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A BACKGROUND ON GROUP THEORY

As a reminder, we will present a series of basic definitions from group theory. These definitions can
serve as points of reference from the main body of the paper.

Definition A.1. A group G is a set equipped with a binary operation i1 : G X G — G, usually
denoted just by (g1, g2) — g192, satisfying the following axioms:

* Associativity: For all g1, g2, 93 € G, (9192)93 = 91(g293)-

¢ Identity Element: There exists an element 1 € G, called the identity element, such that for
alge G, gl =1g=g.

* Inverse Element: For every element g € G, there exists an element g’1 € @G, called the
inverse element of g, such that gg=! = g~ 1g = 1.

An arbitrary group can be expressed as a quotient (Definition [A.6) of a free group.

Definition A.2. Let X be a set. The free group F' on X is a group defined as follows: F' consists of
all reduced words (finite sequences) on elements of S and their formal inverses, equipped with the
operation of concatenation followed by reduction. The reduction operation eliminates pairs of the
form xz~! and z~'z. The identity element of F is the empty word.

Free groups, in comparison with arbitrary groups, have a simple algebraic structure, so as their
subgroups, i.e. subsets closed under group operations.

Theorem A.3 (Nielsen—Schreier theorem, (Kargapolov & Merzljakov, 1979, Section 14.3)). Every
subgroup of a free group is free.

Subgroups R; of Definition[I] that we are dealing with, are defined in a way that they are closed
under conjugation operation.

Definition A.4. Let GG be a group. A subgroup N of G is called a normal subgroup if and only if for
every g € G and n € N, the element n9 = g~ 'ngis alsoin N.

Definition A.5. Let G be a group and .S be a subset of G. The normal closure of S in G, denoted
by (S)¢, is the smallest normal subgroup of G that contains S. It is the intersection of all normal
subgroups of G containing S.

Wu’s formula (@) involves a quotient of an intersection of R;’s by their symmetric commutator
subgroup.

Definition A.6. Let G be a group and N be a normal subgroup of G. The quotient group of G by N,
denoted by G/N, is the set of cosets of N in G, i.e. subsets of G of the form gN = {gn|n € N},
with group operations induced from G.

Finally, some of our methods rely on the presentations of R; as kernels of homomorphisms d;, i.e.
maps between groups that preserve group operations, see also Formula (8).

Definition A.7. A kernel of a group homomorphism f : G — H is the following subset:
ker f ={g € G|f(g) =1}

Note that the kernel of a group homomorphism G — H is always a normal subgroup of G.

Throughout the paper, we utilize the notion of commutators and conjugations, which were introduced
in Section 3] to provide a shorter representation of words in a free group. There is a number of
identities, involving commutatrors, that hold for all elements of any group, for instance:

[z, 2y] = [, ][z, 2] [z, 2, y]

[z2,y] = [z, ][z, y, 2][2, Y]

Ly, 2

[z,y~ @[z a Yt =L

The last identity, called the Hall-Witt identity is a “non-abelian” version of the Jacobi identity in
Lie algebras. As mentioned at the end of Section these identities enable us to express every
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commutator as a product of iterated commutators of the same length. For example, for commutator
[[a, ], [¢, d]], the Hall-Witt identity reads:

[a,b,[c,d]” b7, [d, ], )@V e,d,a"t, 67" =1

and since 1
', [d,d,a] = [d,c,b~ ! ol el

we get
[[a,0], [e, d)] = [e,d,a™ 1,671~ [d, e, b1, b ldelljledld,

B BACKGROUND ON SIMPLICIAL HOMOTOPY THEORY

In this section we will provide a brief overview of the historical development of the concept of
homotopy groups (see also (Hiltonl [1988)). Subsequently, we will delve into the basics of simplicial
homotopy theory and the description of Wu’s formula within the context of simplicial groups.

B.1 HISTORY OVERVIEW

As a distinguished area of mathematics, algebraic topology was surfaced since the end of XIX
century. During this time, mathematicians realized that certain important properties of geometric
objects, like properties of vector fields on a manifolds or solutions of differential equations on them
are controlled by fopological properties of the underlying objects of study, rather than geometric
or analytic characteristics. This realization prompted the need for algebraic invariants that could
discern between classes of spaces with similar topological properties and aid in their classification.
Historically, one of the first invariant was homology H, of space, shortly followed by a fundamental
group 7.

Such invariants were able to distinguish spaces up fo homotopy equivalence. Specifically, two maps
fyg: X =Y are called homotopic, if there is a family of maps h; : X — Y, t € [0, 1], continuous
in ¢, which “connects” f to g in a sense that hg = f, hy = ¢. Similarly, two spaces X,Y are
homotopy equivalent if there exist maps X < Y, which compositions with each other are homotopic
to identities.

Generalizing 71, the series of higher invariants 7., called the homotopy groups, were defined as
homotopy classes of maps from higher dimensional spheres S™ to a space of interest. Stronger
than homology, homotopy groups capture the substantial part of a homotopy type of space, which
we nowadays call a weak homotopy type. Extremely difficult to compute and comprehend, till
today, homotopy groups remain the main object of interest in algebraic topology. Various flavors of
homotopy theory have been developed, including stable homotopy, v, -periodic homotopy and others,
each with corresponding homotopy groups that are more tractable and accessible than the classical
ones.

In parallel with the development of various algebraic invariants for classifying spaces, the concept of
space itself has undergone several formalizations within homotopy theory. Initially, the notion of
a space referred to a fopological space, which consisted of a set equipped with a chosen collection
of subsets called a fopology. Later the concept of an (abstract) simplicial complex emerged as a
combinatorial notion of space, suitable for defining homology groups. This notion was subsequently
refined to that of a simplicial set.

Homotopy theory of simplicial sets, which is both combinatorial and algebraic in nature, now serves
as the foundation for more advanced concepts in abstract homotopy theory, such as simplicial model
categories, quasicategories, simplicial localizations, and others. Within the scope of the current paper,
a specific type of simplicial sets called simplicial groups holds particular significance. Simplicial
groups serve as a crucial link between simplicial homotopy theory and group theory, offering a
concrete, algebraic, and computational-friendly framework.

B.2 SIMPLICIAL GROUPS AND WU’S FORMULA

We will now describe the relevant part of simplicial homotopy theory in greater detail. Simplicial
set (formally described as a functor A°? — Set) can be visualized (Mac Lane},2013)[Ch. 7.5] as a
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diagram of sets
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with maps d;, called faces and s;, called degeneracies which satisfy the simplicial identities:
didj = dj_ldi, 7 <j
8i8; = 8;Si—1, 1> ]
sjdsy i < ©)
dis; =< id, i € {j,j + 1}
sjdi—1, t>7+1

Drawing intuition from simplicial complexes, each X, can be thought of as a set of n-simplices, with
maps d; : X,, — X,,_1 indicate an i-th face of an n-simplex and maps s; : X,,_1 — X, indicate
ways how to consider (n — 1)-simplex as a (degenerate) n-simplex.

Simplicial sets were introduced by |[Eilenberg & Zilber| (1950) (originally under the name of semi-
simplicial complexes) for the needs of formalization of homology theory. When the abstract homotopy
theory became more articulated in the fundamental works of |Gabriel & Zisman|(2012) and |Quillen
(2006), it was shown that the corresponding homotopy theory is equivalent to the classical homotopy
theory of topological spaces. Although for some concrete work in homotopy theory simplicial
sets may better suited than topological spaces/cell complexes, regarding computations of homotopy
groups, bare simplicial sets have some difficulties when it comes to computation of homotopy groups.
For instance, the naive notion of homotopy is not an equivalence relation for all simplicial sets.

One of the possible solutions is to consider simplicial groups, i.e. simplicial sets which have a group
structure on the sets of their simplices, such that the maps d;, s; preserve this structure. A notable
advantage of simplicial groups is the very explicit description of their homotopy groups: if G is a
simplicial group, then

TG = 2= ©)

where 0,11 is a restriction of d,, 41 to the intersection of kernels of the next dimension. So the
homotopy groups of GG are identified with the quotients of intersections of kernels of face maps d; by
the images of the last face maps (restricted to a suitable intersection).

To get the Wu’s formula for 7,52 from (7), we will consider a particular simlicial group (more
precisely, the functor sSet — sGr) called the Milnor construction (Curtisl [1971)[Ch. 4]. Let X
be a connected simplicial set with a basepoint x. The Milnor construction for X, denoted by F'[X]
is a simplicial group obtained by level-by-level-wise application of the free group functor to X,
quotient by the relation * = 1. This means that n-simplices in Milnor’s construction F'[X] form free
group on n-simplices X,, with the identity of the group identified with a basepoint *. The reason
for introducing this construction is that for a connected simplicial set X the Milnor’s construction
F[X] has a homotopy type of loops over the suspension of X. For X = S on the level of homotopy

groups it means that
1, F[SY] = w1152

The simplicial circle S! consists of one non-degenerate 0-simplex, which is a basepoint * and one
non-degenerate 1-simplex o (plus the degeneracy sq(*)), and there are no non-degenerate simplices

in all higher dimensions.
0 @
Now simplicial identities (6) show that
F[SY, = Fl{zo, - 2n_1}]
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and faces are given by
Zj, j<ut

i) = S eiaa, G € (=110} dolas) = {
Tj_1,J > 1

Lj=0
3?j,j>0

Tj, j<n-—1
1,j=n—-1

do(zj) = {

It is shown in (Wu, 2001)) that the kernels ker d;, after an appropriate change of basis and relabeling,
can be identified with normal subgroups

kerdy = Ry = (1 ...x,) kerd; = Ry = (x;)F,i > 0, ®)

and the image in the denominator of Formula (7)) with their symmetric commutator subgroup

im6n+1 = [Ro,...,Rn]S = H [RU(O),...,RU(n)].

OEX i1

This is the idea behind the Wu’s formula.

C IMPLEMENTATION DETAILS

To operate with words in free groups we implemented a small Python module freegroup. In
this module we use lists of integers as the representation of words with the following mapping:
Tp — k,x,:l — —k.

As a base for our models we used GPT2 (Radford et al., 2019) implemented by huggingface (Wolf
et al., 2020). For n = 3 we used the model with ~ 2 - 10° parameters and for n = 4,5 we used
~ 50 - 10% parameters. We employed standard training framework with iterating through available
data and gathering examples to batches. We trained models for 2 - 10°,5 - 10° iterations with
batches of sizes 64,16 for n = 3 and n = 4,5 cases, respectively. For the optimization we
used AdamW (Loshchilov & Hutter, [2019) implemented by PyTorch (Paszke et al., 2017) with
learning rates: 10~* for n = 3 and 107° for n = 4,5. For the inference we used generation
algorithms implemented by huggingface. During sampling top_p = 0.9; during beam search
num_beams = ), repetition_penalty = 1.2.

Dataset parameters are the following:
» maximal length of a word = 200, 400, 600,

* maximal lengths of a word from Ry are 10,9, 8 for n = 3, 4, 5 respectively,
* maximal lengths of a word from R;, ¢ > 0 are 30, 30, 30 for n = 3, 4, 5 respectively.

D ADDITIONAL EXPERIMENTS, MODELS AND EXAMPLES

D.1 OTHER MODELS

In addition to the deep learning methods discussed in the main body of the paper, we explored several
other trainable and non-trainable machine learning approaches for word generation.

Fixed embeddings Alongside the development of deep learning models, which are in fact suitable
deep feature extractors coupled with a classifiers, we also investigated the usefulness of non-trainable
embeddings and experimented with different optimizers and machine learning classifiers applied on
top of them. The underlying motivation for this investigation was to transform the problem setting
from a discrete one to a continuous one, as most optimization and machine learning methods operate
more effectively in continuous domains.

The variant of the non-trainable embeddings that we investigated is based on the matrix representation
of free group. Using the group homomorphism p : F — SLo(R), called Sanov representa-

tion (Zubkovl, |1998|)
1 2 1 0
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the free group F» on two generators x and y can be embedded in a space of two-by-two matrices
with real coefficients (in fact, into a subgroup of matrices M with detM = 1)

The embedding of a free group F' on an arbitary number of generators n is obtained by inclusion
F — By, x> [2,9"].

Remark D.1. Note that for a word w € F' the magnitudes of coefficients in the matrix p(w) depends
exponentially on the length of w, making this embedding practically unfeasible. Nevertheless we
tested an optimization on this embedding space to evaluate a potential of non-trainable embeddings
on a small scale.

One of the advantages of matrix embeddings is that the homomorphisms d; : ' — F, such that
ker d; = R;, as in Formula (8] can be reinterpreted as a matrix operation of nullifying i-th column
denoted f;, ¢ > 0. At the same time, since p preserves the group operation, verifying whether w € R;
is equivalent to checking if f;p(w) is equal to the identity matrix 1.

We investigated various optimization procedures on this feature space, however, regrettably, the
method proved ineffective in generating any words for n > 3, even when considering the partial
intersection NJ—; I2;.

Remark D.2. We have also considered posibility of hyperbolic embedding, i.e. embeddings of the
(compact region of) Cayley graph of F' into hyperbolic plane H. We considered embedding by Sarkar
algorithm (Sarkar, 2012) or as an orbit of ¢ under p : F < SLo(R) acting on the upper half-plane
Cim>0 by Mobius transformations.

Both embeddings, although not isometric, retain certain metric properties of F', where the metric
structure of F' is determined by the word metric. However, during our preliminary investigations, we
discovered that the metric structure of F' might not be the most suitable setting for optimization in
our specific problem.

Activation maximization While experimenting with neural based classifiers for elements in R;,
we investigated the feasibility of methods from the area of interpretable neural networks. Technique
that we were studying, described in (Nguyen et al.| [2019), involves maximizing the activation of
specific neurons in a neural network to generate images that are most likely to activate those neurons.
We tried to adopt this method to the free group’s word generation as it was done for protein sequences
in (Linder & Seelig, 2021)).

Following (Killoran et al.l[2017), (Linder & Seelig) 2021)), we implemented the following approach.
If the classifier input is given by sequence of length M over the alphabet of size IV, then the latent
variable z of size N x M is representing the probabilities of each token on each position. Suppose
that classifier is trained up to a sufficiently high accuracy, then sampling with the probabilities from z
and feeding back the resulting words to the classifier, the relaxation procedure can be carried out in
the latent space of z.

The appeal of this approach comes from the fact that it can be extended to an ensemble of classifiers.
By maximizing the activation of all classifiers within the ensemble simultaneously using the same
latent variable z, the approach can be used to generate words from the intersection N; I?; that maximize
the activation of output neurons of all classifiers in the ensemble.

The appeal of this approach lies in its potential for extension to an ensemble of classifiers. By
maximizing the activation of all classifiers within the ensemble simultaneously using the same latent
variable z, the approach can be effectively applied across the entire ensemble.

In the end, the activation maximization method turned out to be incapable of generating at even short
non-trivial words from a single R;. Despite the continuous effort, we were unable to generate words
from the intersection using the joint activation maximization of multiple generators.

SeqGAN Another method that has been explored is generative adversarial networks (GANs) (Jabbar
et al.,2020), specifically the SeqGAN (Yu et al.,|[2017) approach. GANSs are a type of deep neural
network that can generate realistic synthetic data, such as images or text. SeqGAN focuses on
generating realistic sequences of data, such as sentences or musical compositions. However, while
GANSs have shown promising results in some applications (Jabbar et al.| |2020) and can be used in
similar circumstances (Yao et al.,[2019), they did not yield promising results in our problem.
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LSTM Ensemble Before developing the general masking approach, based on multi-labels, as men-
tioned in Remark 2] we investigated its particular realization based on the ensemble of deep models.
Our initial experiments were based on an ensemble of LSTM cells (Hochreiter & Schmidhuber,
[1997), in which each generator G is trained on the subgroup R; or some symmetric commutator
subgroup.

In generating the word from the intersection, to sample the next token from the ensemble we used a
temperature sampling, i.e. the probability of the next token yj, from a sequence y have a distribution

N
1
Yk ~ SoftmaX ; Z; wifgi (y) )

with weights w; for each generator fj, .

This approach allowed us to get first non-trivial elements from the full intersection. However, it was
subsequently surpassed by a more general masking approach, which has also been demonstrated to
be more scalable.

D.2 PROPERTIES OF SAMPLING FROM R;

)
° o

0.30 0.30

0.00 0.00 0.00
£ ) o3 £ 2 r3 T4 1 Ty T3 N

Figure 5: Length distribution (top) and occurrence ratio of generators x; (bottom) in the training
dataset subsample for the n = 3,4, 5.

D.3 TRANSLATOR MODEL

For a given word w € [F, F] there are multiple way to present it in form of a product of commutators.

Although there are algorithms to find such presentations (Hall, [T950), (Bartholdi et al.} 2015), the

presentations of long words in terms of basic commutators or as a product of ordinary (not iterated)
commutators are bulk and practically unusable. We are looking for short and concise presentations,
such as given in Table[T]

To tackle this challenge, we employed an encoder-decoder model (Vaswani et al.}[2017) as a translator
from a reduced word presentation to the commutator presentation.

The following procedure was implemented to generate the training and validation datasets:

1. A collection of random binary trees with a random number of leaves is generated.

2. The leaves of these trees are replaced with random words from a free group, ensuring that
the word length remained within predefined bounds.

3. These modified trees (represented as strings) served as the labels for our model , representing
a random commutators that we aim to translate.

19



Under review as a conference paper at ICLR 2024
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Figure 6: Illustration of commutator translator learning process. Loss with logarithmic scale (left)
and BLeU score on validation (right).

4. Inputs, corresponding to the labels are given by reduced words, obtained from labels by
opening all commutator brackets.

Subsequently, we employed a standard training method for the translation model. We used BERT (De-
vlin et al.| [2019) with 2 - 106 parameters as an encoder as well as a decoder. We used AdamW with
the learning rate 8 - 10~5 and the batch size equal to 64.

As with the main models (see Section[5), the training and validation datasets are generated in online
mode with the following parameters:

* number of generators n = 4,
* maximal length of a word = 250,
* maximal length of a leave = 3,

* maximal depth of a tree = 7.

The training process is presented on Figure 6]

D.4 EXAMPLES OF GENERATED WORDS

We provide some examples of generated words for n = 3,4 in commutator presentation for various
deep models and inference methods, see Section @ for additional details. The presentation is
obtained using translator model described above.

*n=23
% [y 'z 27t 2%, )], o] (prompt + beam)

[zy 2z~ 2,9, [z, 2y
[z, 2y], vy~ oy

([, 2], [, ylly, 2] (mask + sample)

]
] (ignore + sample)
]

s

Note that some of the generated words are not in the symmetric commutator subgroup.
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(ignore + beam)

[(zyzp)®, [~ 2], y]], ]

lyzpa 3,27, [2%, [pPypy ',y ]]}

[[zyzp, [y*, [, Z]]Lp}}

B 3 1 (ignore + sample)
x 7 pl, [2°, zyzprpryxc )

="y~ 2™ pl gl al, 23]}

[y, p~tzp), w2p®zta ™t

mask eam
2, [(ayp). [ )5 (mask + beany

1

([p*x ™ pepa™ pz, [pzp~tyzy ™', Iy, 2], wyzp] (mask + sample)

M2y e, Z],y},fﬂ],p]}

(1%, [t p~ L2~ Yy~ 1, [p, 1], 23] (prompt + beam)

(I~ "y°p, 2], p~ 'z wap], [wy2p, 2p°apas ™' 271
1.2 1 (prompt + sample)

[[zpz, y), 2~ 2a? 2 271, [[2ya, y '], p%]

D.5 DETAILS ON GREEDY ALGORITHM

Suppose we have a given prefix p = xyz and we aim to generate a word from the intersection of the
normal closures Ry = (z)', Ry = (y)', and R3 = (2)*". The corresponding stacks S; created for
each normal closure R; are S1 = [y, 2], S2 = [, 2], S3 = [z, y]. In a list of candidates for the next
token, the token 2z~ ! is excluded because it would reduce the length of the prefix p.

Next, the algorithm assigns points to each token based on the two criteria mentioned in Section[@}
The token y~! would receive a point because it reduces the length of the Ss. The tokens x and 2~
would receive points because they do not increase the length of S;. Similarly, v, y !, and z would
receive points because they do not increase the length of S and S5 respectively. The algorithm then
selects the token with the highest point value as the next token to add to the prefix. In this case, y~—*
has the highest number of points, so it would be selected as the next token to add to the prefix.

In the case of a “many-token” normal closure, such as Ry = (xyz)F , tokens receive points based on
their ability to bring the top of the corresponding stack Sy closer to a rotation of the normal closure.
In particular, if token zy, is the top of So, then the token Z (i 1) mod (n+1) Will receive a point.
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D.6 AUXILARY LEARNING CURVES

In Figures 79 we present additional graphs of learning process for various hyperparameters like
inference method and prefix length. Note that variable prefix allows more variability in models output
as well. Color coding is the same as in Figure 3} red for negative baseline, yellow for prompt, green
for masking, blue for ignore.
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Figure 7: Completion ratio with nucleus sampling for n = 3 and various length of prefixes k.
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Figure 8: Completion ratio with nucleus sampling for n = 4 and various length of prefixes k.
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Figure 9: Completion ratio with beam search for n = 4 and various length of prefixes k.
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