
A Appendix A

Figure 5: State Rewards Visualization. We visualize the state-only rewards recovered on a continuous control
point maze task. The agent (white circle) has to reach the goal (red star) avoiding the barrier on right.

A.1 Learning with state-only rewards

For a policy ⇡ 2 ⇧, we define its state-marginal occupancy measure ⇢⇡ : S ! R as ⇢⇡(s) =P1
t=0 �

t
P (st = s|⇡).

Suppose we are interested in learning rewards that are functions of only the states, then the Inverse-RL
objective L from Eq. 3 becomes a function of the state-marginal occupancies:

max
r2R 

min
⇡2⇧

Ls(⇡, r) = Es⇠⇢E(s)[�(r(s))] � Es⇠⇢(s)[r(s)] � H(⇡) (13)

Now, we can parameterize the rewards r(s) using state-only value-functions V (s) and remove the
dependency on Q(s, a). Then V (s) can be learnt similar to learning Q(s, a) in the main paper, but
Q(s, a) remains unknown and the optimal policy cannot be obtained simply as an energy-based
model of Q.

Instead, we develop a new objective that can learn Q while recovering state-only rewards below.

We expand the original objective L using the expert occupancy:

L(⇡, r) = Es⇠⇢E(s)Ea⇠⇡E(·|s)


�(r(s, a)) � ⇢(s)⇡(a|s)

⇢E(s)⇡E(a|s)r(s, a))

�
� H(⇡) (14)

We see that the action dependency comes in the equation from the fact that we have ⇡/⇡E inside.

Now, we propose to fix the expression to make it independent of actions by replacing the expert
policy ⇡E with the policy ⇡. The new objective becomes:

L
0(⇡, r) = Es⇠⇢E(s)Ea⇠⇡(·|s)


�(r(s, a)) � ⇢(s)

⇢E(s)
r(s, a)

�
� H(⇡) (15)

Then for a fixed policy ⇡, while maximizing over r the constraint we have is that each reward
component r(s, a) 2 R . In a state s, r(s, a) that maximizes the objective will take the same value
independent of the action8. Thus, the expectation over actions can be removed and this recovers
Eq. 13.

Writing the new objective using Q-functions, we get the modification to Eq. 9:
max
Q2⌦

J ⇤(Q) = Es⇠⇢E(s)[Ea⇠⇡(·|s)[�(Q(s, a) � �Es0⇠P (s,a)V
⇤(s0))]] � (1 � �)Ep0 [V

⇤(s0)]

(16)

This new objective does not depend on the the expert actions ⇡E and can be used for IL using only
observations (ILO). We visualize state-only rewards recovered on a 2D point mass navigation task
in Fig 5. Notice that the rewards are not directional and are high on all sides of the target point,
indicating they are not dependent on the action. We present additional results in Appendix D.

8The objective and the reward constraints remain same along each action dimension and a symmetry argument
holds
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A.2 Proofs for Section 3 and Section 4

Proof for Lemma 3.1. Let P
⇡ be the (stochastic) transition matrix for the MDP corresponding to

a policy ⇡, such that for any x 2 RS⇥A, P
⇡
x(s, a) = Es0⇠P(·|s,a),a0⇠⇡(·|s) [x(s, a)].

Let r = T ⇡
Q. We expand T ⇡ in vector form over S ⇥A using P

⇡ . Then r = Q��P
⇡(Q� log⇡).

Here, (I � �P
⇡) is invertible as k�P⇡k < 1, for � < 1, and the corresponding Neumann series

converges. Thus Q = (I � �P
⇡)�1 (r � log⇡). So we see that for any r, there exists a unique

image Q proving that T ⇡ is a bijection.

Furthermore, on rearranging the vector form, we have Q = r + �P
⇡(Q � log⇡). This is just the

vector expansion of the soft-bellmann operator B⇡r , which has a unique contraction Q for a given r.
Thus, Q = (T ⇡)�1

r = B⇡r Q for any r.
Lemma A.1. Define T ⇤ : RS⇥A ! RS⇥A such that

(T ⇤
Q) (s, a) = Q(s, a) � �Es0⇠P(·|s,a)[log

X

a0

exp Q (s0
, a

0)]

Then T ⇤ is bijective =) For r = T ⇤
Q, we can freely transform between Q and r.

Proof. For r = T ⇤
Q, we have Q(s, a) = r(s, a) + �Es0⇠P(·|s,a)[log

P
a0 exp Q (s0

, a
0)]. This is

just the soft bellman equation, for which a unique contraction Q
⇤ exists satisfying it [14]. Thus for

any r, we have a unique image Q
⇤ corresponding to it such that r = T ⇤

Q
⇤.

Hence, T ⇤ is a bijection.

Lemma A.2. Let the initial state distribution be p0(s), then for a policy ⇡ and V
⇡ defined as before,

we have
E(s,a)⇠⇢[V

⇡(s) � �Es0⇠P(·|s,a)V
⇡(s0)] = (1 � �)Es⇠p0 [V

⇡(s)]

Proof. We expand the discounted stationary distribution ⇢ over state-actions and show the series
forms a telescopic sum.

Let p
⇡
t (s) be the marginal state distribution at time t for a policy ⇡.

Then,
E(s,a)⇠⇢[V

⇡(s) � �Es0⇠P(·|s,a)V
⇡(s0)]

= (1 � �)
P1

t=0 �
tEs⇠p⇡t ,a⇠⇡(s)

⇥
V
⇡(s) � �Es0⇠P(·|s,a)V

⇡(s0)
⇤

= (1 � �)
P1

t=0 �
tEs⇠p⇡t [V ⇡(s)] � (1 � �)

P1
t=0 �

t+1Es⇠p⇡t+1
[V ⇡(s)]

= (1 � �)Es⇠p0 [V
⇡(s)]

Corollary A.2.1. In fact, for any valid occupancy measure µ over state-actions and V
⇡ , it holds that

E(s,a)⇠µ[V ⇡(s) � �Es0⇠P(·|s,a)V
⇡(s0)] = (1 � �)Es⇠p0 [V

⇡(s)]

Proof. This relies on the fact that V
⇡(s) is a function of only state and doesn’t depend on the action.

First, for any valid occupancy measure µ, there exists a corresponding unique policy �µ(a|s) s.t. �µ

generates µ [17].

Let p
µ
t (s) be the marginal state distribution at timestep t for the policy �µ. Then,

E(s,a)⇠µ[V ⇡(s) � �Es0⇠P(·|s,a)V
⇡(s0)]

= (1 � �)
P1

t=0 �
tEs⇠pµ

t ,a⇠�µ(s)

⇥
V
⇡(s) � �Es0⇠P(·|s,a)V

⇡(s0)
⇤

= (1 � �)
P1

t=0 �
tEs⇠pµ

t
[V ⇡(s)] � (1 � �)

P1
t=0 �

t+1Es⇠pµ
t+1

[V ⇡(s0)]
= (1 � �)Es⇠pµ

0
[V ⇡(s)]

Now p
µ
0 is just the initial state distribution p0 which is independent of the policy, thus giving our

result.

Lemma A.3. E⇢[(T ⇡
Q)(s, a)] + H(⇡) = (1 � �)Ep0 [V

⇡(s0)], where p0(s) is the initial state
distribution.
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Proof. We can show this forms a telescopic series as in [28] using lemma A.2 to depend only on the
initial state distribution:

E⇢[Q(s, a) � �Es0⇠P(·|s,a)V
⇡(s0)] + H(⇡) = E⇢[Q(s, a) � �Es0⇠P(·|s,a)V

⇡(s0) + H(⇡(a|s)]
= E⇢[Q(s, a) � log ⇡(a|s) � �Es0⇠P(·|s,a)V

⇡(s0)]

= E⇢[V ⇡(s) � �Es0⇠P(·|s,a)V
⇡(s0)]

= (1 � �)Ep0 [V
⇡(s)],

This makes sense as the LHS and RHS both represent the max entropy RL objective, that is to
maximize the cumulative sum of rewards or the expected value with respect to a policy for the initial
state.

Lemma A.4. SAC actor update decreases the objective J (⇡, Q) for the actor-critic update in main
paper, wrt ⇡ for a fixed Q.

Proof.

V
⇡(s) = Ea⇠⇡[Q(s, a) � log ⇡(a|s)] = �DKL

✓
⇡(·|s)k 1

Zs
exp(Q(s, ·)

◆
+ log(Zs),

where Zs is the normalizing factor
P

a exp Q(s, a)

Now, for a policy ⇡0 the the SAC actor update rule [13] is arg min
⇡0

DKL

�
⇡

0k 1
Z exp(Q)

�

Thus, if ⇡ is the policy obtained on applying the SAC actor update to ⇡0, we have V
⇡(s) > V

⇡0
(s). So,

as long as � in J is a monotonically non-decreasing function, this implies J (⇡, Q) < J (⇡0
, Q).

B Appendix B

Integral Probability Metric (IPM) An IPM parameterized by F between two distributions P and
Q is defined as

�F (P, Q) := sup
f2F

|EP f(X) � EQf(X)| (17)

Suppose F is such that f 2 F ) �f 2 F . Then,

�F (P, Q) = sup
f2F

|EP f � EQf | = sup
f2F

EP f � EQf (18)

Some IPMs that satisfy this symmetry are: Dudley metric, Wasserstein metric, total variation distance,
Maximum Mean Discrepancy (MMD).

We can see that for � = I, R = F , Eq. 8 reduces to Eq. 18.

f -divergence The f -divergence between two distributions P and Q is defined using the convex
conjugate f

⇤ as

Df (PkQ) = EQ


f

✓
P

Q

◆�
= sup

g:X!R
EP [g(X)] � EQ [f⇤(g(X))] (19)

Interpreting g = �r

Df (PkQ) = sup
r:X!R

EP [�r(X)] � EQ [f⇤(�r(X))] (20)

= sup
r:X!R

EQ [�f
⇤(�r)] � EP [r] (21)

Thus, for �(x) = �f
⇤(�x), R = RS⇥A , Eq. 8 reduces to Eq. 20.
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Table 4: List of divergence functions, convex conjugates, � and optimal reward estimators

Divergence f(t) f⇤(u) �(x) r

Forward KL � log t �1� log(�u) 1 + log x ⇢E
⇢

Reverse KL t log t e(u�1) �e�(x+1) �(1 + log ⇢
⇢E

)

Squared Hellinger (
p
t� 1)2 u

1�u
x

1+x

q
⇢E
⇢ � 1

Pearson �2 (t� 1)2 u+ u2

4 x� x2

4 2(1� ⇢
⇢E

)

Total variation 1
2 |t� 1| u x 1

2 sign (1� ⇢
⇢E

)

Jensen-Shannon �(t+ 1) log( t+1
2 ) + t log t � log (2� eu) log (2� e�x) log 1

2 (1 +
⇢E
⇢ )

B.1 Implementation of Statistical Distances

Total Variation Total variation gives a constraint on reward functions: |r|  1
2 .

As Qt0 =
P1

t=t0 �
t
r(st, at) + �

t
H(at|st), we obtain a constraint on Q:

|Q|  1
1�� (Rmax + log |A|) = 1

1�� ( 1
2 + log |A|)

This can be easily enforced by bounding Q to this range using a tanh activation.

W1 Distance For Wasserstein-1 distance, we use gradient penalty [12] to enforce the Lipschitz
constraint, although other techniques like spectral normalization [26] can also be utilized.

�
2-divergence �

2-divergence corresponds to a f -divergence with a choice of f(x) = (x � 1)2.

We generalize this to a choice of f(x) = ↵(x � 1)2 with ↵ > 0, which scales the original divergence
by a constant factor of ↵.

Then �(x) = �f
⇤(�x) = x � 1

4↵x
2. It corresponds to using a (strong) convex reward regularizer

 (r) = 1
4↵r

2.

B.2 Effect of different Divergences

Figure 6: Divergence ablation. We show environment returns for different divergences on LunarLander.

We test IQ-Learn with different divergences: Jensen-Shannon (JS), Hellinger, KL and �2 divergence.
We use the LunarLander environment with our offline IL experimental settings and a single expert
trajectory. All experiments are repeated over 10 seeds. We show a box-plot of the environment
returns for different divergences and find that JS, Hellinger and �2 divergence perform similarly,
consistent with the findings on different type of GANs [25]. Here, KL-divergence performs worse
and is suboptimal compared to the other divergences.

C Appendix C

In this section, we expand over our analysis in Section 3 and present proof of properties over the
Q-policy space: Propositions 3.3, 3.4, 3.5 in main paper.
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For simplicity, we define a concave function � : R ! R [ {�1}, such that g is given as g(x) :=
x � �(x). We are interested in regularizers  induced by g, such that

 g(r) = E⇢E [g(r(s, a))] (22)

We simplify the IRL objective (from Eq. 5):

J (⇡, Q) = E⇢E [�(Q � �Es0⇠P(·|s,a)V
⇡(s0))] � (1 � �)E⇢0 [V ⇡(s0)],

Lemma C.1. J (⇡, ·) is concave for all ⇡ 2 ⇧.

Proof. Let Q1, Q2 2 ⌦ and suppose � 2 [0, 1]. We rely on the fact that the regularized IRL objective
L(⇡, ·) is concave for all ⇡. Note that r = T ⇡

Q is an affine transform of Q, given in vector form as
r � log⇡ = (I � P

⇡)Q. Thus, T ⇡(�Q1 + (1 � �)Q2) = �T ⇡
Q1 + (1 � �)T ⇡

Q2.

J (⇡,�Q1 + (1 � �)Q2) = L(⇡, T ⇡(�Q1 + (1 � �)Q2))

= L(⇡,�T ⇡
Q1 + (1 � �)T ⇡

Q2)

� �L(⇡, T ⇡
Q1) + (1 � �)L(⇡, T ⇡

Q2)

= �J (⇡, Q1) + (1 � �)J (⇡, Q2)

Thus, J (⇡, ·) is concave.

Lemma C.2. For  g corresponding to a non-decreasing �, J (·, Q) is quasiconvex for all Q 2 ⌦,
and has a unique minima ⇡Q = 1

Zs
exp(Q) with normalizing factor Zs =

P
a exp Q(s, a).

Proof. We have,

V
⇡(s) = Ea⇠⇡[Q(s, a) � log ⇡(a|s)] = �DKL

✓
⇡(·|s)k 1

Zs
exp(Q(s, ·)

◆
+ log(Zs),

For a fixed Q, the KL divergence is strictly convex in ⇡ with minima at ⇡Q, implying V
⇡(s) is strictly

concave in ⇡ . Similarly, r = T ⇡
Q = Q � �Es0⇠P(·|s,a)V

⇡(s0) is strictly convex in ⇡ with minima
at ⇡Q. Now, E⇢E [�(T ⇡

Q)] will be minimum at ⇡Q and will be always non-decreasing as we pull
away. Thus J (⇡, Q) > J (⇡Q, Q), for any ⇡ 6= ⇡Q. This is sufficient to establish the quasiconvexity
of J(·, Q) with a unique minima at ⇡Q.

Now ⇧ is compact and convex and RS⇥A is convex. As J (⇡, .) is concave, it is also quasiconcave
for all ⇡, and J (·, Q) is quasiconvex for all Q. Thus, we can use Sion’s minimax theorem [36]:

min
⇡2⇧

max
Q2⌦

J (⇡, Q) = max
Q2⌦

min
⇡2⇧

J (⇡, Q),

implying the existence of a saddle point for J .

Let (⇡⇤
, r

⇤) be the saddle point for L. Then, as r = T ⇡
Q is an affine transform of Q for a fixed ⇡,

we have

⇡
⇤ = argmin

⇡2⇧
max
r2R

L(⇡, r) = argmin
⇡2⇧

max
Q2⌦

L(⇡, T ⇡
Q) = argmin

⇡2⇧
max
Q2⌦

J (⇡, Q)

Thus, the first coordinate of the saddle points for L and J coincides. Now, we can relate the second
coordinates, using the affine transformation property:

r
⇤ = argmax

r2R
L(⇡⇤

, r) = T ⇡⇤
✓

argmax
Q2⌦

L(⇡⇤
, T ⇡

Q)

◆
= T ⇡⇤

✓
argmax

Q2⌦
J (⇡⇤

, Q)

◆
= T ⇡⇤

Q
⇤

Therefore, the saddle point of L uniquely corresponds to the saddle point (⇡⇤
, Q

⇤) of J , given as
(⇡⇤

, r
⇤) for r

⇤ = T ⇡⇤
Q

⇤.

This forms the proof for Proposition 3.3, 3.4.
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Proof for Proposition 3.5 We have,

J ⇤(Q) = E⇢E [�(Q(s, a) � �Es0⇠P(·|s,a)V
⇤(s0))] � (1 � �)Ep0 [V

⇤(s0)],

As log-sum-exp is convex, V
⇤(s) = log

P
a exp Q(s, a) is convex in Q. Then concavity follows

from the fact that for the first term, �(Q(s, a) � �Es0⇠P(·|s,a)V
⇤(s0)) is concave, as it is a concave

function composed with a non-decreasing concave function.

C.1 Generalization

policy

Q
-fu

nc
tio

n

(⇡⇤
, Q

⇤)
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Figure 7: Feasibility region in Q-policy space.

In the above section, we made a monotonicity assumption on � in Lemma C.2. We show that we can
relax this assumption and the saddle point properties still hold, although J is not so well-behaved
everywhere anymore.

For a fixed ⇡, the optimizer of the concave problem, maxr L(⇡, r) = E⇢E [�(r(s, a))]�E⇢[r(s, a)]�
H(⇡) satisfies 9:

�
0(r)⇢E � ⇢ = 0

Thus, �0(r(s, a)) = ⇢(s, a)/⇢E(s, a) 2 [0, 1). This tells us that there exists a set of rewards R�,
such that � is non-decreasing on this set. For a concave �, R� is just be the convex set of reals that
are on the left of its maxima.
Lemma C.3. Define a convex feasibility region on the Q-policy space:

F� = {(⇡, Q) : r = T ⇡
Q 2 S ⇥ A ! R�}

then for a given ⇡, any optimal Q = argmaxQ0 J (⇡, Q
0) has to lie in F�.

Proof. If Q is optimal, then T ⇡
Q maximizes L(·, r), and so it’s corresponding r is optimal. For a

fixed ⇡, and any (s, a) 2 S ⇥ A, the optimal reward has to satisfy �0(r(s, a)) = ⇢(s, a)/⇢E(s, a).
Thus, each component of the reward vector lies in R�. This tells us T ⇡

Q lies in the required
region.

We get two properties in the feasibility region F�:

1. argmaxQ J (·, Q) lies in F�
9A concave function may not be differentiable everywhere and in general, we get a condition on the

subdifferential of �: ⇢/⇢E 2 @�(r)
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2. � is non-decreasing, so lemma C.2 holds in this region

We just need one last lemma to prove the existence of a unique saddle point:
Lemma C.4. A saddle point exists only at the intersection of two curves: argmaxQ J (·, Q) and
argmin⇡ J (⇡, ·)

Proof. We parameterize the curves f(⇡) = argmaxQ J (⇡, Q) and g(Q) = argmin⇡ J (⇡, Q). A
saddle point has to satisfy min

⇡
max

Q
J (⇡, Q) = max

Q
min
⇡

J (⇡, Q). This implies, min
⇡

J (⇡, f(⇡)) =

max
Q

J (g(Q), Q). This equation can only be satisfied when both the curves intersect.

Therefore, any saddle point lies at the intersection of the Q-maxima and policy minima curves.

We have established that within the feasibility region F�, lemma C.1 and C.2 hold. Thus, there exists
a single saddle point in this region. Furthermore, argmaxQ J (·, Q) lies in F� so lemma C.4 tells us
there cannot exist any other saddle points outside F�.

This completes our proof of the existence of a unique saddle point of J for any concave �.

We summarize these properties in Fig 7.

C.2 Convergence Guarantee

SAC updateAdversarial
policy
update

Figure 8: Policy learning. Comparison of SAC vs adverserial policy update outside the feasibility region.

For any �, our soft actor-critic (SAC) policy update (Sec 4.4) minimizes the KL divergence between
the current policy ⇡ and ⇡Q, always pointing towards the the policy minima manifold whereas
adversarial policy update relying on the local gradient can diverge away from it (outside the feasibility
region). This has the effect, that with sufficient steps, learning with SAC updates is guaranteed to
converge to the saddle point, but no such guarantee exists with adversarial policy updates.

C.3 Effect of various divergences

In the Q-policy space, the policy minima manifold ⇡Q is an energy-based model of Q, and doesn’t
depend on the choice of regularizer  .

Whereas, the Q-maxima manifold is dependent on the choice of regularizer. As the saddle point is
formed by the intersection of these two curves (Lemma C.4), we can study how different divergences
will affect the saddle point which solves the regularized-IRL problem.

We have that for a choice of �, the Q-maxima manifold is given by the condition:

�
0(r)⇢E � ⇢ = 0

Thus on the maxima manifold, r = (�0)�1(⇢/⇢E). We visualize this in the Fig. 9, we see that
different statistical distances correspond to different saddle points. The overall effect is that that at
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Figure 9: Saddle points. Effect of regularizer  on the saddle point. (not to scale)

the saddle point ⇡⇤ remains close to ⇡E , but may not be exactly equal as the regularization constrains
the policy class.

In general, ⇡⇤ is the solution to the (transcendental) equation:

�
0(T ⇡

Q)⇢E � ⇢Q = 0, (23)

where ⇢Q is the occupancy measure corresponding to ⇡Q = 1
Z exp Q.

For f -divergences, this can be simplified as

T ⇡
Q = �f

0
✓
⇢Q

⇢E

◆
(24)

For an IPM parametrized by F , �0(x) = 0 and the equation will be maximized on the boundary of F ,
without a closed form equation.

Now, SQIL [33] uses the reward of the form 1 � 0 dependent on sampling from the expert or policy
distributions. This condition corresponds to a maxima manifold in this space, such that instead of the
reward being a function of the ratio density of the expert and the policy, it is stochastically dependent
on the sampling. Thus, instead of being fixed, the manifold will shift stochastically with the sampling.
This has the corresponding effect of shifting the saddle point and can result in numerical instabilities
near convergence, as a unique convegence point does not exist for the SQIL style update.

Similary, we can analyze ValueDICE [22]. ValueDICE mimimizes the Reverse-KL divergence
between the expert and policy using the Donsker-Varadhan (DV) variational form of Reverse-KL.
This corresponds to the maxima manifold with rewards satisfying r = log(⇢E/⇢), but suffers from
two issues: 1) biased gradient estimates, and 2) adversarial policy updates.

We have already shown how adverserial policy updates are not optimal, we will now focus on fixing
the biasing issue with the Reverse-KL distance.

First, the DV representation is given as:

KL(⇢, ⇢E) = max
r2R

logE⇢E [e�r(s,a)] � E⇢[r(s, a)]

This corresponds to a �(x) = logE⇢E [e�x], even though its outside the class of  we study, it
satisfies all the previous properties we developed (Lemma C.1 - C.4).

Now, to unbias the Reverse-KL representation, we propose using the f -divergence representation,
with f(t) = t log t � t + 1. Then the f -divergence for this choice of f is just the Reverse-KL
divergence, but it’s variational form is:

max
r2R

E⇢E [�e
�r(s,a)] � E⇢[r(s, a)]
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and corresponds to �(x) = �e
�x with rewards r = log(⇢E/⇢).

Thus, we can obtain the same Q-maxima manifold to minimize the Reverse-KL distance as Val-
ueDICE by using this new representation, while avoiding the biasing issue.

Effect of different forms of Reverse-KL We test IQ-Learn with different variational represen-
tations of Reverse-KL: Donsker-Varadhan (DV), Original KL (KL), ours Modified KL (KL-fix).
We use the LunarLander environment with our offline IL experimental settings and a single expert
trajectory. All experiments are repeated over 10 seeds. We show a box-plot of the environment returns
for different variational forms and find that our proposed form (KL-fix) and the DV representation
perform similarly. The original f-divergence form of KL remains problematic, performing noticeably
worse, which may be due to an issue with its corresponding Q-maxima manifold. Compared to DV,
our proposed KL variation representation has the advantage of giving unbiased gradient estimates
and can be more stable.

Figure 10: Reverse-KL ablation. We show environment returns for different variational forms of Reverse-KL
on LunarLander.

D Appendix D

D.1 Implementation Details

For reproducibility, we plan to release all our expert demonstrations, either trained from scratch or
obtained using Stable Baslines3 Zoo [32]. We also release an efficient expert data generation and
data-loading pipeline, that can work with pre-trained Stable Baselines3 models, or arbitary pytorch
RL agents. We hope this will make benchmarking for IL easier and help with standardization.

D.1.1 Offline Setup

We mimic the settings used by prior works [19, 6] to make our results directly comparable for offline
IL.

Expert Demonstrations We obtain expert demonstrations by training a DQN [27] agent from
scratch for all the environments tested. Our trajectories were then sub-sampled for every 20th step in
Acrobot and CartPole, and every 5th step in LunarLander.

Training Setup We test with (1,3,7,10,15) expert trajectories uniformly sampled from a pool of
1000 expert demonstrations. Each algorithm is trained until convergence and tested by performing
300 live rollouts in the simulated environment and recording the average episode rewards. We repeat
this over 10 seeds, consequently with different initializations and seen trajectories.

Implementation All methods use neural networks with the same architecture of 2 hidden layers of
64 units each connected by exponential linear unit (ELU) activation functions.

We use the original public code implementations of EDM, AVRIL and ValueDICE. Note, ValueDICE
is adapted to discrete environments using an actor with Gumbel-softmax distribution output.

Hyperparameters We use batch size 32 and Q-network learning rate 1e�4 with entropy coefficient
0.01. We found learning rate of 1e � 4 worked best for IQ-Learn on discrete environments. We also
found entropy coefficient values [1e � 2, 1e � 3] to be optimal depending on the environment. Here,
we don’t use target updates as we found them to give no visible improvement and slow down the
training.
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D.1.2 Online Setup

Expert Demonstrations For Mujoco environments, we generate expert demonstrations from
scratch using a Pytorch implementation of SAC. For Atari, we generate demonstrations using
pre-trained DQN agents from Stable Baselines3 Zoo. For both, we generate a pool of 30 expert
demonstrations and sample trajectories uniformly. For Mujoco results, we sample 1 expert demo and
for Atari we sample 20 expert demos without any subsampling.

Implementation For Mujoco, with all methods we use critic and actor networks with an MLP
architecture with 2 hidden layers and 256 hidden units, keeping settings similar to original SAC [13].
For Atari, with all methods we use a single convolution neural network same as the original DQN
architecture [27]. For IQ-Learn in continuous environments, for SAC policy updates we sample states
from both policy and expert distributions. We regularize policy states in addition to expert states
to improve the stability of learning Q-values. We use soft target updates and find them helpful for
stabilizing the training.

For BC and GAIL, we use the stable-baselines implementations. For SQIL, we use original public
code for Atari environments. For ValueDICE, we use the open-sourced official code.

Hyperparameters For SAC style learning, we use default settings of critic learning rate 3e� 4 and
policy learning rate values [3e � 4, 3e � 5]. We found 3e � 5 to work well in complex environments
and remain stable, although 3e � 4 can be better with simpler environments (like Half-Cheetah). We
use a fixed batch size of 256 and found entropy coefficient 0.01 to work well. We use soft target
updates with the default SAC smoothing constant ⌧ = 0.05. For DQN-style learning on Atari, we use
Q-network learning rate 1e � 4 with entropy coefficient 1e � 4 and batch size 64. We found entropy
coefficient values [1e � 3, 1e � 4] to work well. We didn’t find noticeable improvements with using
target updates on Atari (with the exception of Space Invaders, where they stabilize the training).

D.2 Additional Results

Mujoco We show additional results on Mujoco obtained using 10 expert trajectories in Table 5. We
find IQ-Learn gets state-of-art performance in all environments and reaches expert-level rewards.

Table 5: Mujoco Results. We show our performance on MuJoCo control tasks using 10 expert trajectories.
Task Random BC GAIL ValueDICE IQ (Ours) Expert
Hopper 14± 8 1345± 422 3322± 510 3399± 651 3529± 15 3533± 39
Half-Cheetah �282± 80 2701± 950 4280± 1002 4840± 132 5154± 82 5098± 62
Walker 1± 5 3730± 1440 4417± 420 4384± 345 5212± 85 5274± 53
Ant �70± 111 2272± 472 3997± 312 4507± 265 4683± 67 4700± 80
Humanoid 123± 35 2057± 843 372± 51 2001± 524 5288± 73 5313± 210

Atari Suite. We show detailed performance of IQ-Learn on Atari Suite environments using 20
expert demonstrations in Table 6.

Table 6: Results on Atari Suite. We show our results on Atari Suite tasks using 20 expert demon-
strations.

Env IQ (Ours) Expert
Pong 19± 2 21± 0
Breakout 320± 72 376± 34
Space Invaders 807± 102 823± 272
BeamRider 3025± 845 4295± 1173
Seaquest 2349± 342 2393± 291
Qbert 12940± 2026 11496± 1988

Reward Correlations. We show the Pearson correlation coefficient of our learnt rewards with
environment rewards in Table 7.
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Table 7: Reward Correlations. We show pearson correlations between our learnt reward and the
env rewards.

Env Reward correlation
Cartpole 0.99
LunarLander 0.92
Hopper 0.99
Half-Cheetah 0.86
Pong 0.67

Figure 11: Half-Cheetah overfitting comparision

Do we overfit? Compared to ValueDICE, we
don’t observe overfitting using IQ-Learn with
the number of update steps. We show a compar-
ision on Half-Cheetah environment using one
expert trajectory in Fig 11. ValueDICE begins
to overfit around 100k update steps, whereas IQ-
Learn converges to expert rewards and remains
stable.

D.3 Recovering Rewards

Figure 12: Hopper correlations

We show visualizations of our reward correlations on the Hop-
per environment using 10 expert demonstrations in Fig 12. We
obtain a Pearson correlation of 0.99 of our recovered episode
rewards compared with the original environment rewards, show-
ing that our rewards are almost linear with the actual rewards,
and thus can be used for Inverse RL. Note, that to recover re-
wards with IQ-Learn, we need to sample the current state and
the next state.

We perform similar comparisons on GAIL and SQIL, obtaining
Pearson coefficients of 0.90 and 0.72 respectively.

In the main paper, we also show recovered rewards on a simple grid environment by using sampling
based Q-learning with a simple Q-network having two hidden layers. In the section below, we further
compare IQ-Learn on a tabular setting.

Tabular Inverse RL To further validate IQ-Learn as a method for IRL and show we recover
correct rewards, we directly compare with the classical Max Entropy IRL [43] method on a tabular
Grid world setting, by using an open-source implementation10. We implement IQ-Learning as a
modification to tabular value iteration. The classical method requires repeated backward and forward
passes, to calculate soft-values and action probabilities for a given reward and optimize the rewards
respectively. IQ-Learn skips the expensive backward pass and directly optimizes the rewards. We
show comparision in Fig 13, where we find our method recovers very similar rewards while being
more than 3x faster.

D.4 Imitation learning with Observations
Table 8: Results on ILO. We show evironment
returns using 1 and 10 expert demonstrations.

Env 1 demo 10 demos
CartPole 452 ± 50 485 ± 25
LunarLander 20 ± 102 220 ± 69
Hopper 2507 ± 345 3465 ± 51

We show results for IQ-Learn trained with us-
ing only expert observations in Table 8. We test
on CartPole, LunarLander and Hopper environ-
ments with 1 and 10 expert demonstrations using
online IL settings without any subsampling of
trajectories. We find that with one expert demon-
stration, we get below expert-level rewards, and as expected, our performance suffers compared
to with using expert actions. We find using 10 demonstrations is enough to reach expert-level
performance in these simple environments.

Target updates are helpful in stabilizing the training in this setting.

10https://github.com/yrlu/irl-imitation
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IQ-Learn

Max entropy IRL

Figure 13: Tabular Grid Rewards. We recover similar rewards as Max entropy IRL (Ziebert et al.) while
avoiding an expensive backward pass.

E Appendix E

E.1 Dynamics-Aware Imitation Learning and the Loop MDP

In this section we illustrate the importance of dynamics-awareness in imitation learning with a toy
MDP based on the Loop MDP from [34]. The MDP is shown in Fig 14. The MDP has a fixed length
of 100 steps. The key problem for dynamics-unaware algorithms, such as behavioural cloning, is the
behaviour in state s2. If we happen to use an expert trajectory where the expert never visits state s2,
then the learned policy will not necessarily have the right behaviour in state s2. This is because the
objective for behavioural cloning is to match the action probabilities in the expert states, and s2 is not
in the expert states visited. However, the dynamics-aware methods are able to deduce that taking
action a1 in state s2 will return the imitator to state s1. Although this MDP is simple, it illustrates
a general advantage of dynamics-aware methods which will hold in many situations. In particular,
it will hold for environments where the expert may keep very close to an optimal trajectory, yet
it is possible to recover back to that trajectory if a small mistake is made, such as in autonomous
lane-keeping in a car.

s0

s1

s2

a1

a2

p(s1) = 1� p

p(s2) = p

a2

a1

a2

a1

Figure 14: A variant of the Loop MDP from [34]. Taking actions labelled in green gives 1 reward,
while actions in black give reward 0. The MDP is stochastic for action a1 in state s0, which with
probability p leads to state s2, and with probability 1 � p leads to state s1.
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To substantiate this illustrative case, we implemented this MDP and evaluated a few methods. We
use a single expert trajectory which goes from s0 to s1, never going to state s2. We set p = 0.5 for
this experiment. The results are in Table 9, averaged over five random seeds. They are as we expect,
with the dynamics-aware methods able to convincingly master the environment and find the optimal
policy, while the behavioural cloning approach achieves around 50 reward. This is because it learns
the wrong behaviour in state s2 so gets zero reward in that state in the 50% of the time that taking
action a1 results in a transition to state s2.

Table 9: Results of imitation learning algorithms on the Loop MDP described above. We observe that
the dynamics-unaware behavioural cloning baseline performs much worse than the other dynamics-
aware methods.

Method Episode Reward

Behavioural Cloning 54 ± 5
SQIL 100 ± 0
IQ (Online, �2) 100 ± 0

E.2 Ablation on Gamma

Figure 15: Ablation on Gamma

The dynamics are encoded in our learning
objective by the discount factor �, and set-
ting it to zero removes dynamic-awareness
in IQ-Learn.

To show how dynamics help with learning,
we do an ablation on � with IQ-Learn. We
use the offline IL settings for CartPole en-
vironment with one expert trajectory.

We set � to 0.99 and 0. The results are visualized in Fig 15, we can see that without the dynamics
the training is not stable and there is a strong decay in the rewards obtained by the IL agent from
the environment. Whereas, when using dynamics, we see that the training is stable and properly
converges.

F Appendix F

F.1 Generalization over distribution shift

We show our method can be robust to distribution shifts between the expert and policy and perform
additional experiments over two different settings: 1) Initial distribution shift using a modified
LunarLander env motivated by [33] and 2) Goal distribution shift using DeepMind Control Suite.

F.1.1 Initial distribution shift

We experiment with initial shift distribution in the LunarLander-v2 environment similar to [33]. The
agent is typically initialized in a small zone at the middle top of the screen. Instead, we modify the
environment to initialize the agent near the top-left corner of the screen. We use experts from the
unmodified environment, and test whether the agent can still learn to land the lunar lander while
recovering from the initial distribution shift.

Offline Case: We find in the offline case that the agent cannot learn to recover from the occupancy
shift. The lander typically tends to fly off the frame and shows random behavior. This is expected as
IQ-learn is not aware of the shift of initial distributions between the agent and the expert, and can’t
explore the environment to correct the initial state shift to match the occupancy distributions.

Online Case: In the online case, we find that the agent can sufficiently explore the environment, and
learns a behavior of first horizontally moving the lander from the top left to the top center and then
successfully imitating the original expert trajectory, receiving an avg. episode reward of 250 with 10
expert demos.
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An extra consideration here is in Eq. 9, where we originally only apply reward regularization to the
expert states, but we find applying regularization to both expert and policy states to be beneficial in
this case. As it enforces the learning of an implicit reward function that can generalize outside the
expert distribution to more arbitrary policy states.

F.1.2 Goal Distribution Shift

We experiment with the reacher_easy task in DeepMind Control Suite. We choose the reacher
environment as it is a multi-task environment, where the goal given by the target position changes
in every episode randomly. Such environments have been found to be very difficult to solve using
IRL [40] as a large number of expert demos are needed to fully cover the goal distributions, and
usually require meta-IRL methods to figure the right task context for a given expert demonstration
like PEMIRL [40].

We test with different number of expert demonstrations: (1, 5, 10, 20) each with different target
positions on the offline and online settings. The average expert performance is ⇠ 990 in this case and
we report averaged results over 100 episodes with different targets.

Table 10: Offline. We show evironment returns
vs number of experts on reacher_easy for offline
case.

Num Experts Rewards
1 105.4
5 120.1
10 210.6
20 325.0

Offline Case: In the offline setting, a single
demonstration is typically not enough to learn
a generalized reward function and leads to a
reward that overfits to a particular target position.
We quantify the results in Table 10, with the
observation that imitation learning performance
improves with the number of expert demos. This
can be justified, as more experts with different
targets allow learning a reward function that is
better generalizable.

Table 11: Online. We show evironment returns
vs number of experts on reacher_easy for online
case.

Num Experts Rewards
1 271.3
5 485.1
10 545.0
20 734.9
50 926.1

Online Case: In the online setting, our
method is able to explore the environment
over different episodes and can learn to
correct the behavior leading to better per-
formance. In particular, given a sufficient
number of expert demos, it can learn to
associate what expert behavior to imitate
given a particular target and learns a more
reward function generalizable over multiple
goals. We show quantitative results in Ta-
ble 11.

BC and GAIL on reacher_easy even with 50 experts obtain mean rewards of 325.2 and 440.1
respectively, which is equivalent to what we see using our method with just 5 expert demos! It is
surprising to us that our method can learn a reward to figure out what goal state to reach, acting as a
meta-learner even when not engineered specifically to do so.

26


