
Appendix for Velociraptor: Leveraging Visual
Foundation Models for Label-Free, Risk-Aware

Off-Road Navigation

Anonymous Author(s)
Affiliation
Address
email

A Implementation Details1

A.1 Platform2

We test our method using a full-scale Yamaha Viking VI modified for autonomous driving by Mai3

et al. [1] and Sivaprakasam et al. [2]. This platform contains a front-facing Multisense stereo4

camera and Velodyne lidar, and is capable of autonomous speeds of up to roughly 10m/s. In order5

to register scans and maps together, we use Super Odometry [3]. Our local maps are centered on the6

robot in the odometry frame and represent an area of 120m×120m (60m forward) at 0.5m per cell.7

A.2 Geometric Feature Extraction8

A list of geometric features extracted is presented in Table 1. Our terrain estimation algorithm9

works by computing the minimum elevation for each cell containing points. This elevation is then10

interpolated and smoothed using a Markov Random Field.11

A.3 Visual Feature Extraction12

For visual feature extraction, we leverage several state-of-the-art neural network backbones. For se-13

mantics, we leverage the open-source implementation of GA-Nav [4], a state-of-the-art FPV model14

for off-road semantic segmentation. Images for GA-Navare resized to [688× 550]. For Dinov2 [5],15

we leverage values (as opposed to query/key) from the tenth layer of the ViT-b backbone. This was16

chosen via qualitative analysis of the features and the guidance from AnyLoc [6], as well as run-time17

constraints. For Segment Anything, we use the image features provided by the open-source API [7].18

For both VFM-based methods, images are resized to [686 × 364]. Similar to prior work Emernerf19

[8], we perform a Principal Component Analysis (PCA) on the visual feature embeddings in FPV-20

space for which we had lidar returns. The number of features was reduced to sixteen to fit memory21

constraints for on-board local mapping, and roughly match the number of semantic channels from22

GA-Nav. Image features to be included in the PCA analysis are randomly selected from pixels in23

the train set which have a corresponding LiDAR return. From this collection of features, we can24

then perform a PCA decomposition (Equation 1). At test time, the PCA reduction can be computed25

efficiently per-pixel via Equation 2.26

Instantaneous visual maps Mt are computed by first projecting the point cloud into the image frame27

using camera intrinsicsK and extrinsics [R|t] (Equation 3). All visual features with a corresponding28

point are then projected into BEV with the spatial locations of their corresponding points, given local29

map parameters. Cells with multiple points have their embeddings averaged (Equation 4). Maps are30

aggregated over time by first transforming the previous map M1:t−1 to the current pose xt and then31

combining with Mt using an exponential moving average (Equation 5) to generate an aggregated32

visual map M1:t centered at xt.33

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

µPCA =
1

n

∑
i

[fi], U, S, V T = SV D(F − µPCA) (1)

fPCA = (f − µPCA)V
T (2)

[u, v, w]T = K[R|t][x, y, z, 1]T , u =
u

w
, v =

v

w
(3)

Pi,j = {p ∈ P|px ∈ [ri, r(i+ 1)], py ∈ [rj, r(j + 1)]}, M(i,j) =
1

|Pi,j |
∑

p∈Pi,j

pf (4)

M i,j
t =


M i,j

t−1 ∄M i,j
t

M i,j
t ∄M i,j

t−1

αM i,j
t + (1− α)M i,j

t otherwise
(5)

Table 1: Qualitative Description of the Geometric Terrain Features

Feature Description
terrain The output of our terrain estimation algorithm.

terrain slope The magnitude of the slope of the terrain estimate
diff The difference between the maximum elevation of a cell and its terrain estimate

SV D1−3 The principal components of the points in each grid cell
roughness The variance in elevation of the points in each cell
unknown Binary indicator of whether there are measurements for each cell
V F1−N The features from the visual mapping (DINO, SAM, GA-NAV)

Our mapping pipeline is able to run at 10hz on a laptop with a 13th gen Intel i9 CPU and Nvidia34

3080 Laptop GPU.35

A.4 Model-Predictive Controller36

We use MPPI [9] to operate on our learned representation. We use a modified version of MPPI that37

leverages Gaussian Random Walks and an action library, and a kinematic bicycle model with addi-38

tional steering and throttle dynamics (Equation 6, a(x, u), d(x, u) were nonlinear functions that we39

fit on a small sysid dataset, following the equation forms from Mai et al. [1]). Our implementation40

of MPPI attempts to minimize a weighted sum of distance to goal, and vehicle footprint projection41

onto the costmap (Equation 7). The speedmap is treated as a log barrier function, and speeds that42

exceed the value in the speedmap are assigned infinite cost (Equation 8). Values in the uncertainty43

map are treated as obstacles and also assigned infinite cost. In practice, we also include a footprint44

(treated as a fixed set of poses calculable from robot state) for the map terms to account for the fact45

that the vehicle will reside in multiple cells. Costs are averaged over the footprint, which is applied46

for both training and deployment.47

X =


x
y
ψ
v
δ

 , U =

[
t

δdes

]
, Ẋ =


vcos(ψ)
vsin(ψ)
vtan(δ)/L
a(x, u)
d(x, u)

 (6)

J(τ, C, S) = K||p(xT)− g||2 +
∑
t

[
1

|F (xt)|
∑

pt∈F (xt)

[C(pt) + Ŝ(pt, v(xt)) + U(pt)]

]
(7)

Ŝ(pt, vt) =

{
exp(||vt||2 − S(pt)), if ||vt||2 < S(pt)

∞, otherwise
(8)

2

Table 2: MPPI parameters

Parameter Value Description
H 50 number of timesteps
dt 0.1s timestep discretization
K 0.1 goal weight

num actlib samples 100 number of action library samples
num random walk samples 512 number of random walk samples

Footprint 4m× 2m vehicle footprint

Table 3: Dataset Description

Dataset Num samples Num unique runs H K
Train 1209 9 100 (10s) 20 (2s)

Dataset 1 429 5 100 (10s) 20 (2s)
Dataset 2 634 8 100 (10s) 20 (2s)

A.5 Dataset Generation48

We generate samples for our dataset D via the following procedure, given a set of states x1:T , maps49

M1:T , planning horizon H , and spacing k (in our case, k = 20, or 2s):50

1. For every t st. t%k = 0,51

2. Let τE = xt:t+H52

3. Let x0 = xt53

4. Let xg = xt+H54

5. Let M = Mt55

6. Let D = D ∪ (x0, xg, τE ,M)56

That is, every k frames, we add to our dataset the current map representation Mt and next H steps57

of expert trajectory. The learner will start at the current state xt and must reach the state H steps in58

the future xt+H . This process is repeated for each unique run in the dataset. Our dataset statistics are59

presented in Table 3. Additional qualitative visualizations of the terrain in the datasets is presented60

in Figure 1.61

Figure 1: A qualitative comparison of the test environments. (Top row) Dataset 1 contains open
scenarios, slopes, trails and seasonal variation. (Bottom row) Compared to Dataset 1, Dataset 2 has
more grassland terrain, vegetation and open slopes.

3

Table 4: Training parameters

Parameter Value Description
Epochs 5 number of epochs

Batch Size 4 batch size
Speed coeff 1.0 weight of speed learning and cost learning objectives

MPPI iterations 10 number of mppi iterations to converge
Optimizer Adam [10] optimizer

Table 5: Network Parameters

Parameter Value Description
E 16 ensemble size

smax 15m/s maximum speed
sn 15 number of speed bins

hidden sizes [128, 128] intermediate feature map sizes
hidden activation tanh activation type

B Training Details62

Parameters for our training procedure, network architecture and uncertainty estimation are presented63

in Tables 4, 5 and 6, respectively.64

C Additional Qualitative Results65

Provided in this section are additional qualitative results that highlight the differences between each66

method (Figs. 2 and 3). Figure 2 demonstrates a scenario in which the trail is obscured by tall67

vegetation. This vegetation results in both the geometric and semantic analysis underperforming.68

However, our continuous-valued features are able to disambiguate the trail, resulting in better cost-69

ing. In Figure 3, we are in a scenario in which there is multiple grass types. The grayer grass is70

marshy and should be avoided if possible. The features from Dino are best able to capture the intra-71

class variation, resulting in better costing for IRL-Dino, as compared to geometry-only and semantic72

features.73

D Additional Future Work74

While we present results in a previously unseen environment, due to logistical limitations, the en-75

vironment is fairly similar to the environment in which the training data was collected (e.g. highly76

vegetated, hilly terrain). Further experimentation is required to assess Velociraptor’s capability to77

generalize to more varied terrain (e.g. deserts, mountainous terrain, etc.). Such experiments can78

include evaluating the importance of adapting the Dino PCA, assessing the generalization of the79

network trained in one biome to another, and the amount of expert data required to achive suffi-80

cient performance in a novel environment. Additionally, we would like to demonstrate this system’s81

capability on additional platforms.82

Table 6: Uncertainty Parameters

Parameter Value Description
num clusters 8 number of visual feature clusters

distance function cosine distance metric for clustering
uncertainty threshold .9 min value of residual to be considered uncertain

4

Figure 2: An example from our test set. The trail in front is obscured by grass, negatively impacting
the performance of the geometric and semantic baselines. However, our method is able to differen-
tiate between the trail and surrounding vegetation.

Figure 3: Another example from our test dataset. The brown grass contains marshier soil and was
avoided when possible in the train set.. IRL trained with only geometric features is not able to fully
assign low cost to the grass. IRL trained with semantic features is not able to differentiate between
the grass types. IRL trained with Dino features can differentiate between the grass types.

5

References83

[1] J. Mai. System design, modelling, and control for an off-road autonomous ground vehicle.84

Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, July 2020.85

[2] M. Sivaprakasam, P. Maheshwari, M. G. Castro, S. Triest, M. Nye, S. Willits, A. Saba,86

W. Wang, and S. Scherer. Tartandrive 2.0: More modalities and better infrastructure to further87

self-supervised learning research in off-road driving tasks. arXiv preprint arXiv:2402.01913,88

2024.89

[3] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer. Super odometry: Imu-centric90

lidar-visual-inertial estimator for challenging environments. In 2021 IEEE/RSJ International91

Conference on Intelligent Robots and Systems (IROS), pages 8729–8736. IEEE, 2021.92

[4] T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy, K. Weerakoon, and93

D. Manocha. Ga-nav: Efficient terrain segmentation for robot navigation in unstructured out-94

door environments. IEEE Robotics and Automation Letters, 7(3):8138–8145, 2022.95

[5] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haz-96

iza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.97

arXiv preprint arXiv:2304.07193, 2023.98

[6] N. Keetha, A. Mishra, J. Karhade, K. M. Jatavallabhula, S. Scherer, M. Krishna, and S. Garg.99

Anyloc: Towards universal visual place recognition. IEEE Robotics and Automation Letters,100

2023.101

[7] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,102

A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International103

Conference on Computer Vision, pages 4015–4026, 2023.104

[8] J. Yang, B. Ivanovic, O. Litany, X. Weng, S. W. Kim, B. Li, T. Che, D. Xu, S. Fidler, M. Pavone,105

et al. Emernerf: Emergent spatial-temporal scene decomposition via self-supervision. arXiv106

preprint arXiv:2311.02077, 2023.107

[9] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From108

theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357,109

2017.110

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint111

arXiv:1412.6980, 2014.112

6

	Implementation Details
	Platform
	Geometric Feature Extraction
	Visual Feature Extraction
	Model-Predictive Controller
	Dataset Generation

	Training Details
	Additional Qualitative Results
	Additional Future Work

