
A Proof for the Stability of iMFN and iSIREN

In this section, we show that, once we restrict W in Eq. (7) and (8) in the main text to be contractive
via spectral normalization, the function F in both iMFN and iSIREN will also be contractive, which
therefore guarantees the existence and uniqueness of a fixed point [? ]. For the remaining part of
this proof, we use ‖ · ‖2 on a matrix to denote its spectral norm and σ(·) to denote the set of its
eigenvalues.
Theorem 1 (Contractivity of iMFN). Let ‖W‖2 < 1 and ‖g(x; θ)‖∞ ≤ 1 for all input x and
parameter θ. The function F for the iMFN, e.g.

F (z;x) = (W (z + g(x; θ1)) + b) ◦ g(x; θ2) (1)

is contractive on Z .

Proof. Let Gx,θ be a diagonal matrix with g(x; θ) as the main diagonal, e.g.

Gx,θ =


g1(x; θ) 0 · · · 0

0 g2(x; θ)
...

. . .
...

0 · · · gd(x; θ)

 (2)

where gi(x; θ) is a scalar-valued function representing the i-th element of g(x; θ). It is easy to see that
‖Gx,θ‖2 ≤ 1 since maxλ∈σ(G>

x,θGx,θ)
|λ| = maxi∈[d] g

2
i (x; θ) ≤ 1. Therefore, for any z1, z2 ∈ Z ,

we have

‖F (z1;x)− F (z2;x)‖2
‖z1 − z2‖2

=
‖Wz1 ◦ g(x; θ2)−Wz2 ◦ g(x; θ2)‖2

‖z1 − z2‖2
(3)

=
‖Gx,θ2W (z1 − z2)‖2

‖z1 − z2‖2
(4)

≤ ‖Gx,θ2‖2‖W‖2‖z1 − z2‖2
‖z1 − z2‖2

(5)

= ‖Gx,θ2‖2‖W‖2 (6)
< 1 (7)

which shows that F is contractive onZ . Additionally, the Jacobian matrix JF can be directly obtained
by JF = Gx,θW , which is also contractive since ‖Gx,θW‖2 ≤ ‖Gx,θ‖2‖W‖2 < 1

Theorem 2 (Contractivity of iSIREN). Let ‖W‖2 < 1. The function F for the iSIREN, e.g.

F (z;x) = sin(W (z + sin(V x)) + Ux+ b) (8)

is contractive and has a contractive Jacobian JF .

Proof. Since the sine function is 1-Lipschitz, we have

‖F (z1;x)− F (z2;x)‖2
‖z1 − z2‖2

=
‖ sin(W (z1 + sin(V x)) + Ux+ b)− sin(W (z2 + sin(V x)) + Ux+ b)‖2

‖z1 − z2‖2
(9)

≤ ‖W (z1 + sin(V x)) + Ux+ b−W (z2 + sin(V x)) + Ux+ b‖2
‖z1 − z2‖2

(10)

=
‖W (z1 − z2)‖2
‖z1 − z2‖2

(11)

≤ ‖W‖2 (12)
< 1 (13)
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which shows the contractivity of F .

We now show the contractivity of the Jacobian JF . Let h = W (z + sin(V x)) + Ux + b and D
be a diagonal matrix with cos(h) as the main diagonal. There is ‖D‖2 = maxλ∈σ(D>D) |λ| =

maxi∈[d] cos2(hi) ≤ 1. Therefore, the Jacobian JF is clearly contractive since it can be written
explicitly as JF = ∂ sin(h)

∂h
∂h
∂z = DW , where ‖JF ‖2 = ‖DW‖2 ≤ ‖D‖2‖W‖2 < 1.

B Proof for §3.1

We shall proof the claim in §3.1 that the outputs of iMFN are linear combinations of the non-linear
filter kernels. The proof largely follows [?], where we show that for a filter function that satisfies the
multiplicative sum property (as defined below), every application of F yields a linear combination of
filter functions.
Definition 1 (? ]). A filter function g(x; θ) satisfies the multiplicative sum property if for any input
x and any two parameters configurations θ1, θ2, there exists a finite set of parameter configurations
{θi}i∈[N ] and scalars {βi}i∈[n] such that

g(x; θ1) ◦ g(x; θ2) =

N∑
i=0

βig(x; θi) (14)

By A.1 and A.2 of [? ], both gFourier and gGabor of the original MFN satisfies the multiplicative sum
property. We then have the following corollary

Corollary 1. Define z ∈ Rd such that zk =
∑N
i=1 β

(k)
i g(x; θ

(k)
i ) with parameters {β(k)

i }i∈[N ],

{θ(k)i }i∈[N ] and g(x; θ) satisfies the multiplicative sum property. The output of the function

F (z;x) = (W (z + g(x; θ′)) + b) ◦ g(x; θ′′) (15)

satisfies Fj(z;x) =
∑N
i=1 β

(j)

i g(x; θ
(j)

i ) with some other parameters {β(j)

i }i∈[N ], {θ
(j)

i }i∈[N ].

Proof.

Fj(z;x) =

(
d∑
k=1

Wjk (zk + g(x; θ′k)) + bj

)
g(x; θ′′j ) (16)

=

(
d∑
k=1

Wjk

N∑
i=1

β
(k)
i g(x; θ

(k)
i ) +

d∑
k=1

Wjkg(x; θ′k) + bj

)
g(x; θ′′j ) (17)

=

d∑
k=1

N∑
i=1

Wjkβ
(k)
i g(x; θ

(k)
i )g(x; θ′′j ) +

d∑
k=1

Wjkg(x; θ′k)g(x; θ′′j ) + bjg(x; θ′′j ) (18)

=

N∑
i=1

βig(x; θi) (19)

Corollary 1 states that, if every element of z is a linear combination of filter functions, applying F
once also yields a vector consists of linear combinations of filter functions. Further, assuming the
contractivity conditions in §A, the fixed point of F in Eq. (15) exists and is unique. Thus, starting
from z[0] = 0d, the unique fixed point z? may be defined recursively through the fixed-point iteration
with infinite steps, namely

z? = z[∞], where z[t+1] = F (z[t];x), z[0] = 0d (20)

By recursively applying Corollary 1, we have ∀t > 0,∀k ∈ [d], z[t]k is a linear combination of filter
functions, which proves the same property for z?. Since the outputs of iMFN is a linear transformation
of z?, each of its elements remains a linear combination of filter functions, which finishes the proof.
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Figure 1: Average fixed-point solver steps versus mini-batch sizes. The average steps are taken over
the last 1,000 training iterations of each model. From the figure, it can be seen that the required solver
steps is inversely related to the batch size. However, only when the batch size is sufficiently large
(> 216) can the majority of the fixed-points converge in 1 step (average solver steps < 1.5)

.

C (Implicit)2 Model and SGD

The explicit models we compared to in this work (except ones for video and 3D occupancy represen-
tations) are trained with full batch gradient descent. Given the success of stochastic gradient descent
(SGD) in deep learning, it is natural to wonder whether training the explicit models in mini-batches
would yield better training performance or generalization. Empirically, we find the answer to be no,
where we evaluated different mini-batch sizes {64, 256, 1024, 4096} in the image generalization
task and, given the same compute budget, find the resulting models to still be inferior to (Implicit)2
networks both in terms of training and testing error.

Another natural question to ask is whether (Implicit)2 models, especially the fixed-point reuse
component, can be applied in SGD training as well, since SGD is often more feasible in general
machine learning tasks. To explore this, we maintain a fixed-point cache for each training sample
(i.e. a coordinate) in the image fitting task, and experiment with different batch sizes at which
the fixed-points are computed by running the ordinary fixed-point solving routine. We cached the
fixed-points at every training iteration and reuse them whenever a sample is revisited. As the training
error stabilizes, the number of steps the solver takes to converge from the cached fixed points is
reported in Fig. 1.

It is clear from the table that replacing the fixed point iteration with a single forward iteration (which
is required to match the efficiency of the explicit models) is only feasible when the batch consists
of a significant portion of the training data. Therefore, the proposed replacement of the fixed-point
solver, in general, can only work with data of relative low dimensions, such as images coordinates
(which is extensively studied in this paper). Nevertheless, it can also be observed that the fixed-point
cost saving is proportional to the mini-batch size, which may motivate fixed-point reuse in DEQ
trained on other tasks as a general strategy to save computation. A potentially more interesting future
direction, as covered in §??, is to leverage some spatial-temporal priors of the data (e.g. spatially
close points in 3D space or consecutive frames in a video stream) to further reduce the storage and
updates needed to maintain the cache.

D Training Specifications

In this section, we provide detailed training specifications and hyperparameter choices used to produce
our main results. Unless specified otherwise, we apply spectral normalization as in [? ] on all W and
used an Adam optimizer with (β1 = 0.9, β2 = 0.999, ε = 1e-8) for training.

D.1 Image Representation

Data. The 512× 512 grayscale image is imported from the scikit-image package [? ] of version
0.16.2 via skimage.data.camera(). We notice a recent change to this image in the latest scikit-image
package due to copyright issues, and therefore call attention to the readers to use the correct data.
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Initialization. We apply a scaling of 256 to all input layers and choose α = 3.0 for the initialization
of the Gabor filters

Training Details. We use all (262,144) pixels in each batch and train the models for 5, 000 steps
with a constant learning rate 1e-3.

Hardware. The models are trained and evaluated using a 11GB NVIDIA GTX 1080TI GPU.

Additional Note. Figure 3 and 4 in the main text are generated using a 1L-512D Fourier-iMFN
with the same data and hyperparameters, except that we control whether the fixed points are reused
and the number of Jacobian evaluations T during the backward pass, respectively.

D.2 Image Generalization

Figure 2: Train/Test split in
the image generalization task

Data. The Natural and Text dataset we use in this experiment was
originally created by [? ] and consists of 16 natural or word overlay
images of resolution 512×512. The data is made available alongside
the code.

Initialization. We apply a scaling of 128 to all input layers and
choose α = 3.0 for the initialization of the Gabor filters

Training Details. Following prior works like ? ], we train the
networks on 25% of the data and evaluate on a disjoint 25% set (a
visualization is shown in Fig. 2). For every model, we train on each
image for 2, 000 steps with learning rate η = 1e-3.

Hardware. The models are trained and evaluated using a 11GB NVIDIA GTX 1080TI GPU.

D.3 Audio Representation

Data. Following [? ], the audio signal is retrieved from the first 7-seconds of Bach’s Cello Suite
No. 1: Prelude and is also made available in the submitted code.

Initialization. To account for the high-frequency nature of the audio signals, we applied a scaling
of 25,000 to the input linear layers. We empirically find that implicit models without spectral norm
yields better results while remains stable throughout training. Therefore, in the audio experiments,
we apply weight normalization on W instead of spectral normalization.

Training Details. We train the models using the entire audio piece in each batch (of size 308, 980)
for 3, 000 steps with a constant learning rate 1e-3.

Hardware. The models are trained and evaluated using a 11GB NVIDIA RTX 2080TI GPU.

D.4 Video Representation

Data. The full video clip used in the video representation task is publicly available at

https://www.pexels.com/video/the-full-facial-features-of-a-pet-cat-3040808

We choose a 512× 512 center crop of this video for training and evaluation, following [? ? ]. The
data is also included as part of our submitted code.

Initialization. We apply the same input scaling to both explicit and implicit models with the same
base architectures according to Table 1. The individual scaling factors were chosen to optimize
the performance of the explicit networks. Additionally, we choose α = 6.0 in the 4-layer models
and α = 3.0 in the 1-layer models for the initialization of the Gabor filters. We apply weight
normalization instead of spectral normalization on all W .
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1L-1024D 1L-2048D 4L-1024D

Gabor-MFN 128 256 256
Fourier-MFN 128 256 256

SIREN (input inj.) 128 128 256

Table 1: Scaling factors for explicit/implicit models

Training Details. We train
each model for 10, 000 steps
with a constant learning rate
1e-3 and a batch size of 50,000.
The batch size is chosen such
that the largest explicit model
(i.e. Gabor-MFN-4L-1024D) is able to fit in the GPU memory.

Hardware. The models are trained and evaluated using a 11GB NVIDIA RTX 2080TI GPU.

D.5 3D Model Occupancy Representation

Data. The 3D objects (i.e. dragon, buddha, armadillo, lucy) used in this experiment are retrieved
from the Stanford 3D Scanning Repository.

Initialization. We apply a scaling of 256 to all input layers.

Training/Evaluation Details. Our training and evaluation procedure largely follows ? ]. The 3D
object meshes are scaled and transformed to fit in side the unit cube [0, 1]3. We use the point-in-mesh
algorithm in the Trimesh library to efficiently obtain the ground truth point occupancy label for the
input coordinates. Each model is trained on the binary cross-entropy for 10, 000 steps with a constant
learning rate 5e-4. At inference, the depth maps are generated based on the first ray intersection to
the isosurface Φ(x, y, z) = 0.5 from the camera, and the normal maps (as shown in Fig. ??) are
computed using derivatives of the depth maps. The test points used to compute IoU are sampled from
i.i.d. Gaussians, each with a mean at uniformly random point on the mesh and a standard deviation of
0.01.

Hardware. The models are trained and evaluated using a 11GB NVIDIA RTX 2080TI GPU.

E Additional Visualizations & Experiments

E.1 Image fitting on CelebA

We evaluated both explicit and implicit models on fitting each of the first 100 images in the CelebA
dataset [? ]. The images were center-cropped and rescaled to 128× 128. We used a learning rate of
3e-3 and trained each network for 3,000 steps. The results are presented in Table 2. This experiment
shows that the (Implicit)2 networks still outperform explicit counterparts on data of larger scales,
further demonstrating their effectiveness.

1L-128D 1L-256D 4L-128D

Fourier-MFN 35.48 ± 4.01 36.41 ± 4.30 44.27 ± 2.75
Fourier-iMFN 38.03 ± 2.78 46.70 ± 2.78 44.72 ± 2.45

Gabor-MFN 39.08 ± 3.52 45.85 ± 3.70 42.55 ± 2.89
Gabor-iMFN 39.39 ± 2.83 47.72 ± 2.02 41.96 ± 3.17

SIREN 34.41 ± 3.70 36.97 ± 3.98 38.78 ± 4.06
iSIREN 36.75 ± 3.62 40.90 ± 3.08 39.40 ± 4.07

Table 2: PSNR for image fitting on CelebA

E.2 Gabor-MFN and SIREN for Audio Representation

As promised in §4.3 of the main text, we show the results of the remaining two models in the
audio representation tasks in Fig 3 and 4. We observe that implicit Gabor-MFN outperforms its
explicit counterparts, while iSIREN performs slightly worse. We hypothesize the marginally inferior
performance of iSIREN is likely due to the absence of spectral normalization (as mentioned in Sec
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D.3), which makes implicit models less stable toward the end of training. Empirically, iSIREN suffers
the most from this instability which thus causes the relatively weaker performance. However, even
with such instability, the best implicit models still perform competitively to the best explicit models,
while have a better memory/training time profile due to implicit modeling with fixed-point reuse and
truncated backward pass.

E.3 Additional Visualizations for Image Generalization

We show additional outputs of learned implicit representation models in the image generalization
task (Fig. 5 and Fig. 6). The models we compare (implicit 1L-512D and explicit 4L-256D) have
a similar parameter count, while the implicit network in general requires less memory and training
time due to the fixed point reuse and truncated backward gradient. For all types of networks (Gabor-
MFN, Fourier-MFN, and SIREN), the (Implicit)2 formulation consistently outperform the explicit
counterparts in visual quality, while also enjoys more computational efficiency.

E.4 Additional Visualizations for 3D Object Occupancy

We show the visualized normal maps for 3 additional 3D objects from Stanford 3D Scanning Reposi-
tory, i.e. buddha, armadillo, and lucy, in Fig. 7. The results show that the shallow implicit network
(1L-512D) yields reconstructions with details on par or better than the deep explicit alternative
(4L-256D) and significantly outperforms the shallow explicit network (1L-512D).
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Figure 3: Audio representation task using explicit/implicit Gabor-MFN
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Figure 4: Audio representation task using SIREN (input inj.) or iSIREN
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Figure 5: Implicit 1L-512D vs. Explicit 4L-256D on Natural
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Figure 6: Implicit 1L-512D vs. Explicit 4L-256D on Text
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Explicit Explicit Implicit Ground Truth
1L-512D 4L-256D 1L-512D
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Figure 7: Additional results on fitting objects from Stanford 3D Scanning Repository
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