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Abstract

We study the performance of empirical risk minimization on the p-norm linear
regression problem for p ∈ (1,∞). We show that, in the realizable case, under no
moment assumptions, and up to a distribution-dependent constant, O(d) samples
are enough to exactly recover the target. Otherwise, for p ∈ [2,∞), and under weak
moment assumptions on the target and the covariates, we prove a high probability
excess risk bound on the empirical risk minimizer whose leading term matches, up
to a constant that depends only on p, the asymptotically exact rate. We extend this
result to the case p ∈ (1, 2) under mild assumptions that guarantee the existence of
the Hessian of the risk at its minimizer.

1 Introduction

Real-valued linear prediction is a fundamental problem in machine learning. Traditionally, the square
loss has been the default choice for this problem. The performance of empirical risk minimization
(ERM) on linear regression under the square loss, as measured by the excess risk, has been studied
extensively both from an asymptotic [Whi82; LC83; Vaa98] and a non-asymptotic point of view
[AC11; HKZ12; Oli16; LM16; Sau18; Mou22]. An achievement of the last decade has been the
development of non-asymptotic excess risk bounds for ERM on this problem under weak assumptions,
and which match, up to constant factors, the asymptotically exact rate.

In this paper, we consider the more general family of p-th power losses t 7→ |t|p for a user-chosen
p ∈ (1,∞). Under mild assumptions, the classical asymptotic theory can still be applied to ERM
under these losses, yielding the asymptotic distribution of the excess risk. However, to the best of our
knowledge, the problem of deriving non-asymptotic excess risk bounds for ERM for p ∈ (1,∞)\{2}
remains open, and, as we discuss below, resists the application of standard tools from the literature.

Our motivation for extending the case p = 2 to p ∈ (1,∞) is twofold. Firstly, the freedom in the
choice of p allows us to better capture our prediction goals. For example, we might only care about
how accurate our prediction is on average, in which case, the choice p = 1 is appropriate. At the other
extreme, we might insist that we do as well as possible on a subset of inputs of probability 1, in which
case the choice p = ∞ is best. A choice of p ∈ (1,∞) therefore allows us to interpolate between
these two extremes, with the case p = 2 offering a balanced choice. Secondly, different choices of
p have complementary qualities. On the one hand, small values of p allow us to operate with weak
moment assumptions, making them applicable in more general cases. On the other, larger values of
p yield predictions whose optimality is less sensitive to changes in the underlying distribution: for
p = ∞, the best predictor depends only on the support of this distribution.

To sharpen our discussion, let us briefly formalize our problem. There is an input random vector
X ∈ Rd and output random variable Y ∈ R, and we are provided with n i.i.d. samples (Xi, Yi)

n
i=1.

We select our set of predictors to be the class of linear functions
{
x 7→ ⟨w, x⟩ | w ∈ Rd

}
, and choose

a value p ∈ (1,∞) with the corresponding loss ℓp(t) := |t|p/[p(p− 1)]. Using this loss, we define
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the associated risk and empirical risk, respectively, by

Rp(w) := E[ℓp(⟨w,X⟩ − Y )], Rp,n(w) :=
1

n

n∑
i=1

ℓp(⟨w,Xi⟩ − Yi).

We perform empirical risk minimization ŵp ∈ argminw∈Rd Rp,n(w), and our goal is to derive high
probability bounds on the excess risk Rp(ŵp)−Rp(w

∗
p), where w∗

p is the risk minimizer. For efficient
algorithms for computing an empirical risk minimizer ŵp, we refer the reader to the rich recent
literature dealing with this problem [BCLL18; AKPS19; APS19; JLS22].

To see why the problem we are considering is difficult, let us briefly review some of the recent
literature. Most closely related to our problem are the results of [AC11; HKZ12; Oli16; LM16], who
derive high probability non-asymptotic excess risk bounds for the case p = 2. The best such bounds
are found in Oliveira [Oli16] and Lecué and Mendelson [LM16], who both operate under weak
assumptions on (X,Y ), requiring at most the existence of fourth moments of Y and the components
Xj of X for j ∈ [d]. Unfortunately, the analysis in Oliveira [Oli16] relies on the closed form
expression of the empirical risk minimizer ŵ2, and therefore cannot be extended to other values of
p. Similarly, the analysis in Lecué and Mendelson [LM16] relies on an exact decomposition of the
excess loss ℓ2(⟨w,X⟩−Y )− ℓ2(⟨w∗

p, X⟩−Y ) in terms of “quadratic” and “multiplier” components,
which also does not extend to other values of p.

To address these limitations, the work of Mendelson [Men18] extends the ideas of Mendelson
[Men14] and Lecué and Mendelson [LM16] to work for loss functions more general than the square
loss. Roughly speaking, the main result of Mendelson [Men18] states that as long as the loss is
strongly convex and smooth in a neighbourhood of 0, the techniques developed by Mendelson
[Men14] can still be applied to obtain high probability excess risk bounds. Unfortunately, the loss
functions ℓp(t) are particularly ill-behaved in precisely this sense, as ℓ′′p(t) → 0 when t → 0 for
p > 2, and |ℓ′′p(t)| → ∞ as t → 0 for p ∈ (1, 2). This makes the analysis of the excess risk of ERM
in the case p ∈ (1,∞) \ {2} particularly challenging using well-established methods.

Contrary to the non-asymptotic regime, the asymptotic properties of the excess risk of ERM under
the losses ℓp(t) are better understood [Ron84; BRW92; Nie92; Arc96; HS96; LL05], and can be
derived from the more general classical asymptotic theory of M -estimators [LC83; VW96; Vaa98]
under mild regularity conditions. In particular, these asymptotic results imply that the excess risk of
ERM with n samples satisfies

E[Rp(ŵp)]−Rp(w
∗
p) =

E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
2n

+ o

(
1

n

)
as n → ∞, (1)

where Hp := ∇2Rp(w
∗
p) is the Hessian of the risk at its minimizer. We refer the reader to the

discussions in Ostrovskii and Bach [OB21] and Mourtada and Gaïffas [MG22] for more details.
As we demonstrate in Theorem 1, the rate of convergence of ERM for the square loss derived in
Oliveira [Oli16] and Lecué and Mendelson [LM16] matches the asymptotic rate (1) up to a constant
factor. Ideally, we would like our excess risk bounds for the cases p ∈ (1,∞) \ {2} to also match the
asymptotic rate (1), although it is not yet clear how to derive any meaningful such bounds.

In this paper, we prove the first high probability non-asymptotic excess risk bounds for ERM under
the p-th power losses ℓp(t) for any p ∈ (1,∞) \ {2}. Our assumptions on (X,Y ) are weak, arise
naturally from the analysis, and reduce to the standard ones for the case p = 2. Furthermore, the rate
we derive matches, up to a constant that depends only on p, the asymptotically exact rate (1).

We split the analysis in three cases. The first is when the problem is realizable, i.e. Y = ⟨w∗, X⟩
for some w∗ ∈ Rd. This edge case is not problematic for the analysis of the case p = 2, but as
discussed above, the ℓp(t) losses are ill-behaved around 0 for p ∈ (1,∞) \ {2}, requiring us to treat
this case separately. The second case is when the problem is not realizable and p ∈ (2,∞). The final
case is when the problem is not realizable and p ∈ (1, 2), which turns out to be the most technically
challenging. In Section 2, we present our main results and in Section 3, we provide their proofs.

Notation. We denote the components of the random vector X ∈ Rd by Xj for j ∈ [d]. We assume
the support of X is not contained in any hyperplane, i.e. P(⟨w,X⟩ = 0) = 1 only if w = 0.
This is without loss of generality as discussed in Oliveira [Oli16] and Mourtada [Mou22]. For a
positive semi-definite matrix A, we denote the bilinear form it induces on Rd by ⟨·, ·⟩A, and define
∥·∥A :=

√
⟨·, ·⟩A. We define Hp,n := ∇2Rp,n(w

∗
p).
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2 Main results

In this section, we state our main results. We start in Section 2.1 where we introduce constants that
help us formulate our theorems. In Section 2.2, we state the best known results for both the case
p = 2 and the realizable case where Y = ⟨w∗, X⟩. Finally, in Section 2.3, we state our theorems.

2.1 Norm equivalence and small ball constants

To state our results, we will need to define two types of quantities first. The first kind are related to
norms and their equivalence constants, which we will use in the analysis of the non-realizable case.
The second are small ball probabilities, which we will use in the analysis of the realizable case.

We start by introducing the following functions on our space of coefficients Rd. For p, q ∈ [1,∞),
define, with the convention ∞1/p := ∞ for all p ∈ [1,∞),

∥w∥Lp := E[|⟨w,X⟩|p]1/p, ∥w∥Lq,p := E[∥w∥q∇2ℓp(⟨w∗
p,X⟩−Y )]

1/q. (2)

As suggested by the notation, under appropriate moment assumptions on X , these functions are
indeed norms on Rd. In that case, we will be interested in norm equivalence constants between them

Ca→b := sup
w∈Rd\{0}

∥w∥a
∥w∥b

, σ2
p := C4

(L4,p)→(L2,p), (3)

where a and b stand for one of Lp or (Lq, p). Let us note that since we work in a finite dimensional
vector space, all norms are equivalent, so that as soon as the quantities defined in (2) are indeed
norms, the constants defined in (3) are finite. Furthermore, as suggested by the notation, σ2

p may be
viewed as the maximum second moment of the random variables ∥w∥2∇2ℓp(⟨w∗

p,X⟩−Y ) over the unit
sphere of ∥·∥L2,p. Finally, we record the following identities for future use

∥w∥L2,p = ∥w∥Hp
, ∥w∥Lq,2 = ∥w∥Lq , σ2

2 = C4
L4,L2 . (4)

The first identity holds by linearity, and the second by noticing that ∇2ℓ2(⟨w,X⟩ − Y ) = XXT .

We now turn to small ball probabilities. We define the following functions on Rd, for q ∈ [1,∞),

ρ0(w) := P(⟨w,X⟩ = 0), ρq(w, κ) := P(|⟨w,X⟩| > κ∥w∥Lq ). (5)

Assumptions on the functions ρ0 and ρ2 have been used extensively in the recent literature, see e.g.
[Men14; KM15; LM17a; LM17b; Men18; LM18; Mou22]. In particular, a standard assumption
postulates the existence of strictly positive constants β0, and (β2, κ2) such that ρ0(w) ≤ 1− β0 and
ρ2(w, κ2) ≥ β2 for all w ∈ Rd. Conditions of this type are usually referred to as small ball conditions.
Efforts have been made to understand when these conditions hold [Men14; RV15; LM17b] as well
as reveal the dimension dependence of the constants with which they do [Sau18]. Here we prove
that such conditions always hold for finite dimensional spaces. We leave the proof of Lemma 1 to
Appendix B to not distract from our main development.
Lemma 1. ρ0 is upper semi-continuous. Furthermore, if for some q ∈ [1,∞), E[|Xj |q] < ∞ for all
j ∈ [d], then ρq(·, κ) is lower semi-continuous for any κ ≥ 0. Moreover, for all κ ∈ [0, 1)

ρ := sup
w∈Rd\{0}

ρ0(w) < 1, inf
w∈Rd\{0}

ρq(w, κ) > 0.

2.2 Background

To better contextualize our results, we start by stating the best known high probability bound on ERM
for the square loss, which we deduce from Oliveira [Oli16] and Lecué and Mendelson [LM16].
Theorem 1 (Theorem 4.2, Oliveira [Oli16]; Theorem 1.3, Lecué and Mendelson [LM16]). Assume
that E[Y 2] < ∞ and E[(Xj)4] < ∞ for all j ∈ [d], and let δ ∈ (0, 1]. If

n ≥ 196σ2
2(d+ 2 log(4/δ)),

then, with probability at least 1− δ

R2(ŵ2)−R2(w
∗
2) ≤

16E[∥∇ℓ2(⟨w∗
2 , X⟩ − Y )∥2

H−1
2

]

nδ
.
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Up to a constant factor and the dependence on δ, Theorem 1 recovers the asymptotically exact rate
(1). Let us briefly comment on the differences between Theorem 1 and the comparable statements in
the original papers. First, the finiteness of σ2

2 is deduced from the finiteness of the fourth moments of
the components of X , instead of being assumed as in Oliveira [Oli16] (see the discussion in Section
3.1 in Oliveira [Oli16]). Second we combine Theorem 3.1 from [Oli16] with the proof technique of
Lecué and Mendelson [LM16] to achieve a slightly better bound that the one achieved by the proof
technique used in the proof of Theorem 4.2 in Oliveira [Oli16], while avoiding the dependence on the
small ball-constant present in the bound of Theorem 1.3 in Lecué and Mendelson [LM16], which is
known to incur additional dimension dependence in some cases [Sau18].

We now move to the realizable case, where Y = ⟨w∗, X⟩ so that w∗
p = w∗ for all p ∈ (1,∞). We

immediately note that Theorem 1 is still applicable in this case, and ensures that we recover w∗

exactly with no more than n = O(σ2
2d) samples. However, we can do much better, while getting

rid of all the moment assumptions in Theorem 1. Indeed, it is not hard to see that ŵp ̸= w∗ only
if for some w ∈ Rd \ {0}, ⟨w,Xi⟩ = 0 for all i ∈ [n] (taking w = ŵp − w∗

p works). The implicit
argument in Theorem 1 then uses the pointwise bound (see Lemma B.2 in Oliveira [Oli16])

P(∩n
i=1{⟨w,Xi⟩ = 0}) ≤ exp

(
− n

2σ2
2

)
,

and uniformizes it over the L2 unit sphere in Rd, where the L2 norm is as defined in (2). However, we
can use the much tighter bound ρn where ρ is as defined in Lemma 1. To the best of our knowledge,
the realizable case has not been studied explicitly before in the literature. However, with the above
considerations in mind, we can deduce the following result from Lecué and Mendelson [LM17b],
which uniformizes the pointwise bound we just discussed using a VC dimension argument.
Theorem 2 (Corollary 2.5, Lecué and Mendelson [LM17b]). Assume that there exists w∗ ∈ Rd such
that Y = ⟨w∗, X⟩. Let δ ∈ (0, 1]. If

n ≥ O

(
d+ log(1/δ)

(1− ρ)2

)
then for any p ∈ (1,∞), ŵp = w∗ with probability at least 1− δ.

2.3 Results

We are now in position to state our main results. As discussed in Section 1, the ℓp(t) losses have
degenerate second derivatives as t → 0. When the problem is realizable, the risk is not twice
differentiable at its minimizer for the cases p ∈ (1, 2), and is degenerate for the cases p ∈ (2,∞). If
we want bounds of the form (1), we must exclude this case from our analysis. Our first main result is
a strengthening of Theorem 2, and relies on a combinatorial argument to uniformize the pointwise
estimate discussed in Section 2.2.
Theorem 3. Assume that there exists w∗ ∈ Rd such that ⟨w∗, X⟩ = Y . Then for all n ≥ d, and for
all p ∈ (1,∞), we have

P(ŵp ̸= w∗) ≤
(

n

d− 1

)
ρn−d+1,

where ρ is as defined in Lemma 1. Furthermore, if

n ≥



O (d+ log(1/δ)/ log(1/ρ)) if 0 ≤ ρ < e−1,

O

(
d+ log(1/δ)

1− ρ

)
if e−1 ≤ ρ < e−1/e,

O

(
d log(1/(1− ρ)) + log(1/δ)

1− ρ

)
if e−1/e ≤ ρ < 1,

then with probability at least 1− δ, ŵp = w∗.

Comparing Theorem 2 and Theorem 3, we see that the bound on the number of samples required to
reach a confidence level δ in Theorem 3 is uniformly smaller than the one in Theorem 2. The proof
of Theorem 3 can be found in Appendix C.

We now move to the more common non-realizable case. Our first theorem here gives a non-asymptotic
bound for the excess risk of ERM under a p-th power loss for p ∈ (2,∞). To the best of our
knowledge, no such result is known in the literature.
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Theorem 4. Let p ∈ (2,∞) and δ ∈ (0, 1]. Assume that no w ∈ Rd satisfies Y = ⟨w,X⟩. Further,
assume that E[|Y |p] < ∞, E[|Xj |p] < ∞, and E[|⟨w∗

p, X⟩ − Y |2(p−2)(Xj)4] < ∞ for all j ∈ [d].
If

n ≥ 196σ2
p(d+ 2 log(4/δ)),

then with probability at least 1− δ

Rp(ŵp)−Rp(w
∗
p) ≤

2048p2 E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+

512p4c2p E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

p/2

,

where we used cp to denote CLp→(L2,p) as defined in (3).

Up to a constant factor that depends only on p and the dependence on δ, the bound of Theorem 4 is
precisely of the form of the optimal bound (1). Indeed, as p > 2, the second term is o(1/n). At the
level of assumptions, the finiteness of the p-th moment of Y and the components of X is necessary to
ensure that the risk Rp is finite for all w ∈ Rd. The last assumption E[|Y −⟨w∗

p, X⟩|2(p−2)(Xj)4] <
∞ is a natural extension of the fourth moment assumption in Theorem 1. In fact, all three assumptions
in Theorem 4 reduce to those of Theorem 1 as p → 2. It is worth noting that the constant cp has the
alternative expression supw∈Rd\{0}{∥w∥Lp/∥w∥Hp

} by (4), i.e. it is the norm equivalence constant
between the Lp norm and the norm induced by Hp. Using again (4), we see that cp → 1 as p → 2.
As p → ∞, cp grows, and we suspect in a dimension dependent way. However, this does not affect
the asymptotic optimality of our rate as cp only enters an o(1/n) term in our bound.

We now turn to the case of p ∈ (1, 2) where we need a slightly stronger version of non-realizability.
Theorem 5. Let p ∈ (1, 2) and δ ∈ (0, 1]. Assume that P(|⟨w∗

p, X⟩ − Y |2−p > 0) = 1 and
E[|⟨w∗

p, X⟩ − Y |2(p−2)] < ∞. Further, assume that E[|Y |p] < ∞, E[(Xj)2] < ∞, E[|⟨w∗
p, X⟩ −

Y |2(p−2)(Xj)4] < ∞ for all j ∈ [d]. If

n ≥ 196σ2
p(d+ 2 log(4/δ)),

then, with probability at least 1− δ

Rp(ŵp)−Rp(w
∗
p) ≤

32768

p− 1

E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+
1

p− 1

2097152E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
σ6−2p
p c2−p

p c∗p

nδ

1/(p−1)

where we used c∗p to denote E[|Y − ⟨w∗
p, X⟩|2(p−2)] and cp := Tr

(
H−1

p Σ
)

where Σ := E
[
XXT

]
.

Just like the bounds of Theorems 1 and 4, the bound of Theorem 5 is asymptotically optimal up to a
constant factor that depends only on p. Indeed, since 1 < p < 2, 1/(p− 1) > 1, and the second term
is o(1/n). At the level of assumptions, we have two additional conditions compared to Theorem
4. First, we require the existence of the second moment of the covariates instead of just the p-th
moment. Second, we require a stronger version of non-realizability by assuming the existence of the
2(2− p) negative moment of |⟨w∗

p, X⟩ − Y |. In the majority of applications, an intercept variable is
included as a covariate, i.e. X1 = 1, so that this negative moment assumption is already implied by
the standard assumption E[|Y − ⟨w∗

p, X⟩|2(p−2)(Xj)4] < ∞. In the rare case where an intercept is
not included, any negative moment assumption on |⟨w∗

p, X⟩ − Y | can be used instead, at the cost of a
larger factor in the o(1/n) term.

Finally, it is worth noting that for the cases p ∈ [1, 2), there are situations where the asymptotic bound
(1) does not hold, as the limiting distribution of the coefficients ŵp as n → ∞ does not necessarily
converge to a Gaussian, and depends heavily on the distribution of ⟨w∗

p, X⟩ − Y , see e.g. Lai and
Lee [LL05] and Knight [Kni98]. Overall, we suspect that perhaps a slightly weaker version of our
assumptions is necessary for a fast rate like (1) to hold.
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3 Proofs

3.1 Proof of Theorem 1

Here we give a detailed proof of Theorem 1. While the core technical result can be deduced by
combining results from Oliveira [Oli16] and Lecué and Mendelson [LM16], here we frame the proof
in a way that makes it easy to extend to the cases p ∈ (1,∞), and differently from either paper. We
split the proof in three steps. First notice that since the loss is a quadratic function of w, we can
express it exactly using a second order Taylor expansion around the minimizer w∗

2

ℓ2(⟨w,X⟩−Y )− ℓ2(⟨w∗
2 , X⟩−Y ) = ⟨∇ℓ2(⟨w∗

2 , X⟩−Y ), w−w∗
2⟩+

1

2
∥w−w∗

2∥2∇2ℓ2(⟨w∗
2 ,X⟩−Y ).

Taking empirical averages and expectations of both sides respectively shows that the excess empirical
risk and excess risk also admit such an expansion

R2,n(w)−R2,n(w
∗
2) = ⟨∇R2,n(w

∗
2), w − w∗

2⟩+
1

2
∥w − w∗

2∥2H2,n
,

R2(w)−R2(w
∗
2) =

1

2
∥w − w∗

2∥2H2
, (6)

where in the second equality we used that the gradient of the risk vanishes at the minimizer w∗
2 .

Therefore, to bound the excess risk, it is sufficient to bound the norm ∥w − w∗
2∥H2 . This is the goal

of the second step, where we use two ideas. First, by definition, the excess empirical risk of the
empirical risk minimizer satisfies the upper bound

R2,n(ŵ2)−R2,n(w
∗
2) ≤ 0. (7)

Second, we use the Cauchy-Schwartz inequality to lower bound the excess empirical risk by

R2,n(ŵ2)−R2,n(w
∗
2) ≥ −∥∇R2,n(w

∗
2)∥H−1

2
∥ŵ2 − w∗

2∥H2 +
1

2
∥ŵ2 − w∗

2∥2H2,n
, (8)

and we further lower bound it by deriving high probability bounds on the two random terms
∥∇R2,n(w

∗
2)∥H−1

2
and ∥ŵ2 − w∗

2∥2H2,n
. The first can easily be bounded using Chebyshev’s in-

equality and the elementary fact that the variance of the average of n i.i.d. random variables is the
variance of their common distribution divided by n. Here we state the result for all p ∈ (1,∞); the
straightforward proof can be found in the Appendix D.
Lemma 2. Let p ∈ (1,∞). If p ∈ (1, 2), let the assumptions of Theorem 5 hold. Then with
probability at least 1− δ/2

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ).

For the second random term ∥ŵ2 − w∗
2∥2H2,n

, we use Theorem 3.1 of Oliveira [Oli16], which we
restate here, emphasizing that the existence of fourth moments of the components of the random
vector is enough to ensure the existence of the needed norm equivalence constant.
Proposition 1 (Theorem 3.1, Oliveira [Oli16]). Let Z ∈ Rd be a random vector satisfying E[Z4

j ] <

∞ for all j ∈ [d] and assume that P(⟨v, Z⟩ = 0) = 1 only if v = 0. For p ∈ [1,∞) and v ∈ Rd,
define

∥v∥Lp := E[(⟨v, Z⟩)p]1/p, σ2 :=

(
sup

v∈Rd\{0}
∥v∥L4/∥v∥L2

)4

.

Let (Zi)
n
i=1 be i.i.d. samples of Z. Then, with probability at least 1− δ, for all v ∈ Rd,

1

n

n∑
i=1

⟨v, Zi⟩2 ≥

(
1− 7σ

√
d+ 2 log(2/δ)

n

)
∥v∥2L2 .

Using this result we can immediately deduce the required high probability lower bound on the second
random term ∥ŵ2 − w∗

2∥2H2,n
; we leave the obvious proof to Appendix D.
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Corollary 1. Under the assumptions of Theorem 1, if n ≥ 196σ2
2(d + 2 log(4/δ)), then with

probability at least 1− δ/2, for all w ∈ Rd,

∥w − w∗
2∥2H2,n

≥ 1

2
∥w − w∗

2∥2H2
.

Combining Lemma 2, Corollary 1, and (8) yields that with probability at least 1− δ

R2,n(ŵ2)−R2,n(w
∗
2) ≥ −

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ) ∥ŵ2−w∗

2∥H2+
1

4
∥ŵ2−w∗

2∥2H2
.

(9)
Finally, combining (7) and (9) gives that with probability at least 1− δ

∥ŵ2 − w∗
2∥H2 ≤ 4

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ).

Replacing in (6) finishes the proof.

3.2 Proof Sketch of Theorem 4

The main challenge in moving from the case p = 2 to the case p ∈ (2,∞) is that the second order
Taylor expansion of the loss is no longer exact. The standard way to deal with this problem is to
assume that the loss is upper and lower bounded by quadratic functions, i.e. that it is smooth and
strongly convex. Unfortunately, as discussed in Section 1, the ℓp loss is not strongly convex for
any p > 2, so we need to find another way to deal with this issue. Once this has been resolved
however, the strategy we used in the proof of Theorem 1 can be applied almost verbatim to yield the
result. Remarkably, a result of [AKPS22] allows us to upper and lower bound the p-th power loss
for p ∈ (2,∞) by its second order Taylor expansion around a point, up to some residual terms. An
application of this result yields the following Lemma.
Lemma 3. Let p ∈ (2,∞). Then:

Rp,n(w)−Rp,n(w
∗
p) ≥

1

8(p− 1)
∥w − w∗

p∥2Hp,n
+ ⟨∇Rp,n(w

∗
p), w − w∗

p⟩, (10)

Rp(w)−Rp(w
∗
p) ≤

2p

(p− 1)
∥w − w∗

p∥2Hp
+ pp∥w − w∗

p∥
p
Lp . (11)

Up to constant factors that depend only on p and an Lp norm residual term, Lemma 3 gives matching
upper and lower bounds on the excess risk and excess empirical risk in terms of their second order
Taylor expansions around the minimizer. We can thus use the approach taken in the proof of Theorem
1 to obtain the result. The only additional challenge is the control of the term ∥ŵp − w∗

p∥Lp , which
we achieve by reducing it to an ∥ŵp − w∗

p∥Hp
term using norm equivalence. A detailed proof of

Theorem 4, including the proof of Lemma 3, can be found in Appendix E.

3.3 Proof Sketch of Theorem 5

The most technically challenging case is when p ∈ (1, 2). Indeed as seen in the proof of Theorem 1,
the most involved step is lower bounding the excess empirical risk with high probability. For the case
p ∈ [2,∞), we achieved this by having access to a pointwise quadratic lower bound, which is not too
surprising. Indeed, at small scales, we expect the second order Taylor expansion to be accurate, while
at large scales, we expect the p-th power loss to grow at least quadratically for p ∈ [2,∞).

In the case of p ∈ (1, 2), we are faced with a harder problem. Indeed, as p → 1, the ℓp losses behave
almost linearly at large scales. This means that we cannot expect to obtain a global quadratic lower
bound as for the case p ∈ [2,∞), so we will need a different proof technique. Motivated by related
concerns, Bubeck, Cohen, Lee, and Li [BCLL18] introduced the following approximation to the p-th
power function

γp(t, x) :=


p

2
tp−2x2 if x ≤ t

xp −
(
1− p

2

)
tp if x > t,
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for t, x ∈ [0,∞) and with γp(0, 0) = 0. This function was further studied by Adil, Kyng, Peng, and
Sachdeva [AKPS19], who showed in particular that for any t ∈ R, the function x 7→ γp(|t|, |x|) is,
up to constants that depend only on p, equal to the gap between the function x 7→ ℓp(t+ x) and its
linearization around 0; see Lemma 4.5 in [AKPS19] for the precise statement. We use this result to
derive the following Lemma.
Lemma 4. Let p ∈ (1, 2). Under the assumptions of Theorem 5, we have

Rp,n(w)−Rp,n(w
∗
p) ≥

1

4p2
1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
+ ⟨∇Rp,n(w

∗
p), w − w∗

p⟩,

(12)

Rp(w)−Rp(w
∗
p) ≤

4

(p− 1)
∥w − w∗

p∥2Hp
. (13)

As expected, while we do have the desired quadratic upper bound, the lower bound is much more
cumbersome, and is only comparable to the second order Taylor expansion when |⟨w − w∗

p, Xi⟩| ≤
|⟨w∗

p, Xi⟩ − Yi|. What we need for the proof to go through is a high probability lower bound of
order Ω(∥w − w∗∥2Hp

) on the first term in the lower bound (12). We obtain this in the following
Proposition.
Proposition 2. Let δ ∈ (0, 1]. Under the assumptions of Theorem 5, if n ≥ 196σ2

p(d+ 2 log(4/δ)),
then with probability at least 1− δ/2, for all w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ p

8
min

{
∥w − w∗

p∥2Hp
, ε2−p∥w − w∗

p∥
p
Hp

}
,

where εp−2 := 8σ3−p
p c

(2−p)/2
p

√
c∗p, and cp and c∗p are as defined in Theorem 5.

Proof. Let ε > 0 and let T ∈ (0,∞) be a truncation parameter we will set later. Define

X̃ := X · 1[0,T ](∥X∥H−1
p

),

and the constant β := Tε. By Lemma 3.3 in [AKPS19], we have that γp(t, λx) ≥
min{λ2, λp}γp(t, x) for all λ ≥ 0. Furthermore, it is straightforward to verify that γp(t, x) is
decreasing in t and increasing in x. Therefore, we have, for all w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ min

{
ε−2∥w − wp∥2Hp

, ε−p∥w − wp∥pHp

} 1

n

n∑
i=1

γp

(∣∣⟨w∗
p, Xi⟩ − Yi

∣∣, ∣∣∣∣〈 ε(w − w∗
p)

∥w − w∗
p∥Hp

, Xi

〉∣∣∣∣)

≥ min
{
ε−2∥w − wp∥2Hp

, ε−p∥w − wp∥pHp

}
· inf
∥w∥Hp=ε

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w,Xi⟩|
)
.

(14)

The key idea to control the infimum in (14) is to truncate ⟨w,Xi⟩ from above by using the truncated
vector X̃ , and |⟨w∗

p, Xi⟩ − Yi| from below by forcing it to be greater than β. By the monotonicity
properties of γp discussed above, we get that

inf
∥w∥Hp=ε

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w,Xi⟩|
)

≥ inf
∥w∥Hp=ε

1

n

n∑
i=1

γp(max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}
, |⟨w, X̃i⟩|)

=
ε2p

2
inf

∥w∥Hp=1

1

n

n∑
i=1

max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}p−2|⟨w, X̃i⟩|2, (15)
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where the equality follows by the fact that with the chosen truncations, the second argument of γp is
less than or equal to the first. It remains to lower bound the infimum in (15). Define

Z = max
{
|⟨w∗

p, X⟩ − Y |, β
}(p−2)/2

X̃.

Removing the truncations and using our assumptions, we see that the components of Z have finite
fourth moment. By Proposition 1 and the condition on n, we get that with probability at least 1− δ/2,

inf
∥w∥Hp=1

1

n

n∑
i=1

max
{
|⟨w∗

p, Xi⟩ − Yi|, β
}p−2|⟨w, X̃i⟩|2

= inf
∥w∥Hp=1

1

n

n∑
i=1

⟨w,Zi⟩2 ≥ 1

2
inf

∥w∥Hp=1
E
[
⟨w,Z⟩2

]
=

1

2
inf

∥w∥Hp=1
E
[
max

{
|⟨w∗

p, X⟩ − Y |, β
}(p−2)⟨w, X̃⟩2

]
≥ 1

2

(
1− sup

∥w∥Hp=1

E
[
|⟨w∗

p, X⟩ − Y |p−2⟨w,X⟩2
(
1[0,β)(|⟨w∗

p, X⟩ − Y |) + 1(T,∞)(∥X∥H−1
p

)
)])
(16)

We now bound the supremum in (16). We have

sup
∥w∥Hp=1

E
[
|⟨w∗

p, X⟩ − Y |p−2⟨w,X⟩2
(
1[0,β)(|⟨w∗

p, X⟩ − Y |) + 1(T,∞)(∥X∥H−1
p

)
)]

≤ sup
∥w∥Hp=1

{
E
[
|⟨w∗

p, X⟩ − Y |2(p−2)⟨w,X⟩4
]1/2}(

P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
=

(
sup

∥w∥Hp=1

∥w∥2L4,p

)(
P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
= σp

(
P
(
|⟨w∗

p, X⟩ − Y | < β
)
+ P

(
∥X∥H−1

p
> T

))1/2
, (17)

where the first inequality follows from Cauchy-Schwartz inequality, and the subsequent equalities by
definitions of ∥·∥L4,p and σ2

p. It remains to bound the tail probabilities. Recall that β = Tε, so

P
(
|⟨w∗

p, X⟩ − Y | < β
)
= P

(
|⟨w∗

p, X⟩ − Y | < Tε
)

= P
(
|⟨w∗

p, X⟩ − Y |−1 > (Tε)−1
)

= P
(
|⟨w∗

p, X⟩ − Y |2(p−2) > (Tε)2(p−2)
)

≤ E[|⟨w∗
p, X⟩ − Y |2(p−2)](Tε)2(2−p)

= c∗p(Tε)
2(2−p),

where we applied Markov’s inequality in the fourth line, and the last follows by definition of c∗p in
Theorem 5. Moreover by the finiteness of the second moment of the coordinates Xj of X , we have

E
[
∥X∥2

H−1
p

]
= E

[
XTH−1

p X
]
= E

[
Tr
(
H−1

p XXT
)]

= Tr
(
H−1

p Σ
)
= cp

where Σ = E[XXT ], and the last equality by definition of cp in Theorem 5. By Markov’s inequality

P
(
|⟨w∗

p, X⟩ − Y | < Tε
)
+ P

(
∥X∥H−1

p
> T

)
≤ c∗pT

2(2−p)ε2(2−p) +
cp
T 2

.

Choosing

T :=

(
cp

c∗p(2− p)

)1/(6−2p)

, ε2−p :=
1

8σ3−p
p
√

c∗p · c
(2−p)/2
p

,

ensures that

σp

(
P
(
|⟨w∗

p, X⟩ − Y | < T ∗ε
)
+ P

(
∥X∥H−1

p
> T ∗

))1/2
≤ 1/2. (18)

Combining the inequalities (18), (17), (16), (15), and (14) yields the result.

A detailed proof of Theorem 5, including the proof of Lemma 4, can be found in Appendix F.

9



Acknowledgments and Disclosure of Funding

We thank Nikita Zhivotovskiy, Sushant Sachdeva, and Deeksha Adil for feedback on the manuscript.
MAE was partially supported by NSERC Grant [2019-06167], CIFAR AI Chairs program, and
CIFAR AI Catalyst grant.

References
[AC11] J.-Y. Audibert and O. Catoni. “Robust Linear Least Squares Regression”. In: The Annals

of Statistics (Oct. 2011). DOI: 10.1214/11-AOS918.
[AKPS19] D. Adil, R. Kyng, R. Peng, and S. Sachdeva. “Iterative Refinement for ℓp-norm Re-

gression”. In: Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). Jan. 2019. DOI: 10.1137/1.9781611975482.86.

[AKPS22] D. Adil, R. Kyng, R. Peng, and S. Sachdeva. Fast Algorithms for ℓp-Regression. Nov. 7,
2022. DOI: 10.48550/arXiv.2211.03963.

[APS19] D. Adil, R. Peng, and S. Sachdeva. “Fast, Provably Convergent IRLS Algorithm for
p-norm Linear Regression”. In: Advances in Neural Information Processing Systems.
2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/
hash/46c7cb50b373877fb2f8d5c4517bb969-Abstract.html.

[Arc96] M. A. Arcones. “The Bahadur-Kiefer Representation of Lp Regression Estimators”. In:
Econometric Theory (1996). URL: https://www.jstor.org/stable/3532831.

[AS19] D. Adil and S. Sachdeva. “Faster p-Norm Minimizing Flows, via Smoothed q-Norm
Problems”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA). Dec. 23, 2019. DOI: 10.1137/1.9781611975994.54.

[BCLL18] S. Bubeck, M. B. Cohen, Y. T. Lee, and Y. Li. “An Homotopy Method for ℓp Regression
Provably beyond Self-Concordance and in Input-Sparsity Time”. In: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing. June 20, 2018. DOI:
10.1145/3188745.3188776.

[BRW92] Z. D. Bai, C. R. Rao, and Y. Wu. “M-Estimation of Multivariate Linear Regression
Parameters Under a Convex Discrepancy Function”. In: Statistica Sinica (1992). URL:
https://www.jstor.org/stable/24304129.

[CG17] O. Catoni and I. Giulini. Dimension-Free PAC-Bayesian Bounds for Matrices, Vectors,
and Linear Least Squares Regression. Dec. 31, 2017. DOI: 10.48550/arXiv.1712.
02747.

[HKZ12] D. Hsu, S. M. Kakade, and T. Zhang. “Random Design Analysis of Ridge Regression”.
In: Proceedings of the 25th Annual Conference on Learning Theory. June 16, 2012.
URL: https://proceedings.mlr.press/v23/hsu12.html.

[HS96] X. He and Q.-M. Shao. “A General Bahadur Representation of M-estimators and Its
Application to Linear Regression with Nonstochastic Designs”. In: The Annals of
Statistics (Dec. 1996). DOI: 10.1214/aos/1032181172.

[JLS22] A. Jambulapati, Y. P. Liu, and A. Sidford. “Improved Iteration Complexities for Overcon-
strained p-Norm Regression”. In: Proceedings of the 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing. June 10, 2022. DOI: 10.1145/3519935.3519971.

[KM15] V. Koltchinskii and S. Mendelson. “Bounding the Smallest Singular Value of a Random
Matrix Without Concentration”. In: International Mathematics Research Notices (2015).
DOI: 10.1093/imrn/rnv096.

[Kni98] K. Knight. “Limiting Distributions for L1 Regression Estimators under General Condi-
tions”. In: The Annals of Statistics (Apr. 1998). DOI: 10.1214/aos/1028144858.

[LC83] E. L. Lehmann and G. Casella. Theory of Point Estimation. 1983.
[LL05] P. Y. Lai and S. M. S. Lee. “An Overview of Asymptotic Properties of Lp Regression

under General Classes of Error Distributions”. In: Journal of the American Statistical
Association (2005). URL: https://www.jstor.org/stable/27590567.

[LM16] G. Lecué and S. Mendelson. “Performance of Empirical Risk Minimization in Linear
Aggregation”. In: Bernoulli (Aug. 2016). DOI: 10.3150/15-BEJ701.

[LM17a] G. Lecué and S. Mendelson. “Regularization and the Small-Ball Method II: Complexity
Dependent Error Rates”. In: Journal of Machine Learning Research (2017). URL: http:
//jmlr.org/papers/v18/16-422.html.

10

https://doi.org/10.1214/11-AOS918
https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.48550/arXiv.2211.03963
https://proceedings.neurips.cc/paper_files/paper/2019/hash/46c7cb50b373877fb2f8d5c4517bb969-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/46c7cb50b373877fb2f8d5c4517bb969-Abstract.html
https://www.jstor.org/stable/3532831
https://doi.org/10.1137/1.9781611975994.54
https://doi.org/10.1145/3188745.3188776
https://www.jstor.org/stable/24304129
https://doi.org/10.48550/arXiv.1712.02747
https://doi.org/10.48550/arXiv.1712.02747
https://proceedings.mlr.press/v23/hsu12.html
https://doi.org/10.1214/aos/1032181172
https://doi.org/10.1145/3519935.3519971
https://doi.org/10.1093/imrn/rnv096
https://doi.org/10.1214/aos/1028144858
https://www.jstor.org/stable/27590567
https://doi.org/10.3150/15-BEJ701
http://jmlr.org/papers/v18/16-422.html
http://jmlr.org/papers/v18/16-422.html


[LM17b] G. Lecué and S. Mendelson. “Sparse Recovery under Weak Moment Assumptions”. In:
Journal of the European Mathematical Society (Feb. 15, 2017). DOI: 10.4171/jems/
682.

[LM18] G. Lecué and S. Mendelson. “Regularization and the Small-Ball Method I: Sparse
Recovery”. In: The Annals of Statistics (Apr. 2018). DOI: 10.1214/17-AOS1562.

[Men14] S. Mendelson. “Learning without Concentration”. In: Proceedings of The 27th Confer-
ence on Learning Theory. May 29, 2014. URL: https://proceedings.mlr.press/
v35/mendelson14.html.

[Men18] S. Mendelson. “Learning without Concentration for General Loss Functions”. In: Proba-
bility Theory and Related Fields (June 1, 2018). DOI: 10.1007/s00440-017-0784-y.

[Men21] S. Mendelson. “Learning Bounded Subsets of Lp”. In: IEEE Transactions on Informa-
tion Theory (Aug. 2021). DOI: 10.1109/TIT.2021.3083553.

[MG22] J. Mourtada and S. Gaïffas. “An Improper Estimator with Optimal Excess Risk in
Misspecified Density Estimation and Logistic Regression”. In: Journal of Machine
Learning Research (2022). URL: http://jmlr.org/papers/v23/20-782.html.

[Mou22] J. Mourtada. “Exact Minimax Risk for Linear Least Squares, and the Lower Tail of
Sample Covariance Matrices”. In: The Annals of Statistics (Aug. 2022). DOI: 10.1214/
22-AOS2181.
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A Differentiability of the risk

In this section, we rigorously establish the twice differentiability the risk under our assumptions. We
start by showing that under a subset of our assumptions, the risk is differentiable everywhere on Rd.

Lemma 5. Let p ∈ (1,∞) and assume that E[|Y |p] < ∞ and E[|Xj |p] < ∞ for all j ∈ [d]. Then
Rp is differentiable on Rd, and

∇Rp(w) = E[∇ℓp(⟨w,X⟩ − Y )].

Proof. Let w ∈ Rd. We want to show that

lim
∆→0

|Rp(w +∆)−Rp(w)− E[⟨∇ℓp(⟨w,X⟩ − Y ),∆⟩]|
∥∆∥

= 0,

where, for convenience, we take the norm ∥·∥ to be the Euclidean norm. Define the function
ϕ(w,X, Y ) := ℓp(⟨w,X⟩ − Y ) and note that by the chain rule ϕ is differentiable as a function of w
on all of Rd. Now let (∆k)

n
k=1 be a sequence in Rd such that limk→∞∥∆k∥ = 0. Then

lim
k→∞

|Rp(w +∆k)−Rp(w)− E[⟨∇ϕ(w,X, Y ),∆k⟩]|
∥∆k∥

= lim
k→∞

|E[ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩]|
∥∆k∥

≤ lim
k→∞

E

[
|ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩|

∥∆k∥

]
. (19)

Our goal is to interchange the limit and expectation. For that, we will use the dominated convergence
theorem. We construct our dominating function as follows. Let R := supk∈N∥∆k∥, and note that
R < ∞ since ∥∆k∥ → 0 as k → ∞. Then we have

|ϕ(w +∆k, X, Y )− ϕ(w,X, Y )− ⟨∇ϕ(w,X, Y ),∆k⟩|
∥∆k∥

≤ |ϕ(w +∆k, X, Y )− ϕ(w,X, Y )|
∥∆k∥

+
|⟨∇ϕ(w,X, Y ),∆k⟩|

∥∆k∥

≤

〈∫ 1

0
∇ϕ(w + t∆k, X, Y )dt,∆k

〉
∥∆k∥

+ ∥∇ϕ(w,X, Y )∥

≤
∥∥∥∥∫ 1

0

∇ϕ(w + t∆k, X, Y )dt

∥∥∥∥+ ∥∇ϕ(w,X, Y )∥

≤
∫ 1

0

∥∇ϕ(w + t∆k, X, Y )∥dt+ ∥∇ϕ(w,X, Y )∥

≤ 2 sup
∆∈B(0,R)

∥∇ϕ(w +∆, X, Y )∥

≤ 2

p− 1
∥X∥ sup

∆∈B(0,R)

|⟨w +∆, X⟩ − Y |p−1

≤ 2

p− 1
∥X∥ sup

∆∈B(0,R)

max{2p−1, 1}
(
|⟨w,X⟩ − Y |p−1

+ |⟨∆, X⟩|p−1
)

=
2p

p− 1

{
|⟨w,X⟩ − Y |p−1∥X∥+Rp−1∥X∥p

}
=: g(X,Y ),

where the second line follows by triangle inequality, the third from the fundamental theorem of calcu-
lus applied component-wise, the fourth by Cauchy-Schwartz inequality, the fifth by Jensen’s inequality
and the convexity of the norm, and the eighth by the inequality |a+ b|q ≤ max{2q−1, 1}(|a|q + |b|q)

12



valid for q > 0. It remains to show that g(X,Y ) is integrable. We have

E[g(X,Y )] =
2p

p− 1
E
[
|⟨w,X⟩ − Y |p−1∥X∥+Rp−1∥X∥p

]
=

2p

p− 1


d∑

j=1

E
[
|⟨w,X⟩ − Y |p−1|Xj |

]
+Rp−1 E

 d∑
j=1

|Xj |

p
≤ 2p

p− 1


d∑

j=1

E[|⟨w,X⟩ − Y |p]
p−1
p E[|Xj |p]1/p +Rp−1dp

d∑
j=1

E
[
|Xj |p

]
< ∞,

where in the second line we used that the Euclidean norm is bounded by the 1-norm, in the third we
used Holder’s inequality, and the last line follows from our assumptions. Applying the dominated
convergence theorem, we interchange the limit and the expectation in (19). Recalling that ϕ is
differentiable finishes the proof.

We now turn to the twice differentiability of the risk. We start with the easy case p ∈ [2,∞). The
proof is very similar to that of Lemma 5 and we omit it here.

Lemma 6. Let p ∈ [2,∞) and assume that E[|Y |p] < ∞ and E[|Xj |p] < ∞ for all j ∈ [d]. Then
Rp is twice differentiable on Rd, and

∇2Rp(w) = E[∇2ℓp(⟨w,X⟩ − Y )].

The case p ∈ (1, 2) is more complicated. The following lemma establishes the twice differentiability
of the risk at its minimizer under a subset of the assumptions of Theorem 5.

Lemma 7. Let p ∈ (1, 2). Assume that P
(
|⟨w∗

p, X⟩ − Y | = 0
)

= 0 and E[|⟨w∗
p, X⟩ −

Y |p−2(Xj)2] < ∞ for all j ∈ [d]. Then Rp is twice differentiable at w∗
p and

∇2Rp(w
∗
p) = E[∇2ℓp(⟨w∗

p, X⟩ − Y )]

Proof. The difficulty in the proof compared to Lemma 5 and Lemma 6 stems from the fact that the
loss is not twice differentiable at zero. We still rely on the dominated convergence theorem, but the
construction of the dominating function is slightly more intricate. Using the setup of the proof of
Lemma 5, and following the same line of arguments, we arrive at

lim
k→∞

∥∇Rp(w
∗
p +∆k)−∇Rp(w

∗
p)− E

[
∇2ϕ(w∗

p, X, Y )∆k

]
∥

∥∆k∥

≤ lim
k→∞

E

[
∥∇ϕ(w∗

p +∆k, X, Y )−∇ϕ(w∗
p, X, Y )−∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

]
, (20)

where we have used the fact that since P
(
|⟨w∗

p, X⟩ − Y | = 0
)
= 0, ϕ(w,X, Y ) is almost surely

twice differentiable at w∗
p. To finish the proof, it remains to construct a dominating function for the

above sequence to justify the interchange of the limit and expectation. We consider two cases.

13



Case 1: ∥∆k∥ ≥
∣∣⟨w∗

p, X⟩ − Y
∣∣/(2∥X∥) =: R(X,Y ). Then we have

∥∇ϕ(w∗
p +∆k, X, Y )−∇ϕ(w∗

p, X, Y )−∇2ϕ(w∗
p, X, Y )∆k∥

∥∆k∥

≤
∥∇ϕ(w∗

p +∆k, X, Y )∥+ ∥∇ϕ(w∗
p, X, Y )∥+ ∥∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

≤

(∣∣⟨w∗
p +∆, X⟩ − Y

∣∣p−1
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−1

)
∥X∥

(p− 1)∥∆k∥
+ ∥∇2ϕ(w∗

p, X, Y )∥op

≤
2
∣∣⟨w∗

p, X⟩ − Y
∣∣p−1∥X∥

(p− 1)∥∆k∥
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2 + |⟨∆k/∥∆k∥, X⟩|p−1∥X∥

(p− 1)∥∆k∥2−p

≤
4
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2

(p− 1)
+
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2 + ∥X∥p

(p− 1)∥∆k∥2−p

≤
7
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥2

(p− 1)

where the second line follows by triangle inequality, the third by definition of the operator norm,
the fourth by |a+ b|q ≤ |a|q + |b|q valid for q ∈ (0, 1), and the fifth and sixth by Cauchy-Schwartz
inequality and the assumed lower bound on ∥∆k∥.

Case 2: ∥∆k∥ < R(X,Y ). We start by noting that, for all ∆ ∈ B(0, R(X,Y )) :={
x ∈ Rd | ∥x∥ < R(X,Y )

}
, we have∣∣⟨w∗

p +∆, X⟩ − Y
∣∣ ≥ ∣∣⟨w∗

p, X⟩ − Y
∣∣−|⟨∆, X⟩| ≥

∣∣⟨w∗
p, X⟩ − Y

∣∣−∥∆∥∥X∥ >
∣∣⟨w∗

p, X⟩ − Y
∣∣/2 > 0.

Therefore ϕ(w,X, Y ) is twice differentiable on B(0, R(X,Y )). Now

∥∇ϕ(w∗
p +∆k, X, Y )−∇ϕ(w∗

p, X, Y )−∇2ϕ(w∗
p, X, Y )∆k∥

∥∆k∥

≤
∥∇ϕ(w∗

p +∆k, X, Y )−∇ϕ(w∗
p, X, Y )∥+ ∥∇2ϕ(w∗

p, X, Y )∆k∥
∥∆k∥

≤

∥∥∥(∫ 1

0
∇2ϕ(w∗

p + t∆k, X, Y )dt
)
∆k

∥∥∥
∥∆k∥

+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤
∥∥∥∥∫ 1

0

∇2ϕ(w + t∆k, X, Y )dt

∥∥∥∥
op

+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤
∫ 1

0

∥∇2ϕ(w + t∆k, X, Y )∥opdt+ ∥∇2ϕ(w∗
p, X, Y )∥op

≤ 2 sup
∆∈B(0,R(X,Y ))

∥∇2ϕ(w∗
p +∆, X, Y )∥op

≤ 2∥X∥22 sup
∆∈B(0,R(X,Y ))

∣∣⟨w∗
p +∆, X⟩ − Y

∣∣p−2

≤ 4
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥22

where the second line follows from the triangle inequality, the third follows from the twice differen-
tiability of ϕ on B(0, R(X,Y )) and the fundamental theorem of calculus applied component-wise,
the fifth by Jensen’s inequality, and the last by definition of R(X,Y ) and the above lower bound. We
therefore define our dominating function by

g(X,Y ) := 8
∣∣⟨w∗

p, X⟩ − Y
∣∣p−2∥X∥22.

It is then immediate from our assumptions that g(X,Y ) is integrable. Interchanging the limit and the
expectation in (20) and recalling that ϕ is almost surely twice differentiable at w∗

p finishes the proof.

14



B Proof of Lemma 1

We start with the claim that ρ0 is upper-semicontinuous. We want to show that for any w ∈ Rd and
any sequence (wk)

∞
k=1 converging to w (in the norm topology)

lim sup
k→∞

ρ0(wk) ≤ ρ0(w).

Fix a w ∈ Rd and let (wk)
∞
k=1 be a sequence in Rd satisfying limk→∞∥w − wk∥ = 0, where for

convenience we take ∥·∥ to be the Euclidean norm on Rd. Then we have by (reverse) Fatou’s Lemma

lim sup
k→∞

ρ0(wk) = lim sup
k→∞

E
[
1{0}(⟨wk, X⟩)

]
≤ E

[
lim sup
k→∞

1{0}(⟨wk, X⟩)
]
. (21)

Now we bound the inner limsup pointwise. We split this task in two cases. If ⟨w,X⟩ = 0, then

lim sup
k→∞

1{0}(⟨wk, X⟩) ≤ 1 = 1{0}(⟨w,X⟩). (22)

Otherwise we have δ := |⟨w,X⟩| > 0. But then, by the convergence of (wk)
∞
k=1 to w, there exists a

K ∈ N such that for all k ≥ K we have ∥wk − w∥ < δ/(2∥X∥). This implies that for all k ≥ K

|⟨wk, X⟩| = |⟨w,X⟩−⟨w−wk, X⟩| ≥ |⟨w,X⟩|−|⟨w−wk, X⟩| ≥ δ−∥wk−w∥2∥X∥ ≥ δ/2 > 0.

We conclude that

lim sup
k→∞

1{0}(⟨wk, X⟩) = lim
k→∞

1{0}(⟨wk, X⟩) = 0 = 1{0}(⟨w,X⟩). (23)

Combining (21), (22), and (23) proves the upper-semicontinuity of ρ0. Essentially the same proof
shows the lower-semicontinuity of ρq(·, κ) for any κ ≥ 0; we omit it here.

For the remaining claims, first notice that the function ρ0 is scale invariant, i.e. for all w ∈ Rd and all
c ∈ R, we have ρ0(cw) = ρ0(w). Therefore

sup
w∈Rd\{0}

ρ0(w) = sup
w∈Sd−1

ρ0(w),

where Sd−1 is the Euclidean unit sphere. By assumption on the random vector X , we know that
ρ0(w) < 1 for all w ∈ Sd−1. Furthermore since ρ0 is upper semicontinuous, and Sd−1 is compact,
ρ0 attains its supremum on Sd−1 at some point w0 ∈ Sd−1. From this we conclude that

ρ = sup
w∈Rd\{0}

ρ0(w) = ρ0(w0) < 1.

Finally, we turn to the claim about ρq. Since E[|Xj |q] < ∞, the function ∥·∥Lq is a norm on Rd,
from which it follows that ρq(w, κ) is also scale invariant for any κ. Therefore

inf
w∈Rd\{0}

ρq(w, κ) = inf
w∈Sq

ρq(w, κ),

where Sq is the unit sphere of the norm ∥·∥Lq . Now fix κ ∈ [0, 1). We claim that ρq(w, κ) > 0 for
all w ∈ Sq. Suppose not. Then there exists a w ∈ Sq such that |⟨w,X⟩| ≤ κ with probability 1, but
then we get the contradiction

1 = ∥w∥Lq = E[|⟨w,X⟩|q]1/q ≤ κ < 1.

therefore ρq(w, κ) > 0 for all w ∈ Sq. Now since ρq(·, κ) is lower-semicontinuous, and Sq is
compact, ρq(·, κ) attains its infimum on Sq at some point wq ∈ Sq . From this we conclude

inf
w∈Rd\{0}

ρq(w, κ) = ρq(wq, κ) > 0.
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C Proof of Theorem 3

Fix p ∈ (1,∞), and let ŵ := ŵp. Our goal will be to upper bound the probability P(ŵ ̸= w∗). By
assumption, we have that Y = ⟨w∗, X⟩, so that Yi = ⟨w∗, Xi⟩ for all i ∈ [n]. Since ŵ minimizes the
empirical risk, we must also have ⟨ŵ,Xi⟩ = Yi = ⟨w∗, Xi⟩ for all i ∈ [n]. Let A ∈ Rn×d denote
the matrix whose i-th row is Xi. Then we have the following implications.

ŵ ̸= w∗ ⇒ ⟨ŵ − w∗, Xi⟩ = 0 ∀i ∈ [n] ⇒ ∃w ∈ Rd \ {0} | Aw = 0 ⇔ rowrank(A) < d. (24)
Let r := rowrank(A). We claim the following equivalence

rowrank(A) < d ⇔ ∃S ⊂ [n] | |S| = d− 1 ∧ ∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S}). (25)
Indeed the implication (⇐) follows by definition of the rowrank of A. For the implication (⇒), by
definition, {Xi | i ∈ [n]} is a spanning set for the row space of A, therefore it can be reduced to a
basis of it {Xk | k ∈ S1} for some indices S1 ⊂ [n] with |S1| = r. If r = d − 1, then the choice
S = S1 satisfies the right side of (25). Otherwise, let S2 ⊂ [n] \ S1 with |S2| = d− 1− r. Such a
subset exists since by assumption n ≥ d > d− 1. Then the set S := S1 ∪ S2 satisfies the right side
of (25). Combining (24) and (25) we arrive at:

P(ŵ ̸= w∗) ≤ P

 ⋃
S⊂[n]

|S|=d−1

{∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})}


≤

∑
S⊂[n]

|S|=d−1

P(∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})) (26)

where the second inequality follows from the union bound. We now bound each of the terms of the
sum. Fix S = {i1, . . . , id−1} ⊂ [n] with |S| = d− 1. Let ZS = n((Xij )

d−1
j=1) be a non-zero vector

orthogonal to span({Xk | k ∈ S}). Such a vector must exist since dim(span({Xk | k ∈ S})) < d;
see Lemma 8 below for an explicit construction of the function n. Denote by PZS

the distribution
of ZS and P(Xi)i∈[n]\S =

∏n−d−1
i=1 PX the distribution of (Xi)i∈[n]\S , where PX is the distribution

of X . Note that since ZS is a function of (Xij )
d
j=1 only, it is independent of (Xi)i∈[n]\S . In

particular, the joint distribution of (ZS , (Xi)i∈[n]\S) is given by the product PZS
×P(Xi)i∈[n]\S . Now

if Xi ∈ span({Xk | k ∈ S}), then by definition of ZS , ⟨ZS , Xi⟩ = 0. Therefore
P(∀i ∈ [n] \ S Xi ∈ span({Xk | k ∈ S})) ≤ P(∀i ∈ [n] \ S ⟨ZS , Xi⟩ = 0)

= E

 ∏
i∈[n]\S

1{0}(⟨ZS , Xi⟩)


=

∫  ∏
i∈[n]\S

1{0}(⟨yS , xi⟩)

PZS
(dzS)P(Xi)i∈[n]\S (d(xi)i∈[n]\S)

=

∫
PZS

(dys)

 ∏
i∈[n]\S

∫
1{0}(⟨yS , xi⟩)PX(dxi)


=

∫  ∏
i∈[n]\S

P(⟨zS , X⟩ = 0)

PZS
(dys)

=

∫  ∏
i∈[n]\S

ρ0(ys)

PZS
(dys)

≤ ρn−d+1, (27)
where in the third line we used the independence of ZS and (Xi)i∈[n]\S , in the fourth we used the
independence of the (Xi)i∈\S , in the sixth we used the definition of ρ0 in 5, and in the last line we
used the fact that zS ̸= 0 and the definition of ρ in Lemma 1. Combining the inequalities (26) and
(27) yields the result.
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Lemma 8. Let m ∈ {1, . . . , d− 1} and let (xj)
m
j=1 be a sequence of points in Rd. Denote by

A ∈ Rm×d the matrix whose j-th row is xj and let A+ be its pseudo-inverse. Let (bi)di=1 be an
ordered basis of Rd, and define

k := min
{
i ∈ [n] | (I −A+A)bi ̸= 0

}
n((xj)

m
j=1) := (I −A+A)bk

Then n((xj)
m
j=1) is non-zero and is orthogonal to span({xj | j ∈ [m]}).

Proof. We start by showing that k is well defined. First note that I−A+A is the orthogonal projector
onto the kernel of A, which is non-trivial since dim(ker(A)) = d − dim(Im(A)) ≥ d − m ≥ 1.
Now we claim that there exists an i ∈ [d] such that (I − A+A)bi ̸= 0. Suppose not, then for
any w ∈ Rd, we have (I − A+A)w = (I − A+A)(

∑d
i=1 cibi) =

∑d
i=1 ci(I − A+A)bi = 0,

implying that I −A+A = 0, but this contradicts the non-triviality of ker(A). This proves that k is
well-defined, which in turn proves that n((xj)

m
j=1) ̸= 0. It remains to prove the orthogonality claim.

Let v ∈ span({xj | j ∈ [m]}). Then there exists coefficients c ∈ Rm such that v = AT c. Therefore

⟨v, n((xj)
m
j=1)⟩ = ⟨AT c, n((xj)

m
j=1)⟩ = cTA(I −AA+)bk = 0,

where the last equality holds since (I −AA+)bk ∈ ker(A).

D Missing proofs for Theorem 1

This section contains the proofs of Lemma 2 and Corollary 1 we used in the proof of Theorem 1.

D.1 Proof of Lemma 2

We compute the expectation:

E
[
∥∇Rp,n(w

∗
p)∥2H−1

p

]
= E

[
∥n−1∇ℓp(⟨w∗

p, Xi⟩ − Yi)∥2H−1
p

]
= n−2

n∑
i=1

E
[
∥∇ℓp(⟨w∗

p, Xi⟩ − Yi)∥2H−1
p

]
+ 2n−2

n∑
i=1

i−1∑
j=1

⟨E[∇ℓp(⟨w∗
p, Xi⟩ − Yi)],E[∇ℓp(⟨w∗

p, Xj⟩ − Yj)]⟩H−1
p

= n−1 E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
where in the second line we expanded the inner product of the sums into its n2 terms, used linearity
of expectation, and used the independence of the samples to take the expectation inside the inner
product. In the last line, we used the fact that the samples are identically distributed to simplify the
first term. For the second term, we used the fact that the expectation of the gradient of the loss at the
risk minimizer vanishes. Applying Markov’s inequality finishes the proof.

D.2 Proof of Corollary 1

We have

∥w − w∗
2∥2H2,n

= (w − w∗
2)

TH2,n(w − w∗
2)

=
1

n

n∑
i=1

(w − w∗
2)

T∇2ℓp(⟨w∗
2 , Xi⟩ − Yi)(w − w∗

2)

=
1

n

n∑
i=1

⟨w − w∗
2 , Xi⟩2.

Now by assumption, the components of the vector X have finite fourth moment so that applying
Proposition 1 and using the condition on n yields the result.
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E Detailed proof of Theorem 4

This section contains the proof of Lemma 3 as well as that of Theorem 4.

E.1 Proof of Lemma 3

By Lemma 2.5 in [AKPS22], we have for all t, s ∈ R

ℓp(t)− ℓp(s)− ℓ′p(s)(t− s) ≥ 1

8(p− 1)
ℓ′′p(s)(t− s)2.

Recall that by the chain rule

∇ℓp(⟨w,X⟩ − Y ) = ℓ′p(⟨w,X⟩ − Y )X ∇2ℓp(⟨w,X⟩ − Y ) = ℓ′′p(⟨w,X⟩ − Y )XXT .

Replacing t and s by ⟨w,Xi⟩ − Yi and ⟨w∗
p, Xi⟩ − Yi respectively, and using the formulas for the

gradient and Hessian we arrive at

ℓp(⟨w,Xi⟩ − Yi)− ℓp(⟨w∗
p, Xi⟩ − Yi) ≥

1

8(p− 1)
(w − w∗

p)
T∇2ℓp(⟨w∗

p, Xi⟩ − Yi)(w − w∗
p)

+ ⟨∇ℓp(⟨w∗
p, Xi⟩ − Yi), w − w∗

p⟩

Averaging over i ∈ [n] yields the first inequality. The proof of the second inequality proceeds in the
same way and uses instead the upper bound of Lemma 2.5 in [AKPS22]. We omit it here.

E.2 Proof of Theorem 4

We proceed similarly to the proof of Theorem 1. By definition of the empirical risk minimizer, we
have the upper bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≤ 0. (28)

Using (10) from Lemma 3 and the Cauchy-Schwarz inequality, we obtain the pointwise lower bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −∥∇Rp,n(w

∗
p)∥H−1

p
∥ŵp − w∗

p∥Hp
+

1

8(p− 1)
∥ŵp − w∗

p∥2Hp,n
. (29)

Using Lemma 2 we have that, with probability at least 1− δ/2,

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ). (30)

It remains to control ∥ŵp − w∗
p∥2Hp,n

from below. Define the random vector

Z = |⟨w∗
p, X⟩ − Y |(p−2)/2X

Then, for any w ∈ Rd, we have

∥w − w∗
p∥2Hp,n

= (w − w∗
p)

THp,n(w − w∗
p)

=
1

n

n∑
i=1

(w − w∗
p)

T∇2ℓp(⟨w∗
p, Xi⟩ − Yi)(w − w∗

p)

=
1

n

n∑
i=1

⟨w − w∗
p, Zi⟩2

By assumption, the components of the random vector Z have finite fourth moment. Applying
Proposition 1, and using the condition on n assumed in the statement of Theorem 4, we get that, with
probability at least 1− δ/2, for all w ∈ Rd,

∥w − w∗
p∥2Hp,n

≥ 1

2
∥w − w∗

p∥2Hp
. (31)
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Combining (30) and (31) with (29) gives that with probability at least 1− δ,

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −

√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ) ∥ŵp − w∗

p∥Hp

+
1

16(p− 1)
∥ŵp − w∗

p∥2Hp
. (32)

Further combining (32) with (28) and rearranging yields that with probability at least 1− δ

∥ŵp − w∗
p∥2Hp

≤
512p2 E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

(33)

The last step is to bound the excess risk of the empirical risk minimizer using the bound (33) and (11)
from Lemma 3. For that, we control the Lp norm term in (11) as follows

pp∥ŵp − w∗
p∥

p
Lp =

(
p2

∥ŵp − w∗
p∥2Lp

∥ŵp − w∗
p∥2Hp

∥ŵp − w∗
p∥2Hp

)p/2

≤

(
p2 sup

w∈Rd\{0}

{
∥w∥2Lp

∥w∥2Hp

}
∥ŵp − w∗

p∥2Hp

)p/2

=
(
p2c2p∥ŵp − w∗

p∥2Hp

)p/2
. (34)

Combining (33), (11), and (34) yields the result.

F Detailed proof of Theorem 5

This section contains the proof of Lemma 4 as well as that of Theorem 5.

F.1 Proof of Lemma 4

Both inequalities follow from Lemma 4.5 in Adil, Kyng, Peng, and Sachdeva [AKPS19]. (12) follows
from a straightforward calculation using the lower bound of Lemma 4.5 in Adil, Kyng, Peng, and
Sachdeva [AKPS19]; we omit it here. The upper bound requires a bit more work. We have by the
quoted Lemma

ℓp(t)− ℓp(s)− ℓ′p(s)(t− s) ≤ 4

p(p− 1)
γp(|s|, |t− s|).

Now assume that |s| > 0. If |t− s| ≤ |s|, we have

γp(|s|, |t− s|) = p

2
|s|p−2(t− s)2 ≤ |s|p−2(t− s)2 = ℓ′′p(s)(t− s)2.

Otherwise, if |t− s| > |s|, then we have

γp(|s|, |t− s|) = |t− s|p − (1− p/2)|s|p ≤ (t− s)2|t− s|p−2 ≤ |s|p−2(t− s)2 = ℓ′′p(s)(t− s)2.

Therefore in both cases we have γp(|s|, |t− s|) ≤ ℓ′′p(s)(t− s)2 as long as |s| > 0. Replacing t and
s by ⟨w,X⟩ − Y and ⟨w∗

p, X⟩ − Y respectively we get, on the event that ⟨w∗
p, X⟩ − Y ̸= 0

ℓp(⟨w,X⟩−Y )−ℓp(⟨w∗
p, X⟩−Y )−⟨∇ℓp(⟨w∗

p, X⟩−Y ), w−w∗
p⟩ ≤

4

p(p− 1)
∥w−w∗

p∥∇2ℓp(⟨w∗
p,X⟩−Y )

Recalling that by assumption P
(
⟨w∗

p, X⟩ − Y ̸= 0
)
= 1, taking expectation of both sides, and

bounding 1/p ≤ 1 finishes the proof of (13).
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F.2 Proof of Theorem 5

We follow the same proof strategy as the one used in the proofs of Theorems 1 and 4. By definition
of the empirical risk minimizer, we have

Rp,n(ŵp)−Rp,n(w
∗
p) ≤ 0. (35)

Using (12) from Lemma 4 and the Cauchy-Schwarz inequality, we have the lower bound

Rp,n(ŵp)−Rp,n(w
∗
p) ≥ −∥∇Rp,n(w

∗
p)∥H−1

p
∥ŵp − w∗

p∥Hp

+
1

4p2
1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
(36)

Using Lemma 2 we have that, with probability at least 1− δ/2,

∥∇Rp,n(w
∗
p)∥H−1

p
≤
√
2E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
/(nδ). (37)

On the other hand, by Proposition 2, we have with probability 1− δ/2, for all w ∈ Rd,

1

n

n∑
i=1

γp
(
|⟨w∗

p, Xi⟩ − Yi|, |⟨w − w∗
p, Xi⟩|

)
≥ p

8
min

{
∥w − w∗

p∥2Hp
, ε2−p∥w − w∗

p∥
p
Hp

}
, (38)

where ε is as defined in Proposition 2. We now consider two cases. If ∥ŵp − w∗
p∥2Hp

≤ ε2−p∥ŵp −
w∗

p∥
p
Hp

, then combining (35), (36), (37), and (38) gives

∥ŵp − w∗
p∥2Hp

≤
8192E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

. (39)

Otherwise, ∥ŵp − w∗
p∥2Hp

> ε2−p∥ŵp − w∗
p∥

p
Hp

, then again combining (35), (36), (37), and (38)
gives

∥ŵp − w∗
p∥2Hp

≤

8192E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
ε2(p−2)

nδ

1/(p−1)

(40)

In either case, we have, using (39) and (40), with probability at least 1− δ,

∥ŵp − w∗
p∥2Hp

≤
8192E

[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
nδ

+

8192E
[
∥∇ℓp(⟨w∗

p, X⟩ − Y )∥2
H−1

p

]
ε2(p−2)

nδ

1/(p−1)

.

Combining this last inequality with (13) from Lemma 4 finishes the proof.
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