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Product2IMG: Prompt-Free E-commerce Product Background
Generation with Diffusion Model and Self-Improved LMM

Anonymous Authors

Figure 1: Our proposed Product2Img can automatically generate corresponding backgrounds based on product images and
names from various of categories, yielding high-quality results. [Best viewed in color with zoom-in].

ABSTRACT
In e-commerce platforms, visual content plays a pivotal role in
capturing and retaining audience attention. A high-quality and
aesthetically designed product background image can quickly grab
consumers’ attention, and increase their confidence in taking ac-
tions, such as making a purchase. Recently, diffusion models have
achieved profound advancements, rendering product background
generation a promising avenue for exploration. However, text-
guided diffusion models require meticulously crafted prompts. The
diverse range of products makes it challenging to compose prompts
that result in visually appealing and semantically appropriate back-
ground scenes. Current work has made great efforts on creating
prompts through expert-crafted rules or specialized fine-tuning of
large language models, but it still relies on detailed human inputs
and often falls short in generating desirable results by e-commerce
standards.

In this paper, we propose Product2Img, a novel prompt-free dif-
fusion model with automatic training data refinement strategy for
product background generation. Product2Img employs Contrastive
Background Alignment (CBA) for the text encoder to enhance the
relevant background perception ability in the diffusion genera-
tion process, without the need for specific background prompts.
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Meanwhile, we develope the Iterative Data Refinement with Self-
improved LMM (IDR-LMM), a framework that iteratively enhances
the data selection capability of LMM for diffusion model training,
thereby yielding continuous performance improvements. Further-
more, we establish an E-commerce Product Background Dataset
(EPBD) for the research in this paper and future work. Experimental
results indicate that our approach significantly outperforms cur-
rent prevalent methods in terms of automatic metrics and human
evaluation, yielding improved background aesthetics and relevance.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural
language processing.

KEYWORDS
Diffusion Model, Multimodal Learning, Background Generation

1 INTRODUCTION
In today’s digital landscape, captivating visual content is crucial
for engaging audiences, especially in e-commerce. Aesthetically
pleasing, high-quality product images have the power to capti-
vate consumers and boost confidence in their purchasing decisions.
However, product images uploaded by sellers may lack professional
quality, exhibiting cluttered or plain white backgrounds. This pa-
per explores the methods to enhance product image backgrounds,
aiming to elevate their contextual appeal and effectiveness.

Recently, text-to-image (T2I) diffusion models [16, 28, 31, 36]
have demonstrated the ability to produce high quality visual con-
tent with textual prompts, which serve as the guidance of creativity
of image generation. In order to guide the model in generating more
desired content, crafting precise prompts with detailed instructions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(e.g., objectives, style, limitations) is crucial. There has been a grow-
ing community of researchers and practitioners working on de-
veloping better prompt guidelines and techniques for generation
effective prompts, in terms of generation stability, reliability and
consistency [4, 14, 22, 23, 40].

However, designing prompts for e-commerce product image
backgrounds is still challenging. It’s hard to specify appropriate
background elements in a prompt, such as lighting, scenery, styling,
etc. Also, creating tailored prompts for a wide array of products to
perfectly match the background with the product is impractical. In
response to these issues, two categories of approaches can be consid-
ered: generating prompts with a fine-tuned language model [4], and
training T2I diffusion models to adhere to specific prompts [26, 45].
The first category introduces an extra language model, and such a
pipeline may result in error accumulation and discontinuities in the
gradient during the intermediate prompt generation process, mak-
ing joint optimization challenging. This paper focuses on the second
category, training end-to-end diffusion models solely using prod-
uct names as conditions, without the complex prompt generation
process. In specific, we propose Product2Img, a background genera-
tion diffusion model featuring Contrastive Background Alignment
(CBA). This approach employs a contrastive learning objective to
align the text encoder with the latent features of backgrounds. It
eliminates the need for prompt design or engineering, making it a
prompt-free method.

By focusing less on designing prompts, the quality of images be-
comes the key factor in determining the model’s outcomes. Several
e-commerce product image datasets cover tasks such as image clas-
sification [11], object detection [8] or image saliency prediction [19],
but they tend to offer limited product variety and overlook the aes-
thetic harmony between products and their backgrounds. Moreover,
annotating image to meet e-commerce standards requires expertise
and is labor-intensive. Recent research [1, 18, 49] highlights the
effectiveness of large multimodal models (LMMs) in understanding
images, suggesting a strong potential for image evaluation. How-
ever, LMMs’ performance heavily depends on the specificity of
their prompts, which makes it difficult for humans to include all
necessary details for precise evaluations.

Inspired by previous research [25, 39] that improve LLMs through
feedback and prompt refinement, we design IterativeDataRefinement
with Self-improved LMM (IDR-LMM) framework. It employs the
LMM as an effective scorer to autonomously select images that
meet e-commerce standards. To the best of our knowledge, this
is the first implementation of self-improvement in an LMM for
continuous data refinement during model training.

To train and evaluate ourmethod, we createE-commerceProduct
Background Dataset (EPBD), a high-quality aesthetic dataset with
25k product images with contextual background and corresponding
product names. We conduct extensive experiments on EPBD, which
demonstrates the effectiveness of our proposed method. We will
release the dataset to facilitate further research.

Contributions of this paper are summarized as follows:

• We present Product2Img, a prompt-free method that em-
ploys Contrastive Background Alignment to generate appro-
priate backgrounds using only the product names, eliminat-
ing the need for complex prompting.

• We design annotation-free IDR-LMM, an iterative data re-
finement strategy, to iteratively refine training data by im-
proving the LMM through its own feedback on diffusion
model outputs. This approach effectively enhances the qual-
ity of generation results.
• We develop the high-quality E-commerce Product Back-
ground Dataset (EPBD). By releasing this dataset, we aim to
encourage further research in this area.
• We achieve superior product background generation for e-
commerce with an effective end-to-end approach, ensuring
both aesthetic and semantic compatibility.

2 RELATEDWORKS
2.1 Text-to-Image Diffusion
Text-to-Image Diffusion is a multi-modal task of generating images
conditioned on texts. In the early years, popular image generation
networks were mainly based on Generative Adversarial Network
(GAN) [12]. Recently, diffusion models [16, 35], such as DALLE-
2 [30], Imagen [33], and Stable Diffusion [31] have achieved re-
markable results. Text-to-image diffusion typically involves using
text encoders, such as pretrained language models like CLIP [29],
to encode text inputs into latent vectors. These vectors act as con-
ditioning signals for the diffusion model, enabling the generation
of images related to the text through a process of progressively
removing the noise [31].

2.2 Background Generation
A common operation to generate backgrounds is combining the
foreground (object) from one imagewith another background image
to create a composite image [27]. Over the past years, researchers
have focused on enhancing the realism of composite images by
addressing aspects such as color harmony, lighting congruence,
texture matching, and geometric alignment [6, 9, 38, 42]. As diffu-
sion models are widely applied, Paint-by-Example [43] tackles this
semantic image composition problem with an image-conditioned
diffusion model trained in a self-supervised manner, where the ref-
erence image is semantically transformed and harmonized before
blending into another image. However, these methods all require a
background image as an input to serve as a reference.

Image inpainting [2, 24, 37] emerges as a viable method for au-
tomated background generation, especially with the support of
high-quality diffusion models like SD-Inpainting [31], which sig-
nificantly advance image inpainting technology by fine-tuning
large-scale text-to-image pre-trained model. ControlNet Inpaint-
ing [48] offers image inpainting controlled through stable diffusion
with additional control signals. PowerPaint [50] achieves better
text-image context alignment by learning specific task prompts,
leading to cutting-edge results in context-aware image inpainting
and text-guided object inpainting. However, these techniques, while
impressive, do not specifically focus on background generation and
require detailed prompt engineering for precise descriptions.

2.3 Self-Improved LLMs
“Self-improved" refers to the enhancement of LLMs using their
own generated data. Research [3] has shown that large language
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models (LLMs) can be improved through careful prompt engineer-
ing and techniques such as In-context Learning [10] or Chain of
Thought [41]. This is because a well-crafted context can effectively
elicit the desired response from LLMs. More research [7, 13, 25, 44,
46] further explores the self-improvement capability of LLMs by
gathering experience from past interactions and integrating it into
future queries, thereby enhancing their performance. Recent work
has shown that this capability allows LLMs to exhibit significant
potential in improved learning mechanisms [17] and data annota-
tion [47]. In this paper, we extend the concept of self-improvement
to LMMs, enabling them to better select training data for diffusion
model.

3 DATASET
3.1 Data Collection
For the purpose of this study, we carefully curate a dataset of prod-
uct images complemented by product names. To ensure image
quality, 4 professional product image designers, diverse in age and
gender, are hired to create high-quality images from scratch , adher-
ing to a set of specific criteria. These criteria include the aesthetic
appeal of the product image background, the relevance of the back-
ground to the product, and the avoidance of marketing text and
logos within the product background.

The dataset covers a wide range of categories, ensuring its com-
prehensiveness. To prepare the image input for our model, we
employ an in-house image cutout tool to extract the product ob-
ject from each image. Then we standardize the resolution of all
images to 512x512 pixels. This professionally curated collection is
named E-commerce Product Background Dataset (EPBD), serving
as a crucial resource for our ongoing and future research projects.

Product Name:
Collagen C Facial Cleanser Whitening Face Wash 
Foam Face Cream Skin Care Oil Control Collagen 
Moisturizing Black Spot

TargetSource

Figure 2: Example from EPBD.

3.2 Data Analysis
EPBD comprises of 25,594 samples, each including a cutout of the
product, product name in English, and an attractive product image
featured a contextually relevant background. For analysis andmodel
training purposes, this dataset is stratified into specific subsets:
24,394 samples for training, 200 for validation, and 1,000 samples
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Figure 3: Distribution of Top30 categories in EPBD.

designated for the test set. Additionally, it contains 258 categories,
the distribution of Top30 categories is graphically depicted in Fig-
ure 3. The vast range of categories underscore the complexity of
training models to match an extensive array of products with varied
backgrounds. Moreover, to thoroughly test the model’s generaliza-
tion abilities, the test set has been augmented with an extra 1,000
samples from categories beyond those in the training set, offering
a more diverse and challenging evaluation scenario.

4 METHOD
In this section, we first introduce the task definition and prelim-
inaries on text-to-image diffusion models. Then, we explain the
motivation and design behind our proposed Product2Img model in
detail, which is demonstrated in Figure 4 and Figure 5.

4.1 Task Definition
The task centers on the generation of contextually coherent and
visually appealing backgrounds for product images, known as Prod-
uct Background Generation. The input for this task comprises a
set of product cutouts 𝐶 and their corresponding product names
𝑃 . Product cutouts refer to the images of products that have been
segmented from their original backgrounds, the product names
serve to provide additional semantic information, aiding in the
comprehension of the product types and potential usage scenarios.
The goal is to create output images 𝐼 that seamlessly integrate these
cutouts into high-quality backgrounds, tailored to the product’s in-
tended environmental setting and consumer expectations, thereby
enhancing the image’s suitability for e-commerce.

4.2 Preliminaries
Diffusion models are a class of generative models that include
two processes: the diffusion process (also known as the forward
process) and the denoising process (reverse process) [16]. During
the forward process, noise 𝜖 ∼ N(0, I) is added to the clean image
𝑥0 as follows:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝑥𝑡 is the noisy image at time step 𝑡 , and 𝛼𝑡 indicates the
corresponding noise level.
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Model Training

✔

❌

Data Selection

Model Evaluation
Evaluate the model 
and provide feedback

LMM

feedback
&

improve

Text Encoder
P  <background> <eos>

NoisepredDenoising U-Net

<background>
pooling

Contrastive
Loss

<eos>
pooling

Noise MSE Loss

Image
Encoder

Trainable

Frozen

Figure 4: Overview of the proposed Product2Img’s training framework. (Left) The training pipeline of the IDR-LMM. (Right)
Overview of the model training for each round, 𝑃 refers to the product name.

Input
Product cutout:

Text 
Encoder

VAE
Encoder

P <background> <eos>

Denoising U-Net

Output

Product mask:

Product name: 
Wardah UV Shield 
Essential Sunscreen
Gel SPF 35 PA +++ 
40 ml Twinpack

×(T-1)

concat

Figure 5: The inference process of Product2Img.

Correspondingly, the denoising process involves a neural net-
work U-Net [32], parameterized by 𝜃1, denoted as 𝜖𝜃1 , which pre-
dicts the noise to generate an image from Gaussian noise. Further-
more, diffusion models can also be conditioned on other inputs [31].
For example, text-to-image diffusion models use text features en-
coded by a text encoder Γ𝜃2 to guide the diffusion process in the
form of cross-attention, and are optimized using the following sim-
plified objective function:

Lsimple = E𝑥0,𝑝,𝑡,𝜖



𝜖 − 𝜖𝜃1 (𝑥𝑡 , Γ𝜃2 (𝑝), 𝑡)


2

, (2)

where 𝑝 represents the text conditioned on the text, i.e., the prompt.

4.3 Contrastive Background Alignment
CLIP [29], a multimodal model trained on the large-scale WebIm-
ageText dataset through contrastive learning, is able to understand
the connections between text and images. However, the text in the
dataset commonly overlook background details, making it challeng-
ing for CLIP to accurately align text with background elements. To
further facilitate the comprehension of text-background matching,
we devise a Contrastive Background Alignment (CBA) algorithm,
which specifically learns the association between product names
and the latent states of their corresponding backgrounds , thereby
guiding the image diffusion model to generate appropriate back-
ground.

To achieve this, we introduce a learnable background prompt
< 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 >, a special token denoted as 𝑏, which is initialized
with the text feature vector corresponding to the term “background”.
It will be appended to the end of the product name 𝑃 to serve as
the input for the CLIP text encoder. The hidden states outputted by
the text encoder are then utilized as textual guidance conditions
for the denoising U-Net. To fine-tune the diffusion model for back-
ground generation, we follow SD-Inpainting [31] by expanding the
first convolutional layer of the denoising U-Net 𝜖𝜃1 to include five
additional channels specifically designed for the product cutout 𝐶
and its corresponding mask𝑚. The input is composed of a noisy
image latent space representation at timestep 𝑡 , the latent space
representation of the product cutout, and the mask, concatenated
together and denoted as 𝑥 ′𝑡 .

Linpaint = E𝐶,𝑚,𝐼,𝑃,𝑏,𝑡,𝜖



𝜖 − 𝜖𝜃1 (𝑥
′
𝑡 , Γ𝜃2 (𝑃,𝑏), 𝑡)



2 (3)

To further enhance the product-background matching capability
of the text encoder, we propose an auxiliary task based on con-
trastive learning to capture and leverage the latent correspondence
between product names 𝑃 and product backgrounds 𝐵. Specifically,
we treat the product name and its corresponding product back-
ground as positive samples, while pairing the product names with
backgrounds of other products within the same training batch as
negative samples. This approach involves minimizing the following
loss function:

Lcl (𝑏, 𝐵) = −𝑙𝑜𝑔
𝑒sim(r𝑏 ,r

+
𝐵
)/𝜏

𝑒sim(r𝑏 ,r
+
𝐵
)/𝜏 +∑𝑖 𝑒

sim(r𝑏 ,r−𝐵𝑖 )/𝜏
, (4)

r𝑏 is the feature encoded by the text encoder and pooled through
the background prompt 𝑏, and r𝐵 denotes the image encoding
features of the background image, extracted through a CLIP image
encoder [29]. The term sim(r1, r2) refers to the cosine similarity,
which is defined as sim(r1, r2) =

r⊤1 r2
∥r1 ∥ · ∥r2 ∥ . Furthermore, 𝜏 is the

temperature hyperparameter, which is set by default to 0.05.
Given the symmetry inherent in text-image contrastive learning,

we define the symmetrized contrastive loss between the background
prompt 𝑏 and background image 𝐵 as L′cl (𝑏, 𝐵) =

Lcl (𝑏,𝐵)+Lcl (𝐵,𝑏 )
2 .
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Additionally, following CLIP [29], we also engage in contrastive
learning between the product name 𝑃 and the image 𝐼 with sym-
metrized contrastive loss, denoted as L′cl (𝑃, 𝐼 ). Here, we use the
output from the highest layer of the text encoder at the position of
<eos> token as the feature of the entire sentence.

The final loss function comprises the aforementioned multiple
loss components, with the specific computation process as follows:

L = Linpaint + 𝜆(L′cl (𝑏, 𝐵) + L
′
cl (𝑃, 𝐼 )) (5)

where 𝜆 represents a hyperparameter to balance the contributions
of the different loss terms. To simplify the training process, we
assign the same weight on contrastive loss terms. It is noteworthy
that performance might see further improvement through weight
adjustment.

This algorithm not only prevents catastrophic forgetting in
the CLIP text encoder but also adapts the text encoder for the
e-commerce domain.

4.4 Iterative Data Refinement with
Self-improved LMM

To obtain high-quality training data that can ensure better align-
ment with CBA, as well as enhancing the model training, we pro-
pose an Iterative Data Refinement with Self-improved LMM (IDR-
LMM). Utilizing a self-improving mechanism, the LMM can itera-
tively select premium training data. The whole process comprises
three steps, data selection, model training, and model evaluation,
as depicted in Algorithm 1.

Algorithm 1 The Algorithm of IDR-LMM.

1: Input: The training set D0 = { (𝐶 𝑗 , 𝑃 𝑗 , 𝐼 𝑗 ) | 𝑗 ∈ 1, 2, . . . , 𝑁 } and the
validation set D𝑑𝑒𝑣 of the EPBD dataset; a learnable inpainting model
M𝑆0 and an LMM. Current iteration round 𝑖 = 1 and maximum number
of iteration rounds R. Initial feedback 𝑓 0 is empty.

2: while The iteration 𝑖 ≤ R do
3: // Data Selection
4: Using feedback 𝑓 𝑖−1 to enhance the selection of the high-quality

data subset 𝑆𝑖 from D𝑖−1 by Eq.(8)
5: D𝑖 ← 𝑆𝑖

6: // Model Training
7: M𝑆𝑖 ← Train(M𝑆𝑖−1 , 𝑆𝑖 ) by Eq.(5)
8: // Model Evaluation
9: I𝑑𝑒𝑣 ←Infer(M𝑆𝑖 ,D𝑑𝑒𝑣 )
10: Use I𝑑𝑒𝑣 to obtain feedback 𝑓 𝑖 to improve LMM by Eq.(7)
11: 𝑖 ← 𝑖 + 1
12: end while
13: returnM𝑆R

4.4.1 Data Selection. In this approach, a dataset D is first defined,
which consists of triplets𝑥 = {𝐶, 𝑃, 𝐼 }, representing product cutouts,
product names, and product images with background. Then, a pre-
trained text-to-image inpaintingmodelM =

{
𝜖𝜃1 , Γ𝜃2

}
is fine-tuned

on D, noted asMD . Our target is to select a subset 𝑆 ⊂ D from
D, so that the new modelM𝑆 trained on 𝑆 can achieve improved
performance compared toMD .

In specific, we use the industry-leading large multimodal model
GPT4-Vision [1] as an automatic scorer in our IDR-LMM method.
This scorer assigns a score 𝑅(𝑥, 𝑝𝑅, 𝑐𝑅) to each sample 𝑥 ∈ D using

preset prompt words 𝑝𝑅 and selected samples 𝑐𝑅 , with the accuracy
of scoring improved by adopting techniques similar to Chain of
Thought (CoT) [41] and In-context Learning (ICL) [3]. 1 Finally,
samples 𝑥𝑖 whose scores are higher than a certain threshold 𝛾 will
be added to 𝑆 , resulting in:

𝑆𝑖 ≜
{
𝑥 ∈ D𝑖 : 𝑅(𝑥, 𝑝𝑅, 𝑐𝑅) ≥ 𝛾

}
, (6)

where 𝑖 refers to the current iteration round, and update D𝑖 ← 𝑆𝑖 .

4.4.2 Model Training. After selecting the subset 𝑆 , the image in-
painting model is fine-tuned. Specifically, the model is initialized
with the previous iteration of the model training resultM𝑆𝑖−1 on
data subset 𝑆𝑖−1, and a more accurate image inpainting modelM𝑆𝑖

is obtained by continuously minimizing the loss function 5. Partic-
ularly,M𝑆0 refers to the initialized model.

4.4.3 Model Evaluation. The modelsM𝑆𝑖 obtained from each it-
eration of training are evaluated on the validation set D𝑑𝑒𝑣 , the
inference results 𝐼𝑑𝑒𝑣 of the validation set are submitted to the large
multimodal model for evaluation, and all evaluations are summa-
rized to obtain feedback 𝑓 𝑖 .

𝑓 𝑖 = SUM(𝐹 (𝑥𝑑𝑒𝑣, 𝐼𝑑𝑒𝑣, 𝑝𝐹 ), 𝑝𝑆 ) (7)

𝐹 (·) represents the feedback for a single sample obtained by using
prompt 𝑝𝐹 to query the GPT4-Vision, x𝑑𝑒𝑣 refers model inputs in
the validation set, SUM(·) represents the LMM summarizing all
feedback with prompt 𝑝𝑆 .

Next, feedback 𝑓 𝑖 will be incorporated into the data scoring
process to help select data more suitable for training. To be specific,
we incorporate feedback on the generated images from diffusion
model into the LMM query, enabling LMM to be more focused on
the issues inmodel generation. The action process of an LMM can be
considered as a Partially ObservableMarkovDecision Process [5]. In
this framework, the training and evaluation of the diffusion model,
viewed as the environment, yield feedback as observations. These
observed feedback, articulated in natural language, informs the
LMM’s subsequent actions, thereby facilitating self-improvement.

Thus the data selection equation 6 is updated to:

𝑆𝑖 ≜
{
𝑥 ∈ D𝑖 : 𝑅(𝑥, 𝑝𝑅, 𝑐𝑅, 𝑓 𝑖−1) ≥ 𝛾

}
(8)

Through continuous iteration of these three steps until reaching
the predetermined maximum number of iterations, this method
can achieve continuous improvement in data quality and steady
enhancement of model performance.

5 EXPERIMENT
5.1 Experimental Setup
5.1.1 Implementation Details. Our model initializes with the SD-
Inpainting [31] for a robust image prior. Loss balance coefficient 𝜆
is set to 0.01, and data selection threshold 𝛾 is 4. Training occurs on
4 NVIDIA Tesla A100 GPUs, limited to 3 rounds of data selection,
with 3000, 1000, and 1000 training steps for the first, second, and
third round respectively. Batch size is 64. The learning rate for U-
Net and the embedding parameters of the < 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 > token
is set to 1e-5. The parameters in the embedding layer for other

1Additional implementation details and LMM prompts (𝑝𝑅 , 𝑝𝐹 , 𝑝𝑆 ) can be found in
the appendix, located within the supplementary material.
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Table 1: Quantitative comparison of the proposed Product2Img with other methods.

Method FID ↓ PickScore ↑ Aesthetics ↑ CLIP-c-I ↑ CLIP-c-B ↑
SD-Inpainting 5.76 20.09 4.92 80.15 -
ControlNet-Inpainting (canny) 8.84 19.55 4.90 83.56 54.35
IP-Adapter 8.74 19.72 4.93 76.79 -
PowerPaint 5.13 19.82 4.99 81.27 56.27
EPBD-FT 2.79 20.17 5.14 83.72 56.09
Product2Img 2.64 20.24 5.27 84.09 57.55

tokens in the text encoder are frozen, and the learning rate for the
remaining modules in the text encoder is set to 1e-6, with both
accompanied by warmup and cosine decay. For inference, a 30-step
Euler Ancestral Discrete [20] sampler is used.

5.1.2 Baselines. To validate the superior performance of the pro-
posed method in the task of background generation, this section
compares it with the latest, competitive, and available image in-
painting methods as well as an object-driven generation approach.
The methods selected for comparison and their brief introductions
are as follows:
• SD-Inpainting [31]: SD-Inpainting is a model that has been
fine-tuned specifically for image inpainting tasks using Sta-
ble Diffusion, trained with random masks and image cap-
tions.
• ControlNet-Inpainting (canny) [48]: Controls image inpaint-
ing using Stable Diffusion with a conditional encoder that
encodes masks. To prevent the model from altering prod-
uct shapes while generating product images, an additional
canny ControlNet is incorporated to enhance the control
and improve the results.
• IP-Adapter [45]: An efficient and lightweight adapter de-
signed to enable image prompting capabilities in pretrained
text-to-image diffusion models. Unlike other baselines, this
is an object-driven approach. Product images are used as im-
age prompts and product names as text prompts to generate
competitive images.
• PowerPaint [50]: A high-quality, versatile inpainting model
that has shown excellent performance. It achieves the best
performance in multi-purpose image inpainting by tailored
fine-tuning strategies, and multi-task learning.
• EPBD-FT: EPBD-FT is a model initialized by SD-Inpainting
and fine-tuned on the our EPBD dataset for product back-
ground generation.

We establish a uniform prompt template across all baselines to en-
sure optimal and stable performance, detailed as follows: “{Product
Name}, high-quality and appropriate background”.

5.1.3 Eval Metrics. Our objective is generating backgrounds from
product cutouts and product names. The results should be realistic,
aesthetically pleasing, and the background should be sufficiently
relevant to the product. To evaluate from these perspectives, we
employ the following metrics to assess the quality of the generated
backgrounds.
• FID (Fréchet Inception Distance) [15]: FID indicates the di-
versity and quality of generated images and is widely used

to assess the outcomes of image generation tasks. A smaller
FID indicates better image diversity and quality.
• Aesthetics [34]: Aesthetics focuses on the aesthetic quality
of images and can predict human ratings of image attractive-
ness on a scale from 1 to 10. A high score indicates that the
image’s aesthetics are recognized.
• PickScore [21]: Grounded in rich user preference data, PickScore
is built upon in-depth analysis and learning from a massive
corpus of text-to-image samples, capturing the nuanced dif-
ferences of human aesthetics. A higher PickScore indicates
that the images generated based on specific prompts are
more visually appealing and attractive to the audience.
• CLIP-c-I [29]: Evaluates the relevance between the generated
product image 𝐼 and the product subject image 𝑐 . The higher
the CLIP-c-I score, the greater the fidelity of the product in
the generated product image.
• CLIP-c-B [29]: Similar to CLIP-c-I, it evaluates the relevance
between the product cutout 𝑐 and the generated background
𝐵. A higher CLIP score indicates a greater relevance between
the product and its background in the generated image.

5.2 Comparison with Existing Methods
5.2.1 Quantitative Comparison. To accurately evaluate the effec-
tiveness of the proposed method, we conducted a systematic perfor-
mance comparison between our approach and existing techniques
on the test set of EPBD. Specific experimental results are detailed in
Table 1. As the table illustrates, our proposed Product2Img method
demonstrates significant improvements across all evaluation met-
rics, which emphatically confirms the effectiveness of our approach.

It is particularly noteworthy that even the strongest baseline
“EPBD-FT”, which adopted a similar fine-tuning strategy on the
same training set as our method, also exhibited considerable perfor-
mance improvement. This further validates the quality and practical
value of the EPBD. However, in direct comparisons, our method
outperformed on every performance metric. Especially in visual
aesthetics (Aesthetics) and CLIP-based product-background consis-
tency (CLIP-c-B), our method achieved improvements of 0.13 and
1.46%, respectively. These figures indicate that the CBA algorithm
can successfully integrate product characteristics with background
features, producing background images that more closely align
with the product’s style. Moreover, the iterative data refinement
mechanism further optimizes the model at the data quality level,
resulting in generated backgrounds that are not only more aesthet-
ically appealing but also more harmoniously consistent in terms of
product-background relevance.
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Figure 6: Comparison of our proposed Product2Img with other methods on different kinds of products.

5.2.2 Qualitative Comparison. We also choose a variety of different
products for qualitative evaluation of the proposed method, cov-
ering digital products, skincare products, backpacks, apparel, etc.
The qualitative comparison in Figure 6 indicates that our proposed
Product2Img achieves state-of-the-art performance in e-commerce
product background generation in terms of aesthetics, product
consistency, and the match between product and background. For
example, regarding the children’s backpack (1st row), olive essence
(3rd row), and refrigerator (5th row), our method generates corre-
sponding backgrounds of a child-style table, a plant backdrop, and
a kitchen, respectively, demonstrating a high degree of relevance
and aesthetic appeal to the products. On the contrary, the EPBD-FT
method tends to position these products against less relevant or
solid-color backgrounds. Meanwhile, other methods also struggle
with issues like subject extension, and the generation of low-quality
backgrounds and watermarks.

From these cases, we also observe that our method is capable
of generating a more diverse range of backgrounds which are not

included in the EPBD training set, illustrating that our method can
more effectively activate the background generation capabilities of
the pretrained diffusion model.

5.2.3 User Study. To conduct a more comprehensive comparison,
we further engage in user studies. Specifically, we randomly extract
200 samples from test set and invite 5 experienced professionals
to select their preferred results from those generated by different
methods. We randomize the presentation order of the generated
results to guarantee an unbiased evaluation. The professionals are
given unlimited time tomake their selections based on three criteria:
visual appeal, consistency between the background and the product,
and overall quality.

The evaluation results are presented in Figure 7. It is evident
that our method achieves the highest winning rate across all three
criteria, with a significant advantage in visual appeal. In summary,
this user study suggests that our method is chosen as the most sat-
isfactory solution, demonstrating the effectiveness of our approach.
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Figure 7: User study results showing the percentage of pre-
ferred outcomes for each method based on visual appeal,
background-product consistency, and overall quality.

5.3 Ablation Studies and Analysis
5.3.1 The effectiveness of CBA. To bolster the text encoder’s ability
to recognize the product background details, we design CBA which
integrates a contrastive learning-based auxiliary task. We conduct
an ablation experiment to assess its impact by removing this task
and observing performance changes. The results in Table 2 show a
deterioration in performance when CBA is not applied. For example,
there is a decrease from 57.30% to 56.10% in the CLIP-c-B, which
underscores the effectiveness of CBA in enhancing the model’s
ability to generate background that are relevant to the product.

Table 2: Ablation study For CBA (Round 1).

FID ↓ Aesthetics ↑ CLIP-c-B ↑
Product2Img 2.67 5.25 57.30
w/o CBA 2.72 5.24 56.10

5.3.2 The effectiveness of IDR-LMM. In product background gen-
eration models, data quality significantly impacts performance. We
conduct experiments with IDR-LMM and thorough performance
evaluations after each round. As shown in Table 3, ablation studies
show that model performance steadily improves across various
metrics with each round, particularly in the CLIP-c-B metric, sug-
gesting better consistency between the generated background and
the product. However, from the second to the third round, there
is a slowdown in performance gain, leading us to halt at round 3.
Figure 8 illustrates the improvement in training data quality across
various aspects during the Iterative Data Refinement process. LMM
continuously improves its data filtration capabilities by incorpo-
rating feedback obtained from evaluating images generated by the
diffusion model into its queries. It is inevitable that training on pro-
gressively higher-quality data will lead to continuous improvement
in model performance.

Moreover, control experiments confirm the necessity of IDR-
LMM. By comparing the performance of models trained with and
without IDR-LMM while maintaining consistent training steps, it

Table 3: Experiments verifying the effectiveness of IDR-LMM
on the EPBD test set, with numbers in parentheses indicating
the number of preceding training steps.

Round FID ↓ Aesthetics ↑ CLIP-c-B ↑
Round 1 (3000) 2.67 5.25 57.30
Round 2 (4000) 2.64 5.26 57.46
Round 3 (5000) 2.64 5.27 57.55
w/o IDR-LMM (3000) 2.68 5.23 56.28
w/o IDR-LMM (4000) 2.66 5.23 56.34
w/o IDR-LMM (5000) 2.70 5.23 56.36
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Figure 8: The variations in data size and quality of each train-
ing round with the IDR-LMM process.

becomes evident that data filtering not only elevates visual aesthet-
ics but also enhances product-background matching. This indicates
that the performance gains are primarily attributed to improve-
ments in data quality, rather than mere increases in training dura-
tion.

6 CONCLUSION
In this paper, we propose a prompt-free Product2Img diffusionmodel
for end-to-end high-quality product background generation. To ac-
complish this, we design a Contrastive Background Alignment
(CBA) algorithm to align the hidden features between product
names and their image backgrounds, thereby enhancing the rel-
evance of the generated backgrounds and products. Additionally,
we propose Iterative Data Refinement with Self-improved LMM
(IDR-LMM) to gradually improve training data quality, resulting in
the generation of more aesthetic and realistic backgrounds. Further-
more, we construct the E-commerce Product Background Dataset
(EPBD) as the foundation for our work and future research en-
deavors. Comprehensive experimental evidence demonstrates that
our approach substantially surpasses current prevalent techniques
in generating product backgrounds with superior aesthetics and
relevance. Overall, Prodcut2Img provides an efficient and effective
approach for product backgrounds generation, fulfilling a critical
demand in the e-commerce domain.
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