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ABSTRACT

Zeroth-order optimization algorithms are widely used for black-box optimization
problems, such as those in machine learning and prompt engineering, where the
gradients are approximated using function evaluations. Recently, a generalization
result was provided for zeroth-order stochastic gradient descent (SGD) algorithms
through stability analysis. However, this result was limited to the vanilla 2-point
zeroth-order estimate of Gaussian distribution used in SGD algorithms. To address
these limitations, we propose a general proof framework for stability analysis that
applies to convex, strongly convex, and non-convex conditions, and yields results
for popular zeroth-order optimization algorithms, including SGD, GD, and SVRG,
as well as various zeroth-order estimates, such as 1-point and 2-point with different
distributions and coordinate estimates. Our general analysis shows that coordinate
estimation can lead to tighter generalization bounds for SGD, GD, and SVRG
versions of zeroth-order optimization algorithms, due to the smaller expansion
brought by coordinate estimates to stability analysis.

1 INTRODUCTION

Zeroth-order (ZO) optimization algorithms have gained widespread use in solving black-box opti-
mization problems, particularly in machine learning fields (Chen et al., 2017; Kurakin et al., 2016;
Madry et al., 2017; Sun et al., 2022). In such problems, obtaining the explicit gradient is often either
unattainable or too expensive, and only the function value of the output can be obtained. For instance,
pre-trained language models (PTMs) like GPT-3 (Brown et al., 2020) allow only user-designed task-
specific prompts to query them, and their gradients are usually unavailable. Similarly, in scenarios
where the internal structure and training data of a deep neural network (DNN) are unknown, as in
(Papernot et al., 2017), and only the input and output are accessible, the black-box attack can be
launched to manipulate the model output and cause incorrect predictions. Here, ZO algorithms can
achieve excellent performance, comparable or even better than white-box models where gradients are
known (Sun et al., 2022; Papernot et al., 2017).

In ZO optimization algorithms, the approximation of gradients is achieved by using function values.
The accuracy of these zeroth-order (ZO) gradient estimates is critical for determining the convergence
rate and optimal learning rate settings. Therefore, conducting research to improve the accuracy of ZO
gradient estimates is of utmost importance. There are three main categories of ZO gradient estimates:
1-point (Flaxman et al., 2004), 2-point (Nesterov & Spokoiny, 2017; Duchi et al., 2015) with different
distributions, and coordinate estimates. As the number of function evaluations increases, the accuracy
of the gradient estimates improves (Duchi et al., 2015). When the number of function evaluations
reaches the problem dimension d, it is preferable to use the deterministic coordinate-wise gradient
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estimate instead of the 1-point and 2-point gradient estimates with random directions. This estimate
has a significantly lower approximation error (Kiefer & Wolfowitz, 1952; Berahas et al., 2022; Lian
et al., 2016), of order O

(
dµ2
)

(where µ is the smoothing parameter).

Multiple ZO algorithms have been proposed to address the core problem of minimizing the loss
function in optimization. Initially, the ZO gradient descent (ZO-GD) algorithm (Nesterov & Spokoiny,
2017) was the focus of the ZO optimization algorithm field. Yurii et al. (Nesterov & Spokoiny,
2017) proposed the ZO-GD algorithm that employs a 2-point Gaussian random gradient estimator
and established convergence guarantees for it. Subsequently, Saeed et al. (Ghadimi & Lan, 2013)
introduced the ZO-SGD algorithm that uses the same estimator. However, due to the high variance of
the ZO stochastic gradients, the convergence rate of ZO-SGD is limited to O

(√
1/T

)
(Ghadimi

& Lan, 2013) for non-convex problems, where T is the total number of iterations. To accelerate
its convergence, some variance reduction strategies commonly used in first-order optimization
algorithms, such as SVRG and SAGA, were introduced into the ZO setting. These strategies have
been shown to be effective in the first-order setting and are also effective in the ZO setting. The
ZO-SVRG (Liu et al., 2018; Ji et al., 2019) and ZO-SAGA (Huang et al., 2019) algorithms can
improve the convergence rate to O (1/T ).

As mentioned above, research on ZO algorithms in the optimization field is extensive and com-
prehensive. However, there is only one generalization study that focuses specifically on ZO-SGD
(Nikolakakis et al., 2022). In their study, Konstantinos E. et al. (Nikolakakis et al., 2022) provide
generalization results of ZO-SGD under a two-point Gaussian smoothing estimate and demonstrate
that the algorithm has comparable generalization performance to SGD in non-convex environments
when using diminutive step sizes. While Konstantinos E. et al. (Nikolakakis et al., 2022) presents
surprising results, it does not encompass the diverse range of estimates and optimization algorithms in
the ZO optimization field. In contrast to the limited research on ZO generalization, first-order analysis
has yielded a more diverse body of work, specifically regarding algorithms such as SGD (Hardt
et al., 2016), GD (Hoffer et al., 2017; Charles & Papailiopoulos, 2018), and stage-wise learning
strategy (Yuan et al., 2019). These discussions have inspired us to further explore the generalization
performance of ZO algorithms.

To address the limitations of existing research, this paper focuses on studying the generalization
behavior of a more comprehensive ZO optimization algorithm and provides a more inclusive proof
framework.The contributions of this work are as follows:

• We propose a more general proof framework for ZO optimization algorithms. Leveraging
our proof framework, we provide for the first time generalization bounds for different
ZO algorithms, including ZO-SGD, ZO-GD, and ZO-SVRG with different ZO gradient
estimates under convexity and non-convexity conditions. To the best of our knowledge, this
is the first work on generalization analysis for ZO-SVRG.

• ZO optimization algorithms differ from first-order optimization algorithms in that they
approximate gradient values using function values. As a result, approximation errors
introduce new expansions for generalization analysis. Our results show that, ZO algorithms
that use coordinate estimates lead to tighter generalization bounds for ZO-SGD, ZO-GD
and ZO-SVRG, and importantly same to the ones of first-order algorithms.

2 PRELIMINARIES

2.1 NOTATIONS

Throughout this paper, we let N(0, I) denote the standard normal distribution on Rd. We denote the
ℓ2-ball in Rd with radius r centered at v by Bd(v, r), and Sd−1(v, r) denotes the ℓ2-sphere in Rd

with radius r centered at v. We also use the abbreviations Bd = Bd(0, 1), Sd−1 = Sd−1(0, 1), and 1
for the all-ones vector.

2.2 PROBLEM SETUP

Let D := {zi}ni=1 be the training dataset of size n, where each sample is independently identically
distributed over an unknown distribution D. For a prescribed model w, its performance on a single
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Table 1: A list of the generalization error bounds developed here in for zeroth-order optimization
algorithms. (NC, C and SC are the abbreviations of nonconvex, convex, and strongly convex,
respectively. T is the whole iteration number, n is the sample size, C is a constant, beta is the
smoothness constant, and S denotes the stage number of ZO-SVRG. The corresponding details for
SVRG are provided in the appendix. )

Algorithms Reference Gradient Estimator Problem Generalization Bound

NC O
(
T

βC
βC+1 /n

)
C O (log T/n)

SGD Hardt et al. (2016) None

SC O (1/n)

ZO-SGD

Nikolakakis et al. (2022) 2-point NC, C, SC O(T/n)
Ours 2-point NC, C, SC O (T/n)

Ours 1-point NC, C, SC O
(
T/n

1− c
d2LC

√
n

)
Ours Coordinate-wise

NC O
(
T

βC
βC+1 /n

)
C O (log T/n)

SC O (1/n)
NC O

(
T βC/n

)
C O (log T/n)

GD Nikolakakis et al. (2022) None

SC O (1/n)

ZO-GD

Nikolakakis et al. (2022) 2-point NC O(T βC/n)
Ours 1-point NC, C, SC O

(
TC/n

)
Ours Coordinate-wise

NC O
(
T βC/n

)
C O (log T/n)

SC O (1/n)
NC O

(
S3βC/n

)
C O

(
S2βC/n

)SVRG Ours None

SC O (S/n)

ZO-SVRG Ours

1-point NC, C, SC O
(
S3C/n

)
2-point NC, C, SC O

(
S3βC/n

)
Coordinate-wise

NC O
(
S3βC/n

)
C O

(
S2βC/n

)
SC O (S/n)

example z is measured by the loss function f(w, z). In this paper, we are particularly interested in
the generalization performance of a model w on D measured by the following expected risk:

R(w) := Ez∼D[f(w, z)]. (1)

Since D is unknown, optimizing R(w) directly is not possible. In practice, we measure the model w
by the empirical risk based on the training dataset D:

RD(w) :=
1

n

n∑
i=1

f(w, zi). (2)

For a (randomized) algorithm A trained on dataset D with output A(D), the generalization error is
defined as the gap between the population risk and empirical risk:

ϵgen := ED,A[R(A(D))−RD(A(D))]. (3)

A useful tool for analyzing the generalization error is the stability, which measures the sensitivity of
the algorithm’s output w.r.t. the perturbation of a training dataset. The formal definition of uniform
stability is as follows:
Definition 1 (Uniform Stability). A (randomized) algorithm A has uniform stability ϵ if for all
D,D′ ∈ Z that differ in one sample, we have supz EA[f(A(D), z)− f(A(D′), z)] ≤ ϵ.
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An important relationship between the uniform stability and generalization error bound is implied by
the following lemma:

Lemma 1 (Hardt et al. (2016), Theorem 2.2). Let A be ϵ uniform stable, then |ϵgen| ≤ ϵ.

The goal of this paper is to derive uniform stability bounds for a class of zeroth-order (randomized)
algorithms with update rule of the form:

wt+1 = wt − αtGf (wt), (4)

where Gf (wt) depends only on the evaluations of the function values. Denote by ∇̂f(w, z) the
gradient estimation of the true gradient ∇f(wt, z), which will be detailed described in the next
subsection. Then, the update rule Eq.equation 4 covers a wide range of gradient estimation based
zeroth-order (gradient-free) algorithms. For example, zeroth-order gradient descent (ZO-GD) with
Gf (wt, z) = ∇̂RD(wt); zeroth-order stochastic gradient descent (ZO-SGD) with Gf (wt, z) =

∇̂f(wt, zit), where zit ∈ D is a randomly sampled example at iteration t; zeroth-order stochastic
variance reduced gradient (ZO-SVRG) with Gf (wt) = ∇̂f(wt, zit)−∇̂f(w̃, zit)+∇̂RD(w̃), where
w̃ is the final output of ZO-SVRG in the last stage. Now we formally describe the gradient estimations
that are commonly used in the literature of zeroth-order optimization.

2.3 ZO GRADIENT ESTIMATION

Random Gradient Estimation. Intuition for zeroth-order gradient estimator follows by the fact
about definition of directional derivative that:

E[f ′(w, u)u] = E[< ∇f(w), u > u] = ∇f(w) when E[uu⊤] = I,

where f ′(w, u) := limµ↓0
f(w+µu)−f(w)

µ denotes the directional directive of function f with respect
to a direction vector u at point w.

Lemma 2 (Baydin et al. (2022), Lemma 1 & 2). Let u = [u1, . . . , ud]⊤, and ui, i = 1, . . . , d are
i.i.d random variables satisfying E[ui] = 0, Var[ui] = 1, then we have E[uu⊤] = I.

Note that, several random distributions satisfy the above condition. For example, the standard multi-
variate normal distribution: N(0, I), uniform distribution over a ball or a sphere: Unif

(√
d+ 2Bd

)
and Unif

(√
dSd−1

)
. Based on the fact that E f(w+µu)−f(w)

µ u = E f(w+µu)
µ u, the averaged 1-point

gradient estimate of f has the following generic form:

∇̂f(w) :=
1

µK

K∑
k=1

f(w + µuk)uk, (5)

where uk, k = 1, . . . ,K are i.i.d random vectors satisfying Lemma 2. It is easy to verify that the
1-point gradient estimate suffers from large variance. As a comparison, the averaged 2-point gradient
estimate can significantly reduce the variance:

∇̂f(w) :=

{
1
K

∑K
k=1

f(w+µuk)−f(w)
µ uk, forward difference,

1
K

∑K
k=1

f(w+µuk)−f(w−µuk)
2µ uk, central difference.

(6)

Deterministic Coordinate-Wise Gradient Estimation: When the number of function evaluations
reaches the problem dimension d, then instead of using randomized directions{ui}di=1, one can
employ the deterministic coordinate-wise gradient estimate:

∇̂f(w) :=

{∑d
i=1

f(w+µei)−f(w)
µ ei forward difference,∑d

i=1
f(w+µei)−f(w−µei)

2µ ei, central difference.
(7)

where ei ∈ Rd denotes the i th elementary basis vector, with 1 at the i-th coordinate and 0 elsewhere.
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3 A GENERIC GENERALIZATION ANALYSIS FRAMEWORK OF ZO
OPTIMIZATION

In this section, we will establish a generic generalization analysis framework for zeroth-order
optimization with update rule of the form Eq.equation 4. By derivation, we conclude that as the
approximate gradient approximates the true gradient, the generalization boundary will also tighten
with this approximation. The smaller the error of between the approximate gradient and the true
gradient is, the better the generalization of the model is.

Let Gt(·) and G′
t(·) be update rules of first-order methods under samples D and D′ respectively,

which take the form of

Gt(wt) = wt − αtG(wt, zit), G′
t(wt) = wt − αtG(wt, z

′
it), (8)

where G(wt, zit) and G(wt, z
′
it
) represent the gradient estimation of ∇RD(wt) and ∇RD′(wt) via

first-order oracle. Similarly, let G̃t(·) and G̃′
t(·) be the update rules of zeroth-order methods as in

Eq.equation 4, i.e.,

G̃t(wt) = wt − αtGf (wt, zit), G̃′
t(wt) = wt − αtGf (wt, z

′
it), (9)

where Gf (wt, zit) and Gf (wt, z
′
it
) denote the gradient estimation via zeroth-order oracle. Hardt et al.

(2016) provided a proof framework for SGD, but this framework does not apply to more complex
algorithms. Therefore, we present two new sequences of update rules.
Definition 2 (Hardt et al. (2016), Definition 2.3). An update rule is σ-bounded if
supw∈Ω ∥G (w)− w∥ ≤ σ, and is η-expansive if supw,v∈Ω ∥G (w)−G (v)∥ ≤ η ∥w − v∥.

With these two properties, we can establish the following lemma to demonstrate how the update
sequence of the model diverges when the training set is perturbed.

Lemma 3 (Growth Recursion). Let {G̃t}Tt=1 and {G̃′
t}Tt=1 be two update sequences. Let w0 = w′

0

be the starting point, wt+1 = G̃t(wt) and w′
t+1 = G̃′

t(wt). Then for any wt, w
′
t ∈ Rd and t ≥ 0, we

have

E
[∥∥∥G̃t (wt)− G̃′

t (w
′
t)
∥∥∥] ≤ {(η + η′t)∥wt − w′

t∥+ αtσt,1, if G̃t(·) = G̃′
t(·),

∥wt − w′
t∥+ 2αtσt,2 + αtσt,3, if G̃t(·) ̸= G̃′

t(·).

The generalization analysis of zeroth-order optimization is similar to the proof framework pro-
posed in Hardt et al. (2016). Here, η is the expansive factor generated by the first-order algorithms
based on different convexity properties. η′t is induced by the approximation error of the zeroth-
order gradient estimation. And different estimation would induce different η′t. Particularly, in
the case of coordinate-wise estimation, there won’t introduce a new η′t. Thus the shrinkage ef-
fect brought about by η becomes evident under convex and strongly convex conditions. σt,1 is
induced by the approximation error of the zeroth-order gradient estimation, which is an upper
bound of E ∥G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))∥. σt,2 is induced by the fact

that the first-order update rule Gt(·) is σt,2-bounded at iteration t. Finally, σt,3 is induced by
another approximation error of the zeroth-order gradient estimation, which is an upper bound of
E
∥∥G(wt, zit)− Gf (wt, zit)−

(
G(w′

t, z
′
it
)− Gf (w

′
t, z

′
it
)
)∥∥.

Lemma 4. Consider zeroth-order algorithms with final output wT and w′
T with respect to dataset

D,D′, respectively. Denote δT := ∥wT − w′
T ∥ and ∀t0 ∈ {0, 1, . . . , n}, define the event Eδt0 :=

{δt0 = 0}, we have

E[δT |Eδt0 ] ≤
T∑

t=t0+1

(
η + n−1(1− η)

)T−t
αt

[
(1− n−1)σt,1 + n−1(2σt,2 + σt,3)

]
Finally, we can obtain the generalization error through the following lemma:
Lemma 5 (Hardt et al. (2016), Lemma 3.11). Assume that the loss function f(·, z) is L-Lipschitz for
all z. Let D and D′ be two samples of size n that differ in only one sample. Denote by wT and w′

T the
final output of zeroth-order algorithms with respect to dataset D and D′ respectively. Then for every
z and t0 ∈ {0, 1, . . . , n}, we have E|f(wT , z)− f(w′

T , z)| ≤ LE[δT |Eδt0 ] + t0 supw,z f(w, z)/n.
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4 APPLICATIONS

In this section, we apply the generic generalization analysis to different zeroth-order algorithms such
as zeroth-order stochastic gradient descent, and zeroth-order stochastic variance reduced gradient.

4.1 ZO-SGD GENERALIZATION ANALYSIS

ZO-SGD with 1-Point Gradient Estimation. To begin with, we first define some basic notations
used in zeroth-order stochastic gradient descent with averaged 1-point gradient estimation of the form
Eq.equation 5. At the t-th iteration, we uniformly randomly select a sample index it from [n], and
then update parameter wt by

wt+1 = wt − αt∇̂K
1 f(wt, zit), (10)

where {αt} is a sequence of positive step-size and ∇̂K
1 f(wt, zit) denotes the 1-point gradient

estimation of form equation 5. Under the Lipschitz continuous and smooth condition, ZO-SGD with
1-point gradient estimation has the following generalization bound.

Theorem 1 (Nonconvex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz and β-smooth for all
z ∈ Z . Consider the update rule Eq.equation 10 with T the total number of iterates, αt ≤ C/t
for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZO-SGD with 1-point
gradient estimation is bounded by

ϵgen ≤
(
1 + (βC + CL/c)−1

) Te1+1/e

n
1− c

d2LC
√

n

.

ZO-SGD with 2-Point Gradient Estimation. Then we consider the generalization error bound of
ZO-SGD with 2-point gradient estimation. As formulated in Eq.equation 6, there are two general
forms of 2-point gradient estimation: central difference and forward difference. At the t-th iteration,
we uniformly randomly select a sample index it from [n], and then update parameter wt by:

wt+1 = wt − αt∇̂K
2 f(wt, zit), (11)

where {αt} is a sequence of positive step-size and ∇̂K
2 f(wt, zit) denotes the 2-point gradient

estimator of form equation 6. Under the same conditions as in ZO-SGD with 1-point gradient
estimation, we found that both the forward difference version and central difference version update
rule would derive the same expansive factor and tighter generalization error bound of the same order.

Theorem 2 (Nonconvex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz and β-smooth for all
z ∈ Z . Consider the update rule Eq.equation 11 with T the total number of iterates, αt ≤ C/t
for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZO-SGD with 2-point
gradient estimation is bounded by ϵgen ≤

(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

)
3Te/2n.

ZO-SGD with Coordinate-Wise Gradient Estimation. Then we consider the generalization errror
bound of ZO-SGD with coordinate-wise gradient estimation. At the t-th iteration, zeroth-order
stochastic gradient with coordinate-wise gradient estimation uniformly randomly select a sample
index it from [n], and then update parameter wt by:

wt+1 = wt − αt∇̂df(wt, zit) (12)

where {αt} is a sequence of positive step-size and ∇̂df(wt, zit) denotes the coordinate-wise gradient
estimation of form equation 7. We separate the generalization error bound of ZO-SGD with coordinate-
wise gradient estimation into three different cases and get the following theorem.

Theorem 3. Assume that the loss function f(·; z) is β-smooth and L-Lipschitz for every z. Let T be
the total number of iterates of ZO-SGD with coordinate-wise gradient estimation and for any t ≤ T ,

• if each f(·, z) is convex, αt ≤ 2
β and choose µ ≤ c

dn , then we have ϵgen ≤
(

2L2+βcL
n

)∑T
t=1 αt.

• if each f(·, z) is γ-strongly convex, αt ≤ 1/β and choose µ ≤ c
dn , then we have ϵgen ≤ 2L2+βcL

γn .

6
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• if the loss f(·, z) ∈ [0, 1] for all z, αt ≤ C/t for some (fixed) C > 0, then we have

ϵgen ≤
1 + 1

βC

n

(
2CL2 + βCcL

) 1
βC+1 (eT )

βC
βC+1 .

Remark 1. Both 1-point and 2-point gradient estimations lead to a new expansive factor, which
invalidates the contraction property induced by the expansive factor η of first-order update rules
under convex and strongly convex conditions. As a result, the generalization bound under convex and
strongly convex conditions is of the same order as that under non-convex conditions. As a comparison,
coordinate-wise estimate does not generate new expansive factors, and the σt,1 it brings is also
independent of the dimension d.

4.2 ZO-GD GENERALIZATION ANALYSIS

ZO-GD with 1-point Gradient Estimation. At the t-th iteration, zeroth-order gradient descent with
1-point gradient estimation updates parameter wt by:

wt+1 = wt − αt∇̂1
KRD(wt), (13)

where ∇̂1
KRD(wt) denotes the 1-point gradient estimator of form equation 5.

Theorem 4 (Nonconvex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz and β-smooth for
all z ∈ Z . Consider the update rule Eq.equation 13 with T the total number of iterates, αt ≤
C/t

(
β(Γk

d + 1) + LAd/µ
)

for some (fixed) C > 0 and for all t ≤ T . Then the generalization error
of ZO-GD with 1-point gradient estimation is bounded by ϵgen ≤ min{C + 1, C log(eT )}(2L2 +
β + βL)(eT )C/(nβ).

ZO-GD with 2-point Gradient Estimation. At the t-th iteration, zeroth-order gradient descent with
2-point gradient estimation updates parameter wt by:

wt+1 = wt − αt∇̂2
KRD(wt), (14)

where ∇̂2
KRD(wt) denotes the 2-point gradient estimator of form equation 6.

Theorem 5 (Nonconvex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz and β-smooth for all z ∈
Z . Consider the update rule Eq.equation 14 with T the total number of iterates, αt ≤ C/

(
Γk
d + 1

)
t

for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZO-GD with 2-point
gradient estimation is bounded by

ϵgen ≤ (2 + c)L2

n
(eT )

Cβ
min{Cβ + 1

β
,C log (eT )}.

ZO-GD with Coordinate Gradient Estimation. At the t-th iteration, zeroth-order gradient descent
with coordinate-wise gradient estimation updates parameter wt by:

wt+1 = wt − αt∇̂dRD(wt), (15)

where ∇̂dRD(wt) denotes the coordinate-wise gradient estimator of form equation 7.

Theorem 6. Assume that the loss function f(·; z) is β-smooth and L-Lipschitz for every z. Let T be
the total number of iterates of ZO-GD with coordinate-wise gradient estimation and for any t ≤ T ,

• if each f(·, z) is convex, αt ≤ 2
β and choose µ ≤ c

dn , then we have ϵgen ≤
(

2L2+βcL
n

)∑T
t=1 αt.

• if each f(·, z) is γ-strongly convex, αt ≤ 1
β and choose µ ≤ c

dn , then we have ϵgen ≤ 2L2+βcL
γn .

• if the loss f(·, z) ∈ [0, 1] for all z, αt ≤ C/t for some (fixed) C > 0, then we have

ϵgen ≤ (2 + c)L2

n
(eT )

Cβ
min{Cβ + 1

β
,C log (eT )}.
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4.3 ZO-SVRG GENERALIZATION ANALYSIS

In this subsection, we will analyze the generalization bound of zeroth-order stochastic variance
reduced gradient method. To the best of our knowledge, there are multiple versions of ZO-SVRG. In
the paper, we consider the single-sample version of the ZO-SVRG. Specifically, in the s-th stage, t-th
iteration, ZO-SVRG uniformly randomly selects a sample index ist , and update parameter ws

t by

vst = ∇̂f(ws
t , zist )− ∇̂f(w̃s, zist ) + ∇̂RD(w̃s), ws

t+1 = ws
t − αtv

s
t , (16)

where w̃s = ws−1
m is the final iterate of stage s− 1, where m is number of steps of each stage, and

{αt} is a sequence of positive step-size.

ZO-SVRG with 1-point Gradient Estimation. We first consider the generalization error bound
of ZO-SVRG with 1-point gradient estimation. Let ∇̂f(ws

t , zist ), ∇̂f(w̃s, zist ) and ∇̂RD(w̃s) be
approximated Eq.equation 5, and update parameter ws

t through Eq. equation 16. Then, we have the
following theorem.

Theorem 7. Assume that the loss function f(·; z) is β-smooth, and L-Lipschitz for every z. Suppose
that we run ZO-SVRG with step sizes αt ≤ C/

(
sm(β(Γk

d + 1) + LAd

µ )
)

for T steps. After S stages,
ZO-SVRG satisfies with ϵgen ≤ (2L2 + β + βL)S3C expC/(Cβn).

ZO-SVRG with 2-point Gradient Estimation. Then we consider the generalization error bound
of ZO-SVRG with 2-point gradient estimation. Let ∇̂f(ws

t , zist ), ∇̂f(w̃s, zist ) and ∇̂RD(w̃s) be
approximated Eq.equation 6, and update parameter ws

t through Eq. equation 16. Then, we have the
following theorem.

Theorem 8. Assume that the loss function f(·; z) is β-smooth, and L-Lipschitz for every z. Suppose
that we run ZO-SVRG with step sizes αt ≤ C/sm

(
Γk
d + 1

)
for T steps. After S stages, ZO-SVRG

satisfies ϵgen ≤ (2L2 + cL)S3βC expCβ/(βn).

ZO-SVRG with Coordinate-Wise Gradient Estimation. Then we consider the generalization error
bound of ZO-SVRG with coordinate-wise gradient estimation. Let ∇̂f(ws

t , zist ), ∇̂f(w̃s, zist ) and
∇̂RD(w̃s) be approximated Eq.equation 7, and update parameter ws

t through Eq. equation 16. Then,
we have the following theorem.

Theorem 9. Assume that the loss function f(·; z) is β-smooth, and L-Lipschitz for every z. Let T be
he total number of iterates of ZO-SVRG with coordinate-wise gradient estimation and for any t ≤ T ,

• Suppose we choose αt ≤ C
sm at state S. After S states, ZO-SVRG satisfies uniform stability with

ϵgen ≤ (2L2 + cL)S3βC expCβ/(Cβn).

• if f(·, z) is convex for all z, αt ≤ C
sm at stage S. After S stages, ZO-SVRG satisfies uniform

stability with ϵgen ≤ min
{
C + β−1, c log(eS)

}
(6L2 + 3cL) (eS)

2βC
/n.

• if f(·, z) is γ-strongly convex for all z, αt ≤ 1
β .After S stages, ZO-SVRG satisfies uniform

stability with ϵgen ≤ (6SL2 + 3cS)/(nγ).

Remark 2. Utilizing full-batch updates with ZO-GD and ZO-SVRG, it’s not possible to adopt the
same step size as in ZO-SGD for first-order updates. Furthermore, under the condition of selecting
a smaller step size, the generalization bound of ZO-GD, O(T βC/n), is looser compared to that of
ZO-SGD , O(Tn ).

5 NUMERICAL EXPERIMENTS

In this section, we assess the generalization errors associated with optimizing nonconvex loss
functions using ZO-GD, ZO-SGD, and ZO-SVRG. To primary goal is to verify the generalization
errors of different zeroth-order optimization algorithms and different gradient estimators. To achieve
this, we conduct experiments on two nonconvex models: nonconvex logistic regression and a two
layer neural network.
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5.1 EXPERIMENTAL SETUPS

Nonconvex logistic regression: Initially, we examine a logistic regression problem featuring a
nonconvex regularization term. The loss function is formulated as:

f(x) =
1

n

n∑
i=1

−
(
yi log σ(−aTi x) + (1− yi) log σ(a

T
i x)

)
+ λ

d∑
i=1

x2
i

1 + x2
i

,

where ai ∈ Rd represents the sample, yi ∈ {0, 1} signifies the label, σ(z) = 1
1+e−z , and λ is

assigned a value of 0.5. Neural network: Subsequently, we focus on a binary classification task
using a two-layer neural network with relu activation function and binary cross entropy loss. Dataset:
For both two nonconvex models, we utilize the LIBSVM’s Australian dataset. We separate the dataset
into two parts: 80% for training and 20% for test.

5.2 COMPARISON OF GENERALIZATION ERRORS ON DIFFERENT ZO ALGORITHMS

In this part, we assess the generalization errors of various zeroth-order optimization algorithms
using identical gradient estimators. Generalization errors are measured by the absolute difference
between training and testing losses. Figure 1 depicts our results, with each subfigure comparing the
performance of ZO-GD, ZO-SGD, and ZO-SVRG under a consistent gradient estimation method.
The figures collectively indicate that generalization errors for all algorithms tend to rise as the number
of iterations increases. Specifically, ZO-GD exhibits the most rapid increase in error, with ZO-SVRG
following. As the algorithms approach convergence, ZO-SGD consistently demonstrates the smallest
generalization error. These empirical findings corroborate our theoretical results presented in Table 1.
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(f) 2-point (central)
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Figure 1: Comparison of generalization errors of different algorithms. (a)-(d) are results for nonconvex
logistic regression and (e)-(h) are results for neural network

5.3 COMPARISON OF GENERALIZATION ERRORS ON DIFFERENT ZO GRADIENT ESTIMATORS

Due to space limitation, we defer the detailed experimental results and discussions of this part to
Appendix B.

6 CONCLUSION

In this paper, we introduce a generalized proof framework for zeroth-order optimization algorithms.
Using this framework, we establish generalization bounds for ZO-SGD, ZO-GD, and ZO-SVRG with
various estimators and convexity conditions. Our findings reveal that employing coordinate estimates
in ZO algorithms outperforms other estimators in terms of generalization performance. Additionally,
we demonstrate that ZO algorithms can achieve comparable generalization performance to first-order
algorithms by leveraging coordinate estimates without reducing the learning rate.
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A NOTATIONS

The main notations of this paper are summarized in Table 2.

Table 2: Summary of main notations involved in this paper.

Notations Descriptions

ZO Zeroth-order

SGD Stochastic gradient descent

GD Gradient descent

SVRG Stochastic Variance Reduced Gradient

zit the random sample

D = {z1, ..., zn} the dataset

n the numbers of samples

w,W the parameter of training model and model parameter space, respectively

d the dimensions of W , respectively

f(w) the loss function defined as f(w; zit)

∇f the gradient of f(w; zit) to the first argument w

∇̂f the gradient estimation of the true gradient ∇f

Gt(·), G′
t(·) the update rules of first-order methods under samples S and S′, respectively

G̃t(·), G̃′
t(·) the update rules of zeroth-order methods under samples S and S′, respectively

µ the smoothing parameter

s the stage for SVRG

S the whole number of stages

m the number of steps of each stage

U the random direction vector drawn from a certain distribution D
K the number of direction vector

R,RD the population risk and empirical risk based on training dataset D, respectively

T the whole number of iterative steps

wt the model parameter derived by SGD after t-th update

αt the step size at the t-th update

α the step size

A,A(D) the given algorithm and its output model parameter based on training dataset D, respectively

γ, L, β the parameters of strong convexity, Lipschitz continuity and smoothness, respectively

e the base of the natural logarithm

B COMPARISON OF GENERALIZATION ERRORS ON DIFFERENT ZO GRADIENT
ESTIMATORS

In this section, we present supplementary experimental settings and evaluate the impact of different
gradient estimators on generalization errors and report the absolute difference between the training
and testing losses in Figure 2.
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For all experiments, we set the maximum number of iterations to be 2000. The batch size of the
stochastic gradient is set to be 50. The initial learning rate is set to 0.01. This rate is systematically
decreased every T iterations by a factor of γ. Both T and γ are optimally determined through a grid
search process where T and γ are chosen from {30, 60, 100, 150, 200, 250} and {0.6, 0.7, 0.8, 0.9},
respectively. The adjustment of the learning rate at regular intervals helps in fine-tuning the learn-
ing process, potentially leading to more effective and efficient convergence of the model. For
2-point gradient estimator, we also conduct a grid search for the parameter K chosen from the set
{2, 3, 4, 6, 8, 9, 12}.
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(c) ZO-SVRG
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(e) ZO-SGD
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(f) ZO-SVRG

Figure 2: Comparison of generalization errors of different gradient estimators. (a)-(c) are results for
nonconvex logistic regression and (d)-(f) are results for neural network

As illustrated in the figure, the coordinate-wise gradient estimator has smaller generalization errors
than the 2-point gradient estimator. Additionally, both the forward and central difference versions of
these estimators demonstrate comparable generalization errors.

C PREPARATION FOR PROOF

C.1 SOME BASIC DEFINITIONS AND LEMMAS

Definition 3 (L-Lipschitz). We say that f is L-Lipschitz if for all points u in the domain of f we
have ∥∇f(x)∥ ≤ L. This implies that

|f(u)− f(v)| ≤ L∥u− v∥.

Definition 4 (β-Smooth). A function f : Ω → R is β-smooth if for all for all u, v ∈ Ω we have

∥∇f(u)−∇f(v)∥ ≤ β∥u− v∥.

Definition 5 (Convex). A function f : Ω → R is convex if for all u, v ∈ Ω we have

f(u) ≥ f(v) + ⟨∇f(v), u− v⟩.

Definition 6 (γ-Strongly Convex). A function f : Ω → R is γ-strongly convex if for all u, v ∈ Ω we
have

f(u) ≥ f(v) + ⟨∇f(v), u− v⟩+ γ

2
∥u− v∥2.

Lemma 6 (Hardt et al. (2016), Lemma 3.7). Assume that f is β-smooth. Then, the following
properties hold.
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1. G is (1 + αβ)-expansive.

2. Assume in addition that f is convex. Then, for any α ≤ 2/β, the gradient update G is 1-expansive.

3. Assume in addition that f is γ-strongly convex. Then, for α ≤ 2
β+γ , G is

(
1− αβγ

β+γ

)
expansive.

D THE APPROXIMATION ERROR UNDER DIFFERENT ZO GRADIENT
ESTIMATION

From Lemma 1, if we establish the bound for EA[f(A(D), z)− f(A(D′), z)], then we determine
the generalized error bound for zeroth-order optimization algorithms. And we apply the lipchitz
condition on f (·, z) to get

E |f (wT ; z)− f (w′
T ; z)| ≤ LE∥wT − w′

T ∥,
So, bounding the limit of E [δT ] = E∥wT − w′

T ∥ is the main task of this work. For zeroth-order
optimization, wt+1 = G̃t (wt) = wt − αtGf (wt+1) then we have

E∥G̃t (wt)− G̃′
t (w

′
t) ∥ = E∥G̃t(wt)− G̃t(w

′
t)∥

=E∥Gt(wt)−Gt(w
′
t) + αt [G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))] ∥

≤E ∥Gt (wt)−Gt(w
′
t)∥+ αtE ∥G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))∥ .

E ∥G(wt, zit)− Gf (wt, zit)− (G(w′
t, zit)− Gf (w

′
t, zit))∥ constitutes the primary part influenced

by the estimator.

D.1 1-POINT GRADIENT ESTIMATION

The formula for 1-point gradient estimation is as follows:

∇̂f(w, z) =
1

K

K∑
k=1

f (w + µuk, z)

µ
uk.

By applying the Taylor expansion there exist vectors W ∗
k , W ⋆

k with jth coordinates in the intervals(
w(j), w(j) + µU

(j)
k

)
∪
(
w(j) + µU

(j)
k , w(j)

)
,
(
w′(j), w′(j) + µU

(j)
k

)
∪
(
w′(j) + µU

(j)
k , w′(j)

)
,

such that for any w,w′ ∈ Rd we have

E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤E

∥∥∥∥∥ 1

K

K∑
k=1

< f (w, z)− f (w′, z) , uk >

µ

∥∥∥∥∥
+E

∥∥∥∥∥
(

1

K

K∑
k=1

⟨∇f (w, z)−∇f (w′, z) , uk⟩uk − (∇f (w, z)−∇f (w′, z))

)∥∥∥∥∥
+E

∥∥∥∥∥ 1

K

K∑
k=1

(µ
2
uT
k∇2

wf (W ∗
k , z)uk

)
uk

∥∥∥∥∥+ E

∥∥∥∥∥ 1

K

K∑
k=1

(µ
2
uT
k∇2

wf (W ⋆
k , z)uk

)
uk

∥∥∥∥∥
≤ 1

µK

K∑
k=1

E ∥uk∥E ∥f (w, z)− f (w′, z)∥

+
1

K

K∑
k=1

E
[
∥uk∥2

]
E [∥∇f (w, z)−∇f (w′, z)∥] + 1

K

K∑
k=1

µβE
[
∥uk∥3

]

≤

{(
L
µE∥u1∥+ βE

[
∥u1∥2

])
∥w − w′∥+ µβE

[
∥uk∥3

]
, if G̃t(·) = G̃′

t(·),
L
µE∥u1∥∥w − w′∥+ 2LE

[
∥u1∥2

]
+ µβE

[
∥uk∥3

]
, if G̃t(·) ̸= G̃′

t(·).
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D.2 2-POINT GRADIENT ESTIMATION

The formula for central difference is as follows:

∇̂f(w) =
1

K

K∑
k=1

f (w + µuk, z)− f (w − µuk, z)

2µ
uk

By applying the Taylor expansion there exist vectors W ∗
k , W ⋆

k , W⊛
k and W⋇

k with jth coor-

dinates in the intervals
(
w(j), w(j) + µu

(j)
k

)
∪
(
w(j) + µu

(j)
k , w(j)

)
,
(
w(j) − µu

(j)
k , w(j),

)
∪(

w(j), w(j) − µu
(j)
k

)
,
(
w′(j), w′(j) + µu

(j)
k

)
∪
(
w′(j) + µu

(j)
k , w′(j)

)
,
(
w′(j) − µu

(j)
k , w′(j)

)
∪(

w′(j), w′(j) − µu
(j)
k

)
, such that for any w,w′ ∈ Rd we have

E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤

∥∥∥∥∥
(

1

K

K∑
k=1

〈
∇f (w, z)−∇f (w′, z) , ut

k

〉
ut
k − (∇f (w, z)−∇f (w′, z))

)∥∥∥∥∥
+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf (W ∗
k , z)uk

)
uk

∥∥∥∥∥+
∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf (W ⋆
k , z)uk

)
uk

∥∥∥∥∥
+

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W⊛

k , z
)
uk

)
uk

∥∥∥∥∥+
∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W⋇

k , z
)
uk

)
uk

∥∥∥∥∥
≤ 1

K

K∑
k=1

E
[
∥uk∥2

]
E [∥∇f (wt, z)−∇f (w′

t, z)∥] +
1

K

K∑
k=1

µβE
[∥∥ut

k

∥∥3]
≤
{
βE
[
∥u1∥2

]
∥w − w′∥+ µβE

[
∥u1∥3

]
, if G̃t(·) = G̃′

t(·),
2LE

[
∥u1∥2

]
+ µβE

[
∥u1∥3

]
, if G̃t(·) ̸= G̃′

t(·).

D.3 COORDINATE-WISE GRADIENT ESTIMATION

The formula for forward difference is as follows:

∇̂f(w) =

d∑
i=1

f (w + µei, z)− f(w, z)

µ
ei

By applying the Taylor expansion there exist vectors W ∗
i and W †

i with ith coordinates in the intervals
(w,w + µei) and (w′, w′ + µei), respectively, such that for any w,w′ ∈ Rd we have

E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤ ∥

d∑
i=1

⟨∇f (w, z)−∇f (w′, z) , ei⟩ ei − (∇f (w, z)−∇f (w′, z)) ∥

+ ∥
d∑

i=1

(µ
2
eTi ∇2f (W ∗

i , z) ei

)
ei∥+ ∥

d∑
i=1

(µ
2
eTi ∇2f

(
W †

i , z
)
ei

)
ei∥.

For
∑d

i=1 ⟨∇f (w, z)−∇f (w′, z) , ei⟩ ei = ∇f (w, z)−∇f (w′, z), we have
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E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤ ∥

d∑
i=1

(µ
2
eTi ∇2f (W ∗

i , z) ei

)
ei∥+ ∥

d∑
i=1

(µ
2
eTi ∇2f

(
W †

i , z
)
ei

)
ei∥

≤ dβµ.

The formula for central difference is as follows:

∇̂f(w) =

d∑
i=1

f (w + µei, z)− f(w − µei, z)

µ
ei

By applying the Taylor expansion there exist vectors W ∗
k , W ⋆

k , W⊛
k and W⋇

k with jth coordinates in
the intervals (w,w + µei) ,(w − µei, w), (w′, w′ + µei), (w′ − µei, w

′)respectively, such that for
any w,w′ ∈ Rd we have

E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤ ∥

d∑
i=1

⟨∇f (w, z)−∇f (w′, z) , ei⟩ ei − (∇f (w, z)−∇f (w′, z)) ∥

+ ∥
d∑

i=1

(µ
4
eTi ∇2f (W ∗

i , z) ei

)
ei∥+ ∥

d∑
i=1

(µ
4
eTi ∇2f (W ⋆

i , z) ei

)
ei∥

+ ∥
d∑

i=1

(µ
4
eTi ∇2f

(
W⊛

i , z
)
ei

)
ei∥+ ∥

d∑
i=1

(µ
4
eTi ∇2f

(
W⋇

i , z
)
ei

)
ei∥

.

For
∑d

i=1 ⟨∇f (w, z)−∇f (w′, z) , ei⟩ ei = ∇f (w, z)−∇f (w′, z), we have

E
∥∥∥(∇f(w, z)− ∇̂f(w, z))− (∇f(w′, z)− ∇̂f(w′, z))

∥∥∥
≤ ∥

d∑
i=1

(µ
4
eTi ∇2f (W ∗

i , z) ei

)
ei∥+ ∥

d∑
i=1

(µ
4
eTi ∇2f (W ⋆

i , z) ei

)
ei∥

+ ∥
d∑

i=1

(µ
4
eTi ∇2f

(
W⊛

i , z
)
ei

)
ei∥+ ∥

d∑
i=1

(µ
4
eTi ∇2f

(
W⋇

i , z
)
ei

)
ei∥

≤ dβµ.

Comparing 1-point estimation, 2-point estimation with coordinate-wise estimation, the increment
brought by the last one to the analysis process is dβµ, which can be directly controlled by the smooth
parameter µ and does not bring any associated increment of ∥w−w′∥. It brings smaller approximation
errors and does not bring new increments to the expansive factor, so that the generalization bound
will be affected by the convexity of the function.

E PROOF OF GENERALIZATION ANALYSIS OF DIFFERENT DISTRIBUTION

The components about direction vector encompassed within the approximation error are defined as
follows: Cd ≜ E

[
∥u∥32

]
, Ad ≜ E [∥u∥2] and Γd

K ≜ E
[∥∥∥ 1

K

∑K
k=1 ⟨V, uk⟩uk −V

∥∥∥ | V
]
, We can

summarize the information in the following table.
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Table 3: Summary of main distribution involved in this paper.

Parameter Unif
(√

d+ 2Bd
)

Unif
(√

dSd−1
)

Standard normal

ΓK
d

√
d+1
K

√
d−1
K

√
3d−1
K

Ad
d

d+1

√
d+ 2

√
d

√
d+ 3

Cd
d

d+3 (d+ 2)
3
2 d

3
2 (d+ 3)

3
2

E.1 PROOF OF UNIFORM DISTRIBUTION

Lemma 7. Let uk ∈ Rd, k ∈ {1, 2 . . . ,K} be i.i.d Unif
(√

d+ 2Bd
)

distribution. For every random
vector V ∈ Rd independent of all uk, k ∈ {1, 2 . . . ,K}, it is true that

E

[∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥ | V

]
≤
√

d2 + 2d− 1

K
∥V∥.

Proof. For fixed V ∈ Rd, we have due to independence

E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2
 =

1

K2
E

∥∥∥∥∥
K∑

k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2


=
1

K2

K∑
k=1

E
[
∥⟨V, uk⟩uk −V∥2

]
=

1

K
E
[
∥⟨V, u1⟩u1 −V∥2

]
.

Now, again due to independence

E
[
∥⟨V, u1⟩u1 −V∥2

]
= E

[
∥⟨V, u1⟩u1∥2 − 2 ⟨⟨V, u1⟩u1,V⟩+ ∥V∥2

]
= E

[
(⟨V, u1⟩)2 ∥u1∥2

]
− 2E [⟨V, u1⟩ ⟨u1,V⟩] + ∥V∥2

= VTE
[
u1u

T
1 ∥u1∥2

]
V − 2VTE

[
u1u

T
1

]
V + ∥V∥2

≤ (d+ 2)VTV − 2∥V∥2 + ∥V∥2

= (d+ 1)∥V∥2.

Therefore,

E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2
 ≤ (d+ 1)∥V∥2

K
.

Thus, if V is random and independent of all uk ’s, it follows that

E

[∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥V
]
≤

√√√√√E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2

| V


≤
√

d+ 1

K
∥V∥2
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=

√
d+ 1

K
∥V∥,

and our claim is proved.

Lemma 8. Let uk ∈ Rd, k ∈ {1, 2 . . . ,K} be i.i.d Unif
(√

dSd−1
)

distribution. For every random

vector V ∈ Rd independent of all uk, k ∈ {1, 2 . . . ,K}, it is true that

E

[∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥ | V

]
≤
√

d2 − 1

K
∥V∥.

Proof. For fixed V ∈ Rd, we have due to independence

E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2
 =

1

K2
E

∥∥∥∥∥
K∑

k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2


=
1

K2

K∑
k=1

E
[
∥⟨V, uk⟩uk −V∥2

]
=

1

K
E
[
∥⟨V, u1⟩u1 −V∥2

]
.

Now, again due to independence

E
[
∥⟨V, u1⟩u1 −V∥2

]
= E

[
∥⟨V, u1⟩u1∥2 − 2 ⟨⟨V, u1⟩u1,V⟩+ ∥V∥2

]
= E

[
(⟨V, u1⟩)2 ∥u1∥2

]
− 2E [⟨V, u1⟩ ⟨u1,V⟩] + ∥V∥2

= VTE
[
u1u

T
1 ∥u1∥2

]
V − 2VTE

[
u1u

T
1

]
V + ∥V∥2

= dVTV − ∥V∥2

= (d− 1)∥V∥2

Therefore,

E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2
 =

(d− 1)∥V∥2

K
.

Thus, if V is random and independent of all uk ’s, it follows that

E

[∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥V
]
≤

√√√√√E

∥∥∥∥∥ 1

K

K∑
k=1

⟨V, uk⟩uk −V

∥∥∥∥∥
2

| V


≤
√

d− 1

K
∥V∥2

=

√
d− 1

K
∥V∥,

and our claim is proved.

Lemma 9. For samples u from the ℓ2-sphere, it is clear that ∥u∥2 =
√
d and ∥u∥32 = d

3
2 . When

U ∼ Uniform
(
Bd
)
, the density p(t) of ∥Z∥2 is given by d · td−1; consequently, for any k > −d we

have
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E
[
∥u∥k2

]
=

∫ 1

0

tkp(t)dt = d

∫ 1

0

td+k−1dt =
d

d+ k
.

Thus for Z ∼ Uniform
(√

d+ 2Bd
)

we have E
[
∥Z∥k2

]
= (d+ 2)k/2d/(d+ k).

F PROOF OF ANALYSIS FRAMEWORK

Proof of Lemma 3. Let D,D′ be two samples of size n that differ in one sample, and let G̃t(·), G̃′
t(·)

be two update rules of zeroth-order algorithms based on samples D,D′ respectively. Under the event
Et := {G̃t(·) ≡ G̃′

t(·)}, we have

δt+1 =E∥G̃t (wt)− G̃′
t (w

′
t) ∥ = E∥G̃t(wt)− G̃t(w

′
t)∥

=E∥Gt(wt)−Gt(w
′
t) + αt [G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))] ∥

≤∥Gt (wt)−Gt(w
′
t)∥+ αtE ∥G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))∥

≤η∥wt − w′
t∥+ αtE ∥G(wt, zit)− Gf (wt, zit)− (G(w′

t, zit)− Gf (w
′
t, zit))∥

≤η∥wt − w′
t∥+ αtσt,1.

The Under the event Ec
t := {G̃t(·) ̸= G̃′

t(·)}, we have

E∥G̃t (wt)− G̃′
t (w

′
t) ∥

=E∥Gt(wt)−G′
t(w

′
t) + αt

[
G(wt, zit)− Gf (wt, zit)−

(
G(w′

t, z
′
it)− Gf (w

′
t, z

′
it)
)]

∥
≤∥Gt (wt)−Gt(w

′
t)∥+ αtE

∥∥G(wt, zit)− Gf (wt, zit)−
(
G(w′

t, z
′
it)− Gf (w

′
t, z

′
it)
)∥∥

≤min{η, 1}∥wt − w′
t∥+ 2σt + αtE

∥∥G(wt, zit)− Gf (wt, zit)−
(
G(w′

t, z
′
it)− Gf (w

′
t, z

′
it)
)∥∥

≤∥wt − w′
t∥+ 2σt + αtE

∥∥G(wt, zit)− Gf (wt, zit)−
(
G(w′

t, z
′
it)− Gf (w

′
t, z

′
it)
)∥∥

≤∥wt − w′
t∥+ 2αtσt,2 + αtσt,3.

Proof of Lemma 4. Consider the events Et ≜
{
G̃t(·) ≡ G̃′

t(·)
}

and Ec
t ≜

{
G̃t(·) ̸= G̃′

t(·)
}

(see
Eq. (4)). Recall that P (Et) = 1− 1/n and P (Ec

t ) = 1/n for all t ≤ T . For any t0 ≥ 0, we have

E[δt+1|Eδt0 ] =P(Et)E[δt+1|Eδt , Eδt0 ] + P(Ec
t )E[δt+1|Ec

δt , Eδt0 ]

=(1− 1

n
)E[δt+1|Eδt , Eδt0 ] +

1

n
E[δt+1|Ec

δt , Eδt0 ]

≤(η +
1

n
(1− η))E[δt|Eδt0 ] + αt

[
(1− 1

n
)σt,1 +

1

n
(2σt,2 + σt,3)

]
.

Then we have

E[δT ] ≤
T∑

t=t0+1

(
η +

1

n
(1− η)

)T−t

αt

[
(1− 1

n
)σt,1 +

1

n
(2σt,2 + σt,3)

]

G PROOF OF GENERALIZATION ANALYSIS OF ZO-SGD

G.1 ZO-SGD WITH 1-POINT GRADIENT ESTIMATION

Lemma 10 (Growth Recursion). Assume that for all z, f(·, z) is L-Lipschitz continuous, β-smooth,

and f(·, z) ∈ [0, 1]. Consider the sequences of updates
{
G̃t

}T

t=1
and

{
G̃′

t

}T

t=1
. Let w0 = w′

0 be
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the starting point, wt+1 = G̃t (wt) and w′
t+1 = G̃′

t (w
′
t) for any t ∈ {1, . . . , T}. Then for any

wt, w
′
t ∈ Rd and t ≥ 0 the following recursion holds:

E
[∥∥∥G̃t (wt)− G̃′

t (w
′
t)
∥∥∥] ≤ {(η1 + αtβ

(
Γk
d + 1

)
+ αtLAd

µ

)
∥wt − w′

t∥+ µβαtCd, if G̃t(·) = G̃′
t(·),

∥wt − w′
t∥+ αtAd

µ + 2αtL(Γ
k
d + 1) + µβαtCd, if G̃t(·) ̸= G̃′

t(·).

Proof of Lemma 10. The formula for 1-point gradient estimation is as follows:

∇̂f(w) =
1

K

K∑
k=1

f (w + µuk)

µ
uk.

Let S and S′ be two samples of size n differing in only a single example, and let G̃t(·), G̃′
t(·) be the

update rules of the ZO-SGD for each of the sequences S, S′ respectively. By applying the Taylor
expansion there exist vectors W ∗

k,t , W ⋆
k,t with jth coordinates in the intervals

(
w

(j)
t , w

(j)
t + µU

(j)
k,t

)
∪(

w
(j)
t + µU

(j)
k,t , w

(j)
t

)
,
(
w

′(j)
t , w

′(j)
t + µU

(j)
k,t

)
∪
(
w

′(j)
t + µU

(j)
k,t , w

′(j)
t

)
, such that for any wt, w

′
t ∈

Rd we have

E
[∥∥∥G̃t (wt)− G̃t (w

′
t)
∥∥∥]

≤∥G (wt)−G′ (w′
t)∥+ αt

∥∥∥(∇f(wt)− ∇̂f(wt))− (∇f(w′
t)− ∇̂f(w′

t))
∥∥∥

≤∥G (wt)−G′ (w′
t)∥+ αt

∥∥∥∥∥ 1

K

K∑
k=1

< f (wt)− f (w′
t) , u

t
k >

µ

∥∥∥∥∥
+αt

∥∥∥∥∥
(

1

K

K∑
k=1

〈
∇f (wt)−∇f (w′

t) , u
t
k

〉
ut
k − (∇f (wt)−∇f (w′

t))

)∥∥∥∥∥
+αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
2
uT
k∇2

wf
(
W ∗

k,t

)
ut
k

)
ut
k

∥∥∥∥∥+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
2
uT
k∇2

wf
(
W ⋆

k,t

)
ut
k

)
ut
k

∥∥∥∥∥
≤∥G (wt)−G′ (w′

t)∥︸ ︷︷ ︸
A

+αtΓ
k
dE [∥∇f (wt)−∇f (w′

t)∥] + αt
1

µ
E
∥∥ut

k

∥∥E ∥∇f (wt)−∇f (w′
t)∥︸ ︷︷ ︸

B

+
αt

K

K∑
k=1

µβE
[∥∥ut

k

∥∥3]
︸ ︷︷ ︸

E

Part A corresponds to the first-order stochastic gradient descent (SGD), which decomposes into η
and σt,2 terms. Part B corresponds to the scaling term introduced by the gradient approximation,
which leads to inflation factor η′ and bound factor. In contrast to the 2-point estimate, one-point
estimate has an additional term in Part B, which generates different expansive and bound factors. It
should be noted that the term µ appears in the denominator, so its value needs to be carefully chosen
and not too small. Part E corresponds to a fixed value that can be decomposed for both one-point and
two-point estimates, and can only be constrained by β-smoothness, finally added to the bound factor.
Under the conditions of L-Lipschitz continuous, β-smooth, f(·, z) ∈ [0, 1], E

[
∥U∥3

]
≤ Cd, we get

η′ = αtβΓ
k
d + αtLAd

µ , σt,1 = µβαtCd, σt,2 = L, σt,3 = αtAd

µ + 2αtLΓ
k
d + µβαCd.

Lemma 11. Assume that the loss function f(·, z) is L-Lipschitz and β-smooth for all z ∈ Z . Consider
the ZO-SGD algorithm with final-iterate estimates WT and W ′

T , corresponding to the data-sets S, S′,
respectively (that differ in exactly one entry). Then the discrepancy δT ≜ ∥WT −W ′

T ∥, under the
event Eδt0 , satisfies the inequality

E
[
δT | Eδt0

]
20



Published as a conference paper at ICLR 2024

≤
(
2L

n
(Γk

d + 1) +
αtLAd

µn
+ µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + βαj(Γ

k
d + 1) +

αjLAd

µ

)

Proof of Lemma 11. Consider the events Et ≜
{
G̃t(·) ≡ G̃′

t(·)
}

and Ec
t ≜

{
G̃t(·) ̸= G̃′

t(·)
}

(see
Eq. (4)). Recall that P (Et) = 1 − 1/n and P (Ec

t ) = 1/n for all t ≤ T . For any t0 ≥ 0, a direct
application of Lemma 3 gives

E
[
δt+1 | Eδt0

]
=P (Et)E

[
δt+1 | Et, Eδt0

]
+ P (Ec

t )E
[
δt+1 | Ec

t , Eδt0
]

=

(
1− 1

n

)
E
[
δt+1 | Et, Eδt0

]
+

1

n
E
[
δt+1 | Ec

t , Eδt0
]

≤
(
1 + βαj(Γ

K
d + 1)

(
1− 1

n

)
+

αtLAd

µ

)
E
[
δt | Eδt0

]
+

2αtL

n
(ΓK

d + 1) +
αLAd

µn
+ µβαtCd.

then by solving this recursion we have

E
[
δT | Eδt0

]
≤
(
2L

n
(ΓK

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + βαj(Γ

K
d + 1)

(
1− 1

n

)
+

αjLAd

µ

)
.

Proof of Theorem 1. Recall that η = 1 + βαt for general (nonconvex) losses . Assuming that
αt ≤ C/t for all t ≤ T , we have

E
[
δT | Eδt0

]
≤
(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβ(Γ

K
d + 1) +

αjLAd

µ

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

Cβ(ΓK
d + 1) + CLAd

µ

j

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
Cβ(ΓK

d + 1) + CLAd

µ

j

)

≤C(eT )Cβ(ΓK
d +1)+

CLAd
µ

(
2L

n
ΓK
d + µβCd +

Ad

µn

) T∑
t=t0+1

1

t

1

(t+ 1)Cβ(ΓK
d +1)+

CLAd
µ

≤
(
β(ΓK

d + 1) +
LAd

µ

)−1(
2L

n
ΓK
d + µβCd +

Ad

µn

)
︸ ︷︷ ︸

D

(eT

t0

)Cβ(ΓK
d +1)+

CLAd
µ

− eCβ(ΓK
d +1)+

CLAd
µ


We define q ≜ Cβ(Γk

d + 1) + CAd

µ and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
. Then we give

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

Cβ(Γk
d+1)+

CLAd
µ

n

(
2L2(Γk

d + 1) + µβCdnL+
AdL

µ

) 1

Cβ(Γk
d
+1)+

CLAd
µ

+1

(eT )

Cβ(Γk
d+1)+

CLAd
µ

Cβ(Γk
d
+1)+

CLAd
µ

+1
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≤
1 + 1

Cβ(Γk
d+1)+

CLAd
µ

n
n

1

Cβ(Γk
d
+1)+

CLAd
µ

+1

(
2L2(Γk

d + 1) + CβL+
AdL

µ
√
n

) 1

Cβ(Γk
d
+1)+

CLAd
µ

+1

(eT )

Cβ(Γk
d+1)+

CLAd
µ

Cβ(Γk
d
+1)+

CLAd
µ

+1

≤

(
1 +

(
βC +

CL

c

)−1
)

1

n
1− c

d2LC
√

n

(
Cβ(Γk

d + 1) +
CLAd

µ
+ 1

) 1

Cβ(Γk
d
+1)+

CLAd
µ

+1

(eT )

Cβ(Γk
d+1)+

CLAd
µ

Cβ(Γk
d
+1)+

CLAd
µ

+1

≤

(
1 +

(
βC +

CL

c

)−1
)

Te1+1/e

n
1− c

d2LC
√

n

Theorem 10 (convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, β-smooth and convex for
all z ∈ Z . Consider the update rule Eq.equation 10 with T the total number of iterates, αt ≤ C/t
for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZO-SGD with 2-point
gradient estimation is bounded by

ϵgen ≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

)
3Te/2n.

Proof of Theorem 10. Recall that η = 1 for convex losses . Assuming that αt ≤ C/t for all t ≤ T ,
we have

E
[
δT | Eδt0

]
≤
(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβΓ

K
d +

αjLAd

µ

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

CβΓK
d + CLAd

µ

j

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
CβΓK

d + CLAd

µ

j

)

≤C(eT )CβΓK
d +

CLAd
µ

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

1

(t+ 1)CβΓK
d

CLAd
µ

≤
(
βΓK

d +
LAd

µ

)−1(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

)
︸ ︷︷ ︸

D

(eT

t0

)CβΓK
d +

CLAd
µ

− eCβΓK
d +

CLAd
µ


We define q ≜ CβΓK

d + CAd

µ and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
. Then we give

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

CβΓK
d +

CLAd
µ

n

(
2L2(ΓK

d + 1) + µβCdnL+
AdL

µ

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
+1

≤
1 + 1

CβΓK
d +

CLAd
µ

n
n

1

CβΓK
d

+
CLAd

µ
+1

(
2L2(ΓK

d + 1) + CβL+
AdL

µ
√
n

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
+1
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≤

(
1 +

(
βC +

CL

c

)−1
)

1

n
1− c

d2LC
√

n

(
CβΓK

d +
CLAd

µ
+ 1

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
+1

≤

(
1 +

(
βC +

CL

c

)−1
)

Te1+1/e

n
1− c

d2LC
√

n

Theorem 11 (strongly convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, β-smooth and
γ-strongly convex for all z ∈ Z . Consider the update rule Eq.equation 10 with T the total number
of iterates, αt ≤ C/t for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of
ZO-SGD with 2-point gradient estimation is bounded by

ϵgen ≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

)
3Te/2n.

Proof of Theorem 11. Recall that η = 1 − αtβγ
β+γ for γ-strongly convex losses . Assuming that

αt ≤ C/t for all t ≤ T , we have

E
[
δT | Eδt0

]
≤
(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβ(Γ

K
d − γ

β + γ
) +

αjLAd

µ

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

CβΓK
d + CLAd

µ

j

)

≤C

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
CβΓK

d + CLAd

µ

j

)

≤C(eT )CβΓK
d +

CLAd
µ

(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

) T∑
t=t0+1

1

t

1

(t+ 1)CβΓK
d

CLAd
µ

≤
(
βΓK

d +
LAd

µ

)−1(
2L

n
(ΓK

d + 1) + µβCd +
Ad

µn

)
︸ ︷︷ ︸

D

(eT

t0

)CβΓK
d +

CLAd
µ

− eCβΓK
d +

CLAd
µ


We define q ≜ CβΓK

d + CAd

µ and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
. Then we give

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

CβΓK
d +

CLAd
µ

n

(
2L2(ΓK

d + 1) + µβCdnL+
AdL

µ

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
+1

≤
1 + 1

CβΓK
d +

CLAd
µ

n
n

1

CβΓK
d

+
CLAd

µ
+1

(
2L2(ΓK

d + 1) + CβL+
AdL

µ
√
n

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
+1

≤

(
1 +

(
βC +

CL

c

)−1
)

1

n
1− c

d2LC
√

n

(
CβΓK

d +
CLAd

µ
+ 1

) 1

CβΓK
d

+
CLAd

µ
+1

(eT )

CβΓK
d +

CLAd
µ

CβΓK
d

+
CLAd

µ
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≤

(
1 +

(
βC +

CL

c

)−1
)

Te1+1/e

n
1− c

d2LC
√

n

G.2 ZO-SGD WITH 2-POINT GRADIENT ESTIMATION

Lemma 12 (2-point ZO-SGD Growth Recursion). Consider the sequences of updates
{
G̃t

}T

t=1

and
{
G̃′

t

}T

t=1
. Let w0 = w′

0 be the starting point, wt+1 = G̃t (wt) and w′
t+1 = G̃′

t (w
′
t) for any

t ∈ {1, . . . , T}. Then for any wt, w
′
t ∈ Rd and t ≥ 0 the following recursion holds

E
[∥∥∥G̃t (wt)− G̃′

t (w
′
t)
∥∥∥] ≤ {(η1 + αtβΓ

k
d

)
∥wt − w′

t∥+ µβαtCd, if G̃t(·) = G̃′
t(·),

∥wt − w′
t∥+ 2αtL

(
Γk
d + 1

)
+ µβαtCd, if G̃t(·) ̸= G̃′

t(·).

Proof of Lemma 12. The formula for central difference is as follows:

∇̂f(w) =
1

K

K∑
k=1

f (w + µuk)− f (w − µuk)

2µ
uk

Let S and S′ be two samples of size n differing in only a single example, and let G̃t(·), G̃′
t(·) be

the update rules of the ZO-SGD for each of the sequences S, S′ respectively. By applying the
Taylor expansion there exist vectors W ∗

k,t , W ⋆
k,t, W

⊛
k,tand W⋇

k,twith jth coordinates in the inter-

vals
(
w

(j)
t , w

(j)
t + µU

(j)
k,t

)
∪
(
w

(j)
t + µU

(j)
k,t , w

(j)
t

)
,
(
w

(j)
t − µU

(j)
k,t , w

(j)
t ,
)
∪
(
w

(j)
t , w

(j)
t − µU

(j)
k,t

)
,(

w
′(j)
t , w

′(j)
t + µU

(j)
k,t

)
∪
(
w

′(j)
t + µU

(j)
k,t , w

′(j)
t

)
,
(
w

′(j)
t − µU

(j)
k,t , w

′(j)
t

)
∪
(
w

′(j)
t , w

′(j)
t − µU

(j)
k,t

)
,

such that for any wt, w
′
t ∈ Rd we have

E
[∥∥∥G̃t (wt)− G̃t (w

′
t)
∥∥∥]

≤ ∥G (wt)−G′ (w′
t)∥+ αt

∥∥∥(∇f(wt)− ∇̂f(wt))− (∇f(w′
t)− ∇̂f(w′

t))
∥∥∥

≤ ∥G (wt)−G′ (w′
t)∥+ αt

∥∥∥∥∥
(

1

K

K∑
k=1

〈
∇f (wt)−∇f (w′

t, ) , u
t
k

〉
ut
k − (∇f (wt)−∇f (w′

t))

)∥∥∥∥∥
+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W ∗

k,t

)
ut
k

)
ut
k

∥∥∥∥∥+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W ⋆

k,t

)
ut
k

)
ut
k

∥∥∥∥∥
+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W⊛

k,t

)
ut
k

)
ut
k

∥∥∥∥∥+ αt

∥∥∥∥∥ 1

K

K∑
k=1

(µ
4
uT
k∇2

wf
(
W⋇

k,t

)
ut
k

)
ut
k

∥∥∥∥∥
≤ ∥G (wt)−G′ (w′

t)∥︸ ︷︷ ︸
A

+αtΓ
k
dE [∥∇f (wt, zit)−∇f (w′

t, zit)∥]︸ ︷︷ ︸
B

+
αt

K

K∑
k=1

µβE
[∥∥ut

k

∥∥3]
︸ ︷︷ ︸

E

Part A corresponds to the first-order stochastic gradient descent (SGD), which decomposes into η and
σt,2 terms. Part B corresponds to the scaling term introduced by the gradient approximation, which
leads to a new inflation factor η′ and a new bound. Part E corresponds to the irreducible term caused
by the difference between the estimated gradient and the true gradient, denoted as σt,1. Under the

conditions of L-Lipschitz and β-smooth and E
[
∥ut

k∥
3
]
≤ Cd, we get η′ = αtβΓ

k
d , σt,1 = µβαtCd,

σt,2 = L, σt,3 = 2αtLΓ
k
d + µβαCd. Thus the expansive and bound are the same as the forward

difference results from the previous work, thus their generalization bounds are also identical.
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Lemma 13. Assume that the loss function f(·, z) is L Lipschitz and β-smooth for all z ∈ Z . Consider
the ZO-SGD algorithm with final-iterate estimates WT and W ′

T , corresponding to the data-sets S, S′,
respectively (that differ in exactly one entry). Then the discrepancy δT ≜ ∥WT −W ′

T ∥, under the
event Eδt0 , satisfies the inequality

E
[
δT | Eδt0

]
≤
(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + βαj(Γ

k
d + 1)

)

Proof of Lemma 13. Consider the events Et ≜
{
G̃t(·) ≡ G̃′

t(·)
}

and Ec
t ≜

{
G̃t(·) ̸= G̃′

t(·)
}

(see
Eq. (4)). Recall that P (Et) = 1 − 1/n and P (Ec

t ) = 1/n for all t ≤ T . For any t0 ≥ 0, a direct
application of Lemma 3 gives

E
[
δt+1 | Eδt0

]
= P (Et)E

[
δt+1 | Et, Eδt0

]
+ P (Ec

t )E
[
δt+1 | Ec

t , Eδt0
]

=

(
1− 1

n

)
E
[
δt+1 | Et, Eδt0

]
+

1

n
E
[
δt+1 | Ec

t , Eδt0
]

≤
(
η + αtβΓ

k
d +

1

n

(
1− η − αtβΓ

k
d

))
E
[
δt | Eδt0

]
+

2αtL

η
(Γk

d + 1) + µβαtCd.

then by solving this recursion we have

E
[
δT | Eδt0

]
≤
(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + βαj(Γ

k
d + 1)

(
1− 1

n

))

Proof of Theorem 2. Recall that η = 1 + βαt for general (nonconvex) losses . Assuming that
αt ≤ C/t for all t ≤ T , we have

E
[
δT | Eδt0

]
≤
(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβ(Γ

k
d + 1)

)
≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

Cβ(Γk
d + 1)

j

)

≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
Cβ(Γk

d + 1)

j

)

≤ C(eT )Cβ(Γk
d+1)

(
2L

n

(
Γk
d + 1

)
+ µβCd

) T∑
t=t0+1

1

t

1

(t+ 1)Cβ(Γk
d+1)

≤
(
β(Γk

d + 1)
)−1

(
2L

n

(
Γk
d + 1

)
+ µβCd

)
︸ ︷︷ ︸

D

((
eT

t0

)Cβ(Γk
d+1)

− eCβ(Γk
d+1)

)

We define q ≜ Cβ(Γk
d + 1) and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
and µ ≤ Γk

d+1
nβCd

Then we gives

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}
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≤
1 + 1

Cβ(Γk
d+1)

n

(
(2 + c)CL2

(
Γk
d + 1

)) 1

Cβ(Γk
d
+1)+1 (eT )

Cβ(Γk
d+1)

Cβ(Γk
d
+1)+1

≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

) 3Te
2n

.

Theorem 12 (convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, β-smooth and convex for
all z ∈ Z . Consider the update rule Eq.equation 11 with T the total number of iterates, αt ≤ C/t
for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of ZO-SGD with 2-point
gradient estimation is bounded by

ϵgen ≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

)
3Te/2n.

Proof of Theorem 12. Recall that η = 1 for convex losses. Assuming that αt ≤ C/t for all t ≤ T ,
we have

E
[
δT | Eδt0

]
≤
(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβΓ

k
d

)
≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

Cβ(Γk
d + 1)

j

)

≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
Cβ(Γk

d + 1)

j

)

≤ C(eT )Cβ(Γk
d+1)

(
2L

n

(
Γk
d + 1

)
+ µβCd

) T∑
t=t0+1

1

t

1

(t+ 1)Cβ(Γk
d+1)

≤
(
βΓk

d

)−1
(
2L

n

(
Γk
d + 1

)
+ µβCd

)
︸ ︷︷ ︸

D

((
eT

t0

)Cβ(Γk
d+1)

− eCβ(Γk
d+1)

)

We define q ≜ CβΓk
d and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
and µ ≤ Γk

d+1
nβCd

Then we gives

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

Cβ(Γk
d+1)

n

(
(2 + c)CL2

(
Γk
d + 1

)) 1

Cβ(Γk
d
+1)+1 (eT )

Cβ(Γk
d+1)

Cβ(Γk
d
+1)+1

≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

) 3Te
2n

.

Theorem 13 (strongly convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, β-smooth and
γ-strongly convex for all z ∈ Z . Consider the update rule Eq.equation 11 with T the total number
of iterates, αt ≤ C/t for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of
ZO-SGD with 2-point gradient estimation is bounded by

ϵgen ≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

)
3Te/2n.
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Proof of Theorem 13. Recall that η = 1 − αtβγ
β+γ for γ-strongly convex losses . Assuming that

αt ≤ C/t for all t ≤ T , we have

E
[
δT | Eδt0

]
≤
(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

αt

T∏
j=t+1

(
1 + αjβ(Γ

K
d − γ

β + γ
)

)

≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

Cβ(Γk
d + 1)

j

)

≤ C

(
2L

n
(Γk

d + 1) + µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
Cβ(Γk

d + 1)

j

)

≤ C(eT )Cβ(Γk
d+1)

(
2L

n

(
Γk
d + 1

)
+ µβCd

) T∑
t=t0+1

1

t

1

(t+ 1)Cβ(Γk
d+1)

≤
(
βΓk

d

)−1
(
2L

n

(
Γk
d + 1

)
+ µβCd

)
︸ ︷︷ ︸

D

((
eT

t0

)Cβ(Γk
d+1)

− eCβ(Γk
d+1)

)

We define q ≜ CβΓk
d and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
and µ ≤ Γk

d+1
nβCd

Then we gives

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

Cβ(Γk
d+1)

n

(
(2 + c)CL2

(
Γk
d + 1

)) 1

Cβ(Γk
d
+1)+1 (eT )

Cβ(Γk
d+1)

Cβ(Γk
d
+1)+1

≤
(
1 + (βC)−1

)2 (
1 + (2 + c)CL2

) 3Te
2n

.

G.3 ZO-SGD WITH COORDINATE-WISE GRADIENT ESTIMATION

Lemma 14. Consider the sequences of updates
{
G̃t

}T

t=1
and

{
G̃′

t

}T

t=1
. Let w0 = w′

0 be the starting

point, wt+1 = G̃t (wt) and w′
t+1 = G̃′

t (w
′
t) for any t ∈ {1, . . . , T}. Then for any wt, w

′
t ∈ Rd and

t ≥ 0 the following recursion holds

E
[∥∥∥G̃t (wt)− G̃′

t (w
′
t)
∥∥∥] ≤ {η ∥wt − w′

t∥+ αtµβd, if G̃t(·) = G̃′
t(·),

∥wt − w′
t∥+ 2αtL+ αtµβd, if G̃t(·) ̸= G̃′

t(·).

Proof of Theorem 3 (Convex). The formula for coordinate-wise estimator is as follows:

wt+1 = wt − αt


∑d

i=1

f(wt+µei,zit)−f(wt,zit )

µ ei, forward difference,∑d
i=1

f(wt+µei,zit)−f(wt−µei,zit )

2µ ei, central difference.

Let S and S′ be two samples of size n differing in only a single example, and let G̃t(·), G̃′
t(·) be the

update rules of the ZO-SGD for each of the sequences S, S′ respectively. By applying the Taylor
expansion there exist vectors W ∗

i,t and W †
i,t with ith coordinates in the intervals (wt, wt + µei) and

(w′
t, w

′
t + µei), respectively, such that for any wt, w

′
t ∈ Rd we have
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∥G̃t (wt)− G̃′
t (w

′
t) ∥ = ∥G̃t (wt)− G̃t (w

′
t) ∥

= ∥wt − w′
t − αt

d∑
i=1

⟨∇f (wt, zit)−∇f (w′
t, zit) , ei⟩ ei

− αt

d∑
i=1

(µ
2
eTi ∇2f

(
W ∗

i,t, zit
)
ei

)
ei + αt

d∑
i=1

(µ
2
eTi ∇2f

(
W †

i,t, zit

)
ei

)
ei∥

= ∥wt − αt∇f (wt, zit)− (w′
t − αt∇f (w′

t, zit))

− αt

d∑
i=1

(
µ

2
eTi ∇2

wf (w, zit)
∣∣∣
w=W∗

i,t

ei

)
ei + αt

d∑
i=1

(
µ

2
eTi ∇2

wf (w, zit)
∣∣∣
w=W †

i,t

ei

)
ei

− αt

(
d∑

i=1

⟨∇f (wt, zit)−∇f (w′
t, zit) , ei⟩ ei − (∇f (wt, zit)−∇f (w′

t, zit))

)
∥

= ∥G (wt)−G (w′
t)− αt

d∑
i=1

(
µ

2
eTi ∇2

wf (w, zit)
∣∣∣
w=W∗

i,t

ei

)
ei

+ αt

d∑
i=1

(
µ

2
eTi ∇2

wf (w, zit)
∣∣∣
w=W †

i,t

ei

)
ei∥.

For
∑d

i=1 ⟨∇f (wt, zit)−∇f (w′
t, zit) , ei⟩ ei = ∇f (wt, zit)−∇f (w′

t, zit). This is the key, why
ZO-SGD using coordinate-wise estimator is non-expansive. The last display and the triangle inequal-
ity give

E
[∥∥∥G̃t (wt)− G̃t (w

′
t)
∥∥∥]

≤ ∥G (wt)−G (w′
t)∥+ 2αt

d∑
i=1

µβ

2
E
[
∥ei∥3

]
≤ ∥G (wt)−G (w′

t)∥+ αtµβd.

Above all, coordinate-wise estimator

Let S and S′ be two samples of size n differing in only a single example. Consider the gradient
updates G1, . . . , GT and G′

1, . . . , G
′
T induced by running ZO-SGD on sample S and S′, respectively.

Let wT and w′
T denote the corresponding outputs of ZO-SGD. We now fix an example z ∈ Z and

apply the Lipschitz condition on f(·; z) to get
E |f (wT ; z)− f (w′

T ; z)| ≤ LE [δT ] ,

where δT = ∥wT − w′
T ∥. Observe that at step t, with probability 1 − 1/n, the example selected

by SGD is the same in both S and S′. In this case we have that Gt = G′
t and we can use the

1-expansivity of the update rule Gt which uses the fact that the objective function is convex and that
αt ≤ 2/β. With probability 1/n the selected example is different in which case we use that both Gt

and G′
t are αtL-bounded as a consequence of Lemma 12. Hence, we have

E [δt+1] ≤
(
1− 1

n

)
E [δt] +

1

n
E [δt] +

2αtL

n
+

βαt

n
= E [δt] +

2αtL+ αtβ

n

Unraveling the recursion gives

E [δT ] ≤
2L+ β

n

T∑
t=1

αt

Plugging this back into equation, we obtain

E |f (wT ; z)− f (w′
T ; z)| ≤

2L2 + Lβ

n

T∑
t=1

αt
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Proof of Theorem 3 (Strongly Convex). Let S and S′ be two samples of size n differing in only a
single example. Consider the gradient updates G1, . . . , GT and G′

1, . . . , G
′
T induced by running

ZO-SGD on sample S and S′, respectively. Let wT and w′
T denote the corresponding outputs of

ZO-SGD. We now fix an example z ∈ Z and apply the Lipschitz condition on f(·; z) to get

E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ]

If α ≤ 1/β : since 2αβγ
β+γ ≥ αγ and αγ ≤ 1, Gf,α is (1− αγ)-expansive. With probability 1/n the

selected example is different in which case we use that both Gt and G′
t are αL-bounded

E [δt+1] ≤
(
1− 1

n

)
E [δt] +

1

n
E [δt] +

2αL

n
+

µα

n
= (1− αγ)E [δt] +

2αL+ αβ

n
.

Unraveling the recursion gives

E [δT ] ≤
2αL+ αβ

n

T∑
t=0

(1− αγ)
t ≤ 2L+ β

nγ
.

Plugging this back into equation, we obtain

E |f (wT ; z)− f (w′
T ; z)| ≤

2L2 + βL

nγ
.

Lemma 15. Assume that the loss function f(·, z) is L Lipschitz and β-smooth for all z ∈ Z . Consider
the ZO-SGD algorithm with final-iterate estimates WT and W ′

T , corresponding to the data-sets S, S′,
respectively (that differ in exactly one entry). Then the discrepancy δT ≜ ∥WT −W ′

T ∥, under the
event Eδt0 , satisfies the inequality

E
[
δT | Eδt0

]
≤
(
2L

n
+ µβ

) T∑
t=t0+1

αt

T∏
j=t+1

(1 + βαj)

Proof of Lemma 15. Consider the events Et ≜
{
G̃t(·) ≡ G̃′

t(·)
}

and Ec
t ≜

{
G̃t(·) ̸= G̃′

t(·)
}

(see
Eq. (4)). Recall that P (Et) = 1 − 1/n and P (Ec

t ) = 1/n for all t ≤ T . For any t0 ≥ 0, a direct
application of Lemma 3 gives

E
[
δt+1 | Eδt0

]
= P (Et)E

[
δt+1 | Et, Eδt0

]
+ P (Ec

t )E
[
δt+1 | Ec

t , Eδt0
]

=

(
1− 1

n

)
E
[
δt+1 | Et, Eδt0

]
+

1

n
E
[
δt+1 | Ec

t , Eδt0
]

≤ (1 + αtβ)E
[
δt | Eδt0

]
+

2αtL

n
+ µβαt.

then by solving this recursion we have

E
[
δT | Eδt0

]
≤
(
2L

n
+ µβ

) T∑
t=t0+1

αt

T∏
j=t+1

(1 + βαj) .

Proof of Theorem 3 (Nonconvex). Recall that η = 1+βαt for general (nonconvex) losses . Assuming
that αt ≤ C/t for all t ≤ T and µ ≤ c

n we have

E
[
δT | Eδt0

]
≤
(
2L

n
+ µβ

) T∑
t=t0+1

αt

T∏
j=t+1

(1 + αjβ)

≤ C

(
2L

n
+ µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

(
1 +

Cβ

j

)
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≤ C

(
2L

n
+ µβCd

) T∑
t=t0+1

1

t

T∏
j=t+1

exp

(
Cβ

j

)

≤ C(eT )Cβ

(
2L

n
+ µβ

) T∑
t=t0+1

1

t

1

(t+ 1)Cβ

≤ 2L+ cβ

n︸ ︷︷ ︸
D

((
eT

t0

)Cβ

− eCβ

)

We define q ≜ Cβ and find the value of t0 that minimizes the right part of

E [|f (WT , z)− f (W ′
T , z)|] ≤

t0
n
sup
w,z

f(w, z) + LE
[
δT | Eδt0

]
≤ t0

n
+ LD

((
eT

t0

)q

− eq
)
,

which is t∗0 = min
{
(qnLD)1/(q+1)(eT )q/(q+1), T

}
. Then we gives

E [|f (WT , z)− f (W ′
T , z)|]

≤ max

{
(qnLD)

1
q+1 (eT )

q
q+1

n
,
1 + 1/q

n
(qnLD)

1
q+1 (eT )

q
q+1 − LDeq

}

≤
1 + 1

βC

n

(
2CL2 + βCcL

) 1
βC+1 (eT )

βC
βC+1 .

H PROOF OF GENERALIZATION ANALYSIS OF ZO-GD

In the case of full-batch GD and ZO-GD the algorithm is deterministic and we assume
that z1, z2, . . . , zi, . . . , zn, z

′
j are i.i.d. and define S ≜ (z1, z2, . . . , zi, . . . , zn) and S′ ≜(

z1, z2, . . . , z
′
j , . . . , zn

)
,W0 = W ′

0, the updates for any t ≥ 1 are

wt+1 = wt −
αt

n

n∑
j=1

∇f (wt, zj) =
1

n

n∑
i=1

(wt − αt∇f(wt, zi)) ,

w′
t+1 = w′

t −
αt

n

n∑
j=1,j ̸=i

∇f (w′
t, zj)−

αt

n
∇f (w′

t, z
′
i)

=
1

n

 n∑
i=1,i̸=j

(w′
t − αt∇f(w′

t, zi)) +
(
w′

t − αt∇f(w′
t, z

′
j)
) .

Then, for any t ≥ 1

δt+1 ≤

∥∥∥∥∥∥ 1n
n∑

i=1,i̸=j

[(wt − w′
t)− αt (∇f(wt, zi)−∇f(w′

t, zi))]

∥∥∥∥∥∥
+

1

n

∥∥(wt − w′
t)− αt

(
∇f(wt, zj)−∇f(w′

t, z
′
j)
)∥∥

≤ n− 1

n
ηδt +

1

n
min{η, 1}δt +

2αtL

n

≤ ηδt +
2αtL

n
.

Therefore, for full-batch ZO-GD, we have

wt+1 =wt −
αt

n

n∑
j=1

∇̂f (wt, zj)
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=
1

n

n∑
i=1

(wt − αt∇f(wt, zi)) +
αt

n

n∑
i=1

∇f(wt, zi)−
αt

n

n∑
i=1

∇̂f(wt, zi),

w′
t+1 =w′

t −
αt

n

n∑
i=1,i̸=j

∇̂f (w′
t, zi)−

αt

n
∇̂f

(
w′

t, z
′
j

)

=
1

n

 n∑
i=1,i̸=j

(w′
t − αt∇f(w′

t, zi)) +
(
w′

t − αt∇f(w′
t, z

′
j)
)

+
αt

n

n∑
i=1,i̸=j

(
∇f(w′

t, zi)− ∇̂f(w′
t, zi)

)
+

αt

n

(
∇f(w′

t, z
′
j)− ∇̂f(w′

t, z
′
j)
)
.

Then, for any t ≥ 1

δt+1 ≤ ηδt +
2αtL

n

+
αt

n

∥∥∥∥∥∥
n∑

i=1

(∇f(wt, zi)− ∇̂f(wt, zi))−
n∑

i=1,i̸=j

(
∇f(w′

t, zi)− ∇̂f(w′
t, zi)

)
−
(
∇f(w′

t, z
′
j)− ∇̂f(w′

t, z
′
j)
)∥∥∥∥∥∥

Proof of Theorem 4. Recall that ut
k are independent for all k≤ K, t≤T and the loss function is

Lipschitz , smooth and f(·) ≤ 1
2 . The last display and the triangle inequality give

δt+1 ≤ ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥

+
αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥+ αtAd

nµ

n∑
i=1,i̸=j

∥f(wt, zi)− f(w′
t, zi)∥

+
αtAd

nµ

∥∥f(wt, zj)− f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
[
1 + αt

((
ΓK
d + 1

)
β +

AdL

µ

)]
δt +

2αtL
(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

)
T∏

j=t+1

(
1 + αt

((
ΓK
d + 1

)
β +

AdL

µ

))
Under the choice αt ≤ C

t
(
(ΓK

d +1)β+AdL

µ

) the last display gives

δT ≤

(
2L
(
ΓK
d + 1

)
n

+
Ad

nµ
+ µβCd

)
T∑

t=1

C

t
((

ΓK
d + 1

)
β + AdL

µ

) T∏
j=t+1

(
1 +

C

j

)

≤
2L(ΓK

d +1)
n + Ad

nµ + µβCd(
ΓK
d + 1

)
β + AdL

µ

T∑
t=1

C

t

T∏
j=t+1

(
1 +

C

j

)

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

T∑
j=t+1

C

j

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

(
C log

(
eT

t+ 1

))
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≤
C
(
2L2 + β + βL

)
nβL

T∑
t=1

1

t

(
eT

t+ 1

)C

≤
C (eT )

C (
2L2 + β + βL

)
nβL

T∑
t=1

1

tC+1

≤
(eT )

C (
2L2 + β + βL

)
nβL

min{C + 1, C log (eT )}.

Then the generalization error of ZO-GD with 1-point gradient estimation is bounded by

ϵgen ≤ 2L2 + β + βL

nβ
(eT )

C
min{C + 1, C log (eT )}.

Theorem 14 (convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, convex, β-smooth for
all z ∈ Z . Consider the update rule Eq.equation 13 with T the total number of iterates, αt ≤
C/t

(
β(Γk

d + 1) + LAd/µ
)

for some (fixed) C > 0 and for all t ≤ T . Then the generalization error
of ZO-GD with 1-point gradient estimation is bounded by

ϵgen ≤ min{C + 1, C log(eT )}(2L2 + β + βL)(eT )C/(nβ).

Proof of Theorem 14. Recall that η = 1, ut
k are independent for all k≤ K, t≤T and the loss function

is Lipschitz , smooth and f(·) ≤ 1
2 . The last display and the triangle inequality give

δt+1 ≤ ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥+

αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥

+
αtAd

nµ

n∑
i=1,i̸=j

∥f(wt, zi)− f(w′
t, zi)∥+

αtAd

nµ

∥∥f(wt, zj)− f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
[
1 + αt

(
ΓK
d β +

AdL

µ

)]
δt +

2αtL
(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

)
T∏

j=t+1

(
1 + αt

(
ΓK
d β +

AdL

µ

))
Under the choice αt ≤ C

t
(
(ΓK

d +1)β+AdL

µ

) the last display gives

δT ≤

(
2L
(
ΓK
d + 1

)
n

+
Ad

nµ
+ µβCd

)
T∑

t=1

C

t
((

ΓK
d + 1

)
β + AdL

µ

) T∏
j=t+1

(
1 +

C

j

)

≤
2L(ΓK

d +1)
n + Ad

nµ + µβCd(
ΓK
d + 1

)
β + AdL

µ

T∑
t=1

C

t

T∏
j=t+1

(
1 +

C

j

)

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

T∑
j=t+1

C

j

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

(
C log

(
eT

t+ 1

))

≤
C
(
2L2 + β + βL

)
nβL

T∑
t=1

1

t

(
eT

t+ 1

)C
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≤
C (eT )

C (
2L2 + β + βL

)
nβL

T∑
t=1

1

tC+1

≤
(eT )

C (
2L2 + β + βL

)
nβL

min{C + 1, C log (eT )}.

Then the generalization error of ZO-GD with 1-point gradient estimation is bounded by

ϵgen ≤ 2L2 + β + βL

nβ
(eT )

C
min{C + 1, C log (eT )}.

Theorem 15 (strongly convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, γ-strongly convex,
β-smooth for all z ∈ Z . Consider the update rule Eq.equation 13 with T the total number of iterates,
αt ≤ C/t

(
β(Γk

d + 1) + LAd/µ
)

for some (fixed) C > 0 and for all t ≤ T . Then the generalization
error of ZO-GD with 1-point gradient estimation is bounded by

ϵgen ≤ min{C + 1, C log(eT )}(2L2 + β + βL)(eT )C/(nβ).

Proof of Theorem 15. Recall that η = 1− αtβγ
β+γ , ut

k are independent for all k≤ K, t≤T and the loss
function is Lipschitz , smooth and f(·) ≤ 1

2 . The last display and the triangle inequality give

δt+1 ≤ ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥

+
αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥+ αtAd

nµ

n∑
i=1,i̸=j

∥f(wt, zi)− f(w′
t, zi)∥

+
αtAd

nµ

∥∥f(wt, zj)− f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
[
1 + αt

(
ΓK
d β − βγ

β + γ
+

AdL

µ

)]
δt +

2αtL
(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+
Adαt

nµ
+ µβCdαt

)
T∏

j=t+1

(
1 + αt

(
ΓK
d β − βγ

β + γ
+

AdL

µ

))
Under the choice αt ≤ C

t
(
(ΓK

d +1)β+AdL

µ

) the last display gives

δT ≤

(
2L
(
ΓK
d + 1

)
n

+
Ad

nµ
+ µβCd

)
T∑

t=1

C

t
((

ΓK
d + 1

)
β + AdL

µ

) T∏
j=t+1

(
1 +

C

j

)

≤
2L(ΓK

d +1)
n + Ad

nµ + µβCd(
ΓK
d + 1

)
β + AdL

µ

T∑
t=1

C

t

T∏
j=t+1

(
1 +

C

j

)

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

T∑
j=t+1

C

j

≤ 2L2 + β + βL

nβL

T∑
t=1

C

t
exp

(
C log

(
eT

t+ 1

))

≤
C
(
2L2 + β + βL

)
nβL

T∑
t=1

1

t

(
eT

t+ 1

)C
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≤
C (eT )

C (
2L2 + β + βL

)
nβL

T∑
t=1

1

tC+1

≤
(eT )

C (
2L2 + β + βL

)
nβL

min{C + 1, C log (eT )}.

Then the generalization error of ZO-GD with 1-point gradient estimation is bounded by

ϵgen ≤ 2L2 + β + βL

nβ
(eT )

C
min{C + 1, C log (eT )}.

Proof of Theorem 5. Recall that ut
k are independent for all k≤ K, t≤T and the loss function is

Lipschitz and smooth . The last display and the triangle inequality give

δt+1 ≤ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥

+
αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
[
1 + αt

(
ΓK
d + 1

)
β
]
δt +

2αtL
(
ΓK
d + 1

)
n

+ µβCdαt

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+ µβCdαt

)
T∏

j=t+1

(
1 + αj

(
ΓK
d + 1

)
β
)

Under the choice αt ≤ C

t(ΓK
d +1)β

the last display gives

δT ≤
(
2L

n
Γd
K + µβCd

) T∑
t=1

αt

T∏
j=t+1

(
1 + βαj

(
1 + Γd

K

))
≤Γd

K + 1

n
(2 + c)L

T∑
t=1

C

t
(
Γd
K + 1

) T∏
j=t+1

(
1 +

Cβ

j

)

≤ (2 + c)L

n

T∑
t=1

C

t
exp

 T∑
j=t+1

Cβ

j

 ≤ (2 + c)L

n

T∑
t=1

C

t
exp

(
Cβ log

(
eT

t+ 1

))

=
C(2 + c)L

n

T∑
t=1

1

t

(
eT

t+ 1

)Cβ

≤ C(eT )Cβ(2 + c)L

n

T∑
t=1

1

tCβ+1

≤ (eT )Cβ(2 + c)L

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Then the generalization error of ZO-GD with 2-point gradient estimation is bounded by

ϵgen ≤ (eT )Cβ(2 + c)L2

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Theorem 16 (convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, convex and β-smooth
for all z ∈ Z . Consider the update rule Eq.equation 14 with T the total number of iterates,
αt ≤ C/

(
Γk
d + 1

)
t for some (fixed) C > 0 and for all t ≤ T . Then the generalization error of

ZO-GD with 2-point gradient estimation is bounded by

ϵgen ≤ (2 + c)L2

n
(eT )

Cβ
min{Cβ + 1

β
,C log (eT )}.
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Proof of Theorem 16. Recall that η = 1, ut
k are independent for all k≤ K, t≤T and the loss function

is Lipschitz and smooth. The last display and the triangle inequality give

δt+1 ≤ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥

+
αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
(
1 + αtΓ

K
d β
)
δt +

2αtL
(
ΓK
d + 1

)
n

+ µβCdαt

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+ µβCdαt

)
T∏

j=t+1

(
1 + αjΓ

K
d β
)

Under the choice αt ≤ C

t(ΓK
d +1)β

the last display gives

δT ≤
(
2L

n
Γd
K + µβCd

) T∑
t=1

αt

T∏
j=t+1

(
1 + βαjΓ

K
d

)
≤Γd

K + 1

n
(2 + c)L

T∑
t=1

C

t
(
Γd
K + 1

) T∏
j=t+1

(
1 +

Cβ

j

)

≤ (2 + c)L

n

T∑
t=1

C

t
exp

 T∑
j=t+1

Cβ

j

 ≤ (2 + c)L

n

T∑
t=1

C

t
exp

(
Cβ log

(
eT

t+ 1

))

=
C(2 + c)L

n

T∑
t=1

1

t

(
eT

t+ 1

)Cβ

≤ C(eT )Cβ(2 + c)L

n

T∑
t=1

1

tCβ+1

≤ (eT )Cβ(2 + c)L

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Then the generalization error of ZO-GD with 2-point gradient estimation is bounded by

ϵgen ≤ (eT )Cβ(2 + c)L2

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Theorem 17 (strongly convex). Assume that the loss f(·, z) ∈ [0, 1] is L-Lipschitz, γ-strongly convex
and β-smooth for all z ∈ Z . Consider the update rule Eq.equation 14 with T the total number of
iterates, αt ≤ C/

(
Γk
d + 1

)
t for some (fixed) C > 0 and for all t ≤ T . Then the generalization error

of ZO-GD with 2-point gradient estimation is bounded by

ϵgen ≤ (2 + c)L2

n
(eT )

Cβ
min{Cβ + 1

β
,C log (eT )}.

Proof of Theorem 16. Recall that η = 1− αtβγ
β+γ , ut

k are independent for all k≤ K, t≤T and the loss
function is Lipschitz and smooth. The last display and the triangle inequality give

δt+1 ≤ηδt +
2αtL

n
+

αt

n
ΓK
d

n∑
i=1,i̸=j

∥∇f(wt, zi)−∇f(w′
t, zi)∥

+
αt

n
ΓK
d

∥∥∇f(wt, zj)−∇f(w′
t, z

′
j)
∥∥+ αtµβCd

≤
(
1 + αtΓ

K
d β − αtβγ

β + γ

)
δt +

2αtL
(
ΓK
d + 1

)
n

+ µβCdαt
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Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

(
ΓK
d + 1

)
n

+ µβCdαt

)
T∏

j=t+1

(
1 + αjΓ

K
d − αtβγ

β + γ
β

)

Under the choice αt ≤ C

t(ΓK
d +1)β

the last display gives

δT ≤
(
2L

n
Γd
K + µβCd

) T∑
t=1

αt

T∏
j=t+1

(
1 + βαjΓ

K
d − αtβγ

β + γ

)

≤
(
2L

n
Γd
K + µβCd

) T∑
t=1

αt

T∏
j=t+1

(
1 + βαj(Γ

K
d + 1)

)
≤Γd

K + 1

n
(2 + c)L

T∑
t=1

C

t
(
Γd
K + 1

) T∏
j=t+1

(
1 +

Cβ

j

)

≤ (2 + c)L

n

T∑
t=1

C

t
exp

 T∑
j=t+1

Cβ

j

 ≤ (2 + c)L

n

T∑
t=1

C

t
exp

(
Cβ log

(
eT

t+ 1

))

=
C(2 + c)L

n

T∑
t=1

1

t

(
eT

t+ 1

)Cβ

≤ C(eT )Cβ(2 + c)L

n

T∑
t=1

1

tCβ+1

≤ (eT )Cβ(2 + c)L

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Then the generalization error of ZO-GD with 2-point gradient estimation is bounded by

ϵgen ≤ (eT )Cβ(2 + c)L2

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Proof of Theorem 6. Recall that t ≤ T and the loss function is Lipschitz and smooth . The last
display and the triangle inequality give

δt+1 ≤ ηδt +
2αtL

n
+ µβαt.

In this case we can use the 1-expansivity of the update rule G̃t which uses the fact that the objective
function is convex, αt ≤ 2/β and µ ≤ c

n . Hence, we have

E [δt+1] ≤ E [δt] +
2αtL+ αtβc

n
.

Unraveling the recursion gives

E [δT ] ≤
2L+ βc

n

T∑
t=1

αt.

Then the generalization error of ZO-GD with coordinate gradient estimation is bounded by

ϵgen ≤ 2L2 + βcL

n

T∑
t=1

αt.

In this case we can use the (1− αγ)-expansivity of the update rule G̃t which uses the fact that the
objective function is γ-strongly convex , αt ≤ 1/β and µ ≤ c

n . Hence, we have

E [δt+1] ≤ (1− αγ)E [δt] +
2αtL+ αtβc

n
.
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Unraveling the recursion gives

E [δT ] ≤
2αL+ αβc

n

T∑
t=0

(1− αγ)
t ≤ 2L+ βc

nγ
.

Then the generalization error of ZO-GD with coordinate gradient estimation is bounded by

ϵgen ≤ 2L2 + βcL

nγ
.

In this case we can use the (1 + αtβ)-expansivity of the update rule G̃t which uses the fact that the
objective function is Lipschitz, smooth and µ ≤ cL

nβ . Hence, we have

E [δt+1] ≤ (1 + αtβ)E [δt] +
2αtL+ αtβc

n

Then by solving the recursion we find

δT ≤
T∑

t=1

(
2αtL

n
+

αtβc

n

) T∏
j=t+1

(1 + αjβ) .

Under the choice αt ≤ C
t the last display gives

δT ≤ (2 + c)L

n

T∑
t=1

αt

T∏
j=t+1

(1 + βαj) ≤
(2 + c)L

n

T∑
t=1

C

t

T∏
j=t+1

(
1 +

Cβ

j

)

≤ (2 + c)L

n

T∑
t=1

C

t
exp

 T∑
j=t+1

Cβ

j

 ≤ (2 + c)L

n

T∑
t=1

C

t
exp

(
Cβ log

(
eT

t+ 1

))

=
C(2 + c)L

n

T∑
t=1

1

t

(
eT

t+ 1

)Cβ

≤ C(eT )Cβ(2 + c)L

n

T∑
t=1

1

tCβ+1

≤ (eT )Cβ(2 + c)L

n
min

{
Cβ + 1

β
,C log(eT )

}
.

Then the generalization error of ZO-GD with coordinate gradient estimation is bounded by

ϵgen ≤ (eT )Cβ(2 + c)L2

n
min

{
Cβ + 1

β
,C log(eT )

}
.

I PROOF OF SVRG GENERALIZATION ANALYSIS

I.1 SVRG

Theorem 18 (Convex Case). Assume that the loss function f(·; z) is β-smooth, convex and L-
Lipschitz for every z. Suppose that we run SVRG with step sizes αt ≤ c/ms for m steps. Then, at
stage S we have

E[δS ] ≤
6cL

ns
+

(
2βc

s
+ 1

)
E[δS−1].

After S stages, SVRG satisfies uniform stability with

ϵgen ≤ 6L (eS)
2βc

n
min

{
c+ β−1, c log(eS)

}
.
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Theorem 19 (Strongly Convex Case). Assume that the loss function f(·; z) is β-smooth,γ-strongly
convex and L-Lipschitz for every z. Suppose that we run SVRG with step sizes αt ≤ 1/β for m steps.
Then, at one stage we have

E[δt + 1] ≤ (1− αγ)E[δt] + 2αβ[δ1] +
6Lαt

n
.

After S stages, SVRG satisfies uniform stability with

ϵgen ≤ 6SL2

nγ
.

Theorem 20 (Nonconvex Case). Assume that the loss function f(·; z) is β-smooth, and L-Lipschitz
for every z. Suppose that we run SVRG with step sizes αt ≤ C/ms for m steps. Then, at stage S we
have

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6CL

ns
exp

Cβ

s
.

After K stages, SVRG satisfies uniform stability with

ϵgen ≤ 2L2eCβS3Cβ

nβ
.

At stage S, we have

E[δt+1] ≤ ∥wt − w′
t − αt (∇f (wt, zt)−∇f (w′

t, zt))∥+ αt ∥∇f (w1, zt)−∇f (w′
1, zt)∥

+ αt

∥∥∥∥∥∥ 1n
n∑

i=1,i̸=j

∇f (w1, zi)−
1

n

n∑
i=1,i̸=j

∇f (w′
1, zi)

∥∥∥∥∥∥
+

αt

n

∥∥∇f (w1, zj)−∇f
(
w′

1, z
′
j

)∥∥
≤ ηE[δt] +

2Lαt

n
+ αtβE[δ1] +

2Lαt

n
+ αtβE[δ1] +

2Lαt

n

= ηE[δt] + 2αtβE[δ1] +
6Lαt

n
.

Proof of Theorem 18.

E[δt+1] ≤E[δt] + 2αtβE[δ1] +
6Lαt

n

≤6L

n

m∑
t=1

αt +

(
2β

m∑
n=1

αt + 1

)
E[δ1] ≤

6L

n

m∑
t=1

C

ms
+

(
2β

m∑
n=1

C

ms
+ 1

)
E[δ1]

≤6CL

ns
+

(
2βC

s
+ 1

)
E[δ1].

For the S-stage, we have ws = wm and wS−1 = w1. Then

E[δS ] ≤
6CL

ns
+

(
2βC

s
+ 1

)
E[δS−1].

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6CL

n

S∑
s=1

1

s

S∏
j=s+1

(
1 +

2βC

j

)
≤ 6L (eS)

2βC

n
min

{
C + β−1, C log(eS)

}
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ 6L2 (eS)
2βC

n
min

{
C + β−1, C log(eS)

}
.
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Proof of Theorem 19.

E[δt + 1] ≤ (1− αγ)E[δt] + 2αβ[δ1] +
6Lα

n

= (1− αγ)
m E[δ1] + 2αβ

m−1∑
t=1

(1− αγ)
t E[δ1] +

6Lα

n

m−1∑
t=0

(1− αγ)
t

≤ 6Lα

n

(
1− (1− αγ)

m

αγ

)
+

(
(1− (1− αγ)

m
)
2β

γ
+ (1− αγ)

m

)
E[δ1]

≤ E[δ1] +
6L

nγ
.

For the S-stage, we have ws = wm and wS−1 = w1. Then

E[δS ] ≤ E[δS−1] +
6L

nγ
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6SL

nγ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ 6SL2

nγ
.

Proof of Theorem 20.

E[δt+1] ≤ (1 + αtβ)E[δt] + 2αtβE[δ1] +
6Lαt

n

≤
(
1 +

Cβ

sm

)
E[δt] +

2Cβ

sm
E[δ1] +

6CL

nsm

=

(
1 +

Cβ

sm

)m

E[δ1] +
2Cβ

sm

m∑
t=0

(
1 +

Cβ

sm

)t

δ1 +
6LC

nsm

m∑
t=0

(
1 +

Cβ

sm

)t

≤ exp
Cβ

s
E[δ1] +

2Cβ

s
exp

Cβ

s
E[δ1] +

6CL

ns
exp

Cβ

s

=exp
Cβ

s

(
1 +

2Cβ

s

)
E[δ1] +

6CL

ns
exp

Cβ

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6CL

ns
exp

Cβ

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6LCeCβ

n

S∑
s=1

1

s

S∏
j=s+1

exp
3Cβ

j

≤6LCe3CβSCβ

n

S∑
s=1

1

s

1

(s+ 1)
3Cβ

≤6LCe3CβSCβ

n

S∑
s=1

1

s1+3Cβ

≤2Le3CβS3Cβ

nβ
.
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Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ 2L2eCβS3Cβ

nβ
.

I.2 ZO-SVRG

Proof of Theorem 7. Recall that η = 1 + αtβ, and then we have

E[δt+1] ≤
(
1 + αtβ

(
Γk
d + 1

)
+

αtLAd

µ

)
E[δt] + 2

(
αtβ

(
Γk
d + 1

)
+

αtLAd

µ

)
E[δ1]

+
6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt +

Ad

µn

≤
(
1 +

C

sm

)
E[δt] +

2C

sm
E[δ1] +

6L2C + 3βc+ 3βLC

nβLsm

≤
(
1 +

C

sm

)m

E[δ1] +
2C

sm

m∑
t=0

(
1 +

C

sm

)t

δ1

+
6L2C + 3βC + 3βLC

nβLsm

m∑
t=0

(
1 +

C

sm

)t

≤ exp
C

s

(
1 +

2C

s

)
E[δ1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
C

s

(
1 +

2C

s

)
E[δS−1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6L2 + 3β + 3βL

nβL

S∑
s=1

1

s

S∏
j=s+1

exp
3C

j

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s

1

(s+ 1)
3C

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s1+3C

≤
(
2L2 + β + βL

)
eCS3C

nβLC
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤
(
2L2 + β + βL

)
eCS3C

nβC
.

Theorem 21 (convex). Assume that the loss function f(·; z) is β-smooth, convex, and L-Lipschitz
for every z. Suppose that we run ZO-SVRG with step sizes αt ≤ C/

(
sm(β(Γk

d + 1) + LAd

µ )
)

for T steps. After S stages, ZO-SVRG satisfies with Then, at stage S we have E[δS ] ≤
exp Cβ

s

(
1 + 2βc

s

)
E[δS−1] +

6L2+3β+3βL
βLns exp C

s . After S stages, ZO-SVRG satisfies with ϵgen ≤
(2L2 + β + βL)S3C expC/(Cβn).
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Proof of Theorem 21. Recall that η = 1, and then we have

E[δt+1] ≤
(
1 + αtβΓ

k
d +

αtLAd

µ

)
E[δt] + 2

(
αtβΓ

k
d +

αtLAd

µ

)
E[δ1]

+
6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt +

Ad

µn

≤
(
1 +

C

sm

)
E[δt] +

2C

sm
E[δ1] +

6L2C + 3βc+ 3βLC

nβLsm

≤
(
1 +

C

sm

)m

E[δ1] +
2C

sm

m∑
t=0

(
1 +

C

sm

)t

δ1 +
6L2C + 3βC + 3βLC

nβLsm

m∑
t=0

(
1 +

C

sm

)t

≤ exp
C

s

(
1 +

2C

s

)
E[δ1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
C

s

(
1 +

2C

s

)
E[δS−1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6L2 + 3β + 3βL

nβL

S∑
s=1

1

s

S∏
j=s+1

exp
3C

j

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s

1

(s+ 1)
3C

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s1+3C

≤
(
2L2 + β + βL

)
eCS3C

nβLC
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤
(
2L2 + β + βL

)
eCS3C

nβC
.

Theorem 22 (strongly convex). Assume that the loss function f(·; z) is β-smooth, γ-strongly convex,
and L-Lipschitz for every z. Suppose that we run ZO-SVRG with step sizes αt ≤ C/

(
sm(β(Γk

d +

1) + LAd

µ )
)

for T steps. After S stages, ZO-SVRG satisfies with Then, at stage S we have E[δS ] ≤

exp Cβ
s

(
1 + 2βc

s

)
E[δS−1] +

6L2+3β+3βL
βLns exp C

s . After S stages, ZO-SVRG satisfies with

ϵgen ≤ (2L2 + β + βL)S3C expC/(Cβn).

Proof of Theorem 22. Recall that η = 1− αtβγ
β+γ , and then we have

E[δt+1] ≤
(
1 + αtβΓ

k
d − αtβγ

β + γ
+

αtLAd

µ

)
E[δt] + 2

(
αtβΓ

k
d +

αtLAd

µ

)
E[δ1]

+
6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt +

Ad

µn

≤
(
1 + αtβ(Γ

k
d + 1) +

αtLAd

µ

)
E[δt] + 2

(
αtβΓ

k
d +

αtLAd

µ

)
E[δ1]
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+
6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt +

Ad

µn

≤
(
1 +

C

sm

)
E[δt] +

2C

sm
E[δ1] +

6L2C + 3βc+ 3βLC

nβLsm

≤
(
1 +

C

sm

)m

E[δ1] +
2C

sm

m∑
t=0

(
1 +

C

sm

)t

δ1 +
6L2C + 3βC + 3βLC

nβLsm

m∑
t=0

(
1 +

C

sm

)t

≤ exp
C

s

(
1 +

2C

s

)
E[δ1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
C

s

(
1 +

2C

s

)
E[δS−1] +

6L2 + 3β + 3βL

nβLs
exp

C

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6L2 + 3β + 3βL

nβL

S∑
s=1

1

s

S∏
j=s+1

exp
3C

j

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s

1

(s+ 1)
3C

≤
(
6L2 + 3β + 3βL

)
eCS3C

nβL

S∑
s=1

1

s1+3C

≤
(
2L2 + β + βL

)
eCS3C

nβLC
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤
(
2L2 + β + βL

)
eCS3C

nβC
.

Proof of Theorem 8.

E[δt+1] ≤
(
1 + αtβ

(
Γk
d + 1

))
E[δt] + 2αtβ

(
Γk
d + 1

)
E[δ1] +

6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt

≤
(
1 +

Cβ

sm

)
E[δt] +

2Cβ

sm
E[δ1] +

6CL+ 3cC

nsm

≤
(
1 +

Cβ

sm

)m

E[δ1] +
2Cβ

sm

m∑
t=0

(
1 +

Cβ

sm

)t

δ1 +
6LC + 3cC

nsm

m∑
t=0

(
1 +

Cβ

sm

)t

≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δ1] +

6L+ 3c

nβ
exp

Cβ

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6L+ 3c

nβ
exp

Cβ

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
(6L+ 3c)eCβ

nβ

S∑
s=1

1

s

S∏
j=s+1

exp
3Cβ

j
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≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s

1

(s+ 1)
3Cβ

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s1+3Cβ

≤ (2L+ c)eCβS3Cβ

nβ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ (2L2 + cL)eCβS3Cβ

nβ
.

Theorem 23 (convex). Assume that the loss function f(·; z) is β-smooth, convex,and L-Lipschitz for
every z. Suppose that we run ZO-SVRG with step sizes αt ≤ C/sm

(
Γk
d + 1

)
for T steps. After S

stages, ZO-SVRG satisfies

ϵgen ≤ (2L2 + cL)S3βC expCβ/(βn).

Proof of Theorem 23. Recall η = 1, then we have

E[δt+1] ≤
(
1 + αtβΓ

k
d

)
E[δt] + 2αtβΓ

k
dE[δ1] +

6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt

≤
(
1 +

Cβ

sm

)
E[δt] +

2Cβ

sm
E[δ1] +

6CL+ 3cC

nsm

≤
(
1 +

Cβ

sm

)m

E[δ1] +
2Cβ

sm

m∑
t=0

(
1 +

Cβ

sm

)t

δ1 +
6LC + 3cC

nsm

m∑
t=0

(
1 +

Cβ

sm

)t

≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δ1] +

6L+ 3c

nβ
exp

Cβ

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6L+ 3c

nβ
exp

Cβ

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
(6L+ 3c)eCβ

nβ

S∑
s=1

1

s

S∏
j=s+1

exp
3Cβ

j

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s

1

(s+ 1)
3Cβ

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s1+3Cβ

≤ (2L+ c)eCβS3Cβ

nβ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ (2L2 + cL)eCβS3Cβ

nβ
.
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Theorem 24 (strongly convex). Assume that the loss function f(·; z) is β-smooth, convex,and L-
Lipschitz for every z. Suppose that we run ZO-SVRG with step sizes αt ≤ C/sm

(
Γk
d + 1

)
for T

steps. After S stages, ZO-SVRG satisfies

ϵgen ≤ (2L2 + cL)S3βC expCβ/(βn).

Proof of Theorem 24. Recall η = 1− αtβγ
β+γ , then we have

E[δt+1] ≤
(
1 + αtβΓ

k
d − αtβγ

β + γ

)
E[δt] + 2αtβΓ

k
dE[δ1] +

6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt

≤
(
1 + αtβ(Γ

k
d + 1)

)
E[δt] + 2αtβΓ

k
dE[δ1] +

6L
(
Γk
d + 1

)
αt

n
+ 3µβCdαt

≤
(
1 +

Cβ

sm

)
E[δt] +

2Cβ

sm
E[δ1] +

6CL+ 3cC

nsm

≤
(
1 +

Cβ

sm

)m

E[δ1] +
2Cβ

sm

m∑
t=0

(
1 +

Cβ

sm

)t

δ1 +
6LC + 3cC

nsm

m∑
t=0

(
1 +

Cβ

sm

)t

≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δ1] +

6L+ 3c

nβ
exp

Cβ

s
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6L+ 3c

nβ
exp

Cβ

s
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
(6L+ 3c)eCβ

nβ

S∑
s=1

1

s

S∏
j=s+1

exp
3Cβ

j

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s

1

(s+ 1)
3Cβ

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s1+3Cβ

≤ (2L+ c)eCβS3Cβ

nβ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ (2L2 + cL)eCβS3Cβ

nβ
.

Proof of Theorem 9 (Nonconvex).

E[δt+1] ≤ (1 + αtβ)E[δt] + 2αtβE[δ1] +
6Lαt

n
+ 3µβαt

≤
(
1 +

Cβ

sm

)
E[δt] +

2Cβ

sm
E[δ1] +

6CL+ 3cC

nsm

≤
(
1 +

Cβ

sm

)m

E[δ1] +
2Cβ

sm

m∑
t=0

(
1 +

Cβ

sm

)t

δ1 +
6LC + 3cC

nsm

m∑
t=0

(
1 +

Cβ

sm

)t

≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δ1] +

6L+ 3c

nβ
exp

Cβ

s
.
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For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ exp
Cβ

s

(
1 +

2Cβ

s

)
E[δS−1] +

6L+ 3c

nβ
exp

Cβ

s
..

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
(6L+ 3c)eCβ

nβ

S∑
s=1

1

s

S∏
j=s+1

exp
3Cβ

j

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s

1

(s+ 1)
3Cβ

≤ (6L+ 3c)eCβS3Cβ

n

S∑
s=1

1

s1+3Cβ

≤ (2L+ c)eCβS3Cβ

nβ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ (2L2 + cL)eCβS3Cβ

nβ
.

Proof of Theorem 9 (Convex) .

E[δt+1] ≤E[δt] + 2αtβE[δ1] +
(6L+ 3c)αt

n

≤ (6L+ 3c)

n

m∑
t=1

αt +

(
2β

m∑
n=1

αt + 1

)
E[δ1]

≤6L+ 3c

n

m∑
t=1

C

ms
+

(
2β

m∑
n=1

C

ms
+ 1

)
E[δ1]

≤6CL+ 3cC

ns
+

(
2βC

s
+ 1

)
E[δ1].

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤
6cL+ 3cC

ns
+

(
2βc

s
+ 1

)
E[δS−1].

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6CL+ 3cC

n

S∑
s=1

1

s

S∏
j=s+1

(
1 +

2βc

j

)

≤ (6L+ 3c) (eS)
2βc

n
min

{
c+ β−1, c log(eS)

}
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ (6L2 + 3cL) (eS)
2βc

n
min

{
c+ β−1, c log(eS)

}
.
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Proof of Theorem 9 (Strongly Convex).

E[δt + 1] ≤ (1− αγ)E[δt] + 2αβ[δ1] +
(6L+ 3c)α

n

= (1− αγ)
m E[δ1] + 2αβ

m−1∑
t=1

(1− αγ)
t E[δ1] +

(6L+ 3c)α

n

m−1∑
t=0

(1− αγ)
t

≤ (6L+ 3c)α

n

(
1− (1− αγ)

m

αγ

)
+

(
(1− (1− αγ)

m
)
2β

γ
+ (1− αγ)

m

)
E[δ1]

≤ E[δ1] +
6L+ 3c

nγ
.

For the S-stage, we have ws = wm and wS−1 = w1. Then,

E[δS ] ≤ E[δS−1] +
6L+ 3c

nγ
.

Summing the above inequality for S stages, and unraveling the recursion gives

E[δS ] ≤
6LS + 3cS

nγ
.

Note that E |f (wT ; z)− f (w′
T ; z)| ≤ LE [δT ], then we have

ϵgen ≤ 6SL2 + 3cLS

nγ
.
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