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A DETAILED ALGORITHM

Algorithm [I] describes the overall procedure of our method. For each task, we perform training
iteratively on data from the stream only, i.e. buffer forgetting (line 9), or on a concatenation of both
stream and buffer data, i.e. buffer learning (line 6).

At each iteration, we draw a mini- - - -
batch from the buffer and update its Algorithm 1 Detailed procedure of AER with ABS

examples’ scores (line 3) to later al- Input: stream data D, buffer M, training epochs T’
low the asymmetric sampling proce-  1: for epoch in T do

dure. Every other epoch, we induce 2 /* Sampling Scores Update */

buffer forgetting, and is only during 3 s(x) « {s(x);V(x,7) € M} > Eq
these epochs that we fill the buffer 4 if epoch in T,,, then > Sec.
with new elements, to take full ad- 5: /* Buffer Learning */
6.
7
8

vantage of the loss gap between noisy train with M
and clean samples that these steps in- else
duce. We choose as a candidate set to /* Buffer Forgetting */

be inserted in the buffer a subset of 9 train on B ~ D;

the current mini-batch that displays 10: /% Sample Insertion & Replacement */

low loss values (line 11). From this 11 R+ {(x,9) € Dy : L(x,7) < a} >Sec.[3.3.]]
group, indexes of elements to be ac-  12: R < reservoir(R)

tually inserted are picked following 13: Mz ~p(x)] « R > ABS[5]

reservoir (line 12). If the buffer is 14: end if
full, samples to be replaced are cho- 15: end for
sen randomly with probability given
by their score (line 12). We repeat this procedure for each task, while the model is saved and re-
stored to the previous state for each epoch of buffer learning 75, (line 4).

A.A DETAILS REGARDING ABS

When describing ABS in Sec. we suggested that the simple symmetric normalization would
favour the replacement of samples from either the current or the past task. Indeed, since Vx £(x) >
0, if we define z =} \ s(x) (symmetric normalization), then it follows that either £(x) > £(x)
or £L(x) < L(x)if z > 0 or z < 0 respectively. Thus, the symmetric selection favours dis-

proportionally samples from the present or the past.

To avoid this problem, we split the selection into two distinct phases:

1. We initially sample from a binomial distribution ¢ with probability ¢ = MM, to decide
if we want to replace a sample from the present or the past;

2. Then, we perform the sample selection considering only either samples from the present or
the past, using respectively peyrr (X) OF Dpast (X).

This strategy lets us strike a balance between balancing the buffer and ensuring the presence of both
i) high loss (complex) samples from the past; and ii) low loss (clean) samples from the present.
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Table A: Final Average Accuracy (FAA) [1] and standard error across all tasks of different CNL
methods on Seq. CIFAR-10 and WebVision with different noise rates. © Additional baselines created
by adapting existing loss-based and CL approaches to the multi-epoch scenario.

Benchmark Seq. CIFAR-10 Seq. WebVision
symm instance
Noise rate 20 40 60 N/A
Joint 79.65+0.94  73.12+1.61  60.53+ 2.36 54.80+ 2.66
Finetune 18.83+£0.23  18.01+£0.23  15.994 0.58 15.96+ 0.59
Reservoir 50.53+2.37  33.64+ 153  22.92+ 1.64 27.10+ 2.12
+ CoTeaching 50.11+4.35  34.89+1.67  22.984+1.34 27.80+ 0.85
+ DivideMix 55.69+ 6.77  38.87£2.16  26.13+1.37 29.934 2.34
GDumb 35.45+2.44  27.76+2.08  19.41+1.93 25.00+ 3.14
+ CoTeaching 36.944+1.09 31.26+1.15  19.75+ 2.79 25.204 1.56
+ DivideMix 38.60+0.86  32.254+9.92  21.06+ 4.97 28.00+ 2.15
PuriDivER 30.96+ 0.50  27.23+3.66  24.31+ 1.59 29.10+ 0.99
PuriDivER.ME 55.4940.50  49.44+2.83  41.744+3.16 36.40+ 1.64
DividERMix 57.07+1.12  45.65+3.29  32.194+5.30 36.20+ 1.91
OURs 60.824+2.49  59.47+2.42  45.07+ 1.66 34.204 2.49
w. buffer fit. 69.12+0.71  64.81+£0.65  50.04+ 1.36 36.84+ 2.89
w. consolidation 68.82+0.97 67.14+1.06  54.59+ 0.18 38.87+1.89
w. PuriDivER cons.  71.094+0.88  67.62+0.94  54.42+ 1.02 39.11+1.11
OURS - no ACE 59.26+ 1.41 5491+ 1.76  35.85+2.51 31.73+ 0.94
w. buffer fit. 65.56+0.95 61.82+1.21  44.01+ 3.55 34.00+ 1.56

B EXPERIMENTS

To evaluate our proposal we build upon the open-source codebase provided by Mammoth (Buzzega
et al.| (2020); |Caccia et al.| (2022); Boschini et al.| (2022)), a CL framework based on PyTorch.

DATASETS

We empirically validate our method on four different classification benchmarks as mentioned in the
main paper. For experiments on CIFAR (Krizhevsky et al.| (2009)) and NTU-60 (Shahroudy et al.
(2016)), we corrupt the labels of the datasets at hand to obtain different noise configurations, which
we then keep fixed for each of the experiments for fairness of results comparison across multiple
methods.

In the process of injecting symmetric noise, we replace the ground-truth label with probability r» €
[0, 1] determined by the designated noise rate. The asymmetric or class-dependent noise setting is
an approximation of real-world corruption patterns, which alters labels within the same superclass.
For example, in the CIFAR-100 dataset, each image comes with a "fine" label (specific class) and a
"coarse" label (superclass). Here, label transitions are parameterized by r such that the wrong class
and true class have probability r and 1 — 7, respectively. This results in sample ambiguity occurring
only between similar classes, as it would in a realistic scenario.

In each experiment, samples from the main dataset are split into disjoint sets based on their class and
organized into tasks, following the ClassIL setup. We obtain the following versions of the datasets.
Seq. CIFAR-10 The original dataset contains 50,000 train and 10,000 test low-resolution color
images in 10 different classes. During training the model encounters 2 classes per task, namely
(“airplane”, “car”), (“bird”, “cat”), (“deer”, “dog”), (“frog”, “horse”), (“ship”, “truck”).

Seq. CIFAR-100 This original dataset is like the CIFAR-10, except it has 100 classes with 600
images each. Images are grouped into 20 superclasses, thus each image comes with a "fine" label (the

class to which it belongs) and a "coarse" label (the superclass to which it belongs). Following this
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Table B: Final Average Accuracy (FAA) [1] and standard error across all tasks of different CNL
methods on Seq. CIFAR-100 with different noise rates. © Additional baselines created by adapting
existing loss-based and CL approaches to the multi-epoch scenario.

Benchmark Seq. CIFAR-100
symm asymm
Noise rate 20 40 60 20 40
Joint 54.77+0.61 38.464+0.92 23.36+£1.09 , 56.704+0.57 42.61+ 0.92
Finetune 08.65+£0.13 07.55+£0.14 06.15£0.17 ! 07.78+0.14 05.734+ 0.09
Reservoir 25.14+0.28 14.64+0.23 8.9240.23 1 29.4240.39 18.914+0.86
+ CoTeaching 25.79+ 0.61 14.464-0.49 8.92+ 0.30 : 32.18£2.55 20.7642.44
+ DivideMix 33.31+£0.27 2291+ 043 13.584+1.02 | 36.984+0.78 26.104+ 1.10
GDumb 16.96+0.61 11.314+0.45 7.624+ 0.28 : 17.2540.28 11.7540.06
+ CoTeaching 17.024 0.50 13.174+0.31 8.17£0.99 | 17.07+£0.54 12.054 0.62
+ DivideMix 19.26+0.97  15.674+0.97 10.5140.32 ! 18.804+ 1.55 13.29£0.29
PuriDivER 27.53+0.53 24.36+0.40 17.81+£0.43 ' 25.464+1.44 18.84+0.64
PuriDivER.ME 41.254+0.63  37.61+0.85  27.184+0.76 : 41.65+0.49 30.2240.74
DividERMix 29.21+£0.31 22414051  14.214+£1.07 |, 29.3840.43 21.23+1.14
OURs 44.344+0.48  38.64+0.57  26.34+ 0.85 : 41.244+0.40 29.26+ 0.91
w. buffer fit. 47.58+ 0.50 41.584+0.63 30.134+0.98 1 42.854+0.37 31.49+0.38
w. consolidation 46.11+£1.46  40.27+0.40 34.81+1.63 l 43.67+0.73 32.64+0.48
w. PuriDivER cons. 45.624+2.01 42.08+1.72 31.95+0.41 ' 42.63+£0.99 30.47+0.57
OURs - no ACE 34.88+1.95 29.514+£0.98 22.02+0.91 ; 33.16+1.97 25.07+ 1.56
w. buffer fit. 45.69£1.61 39.83+£30.83 30.57£0.74 ! 43.36£0.93 32.61+ 1.02

categorization, we organize classes in 10 tasks, each containing 5 classes from the same superclass.
Seq. WebVision The original dataset (Li et al.| (2017))) contains over 2.4 million training images
belonging to 1,000 categories, where the number of images per category varies a lot (from 300 to
more than 10,000). It has a validation set of 50,000 images (50 images per category). According
to |Li et al.| (2017)) the estimated noise rate lies between 20% and 34%. Similarly to other CNL
methods (Bang et al.|(2022)); Karim et al.| (2022); [Kim et al.| (2021))) we took from WebVision only
10 classes from the ones containing the largest number of images each. We obtain a training set of
34,286 images, which we resize to 84 x 84.

Seq. NTU-60 It comprises 60 action classes with 56,880 video samples, including 3D skeletal data
(25 body joints per frame), all captured simultaneously using three Kinect V2 cameras. We here
split the dataset into 6 tasks of 10 classes each.

Notice that since some labels are incorrect, real class distribution for each task might vary. Details
on the noisy labels injected on Seq. CIFAR-10/100, Seq. NTU-60 and the classes used for Seq.
WebVision are released with the code.

DETAILS ON THE EXPERIMENTAL SETTINGS

Architecture We use ResNet (He et al.| (2016)) family as a backbone for all the methods involved
in our evaluation. ResNet18 is used for CIFAR-10/100 and ResNet34 is used for WebVision, as
in (Bang et al.|(2022)). All the experiments do not feature pretraining.

Augmentation We apply random crops and horizontal flips to both stream and buffer examples, for
each dataset at hand. For the implementations of PuriDivER, we use AutoAugment (Cubuk et al.
(2019)) as in the original paper (Bang et al.| (2022)).

Training We deliberately hold batch size out of the hyperparameter space and keep it fixed to 32 for
both stream and buffer examples. For each task, we train for 50 and 30 epochs for CIFAR-10/100
and WebVision, respectively.
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Table C: Final Average Accuracy (FAA) [1] and standard error across all tasks of different CNL
methods on Seq. NTU-60 with different noise rates. T Additional baselines created by adapting
existing loss-based and CL approaches to the multi-epoch scenario.

Benchmark Seq. NTU-60
noise rate 20 40
Joint 68.26+£ 0.69 63.02+ 0.88
SGD 14.30+£ 0.51 12.48+1.07
Reservoir 35.16+2.16 16.214+0.27
+ CoTeaching 44.43+0.78  32.03+ 1.86
+ DivideMix 40.924+0.97 32.07£1.73
GDumb 11.344+0.21  7.3440.68
+ CoTeaching 13.81+£2.04 9.1840.51
+ DivideMix 15.96+1.16 6.59+1.11
PuriDivER 39.33+1.59 38.86+ 0.79
PuriDivER ME"  43.104+1.11  38.07+ 1.06
DividERMix" 32.61+1.69 20.23+0.63
OURs 46.69+ 1.08 44.56+ 1.04
w. buffer fit. 49.594-1.34 48.18+ 0.63
w. consolidation 48.734+1.20 45.1940.05

Buffer consolidation with MixMatch At the end of each task, we finetune the model on the buffer
examples only, for 255 epochs. During this stage, we use SGD with Warm Restart (SGDR) through
Cosine Annealing and a batch size of 64. For the purpose of label co-refinement, we set the number
of different augmentations 7 of Eq. [6]to perform on the samples in the uncertain set to 3.

ADDITIONAL RESULTS

We repeat each of the experiments five times. We report in Tab. [A] Tab. [B] and Tab. [C| the Final
Average Accuracy for all the experiments as in Tab. (1| and Tab. [2| of the main paper, here with
standard error values.

We also provide the final forgetting measure in Eq. [T] for all methods of the main comparison in
Tab.

T-2
1
N ) o t _ T-1
FF = 71 ZO fi,stf; = teOr,I.l.?:)I(“—2aj a; (D
=

where a’ is the accuracy of the model on the j** task after training on ¢ tasks. These additional
results depict a lower degree of forgetting of our proposal w.r.t. the baselines.

When paired with [I]and [2] of the manuscript, such evidence shows higher overall effectiveness
in learning from a noisy source of data, allowing more stable convergence on the current task and
lower losses due to forgetting.

C COMPUTATIONAL COSTS

We perform all the experiments on a Tesla V100-SXM2-16GB GPU. In Tab. [G| we report the com-
putational costs of different methods in our setting, in terms of runtime and consumed memory.

Not only our method achieves superior performance, as shown in Tab. [} but also exhibits a lower
overall training time.

D MODEL ABLATION

We analyse the contribution of each component of the proposed approach to the final accuracy. To
achieve this, we merge the base rehearsal method used in our research, i.e. ER-ACE, with our indi-
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Table D: Final Forgetting (FF) [|] of CNL methods on our selection of bencharks.  Additional
baselines created by adapting existing loss-based and CL approaches to the multi-epoch scenario.

Benchmark CIFAR-10 CIFAR-100 WebVision NTU-60
symm symm asymm instance symm
Noise rate 20 40 60 20 40 60 20 40 N/A 20 40
Joint 0 0 0 0 30 0 ; 0 0 0 0 0
Finetune 41.79 37.60 27.41|81.52 71.51 57.96 17391 54.71 73.00 85.09 73.46
Reservoir 4331 52.59 47.49 |55.88 5579 44.90 : 43.48 35.22 33.75 54.53 61.33

+ CoTeaching 4093 5475 48.09 | 5520 54.95 36.07 |, 54.77 26.03 28.75 3430 29.03
+ DivideMix 12.09 14.12 23.39 | 22.33 26.73 20.94123.45 16.73 18.92 18.45 18.70
PuriDivER 44.15 43.53 36.74 | 20.52 18.21 14.77 : 22.51 17.26 45.12 41.29 34.25
PuriDiVERME'  42.36 4475 41.10 | 24.34 25.06 26.83 12540 21.82 2242 25.76 18.41
DividERMix" 38.67 48.11 59.76 | 24.93 22.76 20.14'2593 18.67 14.25 6.89 21.83
OURs 1520 16.41 2097 |22.89 21.26 22.13 ; 21.19 16.90 18.20 12.94 14.05

w. buffer fit. 18.88 20.28 23.52 2222 20.76 22.12122.83 18.79 21.55 26.35 14.25
w. consolidation 11.81 1550 15.62|19.03 11.67 12.02'20.15 9.28 13.25 8.54 0.29

vidual contributions, one by one, and conduct training on Seq. CIFAR-100 with a 60% symmetric
noise setting. As can be seen from the results in Tab. |El each additional feature produces an increase
in performance.

In a similar and more comprehensive manner, for an in-depth analysis of the effects of the utilized
loss function, namely the asymmetric cross-entropy (ACE) loss, we conducted various experiments
using plain cross-entropy (CE), i.e. OURs - no ACE in Tab. [A|and Tab. B} The results indicate that
the contribution of the asymmetric loss is significant, aligning with both |Caccia et al|(2022) and
our initial expectations.

Table E: Ablation study for AER and ABS;  Table F: Final Average Accuracy of PuriDivER trained
FAA [1] on Seq. CIFAR-100; 60 % symmet-  on CIFAR-10 with 40% noise rate
ric noise.

Benchmark Seq. CIFAR-100

ER-ACE o AER ABS FAA Benchmark PuriDivER
v ; 11.65 noise rate 20% 40%  60%
v v 119.97 Onli data augmentation ~ 51.09 48.13 38.81
12419 e ~
v 4 no data augmentation 56.74 50.49 43.55
A A A Offl dat tation 5549 52.54 46.40
v / /12168 ine ata augmentation . . .

To explore the potential contribution of PuriDivER’s consolidation strategy to our approach’s ef-
fectiveness, we integrate it and present the outcomes in Tab.[A]and Tab.

The results obtained are in line with the ones obtained with our consolidation strategy, thus support-
ing the notion that with our technique the buffer is sufficiently clean and diverse.

E COMPARISON OF PURIDIVER ONLINE VS OFFLINE

PuriDivER in its original form comprises a task setup of online (single epoch) continual learning
from a blurry data stream. While changing this blurry setting to our ClassIL one is a minor change,
it is more difficult to tailor its online setup to our offline one without hurting its performances, as
outlined in Sec.[d.4] In Tab.[Fwe report results for the online ClassIL setting both with and without
data augmentation. For the offline setting (50 epochs), we always perform data augmentation for
fairness of comparison with all the other evaluated methods.
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Table G: Comparison of Computational Cost [}] of different methods when trained on CIFAR-10
with 40% noise.

Computational Cost PuriDivER PuriDivER.ME OURs

Total Time (hours) 5h15m 2h50m 1h30m
Epoch Time (seconds) 76.90s 15.69s 18.56s

Task Time (minutes) 73m50s 19m39s 16m33s
Memory Used (GB) 7.77 7.50 6.75

As can be seen from Tab. [F] we successfully adapt the method to our multi-epoch and ClassIL
incremental setting improving performance in most cases.

F DETAILS ON SPR AND CNLL

In the main paper we provide a comparison between our proposal and SPR and CNLL. Nevertheless,
as these methods were originally designed for the single-epoch setting, we had to design specific
adjustments to make them viable for our scenario.

SPR initially stores samples in a delayed buffer — then splits into clean and noisy sets, with the
former stored in a separate long-term buffer — and then optimizes the model for approximately
7,000 training iterations through a self-supervised (SSL) objective. This implies that SPR involves
approximately 448 iterations than standard traininéﬂ making it unfeasible for our scenario due to
time constraints. Indeed, while on CIFAR-10 our method takes around 16 minutes to complete 1
task (Tab.[G), SPR would require over 119 hours. We thus opt to distribute the training iterations of
SPR across 25 epochs (see Tab.[d)). Finally, as SPR employs two distinct memory buffers, we set the
buffer size to 1000 for a fair comparison.

CNLL uses variable-length buffers to store confident clean and noisy samples, which implies a CL
setting with unrestricted memory across tasks. To ensure fairness in comparison, we adhere to the
well-established memory-budgeted CL (Chaudhry et al.| (2019); van de Ven et al|(2022); Buzzega
et al.|(2020)) setting. Thus, for CNLL we allocate a total memory budget of 2,500 exemplars across
all 5 buffers specified by the original method.

As we move from the single to multi-epoch setting, we find a reduced effectiveness of the regular-
ization of CNLL; such a result is in line with our hypothesis of Sec. as more epochs are allowed
to learn the current task, sample selection based on the small-loss criterion fails to distinguish clean
and noisy samples. Moreover, we find that such an outcome is maintained even in an unrestricted
setting, where the memory budget is not a concern.

Finally, the performance gap w.r.t. our proposal is even more pronounced for SPR¥, where our
method attains significantly higher accuracy in considerably less time; indeed, our reduced version
of SPR requires around 109 x more time than our proposal, in line with our estimation.

G HYPERPARAMETERS

We choose to use different buffer sizes relying on the dataset length. For experiments conducted on
CIFAR-10 and CIFAR-100, the buffer size is set to 500 and 2000, respectively. For experiments on
WebVision, the buffer size is 1000 as in (Bang et al.| (2022)). Finally, we set the buffer size to 500
for experiments on NTU.

We select the other hyperparameters by performing a grid search and using the Final Average Ac-
curacy (FAA) as the selection criterion for the best parameters. Here, we report the best values for
each model, categorized by dataset and noise type.

1assuming a buffer size of 500, batch size of 32, and 10,000 samples
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CIFAR-10
Noise type: sym —20%

e Joint: [r: 0.03

e SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: [r: 0.03; Irpufrer fie.: 0.05

¢ OURs + consolidation: [7: 0.03; I7consolidation: 0-1; Ay: 0.01
e DividERMix: [r: 0.1

 ER: Ir: 0.1; lTbuffer fit.+ 0.05

* ER + CoTeaching: [7: 0.1; I7pygter .- 0.05

¢ ER + DivideMix: {7: 0.1; I7pufrer i.: 0.05

e PuriDivER: [7: 0.001; I7pufer ie.: 0.05; oz 0.1

e PuriDivER.ME: [r: 0.03; I7puffer fir.: 0.05; a2 0.1
¢ GDumb: lT‘buffer fit.+ 0.1

* GDumb + CoTeaching: 7y .: 0.01

¢ GDumb + DivideMix: [7pyfrer fie.: 0.03

Noise type: sym —40%

e Joint: [r: 0.03

¢ SGD: Ir: 0.03

¢ OURs: Ir: 0.03

¢ OURs + buffer fit: {r: 0.03; I7pufrer fie.: 0.05

¢ OURs + consolidation: [7: 0.03; I7consolidation: 0.15 Ay 0.01
e DividERMix: [r: 0.1

e ER: [7: 0.1; Irpuster r.: 0.05

* ER + CoTeaching: Ir: 0.03; I7pyfter fie.: 0.05

¢ ER + DivideMix: [7: 0.03; I7puffer fir.: 0.05

e PuriDivER: [r: 0.001; Irpuger fir.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; I7pufrer fir.: 0.05; o 0.1
¢ GDumb: l'rbuffer fit.+ 0.03

* GDumb + CoTeaching: [7pysfer fir.: 0.03

¢ GDumb + DivideMix: [7pufrer fir.: 0.03

Noise type: sym — 60%

e Joint: [r: 0.03

« SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: [r: 0.03; Irpufrer fir.: 0.05

¢ OURs + consolidation: [7: 0.03; I7consolidation: 0.15 Ay 0.01
e DividERMix: [r: 0.03

« ER: Ir: O.]; lT‘buffer fit.+ 0.1

* ER + CoTeaching: I7: 0.1; I7pugrer fir.: 0.05

¢ ER + DivideMix: [7: 0.1; I7pugter fir.: 0.05

e PuriDivER: [r: 0.001; I7putrer e.: 0.05; oz 0.1

e PuriDivER.ME: [r: 0.03; Irpuster fie.: 0.05; a: 0.1
¢ GDumb: lTbuffer fit.- 0.03

* GDumb + CoTeaching: 7y i.: 0.03

e GDumb + DivideMix: [7pyfer fie.: 0.01
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CIFAR-100
Noise type: sym —20%

e Joint: [r: 0.03

e SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: [r: 0.03; Irpufrer fie.: 0.05

¢ OURs + consolidation: [7: 0.03; Irconsolidation: 0.05; Ay: 0.01
¢ DividERMix: [r: 0.03

 ER: Ir: 003, l?“buffer fit.+ 0.05

* ER + CoTeaching: [r: 0.03; Iryyer fir.: 0.05

¢ ER + DivideMix: [7: 0.1; {7puffer ir.: 0.01

e PuriDivER: [7: 0.001; I7pufer ie.: 0.05; oz 0.1

e PuriDivER.ME: [r: 0.03; I7puffer fir.: 0.05; a2 0.1
¢ GDumb: lT‘buffer fit.+ 0.05

* GDumb + CoTeaching: 7y . : 0.05

¢ GDumb + DivideMix: [7pyfrer fie.: 0.05

Noise type: sym —40%

e Joint: [r: 0.03

¢ SGD: Ir: 0.03

¢ OURs: Ir: 0.03

¢ OURs + buffer fit: {r: 0.03; I7pufrer fie.: 0.05

¢ OURs + consolidation: [7: 0.03; I7¢onsolidation: 0.1; Ay: 0.1
e DividERMix: [r: 0.03

e ER: I7r: 0.03; Irpusfer fie.: 0.05

* ER + CoTeaching: Ir: 0.03; I7pyfter fie.: 0.05

¢ ER + DivideMix: [7: 0.1; I7puffer fie.: 0.05

e PuriDivER: [r: 0.001; Irpuger fir.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; I7pufrer fir.: 0.05; o 0.1
¢ GDumb: l'rbuffer fit.+ 0.05

¢ GDumb + CoTeaching: [7pysfer fir.: 0.05

¢ GDumb + DivideMix: [7pufrer fir.: 0.05

Noise type: sym — 60%

e Joint: [r: 0.03

« SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: [r: 0.03; Irpufrer fir.: 0.05

¢ OURs + consolidation: [7: 0.03; I7¢onsolidation: 0.1; Ay: 0.1
e DividERMix: [7: 0.1

« ER: Ir: 003, lTbuffer fit.+ 0.05

* ER + CoTeaching: [r: 0.03; Iryyger fir.: 0.05

¢ ER + DivideMix: [7: 0.03; Irpufter fir.: 0.05

e PuriDivER: [7: 0.001; l7pusrer e.: 0.05; oz 0.1

e PuriDivER.ME: [7: 0.03; Irpuster fie.: 0.05; a: 0.1
¢ GDumb: lTbuffer fit.- 0.05

* GDumb + CoTeaching: 7y fir.: 0.05

¢ GDumb + DivideMix: [7pyfer fie.: 0.05
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Noise type: asym — 20%

e Joint: [r: 0.03

¢ SGD: Ir: 0.03

¢ OURs: /r: 0.03

¢ OURs + buffer fit: [r: 0.03; Irpufrer fir.: 0.05

¢ OURs + consolidation: [7: 0.03; I7consolidation: 0.05; Ay,: 0.005
e DividERMix: [r: 0.03

e ER: [7r: 0.03; Irpuffer fir.: 0.05

* ER + CoTeaching: [r: 0.03; Iryyser fir.: 0.05

¢ ER + DivideMix: {7: 0.03; lrpufrer fe.: 0.01

e PuriDivER: [r: 0.001; Irpuster fir.: 0.05; a: 0.1

e PuriDivER.ME: [7: 0.03; Irpuster ie.: 0.05; a: 0.1
¢ GDumb: l?"buffer fit. - 0.05

¢ GDumb + CoTeaching: [7pusfer fir.: 0.05

¢ GDumb + DivideMix: [7pufrer fir.: 0.1

Noise type: asym —40%

e Joint: [r: 0.03

« SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: {r: 0.03; I7pufrer fic.: 0.05

¢ OURs + consolidation: [7: 0.1; I7¢onsolidation: 0.05; Ay 0.1
e DividERMix: [r: 0.03

 ER: Ir: 003, l?“buffer fit.+ 0.05

* ER + CoTeaching: Ir: 0.03; I7pyffer fir.: 0.05

¢ ER + DivideMix: [7: 0.1; Irpuster fir.: 0.01

e PuriDivER: [7: 0.001; I7putrer e.: 0.05; oz 0.1

e PuriDivER.ME: [r: 0.03; {7puffer fic.: 0.05; a: 0.1
¢ GDumb: l'rbuffer fit.+ 0.05

* GDumb + CoTeaching: [7pyfrer fir.: 0.05

¢ GDumb + DivideMix: [7pyfrer fie.: 0.1

WEBVISION
Noise type: unknown

e Joint: [r: 0.03

¢ SGD: Ir: 0.03

¢ OURs: [r: 0.03

¢ OURs + buffer fit: {r: 0.03; I7pufrer fic.: 0.05

¢ OURs + consolidation: [7: 0.03; I7¢onsolidation: 0.01; A2 0.05
e DividERMix: [r: 0.03

 ER: Ir: 003, l?“buffer fit.+ 0.1

e ER + CoTeaching: i7: 0.03; [7puffer fir.: 0.1

¢ ER + DivideMix: [7: 0.03; lrpuffer fir.: 0.05

e PuriDivER: [r: 0.001; Irpuster ie.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; Irpuser fie.: 0.05; a2 0.1
¢ GDumb: l'rbuffer fit.+ 0.1

¢ GDumb + CoTeaching: [7pyffer fir.: 0.05

¢ GDumb + DivideMix: [7pyfrer fie.: 0.05
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NTU RGB-D
Noise type: sym —20%

e Joint: [r: 0.1

*« SGD: Ir: 0.1

e OURs: Ir: 0.1

¢ OURs + buffer fit: Ir: 0.3; [rpuster fir.: 0.05

¢ OURSs + consolidation: [7: 0.1; I7puffer fic.: 0.1; A2 0.01
e DividERMix: [r: 0.03

e ER: Ir: 0.03; Irpuster fir.: 0.05

* ER + CoTeaching: Ir: 0.1; Irpyfer ir.: 0.05

¢ ER + DivideMix: (7: 0.1; I7pufter .- 0.05

e PuriDivER: [7: 0.3; I7pufter fir.: 0.05; ez 0.1

e PuriDivER.ME: [r: 0.03; I7pufter fir.: 0.05; a2 0.1
¢ GDumb: lT‘buffer fit.+ 0.03

* GDumb + CoTeaching: I7yser i : 0.1

¢ GDumb + DivideMix: [7pyfrer fie.: 0.3

Noise type: sym —40%

e Joint: [r: 0.1

¢ SGD: Ir: 0.03

e OURs: Ir: 0.1

¢ OURs + buffer fit: I7: 0.3; [7rpugter fir.: 0.05

¢ OURs + consolidation: [7: 0.1; I7puffer fic.: 0.1; A2 0.01
e DividERMix: [r: 0.1

e ER: Ir: 0.03; Irpuster fir.: 0.05

* ER + CoTeaching: Ir: 0.1; Irpyfer fir.: 0.05

¢ ER + DivideMix: (7: 0.1; I7puffer .- 0.05

e PuriDivER: I7: 0.3; Irpuffer ir.: 0.05; a: 0.1

e PuriDivER.ME: [r: 0.03; {7puffer fic.: 0.05; a: 0.1
¢ GDumb: lTbuffer fit.+ 0.1

* GDumb + CoTeaching: I7ygser i : 0.1

¢ GDumb + DivideMix: [7pyfer fie.: 0.03
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