
ROS-PyBullet Interface

Christopher E. Mower

Nov 15, 2022

CONTENTS

1 Overview 3

2 Installation 5

3 Examples 7

4 Main Configuration 11

5 Create Virutal Worlds 17

6 Communication with ROS 21

7 Additional Features 23

8 Cite 29

9 Development 31

10 Acknowledgements 33

i

ii

ROS-PyBullet Interface

The ROS-PyBullet Interface is a bridge between the popular physics library PyBullet and the Robot Operating System
(ROS).

CONTENTS 1

https://pybullet.org/wordpress/
https://www.ros.org/
https://www.ros.org/

ROS-PyBullet Interface

2 CONTENTS

CHAPTER

ONE

OVERVIEW

Reliable contact simulation is a key requirement for the community developing (semi-)autonomous robots. Simulation,
data collection, and straight-forward interfacing with robot hardware and multi-modal sensing will enable the devel-
opment of robust machine learning algorithms and control approaches for real world applications. The ROS-PyBullet
Interface is a framework that provides a bridge between the popular Robot Operating System (ROS) with a reliable im-
pact/contact simulator Pybullet. Furthermore, this framework provides several interfaces that allow humans to interact
with the simulator that facilitates Human-Robot Interaction in a virtual world. Tutorial slides found here.

The main features of the framework is summarized as follows.

1. Online, full-physics simulation of robots using a reliable simulator. The framework uses Pybullet to enable well
founded contact simulation.

2. Integration with ROS ecosystem. Tracking the state of the world using Pybullet is integrated with ROS so that
users can easily plugin their work in a similar way that a real system might be controlled.

3. Several interfaces for humans. Providing demonstrations from humans requires an interface to the simulated
environment. In addition, utilizing a haptic interface the human can directly interact with the virtual world.

4. Modular and extensible design. Our proposed framework adopts a modular and highly extensible design
paradigm using Python. This makes it easy for practitioners to develop and prototype their methods for sev-
eral tasks.

5. Data collection with standard ROS tools. Since the framework provides an interface to ROS we can use common
tools for data collection such as ROS bags and rosbag_pandas.

6. Easily integrates with hardware. Tools are provided to easily remap the virtual system to physical hardware.

3

https://docs.google.com/presentation/d/1c7aYdl0kzYztaJyFgqGP7S1EfMuim9CGwq5VjEvhiQ8/edit?usp=sharing

ROS-PyBullet Interface

4 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

The following describes how to install the ROS-PyBullet Interface.

2.1 Requirements

• ROS Noetic

– Melodic, and past version should work fine (only Melodic has been tested) so long as you configure ROS
to use Python 3

– ROS2 is currently unsupported, however this is in-development

– catkin_tools

– rosinstall

– rosdep

• Ubuntu 20.04

– Other versions should work, provided Python 3 is installed

• Python 3

• urdf_parser_py, see here.

2.2 From binaries

Currently, this is in-progress.

2.3 From source

1. Create a catkin workspace or use an existing workspace. catkin_tools is the preferred build system.

2. cd to the src directory of your catkin workspace.

3. Clone this repository: $ git clone https://github.com/ros-pybullet/ros_pybullet_interface.
git

4. Install source dependencies: $ rosinstall . --catkin --nobuild

5. Install binary dependencies: $ rosdep update ; rosdep install --from-paths ./ -iry

6. Compile the workspace: $ catkin build -s

5

https://catkin-tools.readthedocs.io/en/latest/
http://wiki.ros.org/rosinstall
http://wiki.ros.org/rosdep
http://wiki.ros.org/urdfdom_py
https://catkin-tools.readthedocs.io/en/latest/quick_start.html#initializing-a-new-workspace
https://catkin-tools.readthedocs.io/en/latest/

ROS-PyBullet Interface

7. Source the workspace: $ source $(catkin locate)/devel/setup.bash

Now you should be able to run the examples.

6 Chapter 2. Installation

CHAPTER

THREE

EXAMPLES

The examples for the ROS-PyBullet Interface are collected in a dedicated ROS package rpbi_examples. The following
gives details for each example and shows how to run them.

3.1 Basic Examples

$ roslaunch basic_example_[NAME].launch

The basic examples simply demonstrate the current robots that can be loaded into PyBullet out-of-the-box. Each
example loads the given robot, and a node that generates a standardized motion on the robot. Some of the basic
examples demonstrate different features of the library (e.g. recording a video, loading a URDF from the ROS parameter
robot_description). The following list links to the launch file for all the currently available basic examples.

• Kuka LWR

• Talos

• Kinova

• Human model

• Nextage

Note, the Kuka LWR example additionally demonstrates how to start recording videos and also how to attach a Force-
Torque sensor to a robot joint.

7

https://github.com/ros-pybullet/ros_pybullet_interface/tree/main/rpbi_examples
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/scripts/basic_robot_example_node.py
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_kuka_lwr.launch
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_talos.launch
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_kinova.launch
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_human_model.launch
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_nextage.launch

ROS-PyBullet Interface

3.2 Human Interaction

$ roslaunch rpbi_examples human_interaction.launch

The goal of this example is to demonstrate how virtual forces, generated by the PyBullet simulator, can be rendered to
the human via a haptic device. We have integrated the 3D Systems Touch X Haptic Device into the framework, this is
a necessary peice of hardware to run the example. Ensure you connect your device and that it is setup by following the
instructions in the RViMLab/geomagic_touch_x_ros repository.

When the example is launched, allow the haptic device to move to a nominal configuration. After it is calibrated and
initialized you will be able to move the device up and down. The robot will track your movements in the z-axis until it
reaches a block below the end-effector. The forces detected from a Force-Torque sensor, attached to the robot wrist, is
rendered as feedback to the user - you will be able to feel the reaction forces through the device.

3.3 Adding/removing PyBullet Objects Programmatically

$ roslaunch rpbi_examples pybullet_objects_example.launch

8 Chapter 3. Examples

https://www.3dsystems.com/haptics-devices/touch-x
https://github.com/RViMLab/geomagic_touch_x_ros

ROS-PyBullet Interface

Pybullet objects of all types can be specified in the launch file, or they can be added or removed programmatically (or
even from the command line). This example demonstrates the ability of the ROS-PyBullet Interface to handle different
objects. In this example, a collision object is loaded (the floor), a visual object is attached to a tf2 frame moving in a
figure-of-eight (the blue sphere), and a dynamic object is programmatically added and removed (the yellow box).

3.4 Learning from demonstration and teleoperation

$ roslaunch rpbi_examples lfd.launch

In this example, we demonstrate how to easily connect the ROS-PyBullet Interface with an external ROS library. The
goal of the task is for the robot to push the yellow box into the green goal. When the example is launched, the robot
is initialized. You can interact with the demo using the keyboard - ensure the small window (the keyboard server) is
in focus. Press key 1 to send the robot to the initial position. Press key 2 to start and stop teleoperation - when this
is activated the robot states are being recorded (used as a demonstration to learn the DMP). Press key 3 once to learn
the DMP from the demonstration, and then again to plan and execute motion using the learned DMP. Note, the starting
position for the DMP is always random.

3.4. Learning from demonstration and teleoperation 9

ROS-PyBullet Interface

3.5 RGBD Sensor

$ roslaunch rpbi_examples soft_body.launch

In this example, we show how to setup an RGBD camera. This can be attached to any tf2 frame, i.e. it could be
attached to a robot link, for example. For this example, a similar scene is setup as in the pybullet objects example
above. However, in addition, we include an RGBD camera where the camera orbits the scene. The projected point
cloud is rendered in RVIZ as in the figure above.

3.6 Soft bodies

$ roslaunch rpbi_examples soft_body.launch

This simple example demonstrates how soft bodies can be loaded into Pybullet. In addition, this example highlights
how to load objects using the PybulletURDF object type - this is for loading objects (not robots) from a URDF file.
The torus is a soft body, and the box and floor plane are loaded from URDF. It is also possible to load soft bodies from
a URDF.

10 Chapter 3. Examples

CHAPTER

FOUR

MAIN CONFIGURATION

The ROS-PyBullet Interface is launched from a ROS .launch file. Configuring the interface amounts to passing a
.yaml file as follows.

<node pkg="ros_pybullet_interface" name="ros_pybullet_interface" type="ros_pybullet_
→˓interface_node.py" output="screen">
<rosparam param="config" file="path/to/config.yaml"/>

</node>

In the example above, the config.yaml file specifies the virtual world. This is the file where you can list what objects
and robots to load, specify visualization options, and configure PyBullet physics parameters.

4.1 Configuration files

We use yaml as the format for configuration files. Many of the tags used are directly passed to PyBullet functions. For
example, take the pybullet.setGravity method. In the ROS-PyBullet Interface node, during initialization of the PyBullet
instance, if the user provides the setGravity tag, as follows, in the main yaml configuration file (full details in next
section) then the pybullet.setGravity method is called.

setGravity:
gravX: 0.0
gravY: 0.0
gravZ: -9.81

Notice in the above example that the tag and sub-tags match the interface for the PyBullet method - this is deliberate.
Under-the-hood of the interface, the values given in the configuration file are directly passed to the corresponding
method in the PyBullet library. Please note that in all cases for the library functions, most methods take an optional
argument physicsClientId (for cases when multiple PyBullet servers are setup), this should not be passed - only a
single PyBullet server can be created. In all cases, the default values for the PyBullet library methods are used. There
are method in the PyBullet library that take a flags option. In this case, you can pass the strings (e.g. in the loadURDF
method, you can specify``flags`` as URDF_MERGE_FIXED_LINKS|URDF_USE_INERTIA_FROM_FILE). Note that not all
methods are exposed in this way.

The PyBullet library uses the camelCase style for its methods/parameters, we use this style for methods/parameters
that directly correspond to a library function. There are some tags that are used to generate different behavior with
regards to the interface itself. In this case, we use snake_case style to differentiate these parameters. The benefit
for this style-guide is that it allows you to easily tell the difference between parameters that are linked to PyBullet and
those that are linked to the interface. Furthermore, for the camelCase functions/parameters, you can look these up
in the PyBullet Quickstart Guide. Note, there are some exceptions to the rules however these are documented when
necessary.

11

https://yaml.org/
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.d6ihmmtes1id
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3

ROS-PyBullet Interface

Our basic “hello world example” is launched using basic_example_kuka_lwr.launch. The main configuration file,
config.yaml, is given as follows.

#
Basic example
#

#
Pybullet instance
#
connect:
connection_mode: 'GUI'
options: '--mp4=$HOME/basic_example_kuka_lwr.mp4'

setGravity:
gravX: 0.0
gravY: 0.0
gravZ: -9.81

timeStep: 0.01
start_pybullet_after_initialization: true
status_hz: 50

#
Pybullet visualizer
#
configureDebugVisualizer:
enable: 0
flag: 'COV_ENABLE_GUI'

resetDebugVisualizerCamera:
cameraDistance: 2.0
cameraYaw: 0.0
cameraPitch: -45.0
cameraTargetPosition: [0.0, 0.0, 0.0]

#
Pybullet objects
#
collision_objects:
- "{rpbi_examples}/configs/floor.yaml"

robots:
- "{rpbi_examples}/configs/basic_example_kuka_lwr/kuka_lwr.yaml"

#
Sensors
#

rgbd_sensor:
name: 'rgbd_sensor'
hz: 30

(continues on next page)

12 Chapter 4. Main Configuration

https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/launch/basic_example_kuka_lwr.launch
https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/rpbi_examples/configs/basic_example_kuka_lwr/config.yaml

ROS-PyBullet Interface

(continued from previous page)

this will project the depth to a point cloud
pointcloud: True
intrinsics:
width: 640
height: 480
fov: 40
range: [0.01, 10000]

object_tf:
tf_id: 'rpbi/camera'

You will notice that there are four main sections in the main configuration file: PyBullet instance, PyBullet visualizer,
PyBullet objects, and sensors. Details for each of these are given in the following sub-sections.

Note, the order in which these sections or the parameters themselves are listed does not necessarily need to be in any
particular ordering. However, we suggest you follow this convention so that configuration files are more readable.

4.2 PyBullet Instance

This section of the main configuration file allows you to setup the main PyBullet instance. The type of settings you can
set in this section relate to physical parameter (e.g. gravity), or time (e.g. simulator time-step), etc. Some parameters
are expected, and others are optional. The full list of possible parameters are listed as follows.

• connect (required), see PyBullet documentation. Note, the connection_mode can be passed as a string. Also
note, a very useful feature is recording videos of the interface - see the options parameter.

• setAdditionalSearchPath, see PyBullet documentation. Note, you can pass the string
"pybullet_data_path", this will add the additional search path given by pybullet_data.getDataPath().
Also note, that a list of paths can be given, these will all get added.

• resetSimulation, see PyBullet documentation.

• setGravity, see PyBullet documentation.

• timeStep [float], Each time PyBullet is stepped time-step will proceed with by this duration (secs). Default
is 0.02.

• setPhysicsEngineParameter, see PyBullet documentation.

• step_pybullet_manually [bool], this is always true when the connection mode is DIRECT. Otherwise, you
can specify PyBullet to be stepped manually inside a ROS Timer at the rate specified by the timeStep parameter.
Otherwise, PyBullet will step itself internally. Differences have been observed, however it is not clear exactly
what is happening inside the Bullet simulator source code.

• status_hz [int], this is the frequency that the status publisher is broadcast to ROS.

4.2. PyBullet Instance 13

ROS-PyBullet Interface

4.3 Visualizer

The main GUI visualization camera can be adjusted in this section. Parameters that correspond to the visualization are
listed as follows.

• configureDebugVisualizer, see the PyBullet documentation.

• resetDebugVisualizerCamera, see the PyBullet documentation. Note, the pose of the camera can be adjusted
by publishing new states to the ROS topic rpbi/reset_debug_visualizer_camera using the message type
ros_pybullet_interface/ResetDebugVisualizerCamera.

4.4 PyBullet Objects

There are several object types that are supported by the ROS-PyBullet Interface: robots, collision objects, dynamic
objects, visual objects, soft bodies, and objects loaded directly from a URDF file. This section of the main configuration
file allows you to specify all the objects you want in your virtual world by listing the path to the filename. You can
specify these as follows.

robots:
- "{ros_package}/path/to/robot.yaml"

collision_objects:
- "absolute/path/to/collision_obj.yaml"

dynamic_objects:
- "{ros_package}/path/to/dynamic_obj.yaml"

visual_objects:
- "{ros_package}/path/to/visual_obj.yaml"

soft_objects:
- "{ros_package}/path/to/soft_body.yaml"

urdfs:
- "{ros_package}/path/to/urdf_obj.yaml"

Note:

• all the above tags are optional,

• multiple objects can be listed for each object type, and

• each filename can be specified with an absolute path (see collision_objects above), or by a relative path to
a ROS package using curly brackets {ros_package} (as above in all other examples).

All the object types have a different required/optional settings that must be given in the specified yaml configuration
files. The details for all these are given in the next section of the documentation.

14 Chapter 4. Main Configuration

ROS-PyBullet Interface

4.5 Sensors

There are two main types of sensors that can be simulated in the ROS-PyBullet Interface: Force-Torque sensors, and
RGBD cameras. The Force-Torque sensors must be connected to a robot link, see the following section of the docu-
mentation for details on how to setup this sensor. An RGBD camera can also be specified. Currently, the interface is
limited to only a single camera.

If desired, the RGBD camera can be specified in the main configuration file by adding the tag rgbd_sensor (as in the
basic Kuka LWR example above). The parameters used to configure the RGBD camera are listed as follows.

• name (required), the name of the sensor. Each PyBullet object is given a name, all these must be unique - more
details are given in the next section of the documentation.

• intrinsics, camera intrinsic parameters

– width [int], width of camera image. Default is 640.

– height [int], height of the camera image. Default is 480.

– fov [int], field of view. Default is 40.

– range [list[float]], depth range. Default is [0.01, 100.0].

• pointcloud [bool], when true the depth camera is projected as a point cloud and published to ROS. Note,
due to the computation required this will slow the simulation. Standard ROS packages can efficiently compute
this outside the simulator (as in the examples). It is recommended that you do not use this option. We originally
added it for experimentation. Default is false.

• hz [int], frequency that the RGBD sensor is updated. Default is 30.

• object_tf (required), the pose of the camera must be attached to a tf2 (transform) frame

– tf_id [str] (required), the tf2 frame ID that defines the camera pose. This frame must be defined with
respect to the rpbi/world frame.

– hz [int], the frequency that the pose is queried. Default is 30.

4.5. Sensors 15

ROS-PyBullet Interface

16 Chapter 4. Main Configuration

CHAPTER

FIVE

CREATE VIRUTAL WORLDS

A virtual world can be created by listing the objects in the main configuration file (see the previous section). In addition,
PyBullet objects can be added programatically (see the next section of the documentation) or even from the command
line using $ rosservice call. We give full details for the the available PyBullet object types in the following
sub-sections.

For every PyBullet object type, the configuration file must contain a name tag [str]. The name given to the object
must be unique with respect to all other PyBullet objects (even of different types).

Futuremore, all objects are defined with respect to a global base coordinate frame called rpbi/world.

5.1 Robot

A robot can be specified using a URDF file. Currently, this is the only format accepted by the ROS-PyBullet Interface.
The parameters for specifying a robot are listed as follows.

• loadURDF (required), see the PyBullet documentation. Note the fileName can be given relative to a ROS
package using curley brackets {ros_package}. In addition, if the fileName is given as robot_description
then the URDF file is retrieved from the robot_description ROS parameter - of course, this must be set in
the launch file or a script somewhere.

• setJointMotorControlArray (required), see the PyBullet documentation. Only the controlMode is re-
quired to be specified. Do not specify jointIndices, targetPositions, targetVelocities, forces, or
the physicsClientId.

• initial_joint_positions [dict[str: float]], the initial joint positions for the robot. You can specify
any joints you wish by giving the joint name and initial joint position value. Unspecified joints default to 0.0.

• initial_revolute_joint_positions_are_deg, when true the initial joint positions for revolute joints are
assumed to be given in degrees, otherwise radians. Default is True.

• joint_state_publisher_hz [int], frequency that the robot joint states are published to ROS on the topic
rpbi/NAME/joint_states with type sensor_msgs/JointState where NAME is the PyBullet object name.

• broadcast_link_states [bool], when true the robot links for the robot are broadcast to ROS as tf2 frames.

• broadcast_link_states_hz [int], the frequency that the links of the robot are broadcast to ROS.

• enabled_joint_force_torque_sensors [list[str]], list of joint names that have Force-Torque sensors
enabled. Names of joints should correspond to those defined in the URDF. When these sensors are enabled,
they are published to ROS with topic name rpbi/NAME/JOINTNAME/ft_sensor with type geometry_msgs/
WrenchStamped where NAME is the PyBullet object name, and JOINTNAME is the given joint name.

• is_visual_robot [bool], when true the robot is treated a visual object, i.e. it will not react to other objects
in the environment and other objects will not react to the robot. This can be useful for debugging and also
visualizing a real robot. The default value is false.

17

ROS-PyBullet Interface

• do_log_joint_limit_violations [bool], when the robot is a visual robot if true then the joint limit vio-
lations are reported to the terminal.

• log_joint_limit_violations_hz [int], the frequency that the joint limit violations are checked.

• start_ik_callback [bool], when true a subscriber is started for the topic rpbi/NAME/ik of mes-
sage type ros_pybullet_interface/CalculateInverseKinematicsProblem where NAME is the name
of the Pybullet object. This allows you to implement task space controller. Rather than streaming
target joint states to the robot, you can stream goal states (defined as a ros_pybullet_interface/
CalculateInverseKinematicsProblem message). This option can only be used when the robot is in the
POSITION_CONTROL or VELOCITY_CONTROL control modes.

• color_alpha [float], the alpha value for the robot in range [0.0, 1.0]. This allows you to make the robot
transparent. By default, this option is not used.

You can move the robot in several ways. The most common way is to stream target joint states by publishing to the topic
rpbi/NAME/joint_states/target where NAME is the name of the Pybullet object. Note, that joint state messages
must include the name parameter, i.e. a list of joint names that specify the order of the position/velocity/effort
attributes. Another way to generate motion is to stream task space targets, see the tag start_ik_callback above.
Finally, several services are provided that will move the robot to desired states - see below.

Several ROS services are started when a PyBullet robot is instantiated. These are listed as follows. Note, in the following
NAME is the name of the Pybullet object.

• rpbi/NAME/robot_info [ros_pybullet_interface/RobotInfo], returns information about the robot (i.e.
the name, link/joint names, body unique ID, number of joints, number of degrees of freedom, joint information
from PyBullet pybullet.getJointInfo method, see the documentation, enabled Force-Torque sensors, and
the current joint state).

• rpbi/NAME/ik [ros_pybullet_interface/CalculateInverseKinematics], compute a single IK. The
target joint state is returned.

The following ROS services are only created for robots that are not visual (i.e. the tag is_visual_robot, see above,
is ommited or set to false).

• rpbi/NAME/move_to_joint_state [ros_pybullet_interface/ResetJointState], given a target joint
state and duration the robot is moved from the current state to the goal. The duration (in seconds) is the time it
will take for the robot to move from the current state to the goal state. Note, there is no collision avoidance.

• rpbi/NAME/move_to_init_joint_state [ros_pybullet_interface/ResetJointState], moves the
robot to the initial joint state specified in the yaml configuration file under the tag initial_joint_positions
(see above). Note, we re-use the ros_pybullet_interface/ResetJointState service type here. That means
when you call the service you will need to include the duration (i.e. time it takes for the robot to move from the
current configuration to the goal) and an empty sensor_msgs/JointState message - the joint state message
will be ignored. Note, there is no collision avoidance.

• rpbi/NAME/move_to_eff_state [ros_pybullet_interface/ResetEffState], given a task space target
and a duration the robot is moved from the current configuration to a goal configuration (computed using PyBul-
let’s Inverse Kinematics feature). Note, there is no collision avoidnace.

18 Chapter 5. Create Virutal Worlds

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.la294ocbo43o

ROS-PyBullet Interface

5.2 Collision Object

For the collision object, other objects will react to it, but it will remain unaffected. Objects such as walls, doors, ceilings,
floors should be modelled using this object type. The parameters to setup this object are listed as follows.

• createVisualShape (required), see PyBullet documentation.

• createCollisionShape (required), see PyBullet documentation.

• changeDynamics, see PyBullet documentation.

• object_tf, if unspecified the default is the identity.

– tf_id [str], the tf2 frame ID that defines the camera pose. This frame must be defined with respect to
the rpbi/world frame.

– hz [int], the frequency that the pose is queried. Default is 30.

5.3 Dynamic Object

You can simulate virtual objects using a dynamic object. In this case, the objects motion is completely defined by
Pybullet. The parameters for this object type are as follows.

• createVisualShape (required), see PyBullet documentation.

• createCollisionShape (required), see PyBullet documentation.

• changeDynamics (required), see PyBullet documentation.

• baseMass [float] (required), mass of the base.

• basePosition [list[float]], base position in the rpbi/world frame.

• baseOrientation [list[float]], base orientation in the rpbi/world frame (as a quaternion).

• resetBaseVelocity, see PyBullet documentation. Note, the bodyUniqueId does not need to be passed. This
will specify the initial velocity of the object.

• broadcast_hz [int], this is the frequency that the object pose is broadcast to tf2. Default is 0 (i.e. the pose
is not broadcast). The frame is always published with respect to the rpbi/world frame and given the name
rpbi/NAME where NAME is the name of the PyBullet object.

5.4 Visual Object

A visual object is used primarily for visualizing real world objects or for debugging. These simply visualize objects,
other objects will not react to this object and it will not react to other objects. To specify this object the following
parameters can be used.

• createVisualShape (required), see the PyBullet documentation. Note the fileName can be given relative to a
ROS package using curley brackets {ros_package}. Also, the shapeType parameter can be passed as a string.

• object_tf, if unspecified the default is the identity.

– tf_id [str], the tf2 frame ID that defines the camera pose. This frame must be defined with respect to
the rpbi/world frame.

– hz [int], the frequency that the pose is queried. Default is 30.

5.2. Collision Object 19

ROS-PyBullet Interface

5.5 Soft bodies

PyBullet also implements deformable object and cloth simulation. Soft bodies can be setup using the pybullet.
loadSoftBody method, or from a URDF file. For the URDF, see the next section. When using the loadSoftBody
approach, you can to specify the following tags.

• loadSoftBody (required), see PyBullet documentation.

• createSoftBodyAnchor [list[list[float/int]]], pin vertices of a deformable object to the world. Note,
the PyBullet documentation for createSoftBodyAnchor is limited. It is not clear what is exactly the interface.
The soft body unique ID will be passed automatically, but any other parameters must be supplied. Some potential
resources:

– https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/deformable_anchor.py

– https://github.com/bulletphysics/bullet3/discussions/4088

– https://github.com/bulletphysics/bullet3/blob/7dee3436e747958e7088dfdcea0e4ae031ce619e/examples/
pybullet/pybullet.c#L2280-L2326

5.6 Loading from URDF

This interface allows you to load objects directly from a URDF. The only required tag is as follows.

• loadURDF (required), see the PyBullet documentation.

Note, for this object type there is no ROS communication available. Future work will include updated feature set for
this object type.

20 Chapter 5. Create Virutal Worlds

https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/deformable_anchor.py
https://github.com/bulletphysics/bullet3/discussions/4088
https://github.com/bulletphysics/bullet3/blob/7dee3436e747958e7088dfdcea0e4ae031ce619e/examples/pybullet/pybullet.c#L2280-L2326
https://github.com/bulletphysics/bullet3/blob/7dee3436e747958e7088dfdcea0e4ae031ce619e/examples/pybullet/pybullet.c#L2280-L2326

CHAPTER

SIX

COMMUNICATION WITH ROS

In this section, we discuss generally the kind of communication that the interface has with ROS. This is mainly in terms
of topics/services. For PyBullet object specific ROS communication, see previous sections.

6.1 Services

Several services are instantiated when the ROS-PyBullet Interface node is launched. These allow you to either pro-
gramatically interact with PyBullet from your own code, or from the command line. These serives are detailed as
follows.

6.1.1 rpbi/start (std_srv/Trigger)

The simulation is started, if it has been stopped.

6.1.2 rpbi/step (std_srv/Trigger)

If the simulation is stopped, then it is stepped by one time-step. The duration of the time-step is given by the timeStep
parameter in the main configuration file.

6.1.3 rpbi/stop (std_srv/Trigger)

The simulation is stopped, if it is running.

6.1.4 rpbi/get_debug_visualizer_camera (ros_pybullet_interface/
GetDebugVisualizerCamera)

When this service is called, the response returns the current parameters for the main visualizer: i.e. cameraDistance,
cameraYaw, cameraPitch, and cameraTargetPosition.

21

ROS-PyBullet Interface

6.1.5 rpbi/add_pybullet_object (ros_pybullet_interface/AddPybulletObject)

An object is added to PyBullet. The service allows you to either load from file or pass the configuration for the object.
The input for the service expects a ros_pybullet_interface/PybulletObject message - see here.

For both cases (i.e. load from filename or configuration), an object_type must be given. Ei-
ther PybulletObject.VISUAL, PybulletObject.COLLISION, PybulletObject.DYNAMIC, PybulletObject.
ROBOT, PybulletObject.SOFT, or PybulletObject.URDF.

Load from filename: the PybulletObject.filename variable must be set. You can specify reletive filenames by
giving a ROS package name in the format {ros_package}/path/to/file.yaml.

Load from configuration: if you want to pass the configuration in the service then you need to send it as a string, that is
ultimately a yaml file. In Python, the best way to do this is to specify the configration in a dict (in the same way a yaml
file is loaded) and convert it to a string using the config_to_str method provided in custom_ros_tools.config.
See example below.

from custom_ros_tools.config import config_to_str
from ros_pybullet_interface.msg import PybulletObject

make config
config = {}
...

Setup request
req = PybulletObject(config=config_to_str(config))

Note: loading from a filename takes precedence - if you want to load by passing the configuration then the filename
parameter must not be set.

6.1.6 rpbi/remove_pybullet_object (cob_srv/SetString)

Given the PyBullet object name as the only parameter, the object is removed from PyBullet, and all ROS communication
for that object is closed.

6.2 PyBullet Status

From when the ROS-PyBullet node is launched, the state of PyBullet is published to the topic rpbi/status (with type
std_msgs/Int64). By default, this is published at 50Hz, however you specify the frequency through the status_hz
parameter in the main configuration file. The message on the topic indicates whether the simulator is running or not.
If it is running, then the value of the message is 1, otherwise it is 0.

6.3 Time and ROS Clock

It is possible to syncronize the ROS clock time with the PyBullet simulation time. This means that when you call
rospy.Time.now() in Python or ros::Time::now() in C++, the value will be equal to the simulation time in Py-
Bullet. This can only be done when the ROS-Pybullet Interface node is configured to use manual time stepping (the
reason for this is because the Pybullet simulator time is not currently exposed). To synconize the PyBullet simulator
time and ROS clock time, set the Boolean ROS parameter use_sim_time to true.

22 Chapter 6. Communication with ROS

https://github.com/ros-pybullet/ros_pybullet_interface/blob/main/ros_pybullet_interface/msg/PybulletObject.msg
https://pybullet.org/Bullet/phpBB3/viewtopic.php?t=12438

CHAPTER

SEVEN

ADDITIONAL FEATURES

7.1 GUI Controls

The GUI controls can be used to perform basic interactions with the interface. The following is an image of the GUI
controls that you can expect to see when it is launched.

There are four buttons defined, and a text box. The effect of the buttons are as follows.

• Start: starts the simulation clock.

• Step: steps the simulation clock by the given sampling frequency specified in the main configuration

• Stop: stops/pauses the simulation clock.

• Send: sends the robot to the initial configuration as specified in its configuration file. If the initial configuration
is unpsecified then this defaults to zero.

23

ROS-PyBullet Interface

The text box displays the status of the simulation. If it is 1, then the simulation is running. If it is 0 then the simula-
tion is paused. Ultimately, what is displayed here is reporting the current value of the rpbi/status topic with type
std_msgs/Int64.

7.1.1 Launch

Add the following to your launch file.

<node pkg="rpbi_utils" name="controls" type="rpbi_controls_node.py" output="screen">
<rosparam param="config" file="path/to/config.yaml"/>

</node>

7.1.2 Configuration

The configuration for the GUI controls can be added to the main yaml configuration. An example is shown below.

controls:
robot_name: "ROBOT_NAME"

The robot_name tag should be the name of the robot as specified in the pybullet object configuration. If the configu-
ration is not given, then the Send button will have no effect.

7.1.3 Limitations and future development

Currently, only a single robot is supported per node. If you want to control multiple robots then you will need to launch
multiple control nodes.

In the future we aim to re-implement the controls as an RQT pluggin. If you would like to contribute this please submit
a pull request.

7.2 Interpolation

The interpolation interface provides the functions to generate smooth trajectories based on a sequence of waypoints.
Input is a 2D array of waypoints via a topic (default value is: ros_pybullet_interface/waypt_traj). Output is
streamed as TF in /tf. The waypoints (input) are provided as a 2D [Float64MultiArray] via a topic. The first row
of the 2D array holds the relative time of the waypoints and the rest of the rows are the dimensions of the waypoints.
The columns of the 2D array are the number of waypoints. The interpolation is typically used in the task space (can be
modified to be used in the configuration space) and provides linear, cubic interpolation for 1D, for euler angles (as 3
independent axis), for axis angle (1D around a specified axis), and also for quaternions.

The process steps done in the node are:

1. Input process

a. Read input (2D array) from topic ros_pybullet_interface/waypt_traj (it is suggested that this topic
name is remaped)

b. Input is a sequence of waypoints.

2. Interpolation process

a. Interpolate each independent dimension separately and if there are coupled dimensions (e.g. quaternions)
interpolate them jointly.

24 Chapter 7. Additional Features

ROS-PyBullet Interface

b. Sample these interpolated functions with a frequency specified by [inter_dt] (see details on the param-
eter below)

c. Store these samples in a list

3. Output process

a. At a given frequency, specified by [consuming_freq], extract (and delete) the first from the list.

b. Publish the extracted sample as TF to /tf with [header_frame_id] and [msg_child_frame_id] as
specified below.

The interpolation node requires the following parameters to be set in the .launch file.

• [traj_config] [str] (required), specifies a yaml file which holds a number of parameters used for the inter-
polation.

• [consuming_freq] [float] (required), specifies the frequency of publishing the output (TF). In other words,
how often a TF sample is published from the interpolated data.

input related parameters

• [motion_dimensions][number] [int] (required), specifies the number of dimensions of the waypoints.

input related parameters (linear task space dimensions)

• [motion_dimensions][trans][translation_x] [float] (optional), specifies a fixed value of the x dimen-
sion of the task motion.

• [motion_dimensions][trans][translation_x_index] [int] (optional), used if translation_x is
empty and the index of the row where the x variable is held in the 2D array with the waypoints.

• [motion_dimensions][trans][translation_y] [float] (optional), specifies a fixed value of the y dimen-
sion of the task motion.

• [motion_dimensions][trans][translation_y_index] [int] (optional), used if translation_y is
empty and the index of the row where the y variable is held in the 2D array with the waypoints.

• [motion_dimensions][trans][translation_z] [float] (optional), specifies a fixed value of the z dimen-
sion of the task motion.

• [motion_dimensions][trans][translation_z_index] [int] (optional), used if translation_z is
empty and the index of the row where the z variable is held in the 2D array with the waypoints.

input related parameters (angular task space dimensions)

• [motion_dimensions][rotation][rotation_repr] [str] (optional), options are: none, theta, quat, euler
and it specifies the type of representation of the angular motion.

• [motion_dimensions][rotation][rotation_vec_index] [list[int]] with 1 (for theta) or 2 (for euler
and quat) elements (required if theta or euler or quat), indicates the indexes of the row where the angular variables
are held in the 2D array with the waypoints.

• [motion_dimensions][rotation][rotation_vec] [list[int]] with 3 elements (required if theta or
none), specifies a fixed axis of rotation. Needs to be a normalized vector.

• [motion_dimensions][rotation][rotation_angle] [float] (required if none), a fixed value of the angle
along the fixed axis of rotation of the task motion.

interpolation related parameters

• [interpolation][nochange_window_length] [int] (required), default value is 1. Advanced: specifies a
window of samples that cannot be changed when new waypoints are received. It is used to ensure smoothness if
the waypoints are changed on the fly.

7.2. Interpolation 25

ROS-PyBullet Interface

• [interpolation][use_interpolation] [bool] (required), specifies whether the waypoints should be inter-
polated or not.

• [interpolation][inter_dt] [float] (required), specifies the dt between the interpolated points. In other
words, frequency of the interpolation samples.

output related parameters

• [communication][publisher][header_frame_id] [str] (required), specifies header_frame_id of the TF
streamed in /tf.

• [communication][publisher][msg_child_frame_id] [str] (required), specifies msg_child_frame_id of
the TF streamed in /tf.

7.3 ik_ros

The ik_ros package is a standardized interface for inverse kinematics using ROS. Input data (e.g. end-effector task
space goals) are directed to a problem setup node, that collects the information into a single message. The setup node
then publishes a problem message at a given frequency. A solver node, that interfaces via a standardized plugin to an
IK solver, then solves the problem and publishes the target joint state.

26 Chapter 7. Additional Features

https://github.com/ros-pybullet/ik_ros

ROS-PyBullet Interface

7.4 safe_robot

A low-level ROS package for the safe operation of robots. Easily setup with a single launch file. The
safe_robot_node.py acts as a remapper. Target joint states are passed through several safety checks, if safe then the
command is sent to the robot, otherwise they are prevented. Possible checks

• joint position limits

• joint velocity limits

• end-effector/link box limits

• self-collision check

7.5 custom_ros_tools

The custom_ros_tools package provides a collection of generic useful tools for ROS. The package is extensively used
in the ROS-PyBullet Interface.

7.4. safe_robot 27

https://github.com/ros-pybullet/safe_robot
https://github.com/ros-pybullet/custom_ros_tools

ROS-PyBullet Interface

28 Chapter 7. Additional Features

CHAPTER

EIGHT

CITE

If you use the ROS-PyBullet Interface in your work, please consider citing us using the following.

@misc{https://doi.org/10.48550/arxiv.2210.06887,
doi = {10.48550/ARXIV.2210.06887},
url = {https://arxiv.org/abs/2210.06887},
author = {Mower, Christopher E. and Stouraitis, Theodoros and Moura, João and Rauch,␣
→˓Christian and Yan, Lei and Behabadi, Nazanin Zamani and Gienger, Michael and␣
→˓Vercauteren, Tom and Bergeles, Christos and Vijayakumar, Sethu},
keywords = {Robotics (cs.RO), Machine Learning (cs.LG), FOS: Computer and information␣
→˓sciences, FOS: Computer and information sciences},
title = {ROS-PyBullet Interface: A Framework for Reliable Contact Simulation and Human-
→˓Robot Interaction},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}

29

ROS-PyBullet Interface

30 Chapter 8. Cite

CHAPTER

NINE

DEVELOPMENT

9.1 Contributing

We are more than happy to accept bug fixes, new features, suggestions, comments, or any other form of feedback. If
you have an issue using the interface, or would like a new feature added please submit an issue. For pull requests,
please fork the repository, create a new branch, and submit your pull request.

9.2 Future work

• Port GUI controls to RQT.

• Add additional features to GUI interface, e.g. move to custom joint states.

• Support loading from SDF and MuJoCo configuration files.

• Update ROS communication features for loading objects from URDF configuration files.

9.3 Known issues

• Objects with alpha color values less than 1.0 are rendedered in RGB images but not the depth image for the
RGBD sensor simulation. To make sure the depth image contains the object, ensure the alpha value is set to 1.0.

31

https://github.com/ros-pybullet/ros_pybullet_interface/issues
https://github.com/ros-pybullet/ros_pybullet_interface/fork

ROS-PyBullet Interface

32 Chapter 9. Development

CHAPTER

TEN

ACKNOWLEDGEMENTS

This research is supported by The Alan Turing Institute, United Kingdom and has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 101017008, Enhancing
Healthcare with Assistive Robotic Mobile Manipulation (HARMONY). This work was supported by core funding
from the Wellcome/EPSRC [WT203148/Z/16/Z; NS/A000049/1]. This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 101016985, Functionally
Accurate RObotic Surgery (FAROS project). This research is supported by Kawada Robotics Corporation and the
Honda Research Institute Europe.

33

https://www.turing.ac.uk/
https://harmony-eu.org/
https://harmony-eu.org/
https://h2020faros.eu/
https://h2020faros.eu/
https://www.kawadarobot.co.jp/
https://www.honda-ri.de/

ROS-PyBullet Interface

The main contributors to the development of the ROS-PyBullet Interface are as follows.

• Christopher E. Mower, King’s College London, UK.

• Theodoros Stouraitis, Honda Research Institute, Offenbach, Germany.

• Lei Yan, Harbin Institute of Technology, Shenzhen, China.

• João Moura, University of Edinburgh, Edinburgh, UK.

• Christian Rauch, University of Edinburgh, Edinburgh, UK.

• Nazanin Zamani Behabadi, London, UK.

• Michael Gienger, Honda Research Institute, Offenbach, Germany.

• Tom Vercauteren, King’s College London, UK.

• Christos Bergeles, King’s College London, UK.

• Sethu Vijayakumar, University of Edinburgh, Edinburgh, and The Alan Turing Institute, UK.

34 Chapter 10. Acknowledgements

https://cmower.github.io/
https://stoutheo.github.io/
https://sites.google.com/view/lei-yan
https://web.inf.ed.ac.uk/slmc
https://scholar.google.de/citations?user=xb8x12AAAAAJ&hl=de
https://www.linkedin.com/in/nazzb/
https://scholar.google.de/citations?user=oU2jyxMAAAAJ&hl=de
https://cai4cai.ml/author/tom-vercauteren/
https://rvim.online/author/christos-bergeles/
https://homepages.inf.ed.ac.uk/svijayak/

	Overview
	Installation
	Requirements
	From binaries
	From source

	Examples
	Basic Examples
	Human Interaction
	Adding/removing PyBullet Objects Programmatically
	Learning from demonstration and teleoperation
	RGBD Sensor
	Soft bodies

	Main Configuration
	Configuration files
	PyBullet Instance
	Visualizer
	PyBullet Objects
	Sensors

	Create Virutal Worlds
	Robot
	Collision Object
	Dynamic Object
	Visual Object
	Soft bodies
	Loading from URDF

	Communication with ROS
	Services
	rpbi/start (std_srv/Trigger)
	rpbi/step (std_srv/Trigger)
	rpbi/stop (std_srv/Trigger)
	rpbi/get_debug_visualizer_camera (ros_pybullet_interface/GetDebugVisualizerCamera)
	rpbi/add_pybullet_object (ros_pybullet_interface/AddPybulletObject)
	rpbi/remove_pybullet_object (cob_srv/SetString)

	PyBullet Status
	Time and ROS Clock

	Additional Features
	GUI Controls
	Launch
	Configuration
	Limitations and future development

	Interpolation
	ik_ros
	safe_robot
	custom_ros_tools

	Cite
	Development
	Contributing
	Future work
	Known issues

	Acknowledgements

