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A DETAILS ABOUT BANDITS AND RL

In this paper we consider conservative bandits and conservative reinforcement learning problems.

A.1 CONSERVATIVE MULTI-ARMED BANDIT

The multi-armed bandit problem is a sequential decision-making task in which a learning agent
repeatedly chooses an action (called an arm) and receives a reward corresponding to that action.
We assume there are K + 1 arms, denoted by {0, . . . ,K}. There is a reward Xt,i associated with
each arm i at each round t ∈ {1, 2, . . .}. In each round t, the agent pulls arm It ∈ {0, . . . ,K} and
receives a reward Xt,It corresponding to this arm. The agent does not observe the other rewards
Xt,j (j 6= It).

The learning performance of an agent over a time horizon T is usually measured by its regret, which
is the difference between its reward and what it could have achieved by consistently choosing the
single best arm in hindsight:

RT = max
i∈{0,...,K}

T∑
t=1

Xt,i −Xt,It (8)

In conservative multi-armed bandits, we assume that the conservative default action is arm 0, and its
reward is fixed and is known. That is, X0,t = µ0 for all t. On the other hand, each arm i > 0 has
a stochastic reward Xt,i = µi + ηt,i, where µi ∈ [0, 1] is the expected reward of arm i and ηt is a
random noise such that
Assumption 2. Each element ηt of the noise sequence {ηt}∞t=1 is conditionally 1-sub-Gaussian, i.e.

∀ζ ∈ R, E
[
eζηt | a1:t, η1:t−1

]
≤ exp

(
ζ2

2

)
(9)

The sub-Gaussian assumption automatically implies that E [ηt | a1:t, η1:t−1] = 0 and
Var [ηt | a1:t, η1:t−1] ≤ 1.

We denote the expected reward of the optimal arm by µ∗ = maxi µi and the gap between it and the
expected reward of the i th arm by ∆i = µ∗ − µi.
In conservative multi-armed bandits, we constrain the learner to earn at least a 1− α fraction of the
reward from simply playing arm 0 :

t∑
s=1

Xs,Is ≥ (1− α)

t∑
s=1

Xs,0 for all t ∈ {1, . . . , T} (10)

where α ∈ (0, 1) is a predefined constant. The parameter α controls how conservative the agent
should be. Small values of α show that only small losses are tolerated, and thus, the agent should be
overly conservative, whereas large values of α indicate that the manager is willing to take risk, and
thus, the agent can explore more and be less conservative.

A.2 CONSERVATIVE LINEAR BANDITS

In the linear bandit setting, in each round t, the agent is given a set of (possibly) infinitely many
actions/options A, where each action a ∈ A is associated with a feature vector φa ∈ Rd. At each
round t, the agent should select an action at ∈ A. Upon selecting at, the agent observes a random
reward Xt generated as

Xt,at = 〈θ∗, φat〉+ ηt, (11)

where θ∗ ∈ Rd is the unknown reward parameter, 〈θ∗, φat〉 = rat is the expected reward of action at
at time t, i.e., rat = E [Xt,at ], and ηt is a random noise that satisfies Assumption 2.

We also make the following standard assumption on the unknown parameter θ∗ and feature vectors:
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Assumption 3. There exist constants B,D ≥ 0 such that ‖θ∗‖2 ≤ B, ‖φa‖2 ≤ D, and 〈θ∗, φa〉 ∈
[0, 1], for all t and all a ∈ A.

We define B =
{
θ ∈ Rd : ‖θ‖2 ≤ B

}
and F =

{
φ ∈ Rd : ‖φ‖2 ≤ D, 〈θ∗, φ〉 ∈ [0, 1]

}
to be the

parameter space and feature space, respectively.

Similar to multi-armed bandits, the goal of the agent is to minimize the following regret:

RT = max
a∈A

T∑
t=1

Xt,a −Xt,at (12)

which is the difference between the cumulative reward of the optimal action and agent’s strategies.

In the conservative linear bandit setting, at each round t, there exists a conservative action b ∈ At
and selecting b incurs expected reward rb. We assume that rb is known, and the conservative action is
not relevant to the underlying parameter θ∗. We constrain the learner to earn at least a 1− α fraction
of the reward from simply playing arm b:

t∑
i=1

rai ≥ (1− α)

t∑
i=1

rb, ∀t ∈ [T ] (13)

A.3 CONSERVATIVE TABULAR MDPS

We consider conservative exploration in finite horizon tabular MDPs. An MDP can be represent
as M = (S,A, H, p, r), where S is the state space, A is the action space, H is the length of each
episode. Every state-action pair (s, a) is characterized by a reward distribution with mean r(s, a) and
support in [0, rmax], and a transition distribution p(· | s, a) over next states. We denote by S = |S|
and A = |A|. In each episode, the agent starts from an initial state s1. At each step h ∈ [H], the
agent takes action ah in state sh and receive a random reward rh with mean r(s, a), and transits to
state sh+1 according to the distribution p(· | s, a).

A (randomized) policy π is a set of functions {πh : S 7→ ∆(A)}h∈[H]. Given a policy π, a level
h ∈ [H] and a state-action pair (s, a) ∈ S ×A, the Q function and the value function are defined as:

Qπh(s, a) = E[

H∑
h′=h

rh′ |sh = s, ah = a, π],

V πh (s) = E[
H∑

h′=h

rh′ |sh = s, π].

We let VH+1(s) = 0 and QH+1(s, a) = 0 for all s ∈ S, a ∈ A. We use Q∗h and V ∗h to denote the
optimal Q-function and V -function at level h ∈ [H] without corruptions, which satisfies Q∗h(s, a) =
maxπ Q

π
h(s, a) and V ∗h (s) = maxaQ

∗(s, a) respectively.

In conservative tabular MDPs, at the beginning of each episode t, the agent can choose to run a
conservative policy π0, which will give the agent a fixed reward V π0

1 and ends the episode immediately,
or choose to explore in the target MDP M with policy πk, and will receive a total reward V πt1 . Our
goal is to minimize the following regret

RT =

T∑
t=1

V ∗1 (s1)− V πt1 (s1) (14)

while satisfying the following conservative constraint

t∑
j=1

V
πj
1 (s1) ≥ (1− α)tV π0

1 (s1), ∀t ∈ [T ]. (15)
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A.4 CONSERVATIVE LINEAR MDPS

The conservative linear MDP setting is nearly the same as tabular MDPs, except that S is a measurable
space with possibly infinite number of elements and A is a finite set with cardinality A. We assume
that the transition kernels and the reward function are assumed to be linear (Jin et al., 2020).
Assumption 4 (Linear MDP). An MDP (S,A, H, p, r) is a linear MDP with a feature map φ : S×
A → Rd, if for any h ∈ [H], there exist d unknown (signed) measures µh =

(
µ

(1)
h , . . . , µ

(d)
h

)
over

S and an unknown vector θh ∈ Rd, such that for any (x, a) ∈ S ×A, we have

Ph(· | x, a) = 〈φ(x, a),µh(·)〉 , rh(x, a) = 〈φ(x, a),θh〉 . (16)

Without loss of generality, we assume ‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S × A, and
max {‖µh(S)‖ , ‖θh‖} ≤

√
d for all h ∈ [H].

B LOWER BOUNDS FOR NON-CONSERVATIVE EXPLORATION

Lemma 4 (Lower Bound for Multi-Armed Bandit). Let K > 1 and T ≥ k − 1. Then for any
multi-armed bandit algorithm, there exists a mean vector µ ∈ [0, 1]K such that

E[RT ] &
√
KT.

Proof. See Theorem 15.2 of Lattimore & Szepesvári (2020) for a detailed proof.

Lemma 5 (Lower Bound for Linear Bandit). Let d ≤ 2T . Then for any linear bandit algorithm,
there exists a parameter θ ∈ Rd such that

E[RT ] & d
√
T .

Proof. See Theorem 24.2 of Lattimore & Szepesvári (2020) for a detailed proof.

Lemma 6 (Lower Bound for Tabular RL). Let T ≥ SA. Then for any bandit RL algorithm, there
exists an MDP such that

E[RT ] &
√
SAH3T .

Proof. See Jaksch et al. (2010); Azar et al. (2017); Jin et al. (2018) for a detailed proof.

Lemma 7 (Lower Bound for Linear MDP). Let T ≥ d. Then for any bandit RL algorithm, there
exists an MDP such that

E[RT ] &
√
d2H3T .

Proof. This lower bound is obtained by extrapolating the lower bounds of linear bandit and tabular
RL.

C DETAILED PROOF FOR LOWER BOUNDS

Proof of Theorem 1. Let’s consider any sequential decision making problem A (for instance a multi-
armed bandit problem, linear bandit, tabular RL or linear RL) such that there exists ξ ∈ R (a constant
solely depending on the sequential decision making problem, e.g., the dimension in linear problems
or the number of action in tabular problems), an instance of problem A where for a number of time
steps T large enough and any algorithm A we have that:

E[RTA(A)] ≥ ξ
√
T , (17)

with RTA(A) the regret of algorithmA in problem A. For instance, in the MAB case ξ =
√
K − 1/27

with K the number of arms. Using this non-conservative lower bound, we show our lower bound
for the conservative setting for the problem A with a baseline policy π0. To do so, let’s consider any
conservative algorithm (that is to say it satisfies Eq. (3)) noted as Ac. We assume this algorithms
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selects policies (πt)t∈[T ] and let T0 denotes the set of rounds in {1, . . . , T} where Ac selects the

conservative policy π0. Here T ≥ ξ2

αV π0 ·(αV π01 +∆0)
+ ξ2

4(αV π0+∆0)2 .

We now distinguish two cases:

• If E|T0| ≥ ξ2

αV π0 ·(αV π0+∆0) , then the definition of the regret implies that:

E[RTA(Ac)] ≥ E
∑
t∈T0

[V ∗ − V π
t

] = E|T0| ·∆0 ≥
ξ2∆0

αV π0 · (αV π0 + ∆0)
. (18)

• If E|T0| < ξ2

αV π0 ·(αV π0+∆0) , then let’s note T c0 = {i1, i2, · · · , i|T c0 |} the set of time steps
where Ac does not execute the conservative policy π0. Considering the budget as we have
defined in Def. 1 we have:

BT c0 (Ac) = max
t∈T c0

E
t∑

k=1

[(1− α)V π0 − V π
t

]

= max
t∈T c0

E
t∑

k=1

[V ∗ − V π
t

− αV π0 − (V ∗ − V π0)]

= max
t∈T c0

E[R
T c0
A (Ac)(t)]− (αV π0 + ∆0)t, (19)

where ∆0 = V ∗ − V π0 is the difference between the optimal policy and the baseline
policy and E[R

T c0
A (Ac)(t)] is the regret incurred by the rounds {ik}k∈[t]. Therefore, for

any t ∈ [|T c0 |], by Eq. (17) we have that there exists an instance u (for instance in a
bandit problem u is the means of each arm) of A such that E[R

T c0
A (Ac)(t)] ≥ ξ

√
t. Let

t0 = ξ2

4(αV π0+∆0)2 , then there exists an instance such that

BT c0 (Ac) ≥ ξ
√
t0 − (αV π0 + ∆0)t0 &

ξ2

αV π0 + ∆0
. (20)

Combining the conservative condition in Equation (3), we have

E|T0| ≥
BT c0 (Ac)
αV π0

&
ξ2

αV π0 · (αV π0 + ∆0)
.

By the same derivation of Equation (18), we have

E[RTA(Ac)] &
ξ2∆0

αV π0 · (αV π0 + ∆0)
. (21)

Combining Equations (17), (18), and (21), we obtain

E[RTA(A)] & max
{
ξ
√
T ,

ξ2∆0

αV π0 · (αV π0 + ∆0)

}
. (22)

Then we discuss the lower bound for different setups.

• For multi-armed bandits, by Lemma 4, we choose ξ =
√
K. Then we have

E[RT ] & max
{√

KT,
ξ2∆0

αV π0 · (αV π0 + ∆0)

}
.

• For linear bandits, by Lemma 5, we choose ξ = d. Then we have

E[RT ] & max
{
d
√
T ,

d2∆0

αV π0 · (αV π0 + ∆0)

}
.
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• For tabular RL, by Lemma 6, we choose ξ =
√
SAH3. Then we have

E[RT ] & max
{√

SAH3T ,
SAH3∆0

αV π0 · (αV π0 + ∆0)

}
.

• For low-rank MDP, by Lemma 7, we choose ξ =
√
d2H3. Then we have

E[RT ] & max
{√

d2H3T ,
d2H3∆0

αV π0 · (αV π0 + ∆0)

}
.

Therefore, we conclude the proof.

D DETAILED PROOF FOR UPPER BOUNDS

D.1 PROOF OF THEOREM 2

Proof. Given a non-conservative algorithm Ã, the minimum amount of rewards needed to play this
non-conservative algorithm for T consecutive steps is the budget defined in Def. 1. Indeed, if we
denote by {π̃l | l ≤ T} the sequence of non-conservative policies executed by Ã, then for any set
O ⊂ [T ] the budget can be rewritten as:

BT (O, {π̃l | l ≤ T}) = max
t∈O

∑
l∈O∩[t]

(1− α)V π0 − V πl

= max
t∈O

∑
l∈O∩[t]

(
V ? − V πl − (∆0 + αV π0)

∣∣O ∩ [t]
∣∣).

Let’s define RO∩[t](Ã) :=
∑
l∈O∩[t] V

? − V πl the regret over the time steps in O of the non-

conservative algorithm Ã. Since Rt(Ã,O) = O(C
√
|O ∩ [t]|) w.h.p., where C ∈ R is a problem-

dependent quantity as in Theorem 1. Therefore, we have

BT (O, {π̃l | l ≤ T}) = max
t∈O

∑
l∈O∩[t]

(1− α)V π0 − V πl

= max
t∈O

∑
l∈O∩[t]

(
O(C

√
|O ∩ [t]|)− (∆0 + αV π0)

∣∣O ∩ [t]
∣∣).

Let f(x) = C
√
x − (∆0 + αV π0)x, then we have f(x) ≤ C2

∆0+αV π0 This implies that the budget

required by Ã is at least C2

∆0+αV π0 . Therefore, the simple algorithm playing the baseline policy for

the first t0 := O( ξ
αV π0+∆0

) steps and then running the non-conservative algorithm Ã, is conservative.
This is actually the algorithm BudgetFirst.

The regret of BudgetFirst can be bounded as

Reg(T ) ≤ t0 +Rt(Ã,O) = O(
ξ

αV π0 + ∆0
+ C

√
|O ∩ [t]|)

Thus we finish the proof.

Now we discuss the regret upper bound for different setups. For multi-armed bandit, the UCB
algorithm (Lattimore & Szepesvári, 2020) gives us the following guarantee.
Lemma 8 (Upper Bound for Multi-Armed Bandit). The regret of UCB can be upper bounded by

RT ≤ 8
√
Tk log(T ) + 3

k∑
i=1

∆i (23)

Proof. See Theorem 7.2 in Lattimore & Szepesvári (2020) for details.
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For linear bandits, the LinUCB algorithm (Lattimore & Szepesvári, 2020) gives us the following
guarantee.
Lemma 9 (Upper Bound for Linear Bandit). The regret of LinUCB can be upper bounded by

RT ≤ Cd
√
T log(TL) (24)

where C > 0 is a suitably large universal constant.

Proof. See Corollary 19.3 in Lattimore & Szepesvári (2020) for details.

For tabular RL, the UCBVI-BF algorithm in Azar et al. (2017) gives us the following guarantee.
Lemma 10 (Upper Bound for Tabular RL). The regret of UCBVI-BF can be upper bounded by

RT ≤ O(
√
H3SAT ) (25)

Proof. See Azar et al. (2017) for details.

For linear MDP, the LSVI-UCB algorithm in Jin et al. (2020) gives us the following guarantee.
Lemma 11 (Upper Bound for Linear MDP). the total regret of LSVI-UCB is upper bounded by

RT ≤ Õ
(√

d3H4T
)
. (26)

Proof. See Jin et al. (2020) for details.

D.2 PROOF OF THEOREM 3

Proof. Given an LCB algorithm Ã, suppose it maintains lower confidence bound λπkt (δ) ≤ V πk

with probability at least 1− δ that satisfies
∑t
k=1(V πk − λπkt ) ≤ Õ(C

√
t). Let St to be the set of

time step where a non-conservative policy was deployed in episodes before t. The additional budget
needed by the algorithm can be written as:

B̃T (ST ,A) = max
t∈[T ]

∑
l∈St

[(1− α)V π0 − λπlt (δ)]

= max
t∈[T ]

∑
l∈St

(
V ? − V πl + V πl − λπlt (δ)

)
− (∆0 + αV π0)

∣∣St∣∣
≤ max
t∈[T ]

∑
l∈St

(
V ? − V πl

)
+ Õ(C

√
|St|)− (∆0 + αV π0)

∣∣St∣∣
= max
t∈[T ]

RSt(Ã) + Õ(C
√
|St|)− (∆0 + αV π0)

∣∣St∣∣
Note that RSt(Ã) ≤ Õ(C

√
|St|), so the last line can be upper bounded by maxt∈[T ]

(
Õ(C

√
|St|)−

(∆0 + αV π0)
∣∣St∣∣). This is a quadratic function g(x) = Õ(C

√
x)− (∆0 + αV π0)x with variable

x =
√
|St|, we have g(x) ≤ Õ( C2

∆0+αV π0 ) as a result. In other words, we show that with high

probability, LCBCE only need to accumulate B̃T (ST ,A) ≤ Õ( C2

∆0+αV π0 ). Since playing the baseline

policy yields αV π0 budget, LCBCE play the baseline policy for at most Õ( C2

αV π0 (∆0+αV π0 ) ) times.
Hence, the total regret incurred can be written as:

RT (A) = RST (Ã) + Õ(
C2∆0

αV π0(∆0 + αV π0)
) ≤ Õ(C

√
T +

C2∆0

αV π0(∆0 + αV π0)
)

Thus we finish the proof.

Proof of Corollaries of Theorem 3 Below we discuss the lower confidence bound for different setups.
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Multi-armed Bandits For the MAB setting, we can calculate the lower confidence bound simulta-
neously with the upper confidence bound as

max

{
0, µ̂i(t− 1)−

√
ψδ (Ti(t− 1)) /Ti(t− 1)

}
(27)

where ψδ(s) = 2 log
(
Ks3/δ

)
and Ti(t− 1) is the times agent pulls arm i until time t− 1. µ̂i(t− 1)

is the empirical reward. This is similar to the calculation of UCB in Lattimore & Szepesvári (2020).

Linear Bandits For the linear bandit setting, the lower confidence bound can be chosen as follows:
first, we calculate the optimal action(

a′t, θ̃t

)
∈ arg max

(a,θ)∈At×Ct

〈
θ, φta

〉
(28)

where Ct+1 is the confidence set Ct+1 =

{
θ ∈ Rd :

∥∥∥θ − θ̂t∥∥∥
Vt
≤ βt+1

}
. Then, we calculate

Lt = minθ∈Ct
〈
θ, zt−1 + φa′t

〉
, where zt−1 =

∑t−1
i=1 φai . Then Lt is a lower confidence bound of

action a′t.

Tabular MDP For tabular MDP setting, the upper bound of the Q function can be calculated
as Qh(s, a) = r(s, a) + P̂hVh+1(x, a) + bh(s, a), where the bonus function is chosen to be bh =

Õ(
√

Var(Vh+1)
N(s,a) + H

N(s,a) ) in Azar et al. (2017). To obtain a high probability lower confidence bound,

we substitute bh(s, a) with −bh(s, a). We use Qlh and V lh to denote the lower bound of Qh and Vh
respectively,

V lh+1(·) = max
a

Qlh+1(·, a)

Qlh(·, ·) = r(·, ·) + P̂hV
l
h+1(·, ·)− bh(·, ·),

then V lh is a lower confidence bound of Vh with high probability.

Linear MDP For linear MDP setting, the lower confidence bound can be obtained by reversing the
sign of the bonus term of the upper confidence bound in Jin et al. (2020):

Λh ←
k−1∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)T + λI

wh ← Λ−1
h

k−1∑
τ=1

φ(xτh, a
τ
h)[rh(xτh, a

τ
h) + max

a
Qh+1(xτh+1, a)]

Qh(·, ·)← max{wTh φ(·, ·)− β[φ(·, ·)TΛ−1
h φ(·, ·)]1/2, 0}

Vh(·)← max
a

Qh(·, a)

We note that for all these settings, we have
∑t
k=1(V πk − λπkt ) ≤ Õ(C

√
t) with corresponding

problem-dependent constant C. An easy way to see this is to use symmetry. For the above LCB
algorithms, we reverse the sign of the bonus term of the upper confidence bound to obtain lower
confidence bound. For example in the tabular MDP case, the regret can be bounded by

RT ≤
K∑
k=1

V uk,1 − V πk ≤ Õ(

K∑
k=1

H∑
h=1

bk,h) ≤ Õ(C
√
T ).

Using the fact that
∑K
k=1 V

u
k,1 − V lk,1 = O(

∑K
k=1

∑H
h=1 bk,h), we have

∑K
k=1 V

πk − V lk,1 ≤
Õ(
∑K
k=1

∑H
h=1 bk,h). therefore we can deduce that

∑K
k=1 V

πk − V lk,1 ≤ Õ(C
√
T ).

Using the same techniques, we can prove this property for the other settings.
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E COMPARISON WITH WU ET AL. (2016)’S LOWER BOUND

First, we restate the lower bound of Wu et al. (2016) below.
Theorem 12 (Restatement of Theorem 9 in Wu et al. (2016)). Suppose for any µi ∈ [0, 1](i > 0)
and V π0 satisfying

min {V π0 , 1− V π0} ≥ max{1/2
√
α,
√
e+ 1/2}

√
K/T ,

an algorithm satisfies Eµ
∑T
t=1Xt,It ≥ (1− α)V π0 T. Then there is some µ ∈ [0, 1]K such that its

expected regret satisfies EµRn ≥ B where

B = max

{
K

(16e+ 8)αV π0
,

√
KT√

16e+ 8

}
.

Here V π0 is the reward of the conservative policy, K is the number of arms, T is the number of
episodes. Compared with our result, the main difference is in the first term, where we have an
additional coefficient ∆0

αV π0+∆0
, which makes our result seems worse. However, as we will show

below, in the hard instance of the proof in Wu et al. (2016), ∆0

αV π0+∆0
is lower bounded by an

absolute constant. Therefore, our lower bound actually implies the result of Wu et al. (2016).

When proving the first term K
(16e+8)αV π0 in the lower bound, Wu et al. (2016) requires that the

parameters should satisfy the following conditions (see Case 2 in their proof):

α <

√
K

V π0

√
(16e+ 8)T

, ∆0 =
K

4αV π0T
.

With these conditions we immediately have

αV π0

∆0
=

4α2(V π0)2T

K
<

4

16e+ 8
,

which implies

1 >
∆0

αV π0 + ∆0
>

1
4

16e+8 + 1
> 0.9.

Therefore, this factor only has a constant effect, and we can recover the result of Wu et al. (2016).

F COMPARISON WITH WU ET AL. (2016)’S UPPER BOUND WITH KNOWN ∆0

Here we discuss why the regret bound of BudgetFirst algorithm in Wu et al. (2016) is not tight and
why our analysis improves theirs. In BudgetFirst, they require the number of times the agent plays π0

to satisfy
(∀t0 ≤ t ≤ T ) tV π0 −Rworst ≥ (1− α)TV π0 (29)

where Rworst = O

(√
KT log

(
log(T )
δ

))
is the worst case regret of the non-conservative algorithm

in T steps. In other words, they accumulate budget by playing π0 so that the budget can compensate
for the T -step exploration of the non-conservative algorithm.

However, it is not necessary to have this much budget. Let us look at the analysis in our algorithm. In
our Budget-Exploration, the budget needed can be written as

BT (O, {π̃l | l ≤ T}) = max
t∈O

∑
l∈O∩[t]

(1− α)V π0 − V πl

= max
t∈O

∑
l∈O∩[t]

(
V ? − V πl

)
− (∆0 + αV π0)

∣∣O ∩ [t]
∣∣.

Let us define RO∩[t](Ã) :=
∑
l∈O∩[t] V

? − V πl the regret over the time steps in O of the non-

conservative algorithm Ã. For UCB algorithm in MAB, R̃t(Ã,O) = O(
√
K|O ∩ [t]|) w.h.p., where

K ∈ R is the number of arms.
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Now
BT (O, {π̃l | l ≤ T}) = max

t∈O
RO∩[t](Ã)− (∆0 + αV π0)

∣∣O ∩ [t]
∣∣

Note that the RHS is maximized when
∣∣O ∩ [t]

∣∣ = O( (∆0+αV π0 )2

K ), but not when
∣∣O ∩ [t]

∣∣ = T .
This means that we do not need to consider the T -step regret as in (Wu et al., 2016), which is an
over-conservative estimate.
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