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MILES: Making Imitation Learning Easy with Self-Supervision161

For videos demonstrating MILES’ performance and code implementation please see our webpage:162

https://sites.google.com/view/miles-imitation.163

A MILES: Additional Details on the Method164

A.1 Related Work165

As follows, we ground our work relative to methods that can learn manipulation skills from a single166

demonstration, unlike most approaches that require large demonstration datasets [1, 18, 19].167

Imitation learning from prior knowledge. An effective way to compensate for the lack of large168

demonstration datasets is to leverage prior task knowledge such as access to ground truth object169

poses [20, 21] or by meta-learning policies by first pretraining on large demonstration datasets [22,170

23]. However, precise knowledge of the objects’ poses is hard to obtain in practice and meta-learning171

methods are often limited to tasks similar to the ones seen in the demonstrations. Instead, MILES172

can learn a new task from just a single demonstration without any prior object or task knowledge.173

Imitation learning via Reinforcement learning (RL). Inverse RL methods from a single demon-174

stration learn to follow that demonstration by minimizing a similarity metric between the trajecto-175

ries of the learned policy and the demonstration [3, 24, 4, 25]. Other RL methods that learn from176

demonstrations infer rewards through alternative means, like goal images [8]. Though effective,177

these methods are often inefficient as they rely on random exploration and repeated environment178

resets which require significant human effort. Instead, our self-supervised data collection makes179

MILES highly efficient and eliminates the need for repeated environment resetting.180

Imitation learning via pose estimation and demonstration replay. Replay-based imitation learn-181

ing methods first estimate and move the robot to a similar pose relative to the objects of interest as182

in the demonstration and then replay the demonstrated robot actions [7, 26, 6, 17, 27]. While these183

methods are the most efficient in terms of human time, small errors in pose estimation cause errors to184

compound during demonstration replay, leading to task failures [2]. And even under the assumption185

of perfect pose estimation, potential environment collisions may prevent the robot from reaching186

the desired pose or may perturb the objects such that replaying the demonstration fails to complete187

the task. Instead, MILES’ self-supervised data collection procedure retains the human-time effi-188

ciency of pose estimation methods, while learning to avoid unnecessary collisions, and minimizing189

or completely eliminating open-loop replay errors depending on the task.190

Imitation learning by demonstration augmentation. Demonstration augmentation approaches191

like DAgger [5] and DART [28] mitigate covariate shift by relying on laborious interactive expert192

queries to expand the known state distribution of a policy. And methods that do not require an193

interactive expert still rely on multiple demonstrations or task-specific optimizations [29, 30, 31, 32,194

33] which limit their practical application. Instead, MILES is a fully autonomous method that uses195

self-supervision to augment a single demonstration and can learn a wide range of diverse tasks.196

A.2 Method Pseudocode197

We provide a detailed pseudocode describing MILES, in Algorithms 1- 8.198

A.3 Validity Conditions for Augmentation Trajectories199

As follows, we introduce two conditions that determine whether an augmentation trajectory can be200

fused with the human demonstration. Consider an augmentation trajectory ·k aimed at returning the201

robot to the kth demonstration state, (w’

k
, o

’

k
):202

(1) Condition 1, Reachability: After executing the augmentation trajectory, the EE’s pose must203

equal the pose of the demonstration waypoint w
’

k
. This equality can be verified trivially using204

proprioception. In many scenarios, the environment’s dynamics (e.g. collisions) or inevitable sys-205

tematic inaccuracies in a robot’s controller may prevent it from reaching its target waypoint w
’

k
.206
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Thus, if w
·k
M

”= w
’

k
, the augmentation trajectory cannot return to demonstration state k, rendering207

the augmentation trajectory invalid.208

(2) Condition 2, Environment Disturbance: While collecting ·k, the robot may disturb the envi-209

ronment, resulting in a final observation o
·k
M

that no longer matches that of the demonstration (even210

if w
’

k
is reached). For instance, during data collection if the robot’s gripper pushes an object to a211

different pose than it had at timestep k of the demonstration, the final observation in the augmen-212

tation trajectory will differ from the demonstration’s kth observation. Therefore, if o
·k
M

”= o
’

k
, the213

augmentation trajectory cannot be combined with the human demonstration to create a new, valid214

demonstration. To detect such disturbances, we compare the cosine similarity of the DINO features215

[34, 35] of the RGB image I
’

k
from the demonstration’s observation o

’

k
and the image I

·k
M

after216

executing the augmentation trajectory. If the similarity falls below a threshold ◊, we assume the217

environment has been disturbed and stop data collection.218

A.3.1 How do we check for the Reachability condition?219

Reachability. To check for reachability, after executing an augmentation trajectory ·k, we verify220

whether the final achieved pose matches the pose of the kth demonstration waypoint using proprio-221

ception, as described in section A.3. Pseudocode describing how we check for reachability is also222

provided in Algorithm 3. It is crucial to check for reachability because an augmentation trajectory223

that does not meet this condition cannot be fused with the demonstration, as it cannot return to224

the demonstration state. If the waypoint w
’

k
is unreachable during data collection, we cannot auto-225

matically determine how to reach w
’

k
from w

·k
M

, without collecting observations that do so during226

self-supervised data collection. Consequently, we cannot automatically determine what actions to227

take to return back to the demonstration from w
·k
M

, as we can with valid augmentation trajectories.228

Figure A.2 (a, left) shows an example where the reachability condition is not met due to environ-229

mental dynamics, such as a key getting ”jammed” and failing to reach the target waypoint due to230

collision and friction in the lock. A similar example where the reachability condition is met is shown231

in Figure A.2 (a, right).232

A.3.2 How do we check for the Environment Disturbance condition?233

Environment Disturbance. To determine whether an environment disturbance occurred, we com-234

pare the RGB image captured at the kth demonstration timestep with the RGB image captured at235

the final timestep of the augmentation trajectory, as described in section A.3. A detailed pseudocode236

describing how we determine whether an environment disturbance occurred can be found in Algo-237

rithm 5, and a visual example can be seen in Figure A.2 (b). The comparison between the two RGB238

images relies on the similarity of their DINO features [34]. Specifically, we use a pre-trained DINO239

ViT [34] to obtain the DINO features for different patches of each image similarly to [35]. By com-240

puting the cosine similarity between the DINO features of each corresponding image patch in I
’

k
and241

I
·k
M

, we can calculate the average similarity between the two images [35]. If the similarity is below a242

threshold ◊ (to see how we automatically determine ◊ please see section B.3.3), we assume the robot243

has disturbed the environment, and data collection is stopped. Our experiments showed that DINO244

ViT features are necessary because they are robust to lighting changes and noise in the RGB image.245

Other methods we tried, such as template matching or computing the per-pixel Euclidean distance,246

proved brittle and sensitive to lighting variations or noise in the captured images. Understanding247

why checking for an environment disturbance is important is straightforward. Consider the rectan-248

gular object shown in Figure A.2 (b), and assume the task is to learn how to pick up that object.249

If the robot pushes the rectangular object, causing it to fall over during data collection, the image250

observed after returning to the demonstration state will no longer match that state’s observation251

from when the demonstration was provided. Consequently, from the point where the disturbance252

occurred onward, we have no way of knowing how to reach any of the remaining demonstration253

states and as a result how to solve the task. This is because we only know how to solve a task by254

learning how to follow the demonstration after returning to it. But if an environment disturbance has255

occurred (e.g., the rectangular object has fallen), following the demonstration’s actions no longer256

leads to task completion. Hence, if data collection continued, all future augmentation trajectories257

would contain invalid observations and actions, as they would demonstrate behavior that does not258

solve the task that the human demonstrated. This is why we stop data collection after detecting an259

environment disturbance.260
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(a) No Environment Disturbance (b) Small Environment Disturbance (c) Medium Environment Disturbance (d) Large Environment Disturbance

(e) Toy Screwdriver

Examples of DINO Features Cosine Similarities

Figure A.1: The cosine similarity computed using the DINO features for the screwdriver task under varying environment
disturbances.

A.4 Additional Results on Environment Disturbances and DINO Features261

We demonstrate in this section several examples of possible environment disturbances and how we262

can detect them using the DINO features on the toy screwdriver used in our experiments. We use263

the screwdriver as an example as during data collection for the ”Twist screw” task, data collection264

was stopped due to an environment disturbance caused at the grasped screwdriver. Additionally,265

disturbances caused in the grapsed objects are often the most subtle, and as such make for the most266

interesting cases.267

Figure A.1 (e) shows the screwdriver object (not grasped). All the other figures depict the screw-268

driver as it appears in the view of the wrist camera when grasped by the robot. Figure A.1 (a) shows269

a “Demonstration Image” and a “New Image” that depicts the DINO Cosine similarity (higher bet-270

ter) when no environment disturbance has occurred, i.e., the grasp has not changed. The heatmap271

demonstrates the similarity between each corresponding patch between the “Demonstration Image”272

and the “New Image” (the cosine similarity reported is the mean of these). As shown, the cosine273

similarity (0.961) is greater than our universal threshold ◊ of 0.94 (for more details please see exper-274

iments section 3). The reason it is not a perfect 1.0 is due to noise and light changes as the photos275

were captured at different moments in time. Figure A.1 (b), shows a detected environment distur-276

bance based on the DINO features. As shown under the ”New Image” the screwdriver has moved277

by a small amount in the gripper and the cosine similarity falls slightly below our threshold ◊. Then,278

Figure A.1 (c) shows a slightly bigger detected environment disturbance, and finally Figure A.1 (d)279

shows a rather large environment disturbance. Generally, as shown in Figure A.1, the DINO features280

are robust in detecting environment disturbances of different scales and as we move from smaller to281

larger disturbances in the grasped screwdriver the cosine similarity also decreases, as expected.282

A.5 MILES’ Policy283

A.6 Policy Overview284

Training. We train a separate policy fi for each task as an LSTM network with behavioral cloning285

that receives as input the RGB and force-torque observations in the dataset Dnew and regresses the286

corresponding actions. Note that Dnew does not contain proprioception data, allowing our policies287

to generalize to different object poses naturally due to the use of our wrist camera.288

Inference. We deploy our policy fi to solve a task up to the Rth demonstrated state. If no environ-289

ment disturbance occurred during data collection for that task, then the Rth state is the final state290

in the demonstration and fi solves the task completely in a closed-loop manner. Otherwise, after291

fi completes the task up to the Rth state, the remaining demonstrated action segment ’remaining is292

replayed. We provide more details regarding how we deploy our policy, the network architecture,293

and how we detect that fi has reached the Rth below.294
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Valid Augmentation Trajectory

Target Demonstration 
State

Environment Disturbance

(b)

Observation at the 
Demonstration State 

Planned Augmentation 
Trajectory 

Observation after executing 
Augmentation Trajectory 

(a)

Reachable
Collision and friction get the 
key jammed and not inserted

Unreachable

o�
k Object has fallen

o�k
M

The observation  does not match  
the demonstration observation 

o�k
M

o�
k

Successfully overcomes collisions 
and friction to reach the 

Demonstration State

Robot Moves to Random 
 Initial Pose 

Reachability

Invalid Augmentation Trajectory

Figure A.2: Reachability: Two examples of possible augmentation trajectories for a locking task are shown; an invalid
trajectory (left) that fails to reach the target demonstration waypoint due to collisions, friction, and potentially inevitable
systematic controller errors and a valid one (right) that successfully reaches the target waypoint. Environment Disturbance:
As the robot collects an augmentation trajectory, it perturbs the environment such that after returning to the demonstration’s
waypoint the live observation and the demonstrated one no longer match, indicating that data collection should stop.

A.6.1 How is our policy defined when No Environment Disturbance occurred during data295

collection?296

No Environment Disturbance. When no disturbance occurred our dataset Dnew contains augmen-297

tation trajectories that can return to and then follow the demonstration from every state. In that298

case, we leverage Dnew to train an end-to-end behavioral cloning policy fi that comprises a single299

neural network fÂ , parameterized by Â, that receives as input an RGB image captured from the300

wrist camera and force-torque feedback to predict 6-DoF actions: fÂ : RH◊W ◊3 ◊ R6 æ SE(3) as301

well as an additional binary value indicating the gripper action (RH◊W ◊3 refers to the RGB images302

where H: height, W : width and R6 to measured forces and torques). The force-torque feedback303

is captured directly using Franka Emika Panda’s joint force sensors. For our policy to generalize304

spatially, no proprioception input is passed to fÂ and all actions are predicted relative to the EE’s305

frame. fÂ consists of a ResNet-18 backbone [36] for processing RGB images, and a small MLP306

embeds force feedback into a 100-dimensional space. The output of the force MLP and ResNet-18307

are concatenated and fed into an LSTM [37] network for action prediction. The network is trained308

using standard behavior cloning to maximize the likelihood of Dnew.309

A.6.2 How is our policy defined when an Environment Disturbance occurred during data310

collection?311

Environment Disturbance. When self-supervised data collection was stopped due to an environ-312

ment disturbance, our dataset Dnew contains augmentation trajectories that can return the robot to313

any state from the initial demonstration state up to the demonstration state at timestep R, where314

R < N (see section 2.2). In this scenario, if our policy consists only of fÂ , then during task execu-315

tion the robot would be able to solve the task only up to the Rth state, but not complete it. As such,316

we define our policy fi to consist of two components: (1) the first component is a neural network fÂ317

identical to the above scenario, but trained up to the Rth state and (2) the second component corre-318

sponds simply to the sequence of the remaining demonstration actions from the Rth state onwards,319

for which no self-supervised data was collected, i.e., ’remaining = {a
’

n
}N

n=R
.320

A.6.3 How do we deploy MILES’ policy?321

Deployment: Our LSTM-based policy closely follows the implementation of BC-RNN [38]. De-322

ploying the policy is straightforward and depends on whether data collection was interrupted due to323

an environment disturbance. If uninterrupted, then only the neural network fÂ is used to complete324

the task equivalently to policies trained using reinforcement learning or behavioral cloning.325

If data collection was interrupted, first fÂ is deployed to solve the task up to the Rth state in an326

identical way as the scenario of ”no environment disturbance”. After the robot reaches the Rth state327

then ’remaining is executed. We determine whether the closed-loop policy has completed the task328

up to the Rth in a very simple way as described in section A.6.4.329

During deployment we reset the hidden state of the LSTM at an interval equal to two times the330

number of timesteps (i.e., waypoints) in the demonstration for which augmentation trajectories were331

collected. For example, if for a task MILES collected augmentation trajectories for 40 demonstration332
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waypoints before stopping due to an environment disturbance, then, during deployment the hidden333

state of the LSTM is reset every 80 timesteps. We did not find the frequency of resetting the hidden334

memory to have significant effects on the policy’s performance. We would like to note that the only335

important observation we made was that the number of timesteps should not be very low (e.g., 5) as336

then the robot would end up progressing towards completing a task very slowly.337

Pseudocode describing MILES’ policy deployment can be found in Algorithm 8.338

A.6.4 How do we determine when to switch from closed-loop control to demonstration339

replay?340

Switching from closed-loop to demonstration replay is straightforward. As the objects and the robot341

can be at different poses during deployment from the ones during data collection, we cannot just use342

the robot’s proprioception to know when the Rth state has been reached. Hence, we deploy fÂ until343

it predicts continuously the identity transformation, indicating no robot movement. Then, we switch344

to demonstration replay, where we replay the rest of the demonstration ’remaining .345

B More details on the Experimental Setup346

B.1 Implementation Details347

For our experiments, we use a FLIR camera mounted to the wrist of Franka Emika Robot. We348

sample Z = 10 augmentation trajectories for each demonstration waypoint (¥ approximately 1349

minute of data collection per waypoint). This number is set arbitrarily, but as we show later in our350

ablations, some tasks may require less data. We collect augmentation trajectories with initial poses351

near the demonstration in the range of 4cm and 4 degrees around each demonstration waypoint, a352

wider range compared to existing augmentation methods that learn from multiple demonstrations353

[29, 30]. As commonly done in the literature [3, 8, 7, 17], we provide our demonstrations starting354

near each object. At deployment, to reach the object from far away we first estimate the object’s pose355

using pose estimation and approach it before switching to MILES. Finally, we set the environment356

disturbance threshold ◊ to 0.94 for all our tasks. Additional details on the pose estimation method357

we use and how to set each one of MILES’ parameters can be found below.358

B.2 Pose Estimation359

In practice, as with most methods [3, 8, 7, 17], we naturally provide the demonstrations starting near360

the task-relevant object to focus self-supervised data collection at the part of the task that is the most361

important, that is the robot-object interaction part.As such, we need a way to ensure that MILES can362

still solve any task regardless of how far the robot is from an object. An apparent solution to this is363

to provide the demonstration starting from a pose far away from the object and deploy MILES’ data364

collection. While this is possible – as MILES makes no assumptions or restrictions on the length365

of the demonstration– it may be inconvenient. As such, inspired by [2, 26, 17] we use a simple366

pose estimator at deployment to estimate the relative pose between the robot at the initial state of367

the demonstration (for which MILES collected data) and the task-relevant object. As we do not368

assume any 3D object models, we use the method deployed in [7] although any other model-free369

pose estimator can be used. This allows us to first coarsely estimate the pose and move near the task-370

relevant object from any robot starting pose before deploying MILES. Uncut videos demonstrating371

this behavior can be found on our webpage: https://sites.google.com/view/miles-imitation.372

B.3 MILES Data Collection Hyperparameters373

B.3.1 How do we set the data collection range around each demonstration waypoint?374

As discussed in our experiments section 3, we collect data in a range of 4cm and 4 degrees around375

each demonstration waypoint. However, this range is not limiting and can be set to any desirable376

range like any other robot learning method. In our case, we set this range to be the average pose377

estimation error to reach the initial pose of the demonstration relative to the task-relevant object378

using the pose estimation method described in section B.2 which we obtained based on [7].379
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. Task: Description DCT Task: Description DCT

.
Lock with

key

Insert a key into a lock and rotate 90
degrees to lock it. 24’ Twist

screw

Insert a toy screwdriver into a screw
and twist by 90¶. 22’

.
Insert USB

Insert a USB stick into a USB port
(< 1mm tolerance) 21’. Bread in

toaster
Put a plastic bread inside a toaster. 40’

.
Plug into

socket
Plug a UK plug (3-pin) to a socket. 37’ Open lid Lift the lid of a blue box. 31’

.

Insert

power

cable

Plug the power cable into the power
port of a PC. 28’

Table 2: Task descriptions of the 7 tasks used in our experiments. DCT stands for Data Collection Time and corresponds to
the time spent collecting self-supervised data.

B.3.2 How do we determine the number of augmentation trajectories to collect for each380

demonstration waypoint?381

For all of our experiments, we set the number of augmentation trajectories per demonstration way-382

point, Z = 10. In our case, we set this arbitrarily, but as we showed in our method’s data collection383

ablation in section C.4 different tasks require different numbers of augmentation trajectories. As384

such, we provide two guidelines for setting the value for Z. Firstly, high tolerance tasks, like the385

”Open lid” task reported in our experiments usually require a small number of augmentation trajec-386

tories. On the other hand, precise tasks, like the ”USB insertion” task reported in our experiments387

require more augmentation trajectories. Secondly, as the data collection range around each demon-388

stration waypoint increases, the number of augmentation trajectories collected should also increase389

with an approximately linear relationship, i.e., if the range is doubled, then the number of augmenta-390

tion trajectories should be doubled as well. We recommend as a starting point, for a data collection391

range similar to our experimental setting of 4cm and 4 degrees, to collect 10 augmentation trajecto-392

ries for precise, low-tolerance tasks, and 4 augmentation trajectories for high-tolerance tasks.393

B.3.3 How do we determine the Environment Disturbance threshold ◊ ?394

We determined ◊ simply by spawning several random RLBench [39] tasks in CoppeliaSim and395

running MILES. By setting up custom heuristics that determine environment resets in the simulation396

we found that for the DINO model we use, a similarity of ◊ < 0.94 appeared to detect environment397

disturbances across all tasks successfully. Consequently, we used that in our real-world experiments398

too.399

B.4 Task Descriptions400

A detailed description of each task along with their Data Collection Times (DCT) can be found in401

Table 2.402

B.4.1 How long is each demonstration?403

The demonstration lengths varied across each task. As follows, we list for each task the number of404

demonstration waypoints comprising each human demonstration (each demonstration waypoint can405

be interpreted as a timestep): Lock with key: 32, USB task: 20, Plug into socket: 40, Insert power406

cable: 29, Twist screw: 47, Bread in Toaster: 70, Open lid: 80. All demonstrations were collected407

using teleoperation. Note that the number of demonstration waypoints is not necessarily equal to408

the number of waypoints for which MILES collected augmentation trajectories. This is because409

environment disturbances may have caused the data collection to stop earlier.410

B.4.2 For which tasks was an Environment Disturbance detected?411

An environment disturbance was detected for the following tasks: Twist screw, Bread in412

Toaster and Open lid. As such for these tasks the policies comprise a closed-loop and a413

demonstration replay component.414

We also note that for the lock with key task, we stopped data-collection ”half-way” through the 90415

degrees twisting rotation for hardware safety. This is because the forces exerted on the robot as416
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Methods
Insert Onto

Square Peg

Lightbulb

In

Pick Up

Cup
Turn Tap Lamp On Mean

Demo Replay 0 0 5 5 0 2
Reset Free Residual RL 0 0 0 0 0 0
Reset Free FISH (Inverse Residual RL) 0 0 0 0 20 4
Pose Estimation + Demo Replay 70 65 90 80 95 80
MILES 90 75 100 75 100 88

Table 3: Task success rates (%) of each method on RLBench.

it was collecting self-supervised data were too high. In this case, we treated this identically to an417

environment disturbance. At deployment, the learned policy completes most of the task closed-loop,418

apart from a small twisting motion done with demo replay, after the closed-loop policy converges to419

predicting the identity transformation as discussed in section A.6.4. This is similar to adding force420

limits to reinforcement learning algorithms and was done to protect our robotic hardware; however,421

doing so is not a requirement.422

B.5 Baselines423

Here, we provide further implementation details on two of the baselines we used in our paper.424

Pose Estimation + Demo Replay. For this baseline, we follow the same problem formulation as425

in [7], but improve upon that baseline in two key ways: (1) the data on which it is trained on is the426

same data collected for MILES, as such it contains only valid trajectories that cover a larger part of427

the task space and (2) instead, of replaying recorded velocities, we also replayed the recorded forces428

which is particularly important for the contact rich tasks. This baseline estimates and moves the429

robot to a pose relative to the object of interest as depicted in the first state in the demonstration and430

replays the complete demonstration. We chose this baseline compared to alternatives, as it leverages431

task-specific data allowing it to achieve very precise pose estimation.432

Reset-Free FISH [3]. For Reset-Free FISH we use the implementation provided by the authors as433

it can be found in: https://github.com/siddhanthaldar/FISH. We only changed the implementation434

such that the policy always predicts 6-DOF actions instead of constraining the output to specific435

DOFs, as doing so assumes access to prior task knowledge. To learn residual actions on top of the436

demonstration we tested both using demo replay as the base policy, as well as VINN [40] but found437

that demo replay led to better performance.438

B.6 Details on the Evaluation Setup439

For a fair evaluation, we carefully tuned each method’s hyperparameters. Additionally, each440

learning-based baseline collected the same number of observations as MILES during data collec-441

tion for each task. We evaluated each method’s success rate across 20 trials. For each trial we442

randomized the relative starting pose of the robot and the task-relevant object equivalently across all443

methods within a sphere of 20cm around the object as long as the object was visible to the camera.444

Finally, we emphasize that for all evaluations both MILES and the baselines predict 6-DoF actions.445

C Additional Experiment Results446

C.1 Simulation Results447

To aid other researchers in reproducing our results, we conducted additional simulation experiments448

on the RLBench benchmark [39] on 5 tasks, specifically: 1) ’Insert Onto Square Peg’, 2) ’Lightbulb449

In’, 3) ’Pick Up Cup’, 4) ’Turn Tap’ and 5) ’Lamp On’. We performed an identical evaluation to450

our real-world experiments where we performed 20 evaluation trials for each method. Additionally,451

we used the images captured only from the wrist camera in RLBench. During training we allowed452

each method to collect the same amount of data and we did not perform any environment resets453

during training/data collection for any methods. The results can be seen in Table 3. As shown,454

MILES significantly outperforms the baselines, while the relative performance when comparing all455

methods remained relatively unchanged compared to our real-world results.456

Similarly to our real-world experiments, the reinforcement learning baselines obtained poor perfor-457

mance for reasons in line with the ones discussed in our experiments section. Specifically, during458
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Method Ablations
Lock

with key

Insert

USB

Plug into

socket

Insert

power cable

Twist

screw

Bread in

toaster

Open

lid
Mean

.

No Sequence 60 20 20 10 0 85 95 43
No Environment Disturbance 90 70 85 85 0 0 0 47
No Reachability 75 40 95 20 85 95 100 73
No Memory 50 65 100 75 35 90 100 74
MILES 90 70 85 85 85 95 100 87

Table 4: Task success rates (%) for 20 trials reported for each method ablation.

Figure C.3: The tasks used in our experiments. The ”Markers in Bin” is used to evaluate MILES’ ability to generalize (the
bins marked green denote the training set, while the red denote the test set).

training we observed that for the tasks ‘Insert Onto Square Peg’ and ‘Lightbulb In’ a random gripper459

action drops the grasped object during exploration and the policy never manages to grasp it again460

during training without a reset in the given training time. For the ’Pick Up Cup’ task, the reinforce-461

ment learning policy knocks the cup off the table during exploration, consequently never learning462

something useful. For the ’Turn Tap’ task the RL policies never learned to properly grasp and rotate463

the handle and for the ‘Lamp On’ task, only Reset Free FISH managed to learn a policy that obtains464

20% success rate in the given training time. As discussed in our real-world experiments, if instead465

we had allowed environment resets and more training time that would have resulted in significantly466

higher success rates for the RL baselines, compared to their current performance.467

C.2 How does MILES perform under different method ablations?468

This section studies MILES’ performance by ablating 4 different components of the method: (1)469

No Environment Disturbance: we ablate the environment disturbance condition by not checking470

for that condition when collecting augmentation trajectories. (2) No reachability: we ablate the471

reachability condition by relabeling each observation’s action (of the existing MILES data), to move472

the robot to the nearest waypoint in the demonstration based on their Euclidean distance. If the con-473

straint for reachability is not important, then simply moving from each pose to the nearest waypoint474

in the demonstration in a straight line would be sufficient to solve a task. (3) No sequence: we rec-475

ollect MILES’ data but instead of collecting Z augmentation trajectories for the first demonstration476

state, then progressing to the second state and so on, we collect data without following the demon-477

stration’s waypoint sequence and instead follow a random one. (4) No Memory: For this ablation478

we retrain a network on the existing MILES data that does not account for history.479

Results. Table 4 shows MILES performance after ablating each component. Collecting augmenta-480

tion trajectories for each demonstration state in a random order (No Sequence), with an average suc-481

cess rate of 43%. Additionally, not checking for the environment disturbance condition (No Envi-482

ronment Disturbance) appears to cause significant performance degradation for the tasks where an483

environment disturbance occurred during data collection, corresponding mostly to the non-contact484

rich tasks. On the other hand, not checking for the reachability condition (No Reachability) also485

lowers performance, particularly for the precise, contact-rich tasks, indicating that the reachability486

condition is the most important when learning tasks requiring precise manipulation. Finally, the487

lower performance obtained by removing the LSTM (No Memory) demonstrates the performance488

benefits of training memory-based networks on datasets collected using MILES.489

C.3 How important are vision and force modalities to the performance of MILES?490

In this section, we ablate the use of vision and force feedback as policy inputs for the491

four contact-rich tasks from our earlier experiments. We retrain and evaluate two poli-492

cies: one using only vision and one using only force. The results, shown in Fig-493

ure C.4, indicate that the vision-based policy improves MILES’ performance in the ”In-494

sert USB” and ”Plug into socket” tasks but reduces performance in the other two tasks.495

This suggests that force feedback might not consistently benefit MILES, possibly due to496

its noisy signal which makes it hard to distinguish between different environment states.497
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Figure C.4: MILES’ performance when trained only on either
vision or force feedback or both.

The force-based policy, however, fails almost498

completely. This is expected as force feedback499

is zero in free space and can be ambiguous due500

to symmetries in object surfaces. Overall, while501

force feedback aids performance in some tasks,502

it is not always necessary. Vision remains the503

most crucial modality to MILES’ high perfor-504

mance.505

C.4 How does MILES perform under506

different sizes of self-supervised data?507

In this section, we ablate the dataset size used to learn four tasks by splitting their origi-508

nal datasets into chunks containing 75%, 50%, and 25% of the original data. We evalu-509

ated the best and worst performing contact-rich tasks (”Lock with key” and ”Insert USB”)510

and non-contact-rich tasks (”Open lid” and ”Twist screw”). Data collection times for each511

task can be found in the supplementary material. Figure C.5 shows that for high toler-512

ance tasks like ”Open lid,” MILES achieves a 100% success rate even with 25% of the data,513

Figure C.5: MILES’ performance when trained on different
dataset sizes. 100% corresponds to the original dataset. 75%,
50%, and 25% correspond to splits of the original dataset.

corresponding to only 8 minutes of data collec-514

tion. However, for precise tasks, success rates515

decrease as dataset size is reduced. Notably,516

for ”Lock with key” and ”Twist screw,” reduc-517

ing the dataset to 50% results in a high failure518

rate. To summarize, we observe that high tol-519

erance tasks are likely to require less data, and520

in practice only a few minutes of data collec-521

tion time. Instead, for high-precision tasks, like522

inserting a USB, the dataset size appears to im-523

pact MILES’ performance significantly.524

C.5 Experiment Results on Generalization Performance525

Since MILES uses BC to train policies, existing generalization results for BC [19, 1] also apply526

to MILES. For tasks that include demonstration replay following the closed-loop policy, MILES527

can generalize to new objects by retrieving the replay trajectory of the most similar object in the528

existing demonstrations, similar to prior work [6]. To test this, we tasked MILES with throw-529

ing markers of different colors into differently shaped and colored bins, shown in Figure C.3 (8).530

Trained on five bins (marked green) and tested on two new bins (marked red), MILES achieved531

an 80% success rate on the pink bin and 60% on the gray bin, over 10 trials each starting from532

poses where simple demonstration replay would fail. The data collection time for this task was on533

average 34 minutes for each bin and an environment disturbance was detected for each bin. To534

determine which remaining actions to replay for the previously unseen bins, we selected the remain-535

ing actions from the bin in the training set whose RGB image in the demonstration has the highest536

similarity in terms of DINO features with the bin during deployment, inspired by prior work [6].537

Videos exhibiting MILES generalization on the two test case bins can be found on our webpage:538

https://sites.google.com/view/miles-imitation.539

C.6 Experiment Results on Multi-stage Tasks540

To evaluate MILES’ ability to solve multi-stage tasks, we tasked MILES with picking up the plastic541

bread shown in Figure 1 (as part of the ”Bread in Toaster” task) and inserting it into the toaster. To542

achieve this we broke the task down into two stages: first, we provided a demonstration showing543

how to pick up the bread and trained MILES. Then, we used the policy already trained on the544

”Bread in Toaster” task to finish the task. To link the two stages together, first the policy to pick545

up the bread is deployed. After, the execution ends, the robot returns to its default position. Then,546

the pose estimation method described in section B.2 is deployed to approach the toaster, and then547

the policy trained with MILES is deployed to insert the bread into the toaster. Videos exhibiting548

MILES’ multi-stage task performance on picking up and inserting the bread into the toaster can be549

found on our webpage: https://sites.google.com/view/miles-imitation.550
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C.7 MILES’ Performance with distractors551

We found that performing standard image augmentation techniques, including changing the bright-552

ness, contrast, noise, cropping random image parts, etc. allowed MILES to be robust to distrac-553

tor objects, as shown in the videos provided on our webpage: https://sites.google.com/view/miles-554

imitation.555

C.8 What if MILES stops data collection early due to a detected environment disturbance?556

There is no requirement as to how early MILES may stop data collection due to an environment dis-557

turbance, as long as it has collected sufficient augmentation trajectories for at least the first demon-558

stration waypoint. During data collection, MILES can effectively learn a policy even if an environ-559

ment disturbance occurs early. Unlike RL, MILES learns to solve the task closed-loop up to the560

demonstration waypoint where the disturbance was detected, after which it replays the demonstra-561

tion. This is because MILES collects data progressively for each demonstration waypoint, rather562

than rolling out a policy all at once like RL. Consequently, during data collection, if a disturbance563

occurs as early as (for example) near the 2nd waypoint, MILES will still know how to get to the 1st564

waypoint during deployment, where it will replay the demonstration.565

Overall, MILES can handle early environment resets during data collection. While as with the566

majority of learning-based methods, the more the data the better the performance, as such the later an567

environment disturbance occurs in the data collection process the better. However, MILES can still568

learn a robust policy as long as sufficient data has been collected at least for the 1st demonstration569

waypoint. This is typically trivial as most human demonstrations naturally begin by controlling the570

robot in free-space far from the object of interest, before interacting with it.571

C.9 Discussion572

Limitations. We now highlight some important limitations of our method. Firstly, MILES’ reliance573

on a wrist camera enables MILES to obtain spatial generalization, however, simultaneously this574

limits its field of view and its applicability to larger task spaces. Future work could address this575

by incorporating an external camera to initially approach an object before switching to the wrist576

camera, similarly to [17]. Secondly, while MILES is robust to distractors at deployment before data577

collection begins it requires a human to set up the robot’s workspace such that only the task-relevant578

object is in camera view for the policy to achieve spatial generalization. While this requires only579

a few seconds of human time, future work could address this by extending MILES to incorporate580

segmentation methods, similar to [17, 41], that segment the task-relevant object in the dataset. Simi-581

larly, to address any unwanted collisions that MILES could cause in the presence of multiple objects,582

future work could study incorporating an external camera during self-supervised data collection to583

plan and collect collision-free augmentation trajectories. Thirdly, our current implementation of584

MILES trains a separate policy for each task and hence it is unclear how well MILES would gener-585

alize to completely new tasks. In future work, we aim to study this by training a single monolithic586

policy on MILES’ self-supervised data combined with replay-trajectory retrieval [42].587

Conclusion. We introduced MILES, a framework that makes imitation learning easy. MILES re-588

quires only a single demonstration and collects self-supervised data that demonstrate to the robot589

how to return to and then follow that demonstration. Subsequently, this enabled us to obtain ma-590

nipulation skills comprising either (1) a single end-to-end policy trained with behavioral cloning or591

(2) a combination of an end-to-end policy and demonstration replay. Our real-world experiments592

showed that self-supervised data enable the acquisition of manipulation skills that achieve consider-593

ably improved performance compared to several state-of-the-art baselines on many everyday tasks594

ranging from learning to open a lid to using a key to lock a lock or inserting a USB into a port, both595

of which require complex and precise contact-rich manipulation.596
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D Detailed Pseudocode597

Algorithm 1: MILES Overview (Simplified)
Input: Single Task Demonstration: ’ = {(w’

n
, o

’

n
, a

’

n
)}N

n=1, Number of augmentation trajectories
per demonstration waypoint Z, environment disturbance threshold ◊ (Default: ◊ = 0.94)

1: D = {} // init empty dataset of augmentation trajectories

2: Reachable = True // init variable that tracks reachability

3: Disturbance = True // init variable that tracks environment

disturbances

4: R = 1 // init variable that stores the timestep when

self-supervised data collection stops

5: Move robot to the initial demonstration pose w
’

1
6: for iteration k = 1 to N do
7: j = 1 // init variable that tracks the number of collected

augmentation trajectories per demo waypoint

8: while j Æ Z do
9: ·k ΩSampleTrajectory(w’

k
) (Alg. 2)

10: Reachable ΩCheckReachability(w’

k
) (Alg. 3)

11: if Reachable is False then
12: ReturnToDemoWaypoint(k, ’) (Alg. 4)
13: Break // exit while loop

14: end if
15: I

·k
M

Ω Capture RGB wrist-cam image // M is the Mth (final) timestep

of ·k

16: Disturbance Ω CheckEnvDisturbance(o’

k
, I

·k
M

, ◊) (Alg. 5)
17: if Disturbance is True then
18: R = k // store timestep when data collection stops

19: Break // exit while loop

20: end if
21: D = D fi ·k // add augmentation trajectory to dataset

22: j = j + 1
23: end while
24: if Disturbance is True then
25: Break // exit for loop

26: end if
27: Proceed to the next demonstration state by performing action a

’

k
// follow the

demonstration’s progression

28: end for
29: Dnew ΩFuseAugmentationsWithDemo(D, R, ’)(Alg. 6)
30: fi ΩTrainPolicy(Dnew, R, ’)(Alg. 7)
31: Deploy(fi, R, ’)(Alg. 8)
Output: fi
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Algorithm 2: SampleTrajectory

Input: Demonstration waypoint w
’

k

1: ·k = {} // init empty augmentation trajectory

2: Sample initial pose w
·k
1 and move robot (Optional:

record trajectory poses)
3: Move back to w

’

k
// either by tracking the

recorded trajectory poses backward or by

re-planning a new, straight-line trajectory

(equal performance, the former often leads to

faster data collection).

4: m = 1 // observations, actions index

5: while moving to w
’

k
do

6: ·k = ·k fi (w·k
m

, o
·k
m

, a
·k
m

) // add waypoints,

observations and actions to augmentation

trajectory; actions are automatically

inferred as the relative EE poses between

consecutive timesteps; gripper actions are

automatically copied from the demonstration.

7: (o·k
m

comprises wrist cam RGB images + force-torque
readings)

8: end while
Output: Return augmentation trajectory ·k

Algorithm 3: CheckReachability

Input: Demonstration waypoint w
’

k

1: Reachable Ω True // init reachability variable

2: w
·k
M

Ω EE pose // achieved after executing the

augmentation trajectory (comprising M
timesteps); read from proprioception

3: Reachable = (w·k
M

== w
’

k
) // check whether poses

are equal (within the controller’s feasible

precision)

Output: Reachable

Algorithm 4: ReturnToDemoWaypoint
Input: Demonstration timestep k, single demonstration ’

1: Move to initial demonstration waypoint w
’

1 œ ’

// replay demonstration up to the kth timestep

2: for iteration t = 1 to t = k do
3: Perform action a

’

t
œ ’

4: end for

Algorithm 5: CheckEnvDisturbance

Input: Demonstration observation o
’

k
, captured live image I

·k
M

,
similarity threshold ◊

1: Disturbance Ω False // init environment

disturbance variable

2: I
’

k
œ o

’

k
// retrieve RGB image I’

k from the

demonstration’s observations

3: [f1
I

’
k

, f
2
I

’
k

, ...] ΩDINO-ViT(I’

k
) // compute DINO-ViT

features [35, 34] for each image patch fx

I’
k

for

the demo waypoint image

4: [f1
I

·k
M

, f
2
I

·k
M

, ...] ΩDINO-ViT(I·k
M

) // compute DINO-ViT

features [35, 34] for each image patch fx
I

·k
M

from the current live environment image

(captured after executing the augmentation

trajectory).

5: sim =AvgCosineSimilarity([f1
I

’
k

, f
2
I

’
k

, ...], [f1
I

·k
M

, f
2
I

·k
M

, ...])
6: if sim < ◊ then
7: Disturbance Ω True
8: end if

Output: Disturbance

Algorithm 6: FuseAugmentationsWithDemo
Input: Dataset of augmentation trajectories D, final data collection

time step R, single demonstration ’

1: Dnew = {}// init empty dataset to store fused

trajectories

2: for ·k in D do
3: ’segment = {(w’

n
, o

’

n
, a

’

n
)}R

n=k
}¸ ˚˙ ˝

demonstration segment from kth
demo waypoint to Rth

œ ’

4: ·knew := ·k fi ’segment
5: Dnew = Dnew fi ·knew

6: end for
Output: Dnew

Algorithm 7: TrainPolicy
Input: Dataset of augmentation trajectories + demo Dnew, final data

collection timestep R, single demonstration ’

1: Train neural network fÂ on Dnew using standard behavioral
cloning// Discard proprioception waypoints (w·k

m and

w’
n), only observation inputs are used for fÂ

2: if R < length(’) then
3: fi = {fÂ, {a

’

n
}N

n=R
} // policy consists of an

end-to-end neural net + demo replay (if an

environment disturbance stopped data collection

before the last demo waypoint)

4: else
5: fi = {fÂ} // policy consists only of an

end-to-end neural net

6: end if
Output: fi

Algorithm 8: Deploy
Input: Policy fi, final data collection timestep R, single demonstration

’

1: Capture observation o // comprising RGB wrist cam

image + force-torque feedback

2: Action a = fÂ(o)
3: Perform action a

4: while a is not the identity transformation do
5: Capture observation o

6: Action a = fÂ(o)
7: Perform action a

8: end while
// if an environment disturbance stopped data

collection before the last demo waypoint

9: if R < length(’) then
10: Replay remaining demo {a

’

n
}N

n=R

11: end if
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