(g1, . . . , gi; c1, . . . , ci)− ϕi,δ(g1, . . . , gi; c1, . . . , ci)∥∥

2
+

+
∥∥ϕi,δ(g1, . . . , gi; c1, . . . , ci)− ϕi,δ(g1,δ, . . . , gi,δ; c1,δ, . . . , ci,δ)∥∥

2
≤

≤
√
nδ +

√√√√ n∑
α=1

∣∣∣ϕi,δ(g1α, . . . , giα; c1, . . . , ci)− ϕi,δ(g1,δα , . . . , gi,δα ; c1,δ, . . . , ci,δ)
∣∣∣2, (32)

21

where the last inequality holds due to the approximation property of ϕδ .

n∑
α=1

∣∣ϕi,δ(g1α, . . . , giα; c1, . . . , ci)− ϕi,δ(g1,δα , . . . , gi,δα ; c1,δ, . . . , ci,δ)
∣∣2 ≤

≤ λ2
n∑
α=1

i∑
i′=M0+1

(∣∣∣gi′α − gi′,δα

∣∣∣2 + |ci′ − ci′,δ|2) =

= λ2
i∑

i′=M0+1

(
∥gi

′
− gi

′,δ∥22 + n|ci
′
− ci

′,δ|2
)
≤ λ2

i∑
i′=M0+1

(
∥W i′∥22 + 1

)∥∥∥xi′ − xi′,δ∥∥∥2
2
≤

≤ nδ2λ2
i∑

i′=M0+1

(
∥W i′∥22 + 1

)(
P i

′
(λ∥A1∥2, . . . , λ∥AL∥2)

)2
(33)

by induction hypothesis. Plugging this expression back, we get

∥∥xi+1 − xi+1,δ
∥∥
2
≤
√
nδ

1 + λ

√√√√ i∑
i′=M0+1

(∥W i′∥22 + 1) (P i′(λ∥A1∥2, . . . , λ∥AL∥2))2
 ≤

≤
√
nδ

(
1 + λ

i∑
i′=M0+1

(
∥W i′∥2 + 1

)
P i

′
(λ∥A1∥2, . . . , λ∥AL∥2)

)
. (34)

Define ji′ such that W i′ equals Aji′ or its transposition for every i′ ∈ [M0 + 1,M]. Define the new
polynomial P i+1 as

P i+1(x1, . . . , xL) = 1 + λ

i∑
i′=M0+1

(
xji′ + 1

)
P i

′
(x1, . . . , xL), (35)

which does not depend on t since neither of P i
′

for i′ ≤ i do. This proves the induction.

The above lemma implies for any t ∈ [0, 1],

|ci(t)− ci,δ(t)| = 1

n
∥xi(t)− xi,δ(t)∥1 ≤

1√
n
∥xi(t)− xi,δ(t)∥2 ≤

≤ δP i(λ∥A1(t)∥2, . . . , λ∥AL(t)∥2). (36)

For any p ∈ [1,∞),

E |ci(1)− ci(0)|p ≤ 3pE |ci(1)− ci,δ(1)|p+3pE |ci,δ(1)− ci,δ(0)|p+3pE |ci(0)− ci,δ(0)|p. (37)

The second term goes to zero as n→∞ for any δ > 0 by our ”smooth” Master theorem, Theorem 3.7
(see also the reasoning in Section 5). The first and the last terms are bounded as follows:

E |ci(1)− ci,δ(1)|p ≤ δpE
[(
P i(λ∥A1∥2, . . . , λ∥AL∥2)

)p]
, (38)

E |ci(0)− ci,δ(0)|p ≤ δpE
[(
P i(λ∥Ã1∥2, . . . , λ∥ÃL∥2)

)p]
, (39)

which are both bounded uniformly wrt n by Cδp for some constant C independent on n since all
A1, . . . , AL and Ã1, . . . , ÃL are sub-Gaussian and therefore have moments, which are uniformly
bounded wrt n. Therefore

lim
n→∞

E |ci(1)− ci(0)|p ≤ 2Cδp. (40)

Taking infium over δ > 0 gives simply limn→∞ E |ci(1)−ci(0)|p = 0, which means that ci(1)−ci(0)
converges to zero in Lp. Since this is true for any p ≥ 1, similarly to the proof of Theorem 3.7,
Borel-Cantelli lemma will imply that ci(1)− ci(0) converges to zero almost surely. Since Gaussian
Master theorem, Theorem 3.4, works for non-smooth nonlinearities, ci(1) converges almost surely to
the same limit as ci(0).

22

Since all of our nonlinearities are Lipschitz, they are linearly bounded. For such nonlinearities,
Gaussian Master theorem guarantees also convergence in mean, see Theorem A.1 of [31]. Therefore

lim
n→∞

E |ci(1)− c̊i| ≤ lim
n→∞

E |ci(1)− ci(0)|+ lim
n→∞

E |ci(0)− c̊i| = 0, (41)

which means that ci(1) converges to c̊i in mean.

E Tensor Program formulation equivalence

The Tensor Program series [29, 30, 31, 34, 32, 33] defines a Tensor Program as a pair of initial state
and a sequence of commands. The initial state consists of variables of three different types: A, G,
and C, which correspond to matrices, vectors, and scalars in Eq. (4), respectively. In its body, the
program can also generate X-vars (that correspond to a vector x in Eq. (4)), which are size-n vectors
but with a different meaning compared to G-vars. The G- and C-vars in the initial state are called
input variables.

Each command takes some variables from the state, generates a new variable, and appends it to the
state. In the most general version of a Tensor Program, NETSOR⊤+ , the following commands are
available:

• Trsp. Input: A : A. Output A⊤ : A.

• MatMul. Input: A : A, x : X. Output: Ax : G.

• Nonlin+. Input: g1 : G, . . . , gk : G, c1 : C, . . . , cl : C. Output: x : X, where xα =
ϕ(g1α, . . . , g

k
α, c

1, . . . , cl) ∀α ∈ [n].

• Moment. Input: g1 : G, . . . , gk : G, c1 : C, . . . , cl : C. Output: c : C, where c =
1
n

∑n
α=1 ϕ(g

1
α, . . . , g

k
α, c

1, . . . , cl).

It is easy to see that the iteration of Eq. (4) can be expressed as a NETSOR⊤+ program above. Note
that in all Master theorems, we care only about vectors of type G and scalars. Let us now show that
for any NETSOR⊤+ program, we can construct an iteration in the form of Eq. (4) that generates the
same set of G- and C-vars.

Note that G-vars can only be generated by MatMul. Each such MatMul uses a single X-var which
can be generated only by Nonlin+. For the m-th G-var, we therefore get the following iteration:

gmα =

n∑
β=1

Am,Tm

αβ ϕm(g1β , . . . , g
km
β , c1, . . . , clm),

where we put Tm = 1 if the corresponding A-var has undergone Trsp even number of times by the
moment of generating the above G-var, or Tm = ⊤ otherwise. By generating “placeholder” G- or
C-vars (say, zeros), we can assume w.l.o.g. that km = lm = m− 1. Moreover, we can generate a
G-var and a C-var at the same time using the same function ϕm as a subsequent nonlinearity may not
depend on one of them if not necessary. This gives us an iteration of the form of Eq. (4).

F Comparison with Chen and Lam [2]

The work of [2] considers the following iteration:

x̃2α = ϕ2

(∑
δ

Ãαβx
1
β

)
, x̃mα = ϕm

(∑
δ

Ãαβ x̃
m−1
β , x̃m−2

α , . . . , x̃2α, x
1
α

)
∀m > 2 ∀α ∈ [n],

(42)
where Ã is a sum of two symmetric n×n matrices: one has iid sub-Gaussian entries with zero mean
and variance n−1, while the other is a deterministic matrix divided by n. Denote the first matrix as Z̃,
and the second as X/n, so Ã = Z̃ +X/n. Let A = Z +X/n, where Z is a symmetric iid Gaussian

23

matrix with zero mean and variance n−1. Consider the corresponding iteration:

x2α = ϕ2

(∑
δ

Aαβx
1
β

)
, xmα = ϕm

(∑
δ

Aαβx
m−1
β , xm−2

α , . . . , x2α, x
1
α

)
∀m > 2 ∀α ∈ [n],

(43)
The main result of [2] follows:
Theorem F.1 ([2]). Take M ≥ 2 and a function ψ with M arguments. Suppose ψ and all ϕm for
m ∈ [2 :M] are Lipschitz. Then

lim
n→∞

∣∣∣∣∣ 1n
n∑
α=1

(
ψ(x1α, . . . , x

M
α)− ψ(x̃1α, . . . , x̃Mα)

)∣∣∣∣∣ = 0 (44)

in probability.

In this formulation, 1
n

∑n
α=1 ψ(x

1
α, . . . , x

M
α) does not converge to E z∼N (µ,Σ)ψ(z) for some µ and

Σ since x1α, . . . , x
M
α are images of nonlinear functions. Therefore the above formulation does not

allow for a clear Gaussian process interpretation as in our Corollary 4.3 or Corollary D.3.

One can show equivalence of our iteration (4) and the above iteration in a certain scenario. Namely
for the above, let X be and identity matrix and assume x1 is an elementwise image of a Gaussian
vector. For our iteration (4), let M0 = 1, let us generate a “twin” variable for each vector, where
the only difference is that one uses Am, while the other uses Am,⊤, and let each nonlinearity use a
sum of xjα, x̄jα, and cj for each j ∈ [m− 1], where x̄j is a twin variable for xj . Equivalence is then
showed by reorganizing nonlinearities of the two variants.

Apart from equivalence in the above scenario, the use of iteration (42) for expressing deep learning
computations is very limited. First, iteration (42) assumes weight matrices to be symmetric, while
such weight initializations are rarely used in practice. Second, iteration (42) applies the same weight
matrix each time. While some layers in neural nets can indeed share weights, assuming that all
layers share weights strictly limits us to vanilla recurrent neural nets, drawing out even simplest
feedforward nets. Third, the form A = Z +X/n has no clear interpretation in typical neural network
computations. And last, iteration (42) assumes only one input variable. In terms of neural network
computations, this limits us to a single input, no bias vectors, and no output layer. It automatically
draws out the ability to express a backward pass (and therefore learning process). Moreover, we
cannot hope even to show Gaussian process behavior (as in Corollary 4.3) as it requires evaluating
the network on a batch of inputs of any finite size.

While our proof is based on the same weight interpolation idea as the proof of Theorem F.1, certain
crucial details are different. While Theorem F.1 requires everything to be Lipschitz, our Theorem 3.7
allows for certain smooth polynomially bounded nonlinearities and ψ-functions. While restricting
oneself to Lipschitz nonlinearities still allows to express a forward pass of a, say, ReLU net, it
does not allow for expressing its backward pass since the derivative of a ReLU is not Lipschitz
(and not even continuous). Moreover, computing a kernel (NNGP or NTK, see Corollary 4.3 and
Corollary 4.4) requires a quadratic ψ-function. Finally, they prove only convergence in probability,
while our Theorem 3.7 states almost sure convergence and convergence in Lp for any p, which is
much stronger.

G Proof of Lemma 5.3

We prove Lemma 5.3, recalled here for convenience.
Lemma 5.3 (Interpolation Properties). For any matrix entry a(t) = Aiαβ(t) of a program in
Setup 3.6: (1) E ȧ(t) = E a(t)ȧ(t) = 0 for all t; (2) For any integers j, k ≥ 0 with sum ℓ = j + k,
supt E |a(t)j ȧ(t)k| ≤ πℓνℓn−ℓ/2, where νℓ is the scaled moment bound in Setup 3.6.

Beyond our TP setting, our proof shows that these two properties hold for any interpolation a(t) =
a1 cos

π
2 t+ a2 sin

π
2 t between centered random variables a1 and a2 with identical variance 1/n and

satisfying the scaled moment bound E |a1|k,E |a2|k ≤ νk/n−k/2 for all k ≥ 3.

Proof. Write
a(t) = ã cos

π

2
t+ a sin

π

2
t

24

where ã is the Gaussian random variable and a is the non-Gaussian random variable. Then

ȧ(t) =
π

2
(−ã sin π

2
t+ a cos

π

2
t).

Then E ȧ(t) = 0 follows from the zero-mean property of ã and a. Likewise, straightforward
calculation using the independence between ã and a shows E a(t)ȧ(t) = 0.

To show (2), first note that, for any t,

|a(t)|, 2
π
|ȧ(t)| ≤ |ã|+ |a|.

Then

E |a(t)j ȧ(t)k| ≤
(π
2

)k k∑
i=0

(
ℓ

i

)
E |ã|i|a|ℓ−i.

By Hölder’s inequality,

E |ã|i|a|ℓ−i ≤ (E |ã|ℓ) i
ℓ (E |a|ℓ)

ℓ−i
ℓ ≤ νℓn−ℓ/2.

Therefore,

E |a(t)j ȧ(t)k| ≤
(π
2

)k k∑
i=0

(
ℓ

i

)
νℓn

−ℓ/2 =
(π
2

)k
2ℓνℓn

−ℓ/2 = πℓνℓn
−ℓ/2.

H Technical Preliminaries

H.1 Lp Norm

For any vector v ∈ Rk and p ≥ 1, we write ∥v∥p to denote its Lp norm ∥v∥p
def
= p
√
|v1|p + · · ·+ |vk|p.

When p = 2, we will just write ∥v∥ = ∥v∥2 when there’s no cause for confusion. The following Lp
norm bound is standard.
Lemma H.1. For any vector b ∈ Rk, if p ≤ q, then

∥b∥q ≤ ∥b∥p ≤ k
1
p−

1
q ∥b∥q

We will use the following trivial but useful fact repeatedly. It follows trivially from Lemma H.1.
Lemma H.2. For any integer m ≥ 0 and reals ai ∈ R, i ∈ [k],∣∣∣∣∣

k∑
i=1

ai

∣∣∣∣∣
m

≤ km−1
k∑
i=1

|ai|m .

H.2 Multisets

Definition H.3 (Multiset). A multiset is a set allowing multiple occurences of the same element,
e.g., {1, 1, 1, 2, 2, 3} (which is not equal to {1, 2, 3} as a multiset). We will use capital italic font
to denote multisets, such as P . Thus, e.g., when we write

∑
p∈P f(p), p could take the same value

multiple times. The number of elements in P , counting multiplicity, is denoted |P|. The set of unique
elements is denoted uniq(P).
Definition H.4 (Partition of multiset). A partition τ of a multiset P expresses P as a disjoint union of
multisets. Concretely, τ is a multiset {P1, . . . ,Pk} such that P =

⊔
i Pi, and |τ | = k is the number

of sets in the partition. For example, P = {1, 1, 1, 2, 2, 3} = {1, 1} ⊔ {2, 2} ⊔ {1, 3}, so that τ =
{{1, 1}, {2, 2}, {1, 3}} is a partition ofP . As another example, P = {1}⊔{1}⊔{1}⊔{2}⊔{2}⊔{3}
is also a partition, with repeated sets, which emphasizes the fact that τ is allowed to be a multiset.

Obviously, the typical notion of a partition of a set is just a special case of the above concept applied
to sets.

25

Definition H.5 (Partition induced by multiset). Given a multiset P , we can count the multiplicity
of each element in P and list them in nonincreasing order, say π1 ≥ π2 ≥ · · · ≥ πk ≥ 1 where∑k
i=1 πi = |P|. Then the multiset π = {πi}ki=1 form a partition π(P) of the integer |P|, which we

call the partition induced by P , and we denote |π| def
= k, the size of the partition. Again, note that

π(P) does not contain any information about the identity of elements in P , only their counts.

For example, P = {•, •, •, ⋆, ⋆,×} would induce the partition |P| = 6 = 3 + 2 + 1 because 3 is the
multiplicity of •, 2 is the multiplicity of ⋆, and 1 is the multiplicity of ×.

Note that the partitions of integer n are equivalent to the partitions of the multiset {1, . . . , 1︸ ︷︷ ︸
n

}.

Definition H.6 (Multiset from vector). A multiset can be obtained from a vector by forgetting the or-
der of the vector’s entries, e.g., {1, 1, 1, 2, 2, 3} can obtained this way from the vector (1, 2, 1, 3, 2, 1)
or (2, 3, 1, 1, 2, 1). We will use capital bold font to denote such vectors in the context of multisets,
such as P = (P1, P2, . . .), and such obtained multiset would be written as P̃ = {P1, P2, . . .}.
Definition H.7 (NP). For any fixed multiset P , we can ask how many distinct vectors P are there
such that P = P̃. The answer is the multinomial coefficient NP

def
=
(|P|
π

)
=
(|P|
π1;··· ;πk

)
, where

π = π(P) is the partition induced by P . Note that NP depends on P only through π.

For instance, for P = {•, •, •, ⋆, ⋆,×}, we have NP =
(

6
3;2;1

)
.

H.3 Monomials

Given a vector x = (x1, . . . , xk) ∈ Rk and a vector P ∈ [k]r for some integer r ≥ 0, we can form
the monomial xP def

=
∏r
i=1 xPi

. Thus, if 1 appears in P t times, then xP contains a factor of xt1.

If we also have a multisetP taking values in [k], then we can also form the monomial xP def
=
∏
α∈P xα.

In this notation, we would have xP = xP̃.

H.4 Tensors

Given vectors x ∈ Rk, y ∈ Rl, their tensor x⊗y is the vector in Rk×l with entries (x⊗y)(i,j) = xiyj ,
where the index ranges over (i, j) ∈ [k]× [l]. We will use angle brackets ⟨−,−⟩ to denote standard
inner product on all Euclidean spaces, so that

⟨x⊗ y, x′ ⊗ y′⟩ = ⟨x, x′⟩⟨y, y′⟩ (45)

if x, x′ ∈ Rk, y, y′ ∈ Rl.
We can tensor a vector x ∈ Rk with itself p− 1 times to form a tensorial power x⊗p ∈ Rkp of x. Its
entries would be indexed by elements P of [k]p, with (x⊗p)P = xP. Like in Eq. (45), we have

⟨x⊗p, y⊗p⟩ = ⟨x, y⟩p.

for any x, y in the same Euclidean space.

This is particularly relevant as we will often encounter the expression (
∑
α xα)

p which can be written
as (∑

α

xα

)p
= ⟨1, x⟩p = ⟨1⊗p, x⊗p⟩ =

∑
P∈[k]p

xP. (46)

By Definition H.7, we can further rewrite this as(∑
α

xα

)p
=
∑
P
NPx

P (47)

where P ranges over all multisets of size |P| = p taking value in [k].

26

Spectral Norms for Tensors Let A be a r-th order tensor, A ∈ Rk1×...×kr . We define its spectral
norm, ∥A∥, as follows:

∥A∥ = sup
x1∈Rk1 , ∥x1∥=1

. . . sup
xr∈Rkr , ∥xr∥=1

=

∣∣∣∣∣
〈
A,

r⊗
i=1

xi

〉∣∣∣∣∣ . (48)

Note that this definition is consistent with the definition of spectral norm of matrices. For any r-th
order tensor A and vectors x1 ∈ Rk1 , . . . xr ∈ Rkr , we have the following inequality:∣∣∣∣∣

〈
A,

r⊗
i=1

xi

〉∣∣∣∣∣ ≤ ∥A∥
r∏
i=1

∥xi∥. (49)

H.5 Higher Order Differentiation and Taylor Expansion

Scalar Function For a smooth multivariate scalar function f(x) = f(x1, . . . , xk) and a vector
P ∈ [k]r with multiset P def

= P̃, we write

∂Px f(x) = ∂Px f(x)
def
=

∂r

∂xP1 · · · ∂xPr

f(x).

We also define∇pxf(x) ∈ Rkp as the pth order tensor containing all order-p derivatives of f evaluated
at x:

(∇pxf(x))P = ∂Px f(x).

This is a highly symmetric tensor as (∇pxf(x))P = (∇pxf(x))Q if P̃ = Q̃ as multisets. In all
notations, we will drop the subscript, e.g., ∂P = ∂P, when the variables of the differentiation are
clear from context.

Note that we have used a superscript notation for ∂P and ∂P to emphasize that they denote a “product
of (1st order) partial derivatives operators.” In particular, ∂Pf(x) and ∂Pf(x) should be distinguished
from the vector of 1st order partial derivatives (∂

∂xPi
f(x))ri=1. They will always be scalar quantities

when f is scalar, whereas we always use ∇p for when we want to think of the collection of (higher
order) partial derivatives as a vector or tensor.

In this notation, f ’s Taylor expansion around x = 0 can be written as

f(0) + ⟨∇f(0), x⟩+ 1

2!
⟨∇2f(0), x⊗2⟩+ · · ·+ 1

p!
⟨∇pf(0), x⊗p⟩+ · · · .

Of course, in general this Taylor expansion is not exact unless f is analytic in the appropriate
neighborhood. For our purpose, the Taylor expansion with remainder is more useful, as it is exact:

Lemma H.8 (Taylor expansion with remainder). If f : Rk → R, f(x) = f(x1, . . . , xk) is Cp+1

(i.e.,∇pf(x) has continuous partial derivatives), then

f(x) = f(0) + ⟨∇f(0), x⟩+ · · ·+ 1

p!
⟨∇pf(0), x⊗p⟩+Rp+1,

where the remainder Rp+1 is

Rp+1
def
=

1

p!

∫ 1

0

(1− t)p⟨∇p+1f(tx), x⊗(p+1)⟩dt

Vector Function For the vector case f : Rk → Rl, f(x) = (f1(x), . . . , fl(x)), all of the above
considerations apply to the components of f in parallel. For example,

∂Pf(x) = ∂Pf(x)
def
= (∂Pf1(x), . . . , ∂

Pfl(x)) ∈ Rl

∇pf(x) def
= (∇pf1(x), . . . ,∇pfl(x)) ∈ Rl×k

p

27

H.6 Higher Order Chain Rule

Lemma H.9 ([10]). Suppose f : Rl → R, y : Rk → Rl are Ck and consider their composition
f(y) = f(y(x1, . . . , xk)). Then for any vector P ∈ [k]r,

∂Px f(y) =
∑
τ

⟨∇|τ |
y f(y),

⊗
P∈P[τ]

∂Px y⟩ (50)

where τ ranges over partitions of {1, . . . , r} and P[τ] is the partition {{Pi : i ∈ S} : S ∈ τ} of P̃.

Eq. (50) may look somewhat scary at first, but when we apply it, the range of τ (in the outer sum) and
the range of P (in the inner tensor product) are both O(1)-sized, as n → ∞. So when we want to
bound ∂Px f(y) (which is the only time we will use Eq. (50)), what we end up caring about is only the
individual norms of ∇|τ |

y f(y) and ∂Px y. May this fact assuage the reader intimidated by the density
of Eq. (50).

Nevertheless, let us take some time to digest Eq. (50).

To unpack the tensor notation, notice that 1) ∇|τ |
y f(y) ∈ Rl|τ|

, 2) ∂Px y = (∂Px y1, . . . , ∂
P
x yl) ∈ Rl,

so 3)
⊗

P∈P[τ] ∂
P
x y, being a tensor over |P[τ]| = |τ | vectors, is in Rl|τ|

as well. So, for example,
when |τ | = 1, there is only one partition, consisting of the whole of [k], and P[τ] = {P̃}, so that the
corresponding term in Eq. (50) is

⟨∇yf(y), ∂Px y⟩ =
l∑

j=1

∂f

∂yj

∂ryj
∂xP

.

As a helping example, consider the case when r = 2 and P = (1, 2). Then we have

∂Px f(y) = ∂x1
∂x2

f(y) = ∂x1
(⟨∇yf(y), ∂x2

y⟩) = ⟨∇yf(y), ∂x1
∂x2

y⟩+ ⟨∇2
yf(y), ∂x1

y ⊗ ∂x2
y⟩.

Here the first term corresponds to τ = {[k]}; in this case, P[τ] = {P̃} = {{x1, x2}}. The second
term corresponds to τ = {{1}, {2}}; in that case, P[τ] = {{x1}, {x2}}.
Note that Eq. (50) is not equivalent to the look-alike equation where we allow τ to range over
partitions of the multiset P̃ and letting P in the inner tensor product range over P ∈ τ . This
alternative equation would lead to too few terms in the sum over τ , as is apparent when one considers
P = (1, . . . , 1).

Applying Eq. (49) to Eq. (50), we get

Lemma H.10. In the same setting as in Lemma H.9, we have

|∂Px f(y)| ≤
∑
τ

∥∇|τ |
y f(y)∥ ·

∏
P∈P[τ]

∥∂Px y∥. (51)

We will in particular need to apply this repeatedly to the case when f(y) =
∏
j yj :

Lemma H.11. Suppose y : Rk → Rl is Ck, with y(x) denoting the value of y on input x. Then for
any vector P ∈ [k]r, ∥∥∥∥∥∥∂Px

∏
j

yj

∥∥∥∥∥∥ ≤
l−1∑
t=0

√
ll−t−1∥y∥2t2t ·

∑
τ

∏
P∈P[τ]

∥∂Px y∥. (52)

where τ ranges over partitions of {1, . . . , r} of size l − t and P[τ] is as in Lemma H.9. Here ∥y∥00 is
by convention defined to be l.

The proof below actually shows the ll−t−1 in Eq. (52) can be refined to the falling factorial (l −
1) · · · (t+ 1) but we will not need this. Also note that there are no partitions of size > r, so that the
summand vanishes when t < l − r.

28

Proof. For f(y) =
∏
j yj , by Eq. (51), we just need to show

∥∇|τ |
y f(y)∥2 ≤ l|τ |−1∥y∥2(l−|τ |)

2(l−|τ |).

Each nonzero entry of ∇|τ |
y f(y) has the form yS for some size-(l − |τ |) subset (i.e., having no

duplicates) S of [l]. By power-mean inequality, |yS |2 ≤ 1
|S|
∑
j∈S |yj |2|S|. Taking sum over all

possible S of size (l − |τ |), we have

∑
S

|yS |2 ≤
(
l

|τ |

)
1

l

l∑
j=1

|yj |2(l−|τ |)

Finally, each yS appears |τ |! times in∇|τ |
y f(y), so

∥∇|τ |
y f(y)∥2 = |τ |!

∑
S

|yS |2 ≤ l|τ |−1
l∑

j=1

|yj |2(l−|τ |)

as desired.

H.7 Smoothness Profile of A Function

Definition H.12 (Smoothness Profile). Consider a smooth (C∞) function f : Rk → R. If there is a
sequence C of positive reals (C1, p1), (C2, p2), . . . such that for any P ∈ [k]r, we have

∣∣∂Pf(x)∣∣ ≤
Cr(1 + |x1|pr + · · ·+ |xk|pr), then we say C is a smoothness profile, or just profile for short, of f .

Obviously, f is polynomially smooth (Definition 3.5) iff it has a profile.

As one could guess, the “expected smoothness” of a program’s vectors (under perturbation of its
matrices) will depend on the nonlinearities ϕi of the program only through the profiles of ϕi. Thus,
there are smoothness guarantees that are uniform over all programs whose nonlinearities have the
same profiles.

I The Basic Moment Argument

Throughout this work, we need to study many different sums of random variables X =
∑n
α=1 xα. In

particular, we will repeatedly use a basic argument to bound its moment EXp for even p, which is
formally codified in Lemma I.4 at the end of this section. But to motivate this eventual formulation,
it’s nice to start with a simple example.

Simple Motivating Example The simplest example would be when xα are iid random variables
that don’t depend on n (but eventually we will need to cover the case of general non-iid distributions
depending on n, with small correlations among xα). Then for even p, by Eq. (47),

EXp =
∑
P
NPExP (53)

where P ranges over all multisets of size |P| = p taking value in [n] and NP is the multinomial
coefficient defined in Definition H.7. In our case, with each xα being iid, it’s clear that ExP = ExP′

if the multisets P,P ′ have the samed induced partition: π(P) = π(P ′). For example, Ex1x1x2x3 =
Ex1x1x3x4 = Ex4x4xnxn−1 because the corresponding multisets all have the same induced
partition {2, 1, 1} of 4.

For any fixed partition τ of p, we can ask how many multisets P are there with π(P) = π. The
answer is quite straightforward but requires a bit of explanation notationally: we think of τ as another
multiset and take its induced partition π(τ) of the integer |τ |; then the answer is the multinomial
coefficient

(
n

π(τ)

)
. For the above example of τ = {2, 1, 1}, we have π(τ) = {1, 2}, because a) 1 in

π(τ) is the multiplicity of 2 in τ and b) 2 in π(τ) is the multiplicity of 1 in τ . So there are
(
n
1;2

)
multisets P with π(P) = π.

29

Therefore, we can further rewrite Eq. (53) as a sum over partitions τ of integer p:

EXp =
∑
τ

(
n

π(τ)

)
NPExP (54)

where for every τ , P is any choice of multiset with π(P) = τ . The advantage of this representation
is that EXp is now clearly a polynomial in n. This is because 1) τ ranges over a set that does not
depend on n; 2) NP does not depend on n; and 3) the distribution of xα does not depend on n by our
assumption. Thus, as n → ∞, we can obtain a bound on Xp by deriving the leading term of this
polynomial. Because

(
n

π(τ)

)
= Θ(n|τ |) (e.g.,

(
n

π({1,1,2})
)
=
(
n
2;1

)
= Θ(n3)), this means focusing

on the the partitions τ with the largest |τ |. In general, of course, this is just τ = {1, . . . , 1} where
|τ | = p, corresponding to monomials like x1x2 · · ·xp. But in the cases we are concerned with, ExP
for this τ will vanish, so we need to look at lower order terms.

For example, assume further that xα has mean 0 and variance 1. Then ExP = 0 for any P
that contains an element appearing with multiplicity 1 (e.g., Ex1x2x2 = 0 because it’s equal to
(Ex1)(Ex22) = 0 · (Ex22) = 0). Therefore, the leading term in the polynomial Eq. (53) corresponds
exactly to the partition τ = {2, . . . , 2} (where |τ | = p/2) of p (corresponding to monomials like
Ex21 · · ·x2p/2 which is equal to 1 by our variance-1 assumption), and any other τ must either have
smaller |τ | or it has ExP = 0. Therefore, in this case, we deduce

EXp = Θ(np/2), as n→∞. (55)

We can of course say more precise things about EXp under these assumptions, which we record
below.
Proposition I.1. If xα, α ∈ [n], are sampled iid from a distribution with kth moment νk, then for any
even integer p,

E

(
n∑
α=1

xα

)p
=
∑
τ

(
n

π(τ)

)(
p

τ

)
ντ (56)

summing over partitions τ of integer p and any n.

Here ντ =
∏
k∈τ νk following the multiset notation in Appendix H.3.

Slightly more generally, we have
Proposition I.2. If xα, α ∈ [n], are sampled independently and the distribution of xα has kth moment
bounded above by νk, then for any even integer p,

E

(
n∑
α=1

xα

)p
≤
∑
τ

(
n

π(τ)

)(
p

τ

)
ντ (57)

summing over partitions τ of integer p and any n.

General Case Now, when we consider xα that are not iid and may correlate amongst themselves,
Eq. (53) will continue to hold but in general Eq. (54) will not. Furthermore, ExP in the general case
can also depend on n. So even if there’s enough symmetry to obtain Eq. (54), we no longer have a
polynomial expression of EXp in n.

Nevertheless, most of the time, our objective is to show that EXp is O(1) as n→∞, and the above
arguments can be easily adapted to work given the following condition:
Definition I.3 (Small Moment Condition). Consider a sequence x of random vectors (x(n) ∈
Rn)∞n=1. We say x satisfies the Small Moment Condition (SMC) if for every even integer p, there
exists a constant C such that

Ex(n)P ≤ Cn−|uniq(P)| (58)
for every multiset P of size p and for any n, where uniq(P) is the set of unique elements of P .
Lemma I.4. Consider a sequence x of random vectors (x(n) ∈ Rn)∞n=1. If x satisfies the Small
Moment Condition (Definition I.3), then for any real p ≥ 1,

E

∣∣∣∣∣
n∑
α=1

x(n)α

∣∣∣∣∣
p

= O(1) as n→∞. (59)

Here the constant in O(1) depends only on p and the constant C in Definition I.3.

30

Proof. Note that, by the power-mean inequality, it suffices to prove this for even integer p. Let
X(n)

def
=
∑n
α=1 x(n)α. Below we suppress the argument (n) notationally. Note that |uniq(P)| =

|π(P)|, for π(P) defined in Definition H.5. By Eq. (53), we have, for every n,

EXp ≤
∑
P
NPCn

−|π(P)| ≤ C ′
∑
P
n−|π(P)|

summing over multisets P of size p taking value in [n]. where C is the constant in Definition I.3 and
C ′ = CmaxP NP . Then the same symmetry argument leading to Eq. (54) yields

EXp ≤ C ′
∑
τ

(
n

π(τ)

)
n−|τ | =

∑
τ

O(1) = O(1),

where τ ranges over all partitions of integer p.

As an example, if xα = x(n)α, α ∈ [n], are sampled independently and the distribution of xα has
kth moment bounded above by νk/nk/2, where νk are independent of n, then ExP ≤ νπ(P)n−p/2

(where νπ(P) =
∏
k∈π(P) νk). If each xα further has mean 0, then as discussed above Eq. (55),

ExP = 0 if |π(P)| > p/2. For P with |π(P)| ≤ p/2, we have ExP ≤ νπ(P)n−p/2 ≤ Cn−|π(P)|/2

where C = maxτ ν
τ taken over all partitions τ of integer p. Thus SMC (Definition I.3) is satisfied,

and Lemma I.4 applies to yield
Proposition I.5. Consider a sequence x of random vectors (x(n) ∈ Rn)∞n=1. Suppose xα =
x(n)α, α ∈ [n], are sampled independently. Assume there are νk, k = 1, 2, . . ., independent of n such
that E |xα|k ≤ νkn−k/2 for all n and k. Then x satisfies Small Moment Condition (Definition I.3),
and for any p ≥ 1,

E

∣∣∣∣∣
n∑
α=1

x(n)α

∣∣∣∣∣
p

= O(1) as n→∞. (60)

Here the constant in O(1) depends on p and ν1, . . . , νp (i.e., the first p moment bounds only).

J A Priori Moment Controls

Our main result in this section is Lemma J.3, which bounds the moments of derivatives of vector
entries in the program. We shall come to it after stating some definitions.

Oblivious Constants In this and following sections, we need to reason carefully about constants
hidden in big-O expressions. In particular, we isolate the following notion of oblivious constant,
which roughly means that the constant does not depend on the fine details of a program beyond some
finite number of smoothness and moment bounds.

For the first time reader, exactly understanding this notion is not a priority. So it may help to skip
ahead to Lemma J.3, keeping in mind just this intuitive understanding of oblivious constants, and
come back only after absorbing key ideas of our proofs.
Definition J.1. Consider a program T in Setup J.2, nonlinearities ψ1, . . . , ψl for some l ≥ 0, and
multisets P1, . . . ,Pr for some r ≥ 0. In the context of a bound or a big-O expression, we say a
constant C is (P1, . . . ,Pr)-oblivious wrt T and ψ1, . . . , ψl if all of the following hold.

1. C does not depend on n

2. C depends on each Pi only through its size |Pi|

3. For each combination of |P1|, . . . , |Pr|, there is an integer K > 1 such that

(a) For any sequence ν2, ν3, . . . ≥ 0 such that E |a|k ≤ νkn
−k/2 for all matrix entries a

of T , our constant C can be taken to depend on the distributions of matrix entries in T
only through ν2, . . . , νK

(b) For any profile ((C0, p0), (C1, p1), . . .) (Definition H.12) satisfied by all nonlinearities
ϕi of the program T as well as ψ1, . . . , ψl, our constant C can be taken to depend on
{ϕi}i and {ψj}j only through (C0, p0), . . . , (CK , pK)

31

(c) For any sequence R1, R2, . . . such that E |ci|q ≤ Rq for all initial scalars ci (i.e., where
i ∈ [M0]), all integers q ≥ 1, and all n, our constant C can be taken to depend on
{ci}M0

i=1 only through R1, . . . , RK .
(d) Furthermore, C is a oblivious function of ν2, . . . , νK , (C0, p0), . . . , (CK , pK), and

R1, . . . , RK .

We will just say (P1, . . . ,Pr)-oblivious if the program and ψ1, . . . , ψl are clear from context. Finally,
any of the sets Pi can be an integer p, which just stands for the multiset {1, . . . , 1︸ ︷︷ ︸

p

}.25

Thus, if an expression Λ = Λ(P, T, ψ) is bounded by a P-oblivious constant wrt a program T and
additional nonlinearity ψ, then

sup
P,T,ψ

Λ ≤ F (p, C, (νj)j , (Rj)j)

for some function F , where 1) P ranges over all multisets of size p, 2) ψ and all nonlinearities of T
range over functions satisfying the profile C, 3) the distributions of all matrix entries of T range of
those that satisfy the moment bounds given by (νj)j , and 4) all initial scalars of T range over those
that satisfy the moment bounds given by (Rj)j .

Smoothness and Moment Control We relax Setup 3.6 slightly for our main result in this section.
Setup J.2. Consider Setup 3.6, but relax 3*) to allow the variances of matrix entries to differ from
n−1 but still bounded above by ν2n−1 for some ν2 > 0 common to all matrix entries.
Lemma J.3 (Expected Smoothness of Vectors in a Program). Consider a Tensor Program under
Setup J.2. Then, for any polynomially smooth ψ : RM → R, any p ≥ 1, and any multiset P taking
values in the program’s matrix entries {Aiαβ}α,β,i,

sup
α∈[n]

E
∣∣∂Pψ(g1α, . . . , gMα ; c1, . . . , cM)

∣∣p = O(1) as n→∞. (61)

where constant in the big-O is (p,P)-oblivious wrt ψ and the program.

We are slightly deviating from the partial derivative notation in Appendix H.5 as P now directly
specify the variables to take derivatives against, rather than their indices.

One can interpret this result as saying that: any higher order derivative (with respect to weights)
of any entry of ψ(· · ·) will typically not explode to∞ with n. The fact that the hidden constant is
(p,P)-oblivious will be important when we prove our main result Theorem 5.2.
Remark J.4. As a sanity check, we discuss some features of this result before moving on to the
proof. First, notice that the sup is outside the expectation. Were it the other way around, then we
typically would expect some (function of) log n factors on the RHS of the bound.

Second, notice that if each matrix Ai has iid entries (instead of the more general case covered here
where entries can come from different distributions), then by symmetry, the above expectation for all
α would be identical, so the supremum is extraneous. But in general, this supremum is not extraneous.

Third, we assume the less stringent Setup J.2 instead of Setup 3.6 not just because we can but also
because we need this in our inductive proof: we will need to reason about programs where some
matrix entries are shrunken to 0, a condition that Setup J.2 captures but Setup 3.6 does not.
Remark J.5. This will hold for programs with variable dimensions, with the addendum that the
constants Bp,|P| also can depend on hidden width ratios.

By applying power mean inequality to Lemma J.3, we also easily get
Lemma J.6. Consider the same setting as Lemma J.3. Then

E

∣∣∣∣∣∣∂P 1

n

∑
α∈[n]

ψ(g1α, . . . , g
M
α ; c1, . . . , cM)

∣∣∣∣∣∣
p

= O(1) as n→∞. (62)

for the same hidden constant as in Eq. (61).

However, later we will see that this bound is unnecessarily loose when P is not empty (Lemma K.6).
25In this case of Pi being an integer, condition 2 is then trivially satisfied, so the important condition is

condition 3.

32

J.1 Proof of Lemma J.3: Induction Setup

In everything below, by constant we always mean something independent of n that may or may not
depend on other data.

Fix the number of initial vectors M0, as well as the sequence of scaled moment bounds ν2, ν3, . . ., the
profile C, and the initial scalar moment bounds R1, R2, . . . as discussed in Setup J.2. We will prove
the following claims simultaneously for all programs that have M0 initial vectors/scalars and satisfy
the above constraints (specified by (νk)k, C, (Rk)k). We do so by induction on the vector index j:

Claim 1(j) For any integer p ≥ 0, there is a sequence of constants Bj,p,0, Bj,p,1, . . . such that

sup
α∈[n]

E
∣∣∂Pgjα∣∣p ≤ Bj,p,|P|

for any multiset P of the program’s matrix entries. Furthermore, Bj,p,|P| is (j, p,P)-
oblivious.

Claim 2(j) For any polynomially smooth ψ : R2j → R, any integer p ≥ 0, there is a sequence of
constants Bψj,p,0, B

ψ
j,p,1, . . . such that

sup
α∈[n]

E
∣∣∂Pψ(g1α, . . . , gjα; c1, . . . , cj)∣∣p ≤ Bψj,p,|P|

for any multiset P of the program’s matrix entries. Furthermore, Bψj,p,|P| is (j, p,P)-
oblivious wrt to ψ and the program.

Note that | · |0 always equal 1 by convention in both claims. Of course, Claim 2(M) would yield
Lemma J.3.

Obviously, Claim 1(j) is a special case of Claim 2(j), but our induction proof will go like this

Claim 2(j− 1) =⇒ Claim 1(j)

Claim 1(1, . . . , j) and Claim 2(1, . . . , j− 1) =⇒ Claim 2(j)

Before we begin the induction proof, we first record several consequences of the claims above.

Proposition J.7. Recall ϕi denotes the ith nonlinearity of the program. Claim 2(i− 1) implies that

E |∂Pci|p ≤ Bϕ
i

i−1,p,|P|

for any multiset P of the program’s matrix entries.

Proof. Unwinding the definition of ci (Eq. (4)), we have

E |∂Pci|p = E

∣∣∣∣∣ 1n
n∑
α=1

∂Pϕi(g1α, . . . , g
i−1
α ; c1, . . . , ci−1)

∣∣∣∣∣
p

≤ 1

n

n∑
α=1

E
∣∣∂Pϕi(g1α, . . . , gi−1

α ; c1, . . . , ci−1)
∣∣p applying Lemma H.2

≤ sup
α∈[n]

E
∣∣∂Pϕi(g1α, . . . , gi−1

α ; c1, . . . , ci−1)
∣∣p ≤ Bϕi

i,p,|P| applying Claim 2(i− 1).

Proposition J.8. Consider any polynomially smooth ψ : R2j → R and any integers p ≥ 1, k ≥ 0.
Recall that ∇kψ : R2j → R(2j)k is the function that computes the tensor of ψ’s kth-order partial
derivatives. Then Claim 1(1, . . . , j) and Claim 2(1, . . . , j− 1) together imply the following Lp norm
bound: There is a constant C, (j, p, k)-oblivious wrt ψ and the program, such that

sup
α∈[n]

E
∥∥∇kψ(g1α, . . . , gjα; c1, . . . , cj)∥∥pp ≤ C

33

Note the form of this bound is very intuitive, since ∇kψ is just a polynomially bounded function, but
taking values in a multi- but constant-dimensional space R(2j)k instead of R. The proof is just routine
manipulation using Lemma H.2 and applications of Claim 1 and Claim 2.

Proof. Let (C, q) be the the kth element of ψ’s profile, i.e., such that for all input vectors v ∈ R2j

and for all U ∈ [2j]k,
|∂Uv ψ(v)| ≤ C(1 + ∥v∥qq). (63)

Let u def
= (g1α, . . . , g

j
α; c

1, . . . , cj) ∈ R2j. Then

∥∇kuψ(u)∥pp ≤ (2j)k sup
U
|∂Uu ψ(u)|p

where U ranges over all vectors in [2j]k. Thus it suffices to bound supα∈[n] E supU |∂Uu ψ(u)|p by a
constant that depends on ψ only through C and q.

Applying Lemma H.1,

E |∂Uu ψ(u)|p ≤ E [C(1 + ∥u∥qq)]p ≤ C ′E (1 + ∥u∥pqpq)
where C ′ is a constant depending only on C, q, p, j continuously. Therefore it remains to show that
E ∥u∥pqpq is bounded by a constant independent of α. But, unwinding the definition of u,

E ∥u∥pqpq = E |g1α|pq + · · ·+ |gjα|pq + |c1|pq + · · ·+ |cj|pq

By Claim 1(1, . . . , j),

sup
α∈[n]

E |giα|pq ≤ Bi,pq,0

For i ≤ j, by Claim 2(i− 1) and Proposition J.7, we have

E |ci|pq ≤ Bϕ
i

i−1,pq,0

So E ∥u∥pqpq is indeed bounded by a constant independent of α and (j, p, k)-oblivious.

Proposition J.9. Consider any integer p ≥ 0, polynomially smooth ψ : R2j → R and any multisets
P,U of matrix entries. Let zα

def
= ∂Pψ(g1α, . . . , g

j
α; c

1, . . . , cj). Assume Claim 2(j). Then for any
multiset N taking values in [n],

E |∂UzN |p ≤ C
for some constant C that is (j, p,N ,P,U)-oblivious wrt ψ and the program.

The statement of this bound is a bit more complicated than the previous ones, but again the content
is intuitive. It says that some interleaved composition of 1) taking a constant number of partial
derivatives and 2) taking a product over a constant number of “neuron index” α ∈ [n] will still
result in an O(1) quantity. The proof is again routine manipulation using Lemma H.2 and standard
inequalities after applying the higher order product rule bound in Lemma H.11.

Proof. Let l def
= |N | and v ∈ Rl be the vector (zα)α∈N for an arbtirary ordering of N (including

multiplicity). Thus zN =
∏
j vj . Fix a ordering U of U . By Lemma H.11 and Lemma H.2, there is a

constant G depending only on |U| and p such that

|∂UzN |p ≤ G
l−1∑
t=0

√
ll−t−1∥v∥2tp2t

∑
τ

√∏
Q
∥∂Qv∥2p

where τ ranges over partitions of {1, . . . , |U|} of size l− t andQ ranges over U[τ] as in Lemma H.9.
Here ∥v∥00 is by convention defined to be l. By Jensen’s (concave) inequality, we then have

E |∂UzN |p ≤ G
l−1∑
t=0

√
ll−t−1E ∥v∥2tp2t

∑
τ

√
E
∏
Q
∥∂Qv∥2p

Since the sizes of the ranges of t and of τ both depend only on l = |N | and |U|, it suffices to show
that both E ∥v∥2tp2t and E

∏
Q ∥∂Qv∥2p have bounds that are (j, p,N ,P,U)-oblivious wrt ψ and the

program.

34

Bounding E ∥v∥2t2t Again, by Lemma H.2, E ∥v∥2tp2t = O(E ∥v∥2tp2tp), so it suffices to bound the
latter. Now for all t ∈ {0, . . . , l − 1},

E ∥v∥2tp2tp =
∑
α∈N

E |zα|2tp ≤ l sup
α∈[n]

E |zα|2tp ≤ lBψj,2tp,|P|

by Claim 2(j). This obviously satisfies the desired property.

Bounding E
∏

Q ∥∂Qv∥2 Let s def
= l − t, so that the product

∏
Q iterates over s elements. Then by

Hölder’s Inequality,

E
∏
Q
∥∂Qv∥2p ≤ s

√∏
Q

E ∥∂Qv∥2sp

By Lemma H.1, for a constant R depending on only l and s, we have

E ∥∂Qv∥2sp ≤ RE ∥∂Qv∥2sp2sp ≤ lR sup
α∈[n]

E |∂Qzα|2sp

= lR sup
α∈[n]

E |∂Q∂Pψ(g1α, . . . , gjα; c1, . . . , cj)|2sp

≤ lRBψj,2sp,|Q|+|P|

by Claim 2(j). From this, it’s clear that E
∏

Q ∥∂Qv∥2 has the desired property as well.

J.2 Base Case: Claim 1(1, . . . ,M0) and Claim 2(1, . . . ,M0)

Here we consider the case of j = 1, . . . ,M0.

When |P| > 0, Claim 1(j) and Claim 2(j) are trivially true since there’s no dependence on the
matrices Ai yet.

Now assume |P| = 0. Then Claim 1(j) follows from standard Gaussian moment expressions. For
Claim 2(j), we note x def

= ψ(g1, . . . , gj; c1, . . . , cj) has

|xα| ≤ C(1 + |g1α|q + · · ·+ |gjα|q + |c1|q + · · ·+ |cj|q)
≤ C(1 + |g1α|q + · · ·+ |gjα|q + jRq)

where C, q come from a profile of ψ and Rq is the qth moment bound on all the initial scalars. Then
again we can apply standard Gaussian moment expressions to derive Claim 2(j).

J.3 Claim 1(1, . . . , j) and Claim 2(1, . . . , j− 1) Imply Claim 2(j)

Here we assume Claim 1(1, . . . , j) and Claim 2(1, . . . , j− 1) for j ≥M0 + 1 and derive Claim 2(j).

Let u def
= (g1α, . . . , g

j
α; c

1, . . . , cj) ∈ R2j and let P be any ordering of P . By Lemma H.10, we have

∂Pψ(u) =
∑
τ

∥D|τ |∥ ·
∏
Q
∥∂Qu∥

where Dk def
= ∇kuψ(u) ∈ R(2j)k , τ ranges over partitions of {1, . . . , |P|}, and, for each τ , Q ranges

over the elements (which are multisets) of the partition P[τ] = {{Pi : i ∈ S} : S ∈ τ} of P̃.

Thus, applying Lemma H.2,

|∂Pψ(u)|p ≤

(∑
τ

∥D|τ |∥ ·
∏
Q
∥∂Qu∥

)p
≤ G

∑
τ

∥D|τ |∥p ·
∏
Q
∥∂Qu∥p

35

where G is the constant from Lemma H.2 that depends only on p and |P| (through the number of
partitions of {1, . . . , |P|}). Taking expectation and applying another Cauchy-Schwarz gives

E |∂Pψ(u)|p ≤ G
∑
τ

√
E ∥D|τ |∥2p ·

√
E
∏
Q
∥∂Qu∥2p

Since the number of partitions of {1, . . . , |P|} (which is the range of τ) depends only on |P|,
it suffices to prove that both E ∥D|τ |∥2p and E

∏
Q ∥∂Qu∥2p are bounded by constants that are

(j, p,P)-oblivious wrt ψ and the program and are independent of α.

Bounding E ∥D|τ |∥2p This follows directly from Proposition J.8 (which is a straightforward bound
by replacing each partial derivative of ψ with its polynomial upper bound).

Bounding E
∏

Q ∥∂Qu∥2p First, note this quantity clearly does not depend on ψ.

Let k = |τ |. Recall Q ranges over the k multisets {Pi : i ∈ S} as S ranges over elements of the
partition τ . By Hölder’s Inequality and Lemma H.1,

E
∏
Q
∥∂Qu∥2p ≤

∏
Q

k

√
E ∥∂Qu∥2pk ≤ R

∏
Q

k

√
E ∥∂Qu∥2pk2pk

whereR is a constant depending only on 2pk and j (coming from Lemma H.1). Since |Q| and k = |τ |
are both bounded by |P|, it suffices to show E ∥∂Qu∥2pk is bounded by a constant independent of α
and is (j, p, k,Q)-oblivious wrt ψ and the program. Now,

∥∂Qu∥2pk2pk =

j∑
i=1

(∂Qgiα)
2pk + (∂Qci)2pk

≤
j∑

i=1

Bi,2pk,|Q| +Bϕ
i

i−1,2pk,|Q|

by Claim 1(1, . . . , j) and Proposition J.7. This bound indeed is independent of α and has the required
oblivious property.

J.4 Claim 2(j− 1) Implies Claim 1(j)

Assume j ≥ M0 + 1. Let yβ
def
= ϕj(g1β , . . . , g

j−1
β ; c1, . . . , cj−1). Recall gjα =

∑n
β=1W

j
αβyβ , where

W j is one of the program’s matrices Ai or their transposes.

Reduction via Product Rule Then by the product rule of differentiation,

∂Pgjα =

 n∑
β=1

W j
αβ∂

Pyβ

+ remainder

where remainder is a sum of at most |P| elements of the form ∂P
′
yβ where P ′ is P with some

element removed. Therefore, by Lemma H.2,

|∂Pgjα|p ≤ R

∣∣∣∣∣∣
n∑
β=1

W j
αβ∂

Pyβ

∣∣∣∣∣∣
p

+ |remainder|p

where R depends only on p. We can easily bound E |remainder|p by a (j, p,P)-oblivious constant

independent of α using Claim 2(j−1) and Lemma H.2. Thus, it suffices to bound
∣∣∣∑n

β=1W
j
αβ∂

Pyβ

∣∣∣p
by a constant with the same property.

36

Plan: Show Small Moment Condition (SMC) Holds To do so, we will show the vector with
entrieswβzβ wherewβ

def
=W j

αβ and zβ
def
= ∂Pyβ satisfies the Small Moment Condition (Definition I.3)

and apply Lemma I.4 to it. In particular, we will assume WLOG that p is an even integer and prove
that for every multiset N of [n] of size |N | = p, we have

EwN zN ≤ Cn−|uniq(N)| (64)

for a constant C that is (j,N ,P)-oblivious, where uniq(N) is the set of unique elements of N .

Taylor Expansion of zN Fix N . We now consider zN as a function of wβ for unique elements
β ∈ uniq(N) of N (keeping other weight entries fixed). Let v = (wβ)β∈uniq(N) ∈ R|uniq(N)| be
the vector of such elements, so that we write zN = zN (v) as function of v. By Lemma H.8, we
Taylor expand zN to the rth order, for some r to be determined later:

zN = zN (0) + ⟨∇zN (0), v⟩+ · · ·+ 1

r!
⟨∇rzN (0), v⊗r⟩+Rr+1

= Rr+1 +

r∑
s=0

1

s!
⟨∇szN (0), v⊗s⟩

where Rr+1
def
=

1

r!

∫ 1

0

(1− t)r⟨∇r+1zN (tv), v⊗(r+1)⟩dt

While the tensors appearing in this expansion may seem at first like “large objects”, note that in terms
of n, the tensors have constant sizes, so their norms are entirely determined by how their entries scale
with n. Intuitively, the derivative tensors∇szN will have O(1) entry sizes, by induction hypothesis,
while v⊗s has size O(n−s/2). But before we keep following this logic of naive bounds, it pays to
notice there are a lot of cancellation.

Cancellation Using Independence and Zero-Mean Because now∇szN (0) no longer depends on
and thus is independent (as a random variable) from v (and thus wN)26, taking expectation we now
have

EwN zN = EwNRr+1 +

r∑
s=0

1

s!
⟨E∇szN (0),EwN v⊗s⟩

where wN v⊗s is the scalar multiplication of the scalar wN with the tensor v⊗s.

Now suppose

N has exactly k elements that appear singly (i.e., have multiplicity 1) in N .

Then EwN v⊗s will be 0 for all s < k: indeed, every entry of wN v⊗s is a monomial wN ′
that will

have some wβ appearing by itself in the product (i.e., has degree 1), so that

EwN ′
= EwβEwN ′\{β} = 0

using the fact that wβ is zero-mean and independent from wN ′\{β}.

Therefore, we will take r (the order of the Taylor expansion) to be k − 1, so that

EwN zN = EwNRk+1.

Unwinding the definition of Rk+1 and using Cauchy-Schwarz, we have

EwN zN ≤ 1

(k − 1)!

∫ 1

0

(1− t)k−1
√

E ∥∇kzN (tv)∥2 · E ∥wN v⊗k∥2dt (65)

26this was the main purpose of the Taylor expansion

37

Constructing the SMC Constant Let N1 be the subset of elements of N with multiplicity 1 (so
that |N1| = k) and let N ′ = N \N1. We will show that

EwN zN ≤ Bkn−|uniq(N)| (66)

for some constant Bk that is (j,N1,N ′,P)-oblivious. In particular, this means Bk depends on N
only through |N | = |N1|+ |N ′| = p and |N1| = k. Then the constant C in Eq. (64) can be taken as
maxk Bk where k ranges from 0 to p.

In light of Eq. (65), to prove Eq. (66), it thus suffices to show that

E ∥∇kzN (tv)∥2 = O(1)

E ∥wN v⊗k∥2 = O(n−2|uniq(N)|)

where the big-Os hide (j,N1,N ′,P)-oblivious constants that furthermore are independent of t ∈
[0, 1].

Bounding E ∥wN v⊗k∥2 Each entry of the tensor wN v⊗k is just a product of |N | + k = p + k
matrix entries, whose expected square norm can be bounded by ν2(k+p)n−(k+p), where ν2(k+p) is
the scaled moment bound on the matrix entries we fixed at the beginning of this proof. There are
|uniq(N)|k ≤ pk entries in this tensor, so

E ∥wN v⊗k∥2 ≤ pkν2(k+p)n−(k+p)

Now note that, by the definition of k, we have k + p ≥ 2|uniq(N)|. Thus

E ∥wN v⊗k∥2 = O(n−2|uniq(N)|)

where the constant in O(−) is (p,N1,N ′,P)-oblivious.

Bounding E ∥∇kzN (tv)∥2. Recall that all bounds in this proof (Appendix J) are oblivious wrt
the program, so they only depend on the program through the bounds (νq)q, (Rq)q, C fixed at the
beginning of this proof. Notice that ∇kzN (tv) is just ∇kzN computed in the program where the
matrix entries {W j

αβ : β ∈ N} (which are the entries of v) are scaled down and such a program
satisfies the exact same data (in particular the moment bounds given by (νq)q).

Thus, by Proposition J.9, every entry of ∇kzN (tv) has the same (j,N1,N ′,P)-oblivious bound C
on its expected square norm, uniformly over t ∈ [0, 1]. Because ∇kzN (tv) has |uniq(N)|k ≤ pk

entries,

E ∥∇kzN (tv)∥2 ≤ Cpk

which is (j,N1,N ′,P)-oblivious and independent of t ∈ [0, 1], as desired.

K Program Transformations

K.1 Backpropagation Program

Given a program T as in Eq. (4) and a polynomially smooth function ψ : R2M → R, we can create a
new program Tψ that extends T , which we call the backpropagation program of T with respect to ψ,
or just backprogram for short. Intuitively, Tψ will compute the gradients of

c
def
=

1

n

n∑
α=1

ψ(g1α, . . . , g
M
α ; c1, . . . , cM) (67)

with respect to all vectors in the program. In the context of this work, the importance of the backpro-
gram construction is to easily express the partial derivative δ = ∂c

∂Aj
αβ

(Proposition K.2), which easily

shows that δ = O(n−1) instead of O(1) as suggested by Proposition J.7 (see Lemma K.6). This will
be crucial in the proof of Theorem 5.2.

Explicitly, Tψ is constructed as follows. It has the same matrices Ai as T . The first M vectors and
scalars gi and ci for i = 1, . . . ,M are the same as in T . It additionally has new vectors and scalars
constructed after them. We will first describe the mathematical objects that will be computed by
these new vectors and scalars, before discussing how to represent them in the form of Eq. (4).

38

Notation In this context, we use Sans Serif font to represent these mathematical objects, to
distinguish them from objects in the program itself. Recall that ϕi is the nonlinearity used in iteration
i in the original program T (as well as in the new program Tψ). For M ≥ j > i, we will write
xji; ∈ Rn and xj;i ∈ Rn for the vectors with entries

(xji;)α
def
= ∂giϕ

j(g1, . . . , gj−1; c1, . . . , cj−1)

(xj;i)α
def
= ∂ciϕ

j(g1, . . . , gj−1; c1, . . . , cj−1).

In other words, xji; is the partial derivative ∂giϕj with respect to the argument gi and likewise xj;i
is the partial derivative ∂ciϕj with respect to the argument ci, both evaluated on the original set of
inputs for ϕj . For convenience, we will also write xM+1

i; and xM+1
;i for the partial derivatives of ψ,

i.e.,

(xM+1
i;)α

def
= ∂giψ(g

1, . . . , gM ; c1, . . . , cM)

(xM+1
;i)α

def
= ∂ciψ(g

1, . . . , gM ; c1, . . . , cM).

In addition, for a given vector v ∈ Rn, we write ⟨v⟩ def
= 1

n

∑n
α=1 vα for the average of the entries of v.

Mathematical Idea We iteratively construct the vectors dxi, dgi ∈ Rn for decreasing i =M,M −
1, . . . ,M0 + 1 as follows.

dxM+1 def
= 1 ∈ Rn

dgi
def
=

M+1∑
k=i+1

xki; ⊙ dxk +
∑

M+1≥j>k>i

⟨dxj ⊙ xj;k⟩x
k
i; (68)

dxi
def
=W i⊤dgi (69)

where W i⊤ in the last line is the transpose of the same matrix used in iteration i of the original
program T , as in Eq. (4). For example, the first few dgi and dxi looks like the following.

dxM+1 = 1

dgM = xM+1
M ;

dxM =WM⊤dgM

dgM−1 = xM+1
M−1; + xMM−1; ⊙ dxM + ⟨xM+1

;M ⟩xMM−1;

dxM−1 =WM−1⊤dgM−1

One can verify the following statement using the chain rule.

Proposition K.1. For i = M,M − 1, . . . ,M0 + 1, the vector dxi (Eq. (69)) equals the scaled
total gradient n∇xic of c (scaled up by n) against the vector xi defined in Eq. (4), and likewise dgi

(Eq. (68)) equals n∇gic.

The vectors dxi and dgi make it easy to express the partial derivative ∂c
∂Ai

αβ

as well:

Proposition K.2. For any matrix Aj of program T , for ψ, c as in Eq. (67) and dgi as in Eq. (68), we
have

∂c

∂Ajαβ
=

∑
i:W i=Aj

1

n
(dgi)α(x

i)β +
∑

i:W i=Aj⊤

1

n
(dgi)β(x

i)α,

where in the first sum we iterate over indices i such that W i = Aj and in the second, i such that
W i = Aj⊤, both in the context of the original program T .

Proof. Each Aj is used in the computation of c only through any W i that equals Aj or its transpose.
Thus

∂c

∂Ajαβ
=

∑
i:W i=Aj

∂c

∂W i
αβ

+
∑

i:W i=Aj⊤

∂c

∂W i
βα

39

But, from Proposition K.1 and chain rule, one easily calculates

∂c

∂W i
αβ

=
1

n
(dgi)α(x

i)β .

Program Tψ Construction Here we will construct the vectors ga for a =M + 1,M + 2, . . . for
the new program Tψ. To avoid confusion with vectors in the original program, we use superscript
index a, b, e for talking about the new vectors, while i, j, k are reserved for indices of the old program.
Our goal is to express each dxi as some ga with dgi being the corresponding xa (c.f. Eq. (4)). To do
so, as is apparent from Eq. (68), we need to express ⟨dxj ⊙ xj;k⟩ for each M + 1 ≥ j > k as scalars
cb as well.

So the strategy is to, in descending order of i, alternatingly express dxi, then the scalars ⟨dxj ⊙ xj;k⟩
for M + 1 ≥ j > k > i− 1, then express dgi−1 through Eq. (68) and finally dxi−1 through Eq. (69),
and repeat. At the end, the vectors of Tψ contain g1, . . . , gM (same as in T) and dxM+1 . . . , dxM0+1

(new vectors) and the scalars contain c1, . . . , cM (same as in T) and {⟨dxj ⊙ xj;k⟩}M+1≥j>k>M0

(new scalars). There are also other “junk” vectors (resp. scalars) that we don’t care about, which arise
when we only want to express some scalar (resp. vectors). This shows

Proposition K.3. If T has M −M0 iterations, then Tψ has at most (M −M0)
2 iterations.

Combining this with the fact that the nonlinearities of Tψ are just compositions of polynomials with
first order derivatives of those of T , we deduce the following

Proposition K.4. Any (P1, . . . ,Pr)-oblivious constant wrt Tψ and ψ1, . . . , ψl is also (P1, . . . ,Pr)-
oblivious wrt T and ψ1, . . . , ψl.

It’s clear from Eq. (68) that dgi can be expressed as some nonlinearity applied to vectors of Tψ.
Beyond this fact, the exact construction of Tψ is not important for our purposes, so we will not detail
it further here.

Proposition K.5. For any program T and c, ψ as in Eq. (67), each dgi = n∇gic can be expressed
as some nonlinearity ϕ applied to the vectors and scalars of Tψ. If all nonlinearities of T are
polynomially smooth, then ϕ is polynomially smooth as well.

Matrix Derivative Bound
Lemma K.6. Consider a program in Setup J.2. Then for any p ≥ 1, any nonempty multiset P taking
values in the program’s matrix entries {Aiαβ}α,β,i, and any scalar c of the program,

E
∣∣∂Pc∣∣p = O(n−p) as n→∞. (70)

Furthermore, the constant in the big-O is (p,P)-oblivious wrt the program.

Note importantly that P has to be nonempty for this to hold, since without taking derivatives, c
can definitely be Θ(1) (for example, if its limit c̊ is nonzero). This lemma improves on Lemma J.6
drastically when P is nonempty. The reason that Lemma J.6 is so loose in such cases is that, in
the sum over α ∈ [n] in Eq. (62), only a constant number of α really achieves the sup bound in
Lemma J.3. So the naive way Lemma J.6 converts the sup bound to an average bound turned out to
leave a lot of room.

Proof. Suppose c is the ith scalar. For i ≤M0, the derivative is 0, so consider the case where i > M0.
For brevity, write ψ for ϕi (the nonlinearity used to create ci). Construct the backprogram Tψ with
respect to ψ. By Proposition K.4, it suffices to show the bound for a constant (p,P)-oblivious wrt
Tψ .

Since P is nonempty, there is an element a of P . Write P ′ = P \ {a}. Then by Proposition K.2,

∂Pc = ∂P
′
(∂ac) =

1

n

∑
∂P

′
[(dgj)α(x

j)β],

40

where the sum is over some collection of (j, α, β) of size at most M −M0 (an upper bound on how
many times a has been used in the original program).

Then a routine combination of Lemma H.2, product rule (Lemma H.11), and Cauchy-Schwarz
reduces our problem to bounding E |∂Q(dgj)α|2p and E |∂Q(xj)β |2p for all subsets Q of P ′ by a
(p,Q)-oblivious constant independent of α and β. This is precisely provided by Lemma J.3 applied
to the backprogram Tψ .

Lemma K.7. Consider a program in Setup J.2. LetQ1, . . . ,Qr be nonempty and let P be potentially
empty multisets of matrix entries. Then for any scalar c of the program,

E

∣∣∣∣∣∂P
r∏
i=1

∂Qic

∣∣∣∣∣
p

= O(n−rp)

where the hidden constant is (p,Q1, . . . ,Qr,P)-oblivious wrt the program.

Proof. The product rule (Lemma H.11), Lemma H.2, and Hölder’s Inequality show that the LHS is,
within a constant factor depending only on p and |P|, bounded by a sum of O(1) number (depending
only on p) of terms, each of which is a product over r elements of the form

E |∂Qc|rp

for multisets Q with size at most |P|+maxi |Qi|. Then the desired result follows from Lemma K.6.

L Proof of Theorem 5.2

We will prove the following more specific version of Theorem 5.2, which says more about the hidden
constant. Recall the dot derivative notation from Section 5 as well as the notion of oblivious constants
in Definition J.1.
Theorem L.1. Consider a program in Setup 3.6 and its interpolation (Definition 5.1), and let c be a
scalar in it. Then for any finite p ≥ 1,

sup
t

E ċ(t)p = O(n−p/2)

where the hidden constant is p-oblivious wrt the program.

Proof. By the power-mean inequality, it suffices to show this for any even integer p. Let a = a(t)
be the vector of all matrix entries in the program, which is an interpolation of the Gaussian and
non-Gaussian matrix entries. Let N be its dimension (which is equal to n2 times the number of
matrices in the program). We will use κ to index a’s entries. Denote its derivative against t by
ȧ ∈ RN , as in Section 5. For brevity, we will suppress the argument (t) below.

Let D def
= ∇ac ∈ RN , so that for any multiset P taking values in [N], DP =

∏
κ∈P

∂c
∂aκ

. By chain
rule, we have

ċ = ⟨D, ȧ⟩ = ⟨1, D ⊙ ȧ⟩.

From here on, the proof follows an outline similar to that of Appendix J.4, except in how the
cancellation happens.

Proof Plan: Small Moment Condition. We will show that the N -dimensional vector
√
nD ⊙ ȧ

(which has entries
√
nDκȧκ) satisfies the Small Moment Condition (Definition I.3): For any even

p ≥ 0 and any multiset P of size p taking values in [N], we need to show there’s a P-oblivious
constant C wrt the program that is also independent of t such that

np/2DP ȧP ≤ CN−|uniq(P)|. (71)

Then by Lemma I.4, we have

np/2E |ċ|p = E |⟨1,
√
nD ⊙ ȧ⟩|p = O(1)

where the hidden constant is independent of t ∈ [0, 1], which yields Theorem L.1.

41

Taylor Expansion. Now fix P . Let v def
= (aκ)κ∈uniq(P) be the vector of unique aκ for κ ∈ P

(for any ordering of uniq(P)). We think of DP as a function DP(v) of v. For an integer r to be
specified later, we Taylor expand DP in v around 0 to the rth order (Lemma H.8): with ∇i denoting
differentation wrt v,

DP(v) = DP(0) + ⟨∇DP(0), v⟩+ · · ·+ 1

r!
⟨∇rDP(0), v⊗r⟩+Rr+1

where Rr+1
def
=

1

r!

∫ 1

0

(1− ζ)r⟨∇r+1DP(ζv), v⊗(r+1)⟩dζ.

Cancellation Using Independence and Zero-Mean Now notice ∇iDP(0) is independent from
v⊗i and ȧP . Therefore, for i = 0, . . . , r,

E ⟨∇iDP(0), ȧPv⊗i⟩ = ⟨E∇iDP(0),E ȧPv⊗i⟩.

Furthermore, notice E ȧPv⊗i = 0 for small values of i. Indeed, if

k is the number of elements in P appearing exactly once

and i < 2k, then every entry of the expected tensor E ȧPv⊗i has the form

(E ȧκ) · (other) or (E ȧκaκ) · (other)

for some aκ where other is the expectation of some other monomial in a and ȧ independent from
aκ and ȧκ. Both cases evaluate to 0 by Lemma 5.3. Thus, we now choose r (the degree of Taylor
expansion) to be 2k − 1. Then

E ȧPDP(v) = E ȧPR2k.

By Lemma H.2 and Cauchy-Schwarz, unwinding the definition of R2k, we now have

E ȧPDP(v) ≤ 1

(2k − 1)!

∫ 1

0

(1− ζ)2k−1
√

E ∥∇2kDP(ζv)∥2 · E ∥ȧPv⊗2k∥2dζ (72)

Let P1 be the subset of P’s elements appearing in P exactly once, so that |P1| = k. Let P ′ = P \P1.
So it suffices to show √

E ∥ȧPv⊗2k∥2 = O(n−(2k+p)/2)√
E ∥∇2kDP(ζv)∥2 = O(n−p)

where the hidden constants a) are (P1,P ′)-oblivious and b) are independent of t (the interpolation
variable) and ζ (the integration variable in the Taylor remainder R2k). If these are shown, then,
plugging into Eq. (72),

np/2E ȧPDP(v) = O(n−k−p) = O(n−2|uniq(P)|) = O(N−|uniq(P)|)

where the second equality follows because k is the number of elements of P with multiplicity 1 and
p = |P|, thus k + p ≥ 2|uniq(P)|. The hidden constant here will depend on k = |P1|, but we can
take the max of such constants over all k = 0, 1, . . . , p to arrive at the desired P-oblivious constant
in Eq. (71).

Bounding ȧPv⊗2k. Each entry of ȧPv⊗2k is a degree 2k + |P| = 2k + p monomial in ȧ and a.
Thus, by Lemma 5.3, its expected square norm is bounded by O(n−(2k+p)) uniformly over all entries,
where the hidden constant depends only on the scaled moment bound ν2k+p of the program’s matrix
entries. Because ȧPv⊗k has |uniq(P)|2k ≤ p2k = O(1) entries, we have

E ∥ȧPv⊗2k∥2 = O(n−(2k+p))

where the hidden constant is (P1,P ′)-oblivious, as desired.

42

Bounding∇2kDP(ζv). We can think of∇2kDP(ζv) as∇2kDP computed on a program where the
matrix entries in v are multiplied by a factor of 0 ≤ ζ ≤ 1. This program would then satisfy the same
scaled moment bounds (νj)∞j=2 as the original program, uniformly over all t. Thus all of our oblivious
bounds would apply to∇2kDP(ζv). In particular, Lemma K.7 tells us each entry of∇2kDP(ζv) has
expected square norm bounded uniformly (over all entries) byO(n−2|P|) = O(n−2p) with a (P1,P ′)-
oblivious constant independent of ζ and t. Finally, because there are |uniq(P)|2k ≤ p2k = O(1)
entries, we get

E ∥∇2kDP(ζv)∥2 = O(n−2p)

(P1,P ′)-obliviously and uniformly over ζ and t as desired.

M Lp Convergence From Almost Sure Convergence

The following is a standard lemma.

Lemma M.1. For any nonnegative random variable X ∈ R and deterministic B ≥ 0, we have

EXI(X > B) = B Pr[X > B] +

∫ ∞

B

Pr[X > t]dt

Proof. Integration by parts.

Lemma M.2. Suppose a sequence of random variables (Xn)
∞
n=1 converges almost surely to 0. Then

for any p ∈ [1,∞), Xn converges to 0 in Lp as well if for some q > p, there exists a constant C such
that E |Xn|q < C for all n.

This lemma’s proof is a standard truncation trick.

Proof. For any B > 0, we have

E |Xn|p = E |Xn|pI(|Xn|p ≤ B) + E |Xn|pI(|Xn|p > B)

The random variable |Xn|pI(|Xn|p ≤ B) converges almost surely to 0, so by dominated convergence,
it also converges in mean:

E |Xn|pI(Xn ≤ B)→ 0.

This convergence happens for any fixedB > 0. So it suffices to show that supn E |Xn|pI(|Xn|p > B)
becomes arbitrarily small as B →∞.

By Markov’s Inequality, we have

Pr[|Xn|p > t] = Pr[|Xn|q > tq/p] ≤ E |Xn|q

tq/p

By Lemma M.1,

E |Xn|pI(|Xn|p > B) = B Pr[|Xn|p > B] +

∫ ∞

B

Pr[|Xn|p > t]dt

≤ E |Xn|q

Bq/p−1
+

∫ ∞

B

E |Xn|q

tq/p
dt.

Since E |Xn|q < C and q/p > 1 by assumption, this quantity goes to 0 as B →∞, as desired.

Theorem M.3. Consider a program in Setup J.2 and a scalar c in the program. If c converges almost
surely to a limit c̊, then c converges in Lp to c̊ as well for every p ∈ [1,∞).

Proof. This follows from Lemma M.2 and Lemma J.6.

43

N Empirical validation

In the present section, we validate our main result, Theorem 3.7, by empirically checking some of its
corollaries mentioned in Section 4.

N.1 On non-Gaussian biases and input and output layers

Here we first note a very important subtlety concerning distribution universality. When expressing
neural network computations (i.e. forward and backward passes) as a tensor program, we use matrices
for initial hidden weights and vectors for biases and initial input and output weights. Indeed, since
for input and output layers, only one dimension grows to infinity, they cannot be expressed as n× n
matrices in the program for which both dimensions go to infinity. Instead, they are expressed as a set
of vectors.

As noted in Section 4, we model non-Gaussian vector variables as images of Gaussian ones under
elementwise nonlinear maps. This requires adding a nonlinearity to a program, which may alter the
limit in Theorem 3.7.

This means that the NNGP and NTK kernels of Corollaries 4.3 and 4.4 are not necessarily distribution-
invariant. However both corollaries are still true as they merely state that these kernels exist.

N.2 Setup

We perform our experiments with vanilla RNN, vanilla GRU network, and a simple Transformer. We
build on the code acompanying [29] and [30].

As for experiments aimed to validate NNGP correspondence, Corollary 4.3, we compute correlation
matrices on two sentences, “The brown fox jumps over the dog” and “The quick brown fox jumps
over the lazy dog”, embedded using GloVe embeddings [22]. We compute the empirical kernel for
different distributions and measure the relative Frobenius norm distance between this empirical kernel
and the analytic kernel for Gaussian initialization. We compute mean and standard deviations for this
relative Frobenius norm distance using 100 random initializations.

As for experiments aimed to validate convergence to a kernel method, Corollary 4.4, we compute
empirical kernels on two “sentences”, the first 5 pixels of the first CIFAR10 image and the first 5
pixels of the second CIFAR10 image. We compute it for different distributions and measure the
relative Frobenius norm distance between this empirical kernel and the analytic neural tangent kernel.
Same as for NNGP correspondence, we compute mean and standard deviations for this relative
Frobenius norm distance using 100 random initializations.

Following Setup 3.6, we consider distributions with zero mean and variance 1/n. The distributions
we consider are Gaussian, Gaussian truncated at 2σ, uniform, Laplace, and the other one which we
call Cubecauchy. The Cubecauchy distribution is a distribution of a cubic root of a Cauchy random
variable. Such a random variable has finite mean and variance, but does not have any other moments.
Since it does not have all moments, it does not follow Setup 3.6, which makes our Theorem 3.7
inapplicable. However, as we shall see shortly, the empirical kernels we consider still converge to the
same limit suggesting that existence of all moments is not necessary.

N.3 Results

We start with empirically validating NNGP correspondence, Corollary 4.3. We first swap only hidden
weights with their non-Gaussian counterparts. In this case, our Theorem 3.7 predicts that the limit
should not depend on matrix entry distributions. As we see in Fig. 1, this is indeed the case. Moreover,
the empirical kernel that corresponds to the Cubecauchy distribution still converges to the same limit
as for the other distributions, thus suggesting that coincidence of only the first two moments are
necessary for the Master theorem to hold.

What happens if we swap all other trainable parameters, i.e. biases, input weights, embeddings, with
their non-Gaussian counterparts? As discussed above, the Master theorem still holds, but it requires
modifying the program itself which may alter the limit. As we observe in Fig. 2, sometimes it is
indeed the case (left plot), while sometimes the limit could be the same (right plot). We note that even

44

Figure 1: Relative Frobenius norm distance between empirical NNGP kernels for different
distributions and the analytic kernel for Gaussian initialization. All trainable parameters expressed
with vectors (i.e. biases, embeddings, and input weights) are assumed to be Gaussian. Left: a simple
GRU network, right: a simple transformer, see Appendix N.2. As we see, NNGP kernels for all
distributions considered converge to the same analytic kernel.

Figure 2: Relative Frobenius norm distance between empirical NNGP kernels for different
distributions and the analytic kernel for Gaussian initialization. We assume all trainable parameters
to have the same distribution. Left: a simple GRU network, right: a simple transformer, see
Appendix N.2. As we see, in some cases (left, green line), the limit NNGP kernel may depend on the
parameter distribution since we had to modify the corresponding tensor program in order to model
non-Gaussian vector variables, see Appendix N.1. Note that the limit kernel still exists and there is
no contradiction with Corollary 4.3.

Figure 3: Relative Frobenius norm distance between empirical neural tangent kernels for different
distributions and the analytical neural tangent kernel for Gaussian initialization. We assume all
trainable parameters to have the same distribution. Left: a simple recurrent neural network, right: a
simple transformer, see Appendix N.2. As we see, the limit NTK does not depend on the parameter
distribution, even when we use non-Gaussian vectors, see discussion in Appendix N.1.

45

when the limit is different from the one resulted from Gaussian weights, Fig. 2 still demonstrates that
the limit exists even for non-Gaussian ones, therefore validating Corollary 4.3.

Next, we validate neural tangent kernel convergence at initialization, checking a part of Corollary 4.4.
As we see in Fig. 3, even when all trainable parameters are initialized with non-Gaussians, the limit
kernel still remains the same.

46

	Proof of thm:Edotcboundmain for p = 2 in a simple scenario
	Bounding Derivatives of c against A
	Expanding ȧ²
	Bounding ∑_κ D²_κ ȧ²_κ.
	Bounding ∑_(κ≠λ) D_κ D_λ ȧ_κ ȧ_λ
	Going Beyond This Simple Example

	Gaussian smoothing makes polynomially bounded nonlinearities polynomially smooth
	Additional applications of thm:nongaussianmastertheorem
	Semicircle law for non-Gaussian Wigner ensembles
	Marchenko-Pastur law for non-Gaussian Wishart ensembles
	Free Indepedence Principle for Tensor Programs with non-Gaussian weights

	Non-Gaussian Master theorem for Lipschitz nonlinearities
	Tensor Program formulation equivalence
	Comparison with Chen and Lam chen2021universality
	Proof of lemma:interpolationproperties
	Technical Preliminaries
	Lp Norm
	Multisets
	Monomials
	Tensors
	Higher Order Differentiation and Taylor Expansion
	Higher Order Chain Rule
	Smoothness Profile of A Function

	The Basic Moment Argument
	A Priori Moment Controls
	Proof of lemma:apriorimomentcontrol: Induction Setup
	Base Case: Claim 1(1,…,M0) and Claim 2(1,…, M0)
	Claim 1(1, …, j) and Claim 2(1, …, j-1) Imply Claim 2(j)
	Claim 2(j-1) Implies Claim 1(j)

	Program Transformations
	Backpropagation Program

	Proof of thm:Edotcboundmain
	Lp Convergence From Almost Sure Convergence
	Empirical validation
	On non-Gaussian biases and input and output layers
	Setup
	Results

