
Under review as a conference paper at ICLR 2021

A DISCUSSION OF OTHER ATTACKS

Attack of Jagielski (2020) It has been pointed out Jagielski (2020) that for kpriv = 2, kpub =
0, given a single synthetic image one can discern large regions of the constituent private images
simply by taking the entrywise absolute value of the synthetic image. The reason is the pixel values
of a natural image are mostly continuous, i.e. nearby pixels typically have similar values, so the
entrywise absolute value of the InstaHide image should be similarly continuous. That said, natural
images have enough discontinuities that this breaks down if one mixes more than just two images,
and as discussed above, this attack is not applicable when the individual private features are i.i.d.
like in our setting.

Attack of Carlini et al. (2020) A month after this submission, Carlini et al. Carlini et al. (2020)
independently gave an attack breaking the InstaHide challenge originally released by the authors
of Huang et al. (2020b). In that challenge, the public dataset was ImageNet, the private dataset
consisted of npriv = 100 natural images, and kpriv = 2, kpub = 4, m = 5000. They were able to
produce a visually similar copy of each private image.

Most of their work goes towards recovering which private images contributed to each synthetic
image. Their first step is to train a neural network on the public dataset to compute a similarity matrix
with rows and columns indexed by the synthetic dataset, such that the (i, j)-th entry approximates
the indicator for whether the pair of private images that are part of synthetic image i overlaps with the
pair that is part of synthetic image j. Ignoring the rare event that two private images contribute to two
distinct synthetic images, and ignoring the fact that the accuracy of the neural network for estimating
similarity is not perfect, this similarity matrix is precisely our Gram matrix in the kpriv = 2 case.

The bulk of Carlini et al.’s work Carlini et al. (2020) is focused on giving a heuristic for factorizing
this Gram matrix. They do so essentially by greedily decomposing the graph with adjacency matrix
given by the Gram matrix into npriv cliques (plus some k-means post-processing) and regarding
each clique as consisting of synthetic images which share a private image in common. They then
construct an m⇥npriv bipartite graph as follows: for every synthetic image index i and every private
image index j, connect i to j if for four randomly chosen elements i1, ..., i4 2 [m] of the j-th clique,
the (i, i`)-th entries of the Gram matrix are nonzero. Finally, they compute a min-cost max-flow on
this instance to assign every synthetic image to exactly kpriv = 2 private images.

It then remains to handle the contribution from the public images. Their approach is quite different
from our sparse PCA-based scheme. At a high level, they simply pretend the contribution from the
public images is mean-zero noise and set up a nonconvex least-squares problem to solve for the
values of the constituent private images.

Comparison to Our Generative Model Before we compare our algorithmic approach to that of
Carlini et al. (2020), we mention an important difference between the setting of the InstaHide chal-
lenge and the one studied in this work, namely the way in which the random subset of public/private
images that get combined into a synthetic image is sampled. In our case, for each synthetic image,
the subset is chosen independently and uniformly at random from the collection of all subsets con-
sisting of kpriv private images and kpub public images. For the InstaHide challenge, batches of npriv

synthetic images get sampled one at a time via the following process: for a given batch, sample two
random permutations ⇡1,⇡2 on npriv elements and let the t-th synthetic image in this batch be given
by combining the private images indexed by ⇡1(t) and ⇡2(t). Note that this process ensures that
every private image appears exactly 2m/npriv times, barring the rare event that ⇡1(t) = ⇡2(t) for
some t in some batch. It remains to be seen to what extent the attack of Carlini et al. (2020) degrades
in the absence of this sort of regularity property in our setting.

Comparison to Our Attack The main commonality between our approach and that of Carlini
et al. (2020) is to identify the question of extracting private information from the Gram matrix as the
central algorithmic challenge.

How we compute this Gram matrix differs. We use the relationship between covariance of a folded
Gaussian and covariance of a Gaussian, while Carlini et al. (2020) use the public dataset to train a
neural network on public data to approximate the Gram matrix.

12

Under review as a conference paper at ICLR 2021

How we use this matrix also differs significantly. We do not produce a candidate factorization but
instead pinpoint a collection of synthetic images such that we can provably ascertain that each one
comprises kpriv private images from the same set of kpriv + 2 private images. This allows us to set
up an appropriate piecewise linear system of size O(kpriv) with a provably unique solution and solve
for the kpriv + 2 private images.

An exciting future direction is to understand how well the heuristic in Carlini et al. (2020) scales
with kpriv. Independent of the connection to InstaHide, it would be very interesting from a theoret-
ical standpoint if one could show that their heuristic provably solves the multi-task phase retrieval
problem defined in Problem 2 in time scaling only polynomially with kpriv (i.e. the sparsity of the
vectors w1, . . . , wm in the notation of Problem 2).

B RECOVERING PRIVATE IMAGES FROM A GAUSSIAN DATASET

In this section we prove our main algorithmic result:
Theorem B.1 (Main). Let S ([n], and let npub = |S| and npriv = |Sc|. Let k = kpub + kpriv.

If d � ⌦(poly(kpub, kpriv) · log(npub + npriv)) and m � ⌦

✓
n
kpriv� 2

kpriv+1

priv k
poly(kpriv)

◆
, then with

high probability over X and the sequence of randomly chosen selection vectors w1, . . . , wm ⇠ D,
there is an algorithm which takes as input the synthetic dataset {yX,wi}i2[m] and the columns of X
indexed by S, and outputs kpriv + 2 distinct images ex1, . . . , exkpriv+2 for which there exist kpriv + 2
distinct private images xi1 , . . . , xikpriv+2 satisfying |exj | = |xij | for all j 2 [kpriv + 2]. Furthermore,
the algorithm runs in time

O(dm2 + dn
2
pub + n

2!+1
pub).

where ! ⇡ 2.373 is the exponent of matrix multiplication.
Remark B.2. Here we give some interpretation to the quantitative guarantees of Theorem B.1:

• The number of pixels d only needs to depend logarithmically on the number of pub-
lic/private images and polynomially in the sparsity kpub, kpriv, which will be some small
positive integer (e.g. kpub + kpriv = 4 or 8 in Huang et al. (2020a), kpub + kpriv = 4 or 6 in
Huang et al. (2020b) and kpub + kpriv = 2 in the implementation of MixUp in Zhang et al.
(2018)), so the regime in which Theorem B.1 applies is quite realistic.

• Note that we can achieve recovery even when m = o(n
kpriv

priv). The reason this is significant
is that as soon as m = ⌦(n

kpriv

priv), all possible combinations of k private images are used.
While it is still not immediately clear how to recover private images once this has happened,
we regard the fact that we can do so well before this point to be one of the most interesting
aspects of our result. Finally, we remark that the runtime is largely dominated by the
O(m2) term coming from forming an m ⇥ m matrix whose (i, j)-th entry turns out to
equal hwi, wji for all i, j 2 [m]. In fact, naive implementations of the most sophisticated
part of our algorithm (see Sections B.3, B.4, B.5, and B.6) require time !(m2), and getting
these parts of the algorithm to run in O(m2) time turns out to be quite subtle.

B.1 LEARNING THE PUBLIC COORDINATES VIA GAUSSIAN PHASE RETRIEVAL

In this section we give a procedure which, given any synthetic image y
X,w, recovers the entire

support of [w]S . The algorithm is inspired by existing algorithms for sparse phase retrieval, with the
catch that we need to handle the fact that we only get to observe the public subset of coordinates of
any of the vectors pj . Our algorithm, LEARNPUBLIC is given in Algorithm 1 below.

We first show that the population version of the matrix fM formed in Step 1 is a rank-1 projector
whose top eigenvector is in the direction of [w]S .

Lemma B.3. Let w be a unit vector. Let fM 2 Rn⇥n be defined as

fM , 1

d

dX

j=1

(y2
j
� 1) ·

�
[pj]S · [pj]>S � Id

�

13

Under review as a conference paper at ICLR 2021

Algorithm 1: LEARNPUBLIC({([pj]S , yj)}j2[d])

Input: Samples ([p1]S , y1), ..., ([pd]S , yd)
Output: supp([w]S) with probability at least 1� �, provided d � poly(kpub)/ log(n/�)

1 Form the matrix fM , 1
d

P
d

j=1(y
2
j
� 1) ·

�
[pj]S · [pj]>S � Id

�
.

2 Solve the semidefinite program (SDP) (this step takes n2!+1
pub via Jiang et al. (2020))

max
Z⌫0
hZ,fMi subject to Tr(Z) = 1,

X

i,j

|Zi,j |  kpub (2)

Compute the top eigenvector ew of Z.
3 return coordinates of the k entries of ew with the largest magnitudes.

Then E[fM] = 1
2 [w]S [w]

>
S

.

Proof. First, it is obvious that the expectation of fM can be written as

E[fM] = E
p⇠N (0,Id)

[(hw, pi2 � 1) · (pSp>S � Id)].

For any vector v 2 Rn with kvk2 = 1, we can compute v
>
E[fM]v

v
>
E[fM]v = v

>
E
p
[(hw, pi2 � 1) · (pSp>S � Id)]v

= E
p
[(hw, pi2 � 1) · (h[v]S , pi2 � 1)]

= E
p
[(hw, pi2 � 1) · (k[v]Sk22h[v]S/k[v]Sk2, pi2 � 1)]

= E
p
[(hw, pi2 � 1) · (k[v]Sk22h[v]S/k[v]Sk2, pi2 � k[v]Sk22)]

+E
p
[(hw, pi2 � 1) · (k[v]Sk22 � 1)]

=: A1 +A2

where the second step follows from kvk22 = 1.

For the first term in the above equation, we have

A1 = E
p
[(hw, pi2 � 1) · (k[v]Sk22h[v]S/k[v]Sk2, pi2 � k[v]Sk22)]

= k[v]Sk22 E
p
[(hw, pi2 � 1) · (h[v]S/k[v]Sk2, pi2 � k[v]Sk22)]

= 2k[v]Sk22 E
p
[�2(hw, pi) · �2(h[v]S/k[v]Sk2, pi)]

= 2k[v]Sk22hw, [v]S/k[v]Sk2i2

= 2hw, [v]Si2

where the third step follows from the fact that w and [v]S/k[v]Sk2 are unit vectors, �2 denotes the
normalized degree-2 Hermite polynomial �2(z) , 1p

2
(z2 � 1), and the last step follows from the

standard fact that Eg⇠N (0,Id)[�i(hg, v1i)�j(hg, v2i)] = hv1, v2ii if i = j and 0 otherwise.

For the second term, we have

A2 = E
p
[(hw, pi2 � 1) · (k[v]Sk22 � 1)] = (k[v]Sk22 � 1) ·E

p
[hw, pi2 � 1] = 0.

Thus, we have

A1 +A2 = 2hw, [v]Si2.

In particular, for v = [w]S/k[w]Sk2, the above quantity is 2k[w]Sk22, while for v ? [w]S , the above
quantity is 0. Thus we complete the proof.

14

Under review as a conference paper at ICLR 2021

Finally, we complete the proof of correctness of LEARNPUBLIC. Here we leverage the fact that
we are running an SDP (the canonical SDP for sparse PCA) to show that as long as d is at least
polynomially large in kpub and logarithmically large in n, with high probability we can recover
supp([w]S).
Lemma B.4 (Learning the public coordinates). For any � > 0, if d � poly(kpub)/ log(n/�), then
with probability at least 1 � � over the randomness of X, we have that the coordinates output by
LEARNPUBLIC({([pj]S , yj)}j2[d] for yj , |hpj , wi| are exactly equal to supp([w]S).

Proof. Let Z be the solution to the SDP in (2), and define w⇤ , [w]S/k[w]Sk. Because w⇤ is a
feasible solution for the SDP, by optimality of Z we get that

0  hZ � w⇤w
>
⇤ ,
fMi

= hZ � w⇤w
>
⇤ ,E[fM]i+ hZ � w⇤w

>
⇤ ,
fM�E[fM]i

=
k[w]Sk2

2
hZ � w⇤w

>
⇤ , w⇤w

>
⇤ i| {z }

1

+ hZ � w⇤w
>
⇤ ,
fM�E[fM]i| {z }

2

, (3)

where in the last step we used Lemma B.3.

Because kZkF  Tr(Z) = 1 = kx⇤k, we may upper bound 1 by � 1
2kZ � w⇤w

>
⇤ k2F . For 2 , note

that because the entrywise L1 norm of Z and x⇤x
>
⇤ are both upper bounded by k, by Holder’s we

can upper bound 2 by 2kpub · kfM � E[fM]kmax. Standard concentration (see e.g. Neykov et al.
(2016)) implies that as long as d � log(n/�)/⌘2, then kfM � E[fM]kmax  ⌘. We conclude from
(3) that

0  �k[w]Sk
2

4
kZ � w⇤w

>
⇤ k2F + 2kpub⌘,

so kZ � w⇤w
>
⇤ k2F  8kpub⌘/k[w]Sk2 � 8⌘k2pub, where in the last step we used that if w has

at least one public coordinate, then k[w]Sk2 � 1/kpub. By Davis-Kahan, this implies that the top
eigenvector ew of Z satisfies k ew�w⇤k2  8⌘k2pub. As the nonzero entries of w⇤ are at least 1/

p
kpub,

by taking ⌘ = O(1/k3pub) we ensure that k ew � w⇤k1  k ew � w⇤k2 < 1/2
p

kpub, so the largest
entries of ew in magnitude will be in the same coordinates as the nonzero entries of w⇤.

B.2 RECOVERING THE GRAM MATRIX VIA FOLDED GAUSSIANS

We now turn to the second step of our overall recovery algorithm: recovering the m ⇥ m Gram
matrix whose (i, j)-th entry is supp(wi) \ supp(wj). For this section and the next four sections,
we will assume that S = ;, i.e. that all images are private. For brevity, let k , kpriv. This turns
out to be without loss of generality. Given that in the case where S 6= ; we can recover the public
coordinates of any selection vector using LEARNPUBLIC, passing to the case of general S will be a
simple matter of subtracting the contribution of the public coordinates from the entries of the Gram
matrix obtained by GRAMEXTRACT to reduce to the case of S = ;. We will elaborate on this in the
final proof of Theorem B.1.

Given selection vectors w1, ..., wm, define the matrix W 2 Rm⇥d to have rows consisting of these
vectors, so that the Gram matrix we are after is simply given by WW

>. Recall that the m⇥d matrix
whose rows consist of yX,w1 , ..., y

X,wm can be written as

Y ,

0

B@
|hp1, w1i| · · · |hpd, w1i|

...
. . .

...
|hp1, wmi| · · · |hpd, wmi|

1

CA ,

and as each entry of X is an independent standard Gaussian, the columns of Y 2 Rm⇥d

�0 can be
regarded as independent draws from N fold(0,WW

>), where W is defined above. Let ⌃fold denote
the covariance of this folded Gaussian distribution. It is known that one can recover information
about the covariance WW

> of the original Gaussian distribution from the covariance ⌃
fold of its

folded counterpart:

15

Under review as a conference paper at ICLR 2021

Lemma B.5 (Page 7 in Kan & Robotti (2017)). Given a Gaussian N (0,⌃), the covariance ⌃fold 2
Rm⇥m of the corresponding folded Gaussian distribution N fold(0,⌃) is given by ⌃

fold
i,i

= ⌃i,i and,
for i 6= j,

⌃
fold
i,j

= ⌃i,j(4�2(0, 0; ⇢i,j)� 1) + 4⌃1/2
i,i
⌃1/2

j,j
(1� ⇢

2
i,j
)�2(0, 0; ⇢i,j)�

2

⇡
⌃1/2

i,i
⌃1/2

j,j

where ⇢i,j , ⌃i,j/(⌃
1/2
i,i
⌃1/2

j,j
).

We can apply Lemma B.5 in our specific setting to obtain the following relationship between WW
>

and the covariance of N fold(0,WW
>):

Corollary B.6. If ⌃ = WW
> 2 Rm⇥m for some matrix W 2 Rm⇥n where the rows of W are

unit vectors, then the covariance ⌃
fold 2 Rm⇥m of the corresponding folded Gaussian distribution

N fold(0,⌃) is given by

⌃
fold
i,j

=

⇢
1, if i = j;
 (hwi, wji), if i 6= j.

where (z) , 2
⇡
(z · arcsin(z) +

p
1� z2 � 1).

Proof. Because the rows of W are unit vectors, we have that ⌃i,j = ⇢i,j = hwi, wji for all i, j 2
[m]. To compute the off-diagonal entries of ⌃fold, note that by definition of CDF and PDF,

�2(0, 0; hwi, wji) =
1

2⇡
p

1� hwi, wji2
, �2(0, 0; hwi, wji) =

1

4
+

arcsinhwi, wji
2⇡

.

The claim follows.

Algorithm 2: GRAMEXTRACT({yX,wi}i2[m], ⌘)

Input: InstaHide dataset {yX,wi}i2[m]), accuracy parameter ⌘
Output: Matrix M equal to the Gram matrix k ·WW

>, scaled to have integer entries (see
Lemma B.7)

1 ⌘
⇤ O(⌘2).

2 Let z1, ..., zd 2 Rm be the vectors given by

(zj)i = y
X,wi
j

.

for all i 2 [m], j 2 [d].
3 Form the empirical estimates

bµ =
1

d

dX

i=1

zi
b⌃ =

1

d

dX

i=1

(zi � bµ)(zi � bµ)>

and define b⌃0 to be the matrix obtained by applying the function clip⌘⇤ entrywise to b⌃.
4 Let e⌃ be the matrix obtained by applying �1 entrywise to b⌃0.
5 Let ⌃⇤ denote the matrix obtained by entrywise rounding every entry of e⌃ to the nearest

multiple of 1/k.
6 return k ·⌃⇤.

We now show that provided the number of pixels is moderately large, we can recover the matrix ex-
actly, regardless of the choice of selection vectors w1, ..., wm 2 Rn. The full algorithm, GRAMEX-
TRACT, is given in Algorithm 2 above.
Lemma B.7 (Extract Gram matrix). Suppose d = ⌦(log(m/�)/⌘4). For random Gaussian image
matrix X and arbitrary w1, ..., wm 2 Sd�1

�0 , let e⌃ be the matrix computed in Step 4 of GRAMEX-
TRACT ({yX,wi}i2[m], ⌘), and let ⌃⇤ be the output. Then with probability 1�� over the randomness
of X, we have that |e⌃i,i0 � hwi, wi0i|  ⌘ for all i, i0 2 [m]. In particular, if ⌘ = 1/2k, the condi-
tioned on this happening, ⌃⇤ = k ·WW

>.

16

Under review as a conference paper at ICLR 2021

To prove this, we will need the following helper lemma about �1.
Lemma B.8. There is an absolute constant c > 0 such that for any 0 < ⌘ < 1 and bz, z � ⌘,

| �1(bz)� �1(z)|  c
p
⌘
· |bz � z|.

Proof. Noting that 0(z) = 2 arcsin(x)/⇡, we get that the derivative of �1 at z is given by
1

 0(�1(z)) = ⇡

2 arcsin(�1(z)) . One can verify numerically that for 0  x  1, x
2

⇡
 (x)  1.2x2

⇡
,

so in particular
p
⇡z/1.2  �1(z) 

p
⇡z. The derivative of �1 at z is therefore upper bounded

by O(1/ arcsin(
p
⇡z/1.2))  O(

p
1.2/(⇡z)). In particular, for z � ⌘, this is at most O(1/

p
⌘).

In other words, over ⌘  z  1, �1 is O(1/
p
⌘)-Lipschitz as claimed.

Up to this point we have not used the randomness of the process generating the selection vectors
w1, ..., wm. Note that without leveraging this, there exist choices of W for which it is information-
theoretically impossible to discern anything. Indeed, consider a situation where w1, ..., wm 2 Sd�1

�0
have pairwise disjoint supports. In this case all we know is that the columns of Y are independent
standard Gaussian vectors, as WW

> = Id. We now proceed to the most involved component of our
proof, where we exploit the randomness of the selection vectors.

B.3 SOLVING A LARGE SYSTEM OF EQUATIONS

In this section we show that if we can pinpoint a collection of selection vectors corresponding to all
size-k subsets of some set of k + 2 private images, then we can solve a certain system of equations
to uniquely (up to sign) recover those private images. We will need the following basic notion
corresponding to the fact that this system has only one unique solution, up to sign.
Definition B.9 (Generic solution of system of equations). For any m and any vector v = (vS)S2Ck

[m]

2 R(
m
k), we say that v is generic if there are at most two solutions to the system

�����
X

i2S

ai

����� = vS 8S 2 Ck

[m]

in the variables {ai}i2[m]. Note that there are exactly two solutions {a0
i
} and {a00

i
} to this system if

and only if a0
i
= �a00

i
for all i 2 [m] and a

0
i
6= 0 for some i 2 [m].

We now show that for Gaussian images, the abovementioned system of equations almost surely has
a unique solution up to sign.
Lemma B.10 (Vector of Gaussian subset sums is generic). Let g1, ..., gm be independent draws from
N (0, 1). For any m satisfying m � k + 2, the vector v = (vS)S2Ck

[m]
given by vS , P

i2S
gi is

generic almost surely (with respect to the randomness of g1, ..., gm).

Proof. First note that the entries of v are all nonzero almost surely. For v to not be generic, there
must exist another vector v0 whose entrywise absolute value satisfies |v| = |v0| but for which v

0 6=
v,�v and for which there exists h1, ..., hm satisfying

P
i2S

hi = v
0
S

for all S 2 Ck

[m]. This would
imply there exist indices S, T for which v

0
S
= vS and v

0
T
= �vT .

By the assumption that m � k + 2 (and recalling that k > 1 in our setup), we have that
�
m

k

�
> m.

In particular, the set of vectors w = (wS)S2Ck
[m]

for which there exist numbers {g0
i
} such that

wS =
P

i2S
g
0
i

for all S is a proper subspace U of R(
m
k). Let `1, ..., `a be a basis for the set of

vectors ` satisfying h`, wi = 0 for all w 2 U . Note that there is at least one nonzero generic vector
in U , for instance, the vector w⇤ given by w

⇤
S
= 1[i 2 S] (here we again use the fact that m � k+2).

Letting D 2 R(
m
k)⇥(

m
k) denote the diagonal matrix whose S-th diagonal entry is equal to vS/v

0
S

,
note that the existence of h1, ..., hm above implies that v additionally satisfies hD`i, vi = 0 for all
i 2 [a]. But there must be some i for which D`i does not lie in the span of `1, ..., `a, or else we
would conclude that for any w 2 U , the vector w0 whose S-th entry is wS · vS/v0S would also lie

17

Under review as a conference paper at ICLR 2021

in U . Because of the existence of indices S, T for which v
0
S
= vS and v

0
T

= �vT , we know that
w 6= w

0
,�w0, so we would erroneously conclude that w is not generic for any w 2 U , contradicting

the fact that the vector w⇤ defined above is generic.

We conclude that there is some i for which D`i lies outside the span of `1, . . . , `a. But then the
fact that hD`i, vi = 0 for this particular i implies that the variables gi satisfy some nontrivial linear
relation. This almost surely cannot be the case because g1, ..., gm are independent draws from
N (0, 1).

B.4 LOCATING A SET OF USEFUL SELECTION VECTORS

In the previous section we showed that we just need to find a set of selection vectors from among
the rows of W that correspond to size-k subsets of some set of k + 2 private images. Here we show
that such a collection of selection vectors is uniquely identified, up to trivial ambiguities, by their
pairwise inner products.
Lemma B.11 (Uniquely identifying a family of subsets). Let F = {TS}S2Ck

[k+2]
be a collection of

subsets of [n] for which |TS \ TS0 | = |S \ S
0| for all S, S0 2 Ck

[k+2]. Then there is some subset
U ✓ [n] of size k + 2 for which {TS} = Ck

U
as (unordered) sets.

1 2 3 4
3 4 5 6

1 3 4 5
1 3 4 6

2 3 4 5
2 3 4 6

1 2 3 5
1 2 4 5
1 2 3 6
1 2 4 6
1 3 5 6
1 4 5 6

2 3 5 6
2 4 5 6

1 2 5 6

Table 1: Illustration of the sequence of subsets constructed in the proof of Lemma B.11 for k = 4.
Red and blue denote S0 and S1, purple denotes Sa,b for a 2 {1, 2}, b 2 {k + 1, k + 2}, green
denotes the 4k � 8 sets S00, and gold denotes the

�
k�2
k�4

�
= 1 set S000.

Proof. For the reader’s convenience, we illustrate the sequence of subsets constructed in the follow-
ing proof in Table 1.

Suppose without loss of generality that F contains the sets S1,2 , {1, ..., k} and Sk+1,k+2 ,
{3, ..., k + 2} (the indexing will become clear momentarily). We will show that {TS} = Ck

U
for

U = [k + 2].

Let S⇤ , S0 \ S1. For any S
0 2 Ck

[k+2] satisfying |S0 \ S
0| = |S1 \ S

0| = k � 1, observe that S0

must contain S
⇤ and one element from each of S0\S1 = {1, 2} and S1\S0 = {k + 1, k + 2}, so

there are four such choices of S0, call them {Sa,b}a2{1,2},b2{k+1,k+2}, and F must contain all of
them.

Now consider any subset S00 ⇢ [k + 2] for which, for some b 6= b
0 2 {k + 1, k + 2}, we have

that |S00 \ S1,2| = |S00 \ S1,b| = |S00 \ S2,b| = k � 1, and |S00 \ Sk+1,k+2| = |S00 \ S
0
1,b0 | =

|S00 \S0
2,b0 | = k� 2. Observe that it must be that |S00 \S⇤| = k� 3 and that S00 contains {1, 2}, so

there are 2 ·
�
k�2
k�3

�
= 2k � 4 such choices of S00, and F must contain all of them. We can similarly

consider S00 for which, for some a 6= a
0 2 {1, 2}, we have that |S00 \ Sk+1,k+2| = |S00 \ Sa,k+1| =

18

Under review as a conference paper at ICLR 2021

|S00 \ Sa,k+2| = k � 1, and |S00 \ S1,2| = |S00 \ S
0
a0,k+1| = |S00 \ S

0
a0,k+2| = 2k � 4, for which

there are again 2k � 4 choices of S00, and F must contain all of them.

Alternatively, if F contained k � 2 subsets S
00 satisfying |S00 \ S1,2| = |S00 \ Sb,k+1| = |S00 \

Sb,k+2| = k � 1 for some b 2 {1, 2}, then it would have to be that any such S
00 contains the

k � 1 elements of {b, 3, . . . , k}, and therefore the intersection between any pair of such S
00 must

be equal to k � 1, violating the constraint that |TS \ TS0 | = |S \ S
0| for all S, S0 2 Ck

[k+2].
The same reasoning applies to rule out the case where F contains k � 2 subsets S

00 satisfying
|S00 \ Sk+1,k+2| = |S00 \ S1,b| = |S00 \ S2,b| = k � 1 for some b 2 {k + 1, k + 2}.

Finally, consider the set of all subsets S
000 distinct from the ones exhibited thus far, and for which

|S000 \ S0| = |S000 \ S1| = |S000 \ Sa,b| = k � 2 for all a 2 {1, 2}, b 2 {k + 1, k + 2} and
|S000 \ S00 for at least one of the 4k� 8 subsets constructed two paragraphs above. Observe that any
S
000 distinct from the ones exhibited thus far which satisfies the first constraint must either contain

S
⇤ and two elements outside of {1, ..., k + 4}, or must satisfy |S000 \ S

⇤| = k � 4 and contain
{1, 2, k + 1, k + 2}. In the former case, such an S

000 would violate the second constraint. As for the
latter case, there are

�
k�2
k�4

�
such choices of S000, and F must therefore contain all of them. We have

now produced 4k � 2 +
�
k�2
k�4

�
=
�
k+2
k

�
unique subsets, all belonging to Ck

[k+2], and F is of size
�
k+2
k

�
, concluding the proof.

B.5 EXISTENCE OF A FLORAL SUBMATRIX

Recall the notion of a floral submatrix from Definition 3.1. In this section we show that with high
probability M contains a floral principal submatrix. In the language of sets, this means that with
high probability over a sufficiently long sequence of randomly chosen size-k subsets of [n], there
is a collection of

�
k+2
k

�
subsets in the sequence which together comprise all size-k subsets of some

U ✓ [n] of size k + 2. Quantitatively, we have the following:

Lemma B.12 (Existence of a floral submatrix). Let m � ⌦(kO(k3)
n
k� 2

k+1). If sets T1, ..., Tm are
independent draws from the uniform distribution over Ck

n
, then with probability at least 9/10, there

is some U 2 Ck+2
[n] for which every element of Ck

U
is present among T1, ..., Tm.

Proof. Let L =
�
k+2
k

�
= 1

2 (k + 2)(k + 1). Define

Z ,
X

i1<···<iL2[m]

1
h
{Ti1 , ..., TiL} = Ck

U
for some U 2 Ck+2

[n]

i
.

By linearity of expectation, E[Z] is equal to
�
m

L

�
times the probability that {T1, ..., TL} = Ck

U
for

some U 2 Ck+2
[n] . The latter probability is equal to

�
n

k+2

�
· L! ·

�
n

k

��L, so we conclude that

E[Z] =

✓
m

L

◆
·
✓

n

k + 2

◆
· L! ·

✓
n

k

◆�L

� m
L · n

k+2

nkL
· L! · (k!)L

LL · (k + 2)k+2

� ⌦
�
m

L
n
k+2�kL

�
� ⌦(1),

where in the penultimate step we used that L!·(k!)L
LL·(k+2)k+2 is nonnegative and increasing over k � 2,

and in the last step we used that m � ⌦
⇣
n
k� 2

k+1

⌘
.

We now upper bound E[Z2]. Consider a pair of distinct summands (i1, ..., iL) and (i01, ..., i
0
L
).

Without loss of generality, we may assume these are (1, ..., L) and (s+1, ..., L) for some 0  s  L.
In order for {T1, ..., TL} = Ck

U
and {TL�s+1, ..., T2L�s+1} = Ck

U 0 for some U,U
0 2 Ck+2

[n] , it must
be that {TL�s+1, ..., TL} = Ck

U\U 0 . Note that if |U \ U
0| = k + 2, then U = U

0 and therefore s

must be 0. So if s > 0, it must be that |U \ U
0| 2 {k, k + 1}.

19

Under review as a conference paper at ICLR 2021

In either case, the probability that {T1, ..., TL�s+1} = Ck

U
\Ck

U\U 0 , {TL+1, ..., T2L�s+1} =
Ck

U
\Ck

U\U 0 , and {TL�s+1, ..., TL} = Ck

U\U 0 is

(L� s)!2 · s! ·
✓
n

k

◆�2L+s

 L!2 · (k/n)2kL�ks

If |U \ U
0| = k, then s must be 1, and there are

✓
n

k

◆
·
✓
n� k � 2

2

◆
·
✓
n� k � 4

2

◆
 n

k+4

choices for (U,U 0). If |U \ U
0| = k + 1 then s must be k + 1 and there are and there are

✓
n

k + 1

◆
· (n� k � 1) · (n� k � 2)  n

k+3

choices for (U,U 0).

Finally, note that there are
�
m

L

�
pairs of summands (i1, ..., il), (i01, ..., i0L) for which s = 0 (namely

the ones for which ij = i
0
j

for all j), m ·
�
m�1
L�1

�
·
�
m�L

L�1

�
 ⇥(m)2L�1 · L!2 pairs for which s = 1,

and
�

m

k+1

�
·
�
m�k�1
L�k�1

�
·
�

m�L

L�k�1

�
 ⇥(m)2L�k�1 · L!2 for which s = k + 1. Putting everything

together, we conclude that

E[Z2] = E[Z] +⇥(m)2L�1 · L!4 · nk+4 · (k/n)2kL�k +⇥(m)2L�k�1 · L!4 · nk+3 · (k/n)2kL�k(k+1)

 E[Z]2 ·
⇣
1 +O(1/m) · L!4 · k2kL�k +O(1/mk+1) · L!4 · k2kL�k(k+1) · nk

2�1
⌘

 (1.01E[Z])2,

where in the last step we used that L  k
2 and that nk

2�1
/m

k+1  1 because m � k
⌦(k3)

n
k�1.

By Paley-Zygmund, we conclude that

P[Z > 0.01E[Z]] � 0.992 · E[Z]2

E[Z2]
� 9/10,

as desired, upon picking constant factors appropriately.

Lemma B.12 implies that with probability at least 9/10 over the randomness of the mixup vectors
w1, ..., wm, if m � ⌦(kO(k3)

n
k� 2

k+1), then there is a subset of [m] for which the corresponding
principal submatrix of WW

> is floral. By Lemma B.7, with high probability M = k ·WW
>, so

this is also the case for the output of GRAMEXTRACT.

B.6 FINDING A FLORAL SUBMATRIX

As mentioned in Section 3, to find a floral principal submatrix of M, one option is to enumerate
over all subsets of size

�
k+2
k

�
of [m], which would take n

O(k3) time. We now give a much more
efficient procedure for identifying a floral principal submatrix of M, whose runtime is dominated
by the time it takes to write down the entries of M. At a high level, the reason we can obtain such
dramatic savings is that the underlying graph defined by the large entries of WW

> is quite sparse,
i.e. vertices of the graph typically have degree independent of k.

We will need the following basic notion:
Definition B.13. Given i 2 [m] and integer 0  t  k, let N t

i
, {j : hwi, wji = t/k}. For any

j 2 N t

i
, we refer to i and j as t-neighbors (this relation is obviously commutative).

We will also need the following helper lemmas establishing certain deterministic regularity condi-
tions that WW

> will satisfy with high probability.
Lemma B.14 (Hypergraph sparsity). For any � > 0, if m � n

k�1 log(1/�), then with probability
at least 1 � 2m� over the randomness of w1, ..., wm, we have that for every j 2 [m], there are at
most O(m · kk+1 ·n1�k) (k� 1)-neighbors of j, and at most O(m · kk+2 ·n2�k) (k� 2)-neighbors
of j.

20

Under review as a conference paper at ICLR 2021

Figure 2: Illustration of a house (i; j1, j2, j3, j4) where the solid lines indicate an entry of k � 1 in
M, while the dotted lines indicate an entry of k � 2.

Proof. We will union bound over j 2 [m], so without loss of generality fix j = 1 in the argument
below. Let Xj0 (resp. Yj0) denote the indicator for the event that 1 and j

0 are (k�1)-neighbors (resp.
(k� 2)-neighbors). As wj0 is sampled independently of w1, conditioned on w1 we know that Xj0 is
a Bernoulli random variable with expectation E[Xj0] =

k(n�k)

(nk)
 n

1�k · kk+1, where the factor of

k(n� k) comes from the number of ways to pick supp(w1)\supp(wj0) and supp(wj0)\supp(w1).

Similarly, Yj0 is a Bernoulli random variable with expectation E[Yj0] =
(k2)(

n�k
2)

(nk)
 n

2�k · kk+2.

By Chernoff, we conclude that
P

j0>2 Xj0 > 2n1�k · kk+1 with probability at most

exp
�
�m ·D(Ber(2n1�k · kk+1)kBer(n1�k · kk+1))

�
 exp(�⌦(mn

1�k · kk+1))

 exp(�⌦(mn
1�k)),

from which the first claim follows. Similarly by Chernoff,
P

j0>2 Yj0 > 2n2�k · kk+2 with proba-
bility at most

exp
�
�m ·D(Ber(2n2�k · kk+2)kBer(n2�k · kk+2))

�
 exp(�⌦(mn

2�k · kk+2))

 exp(�⌦(mn
2�k)),

from which the second claim follows.

Definition B.15. Given symmetric matrix M 2 Zm⇥m and distinct indices i, j1, ..., j4 2 [m] for
which j1 < j4, we say that (i; j1, . . . , j4) is a house (see Figure 2) if for all 1  a < b  4,
Mja,jb = k � 1 if (a, b) 2 {(1, 2), (2, 1), (2, 3), (3, 4), (1, 4)} and Mja,jb = k � 2 otherwise, and
furthermore Mi,ja = k � 1 for all a 2 [4].

Lemma B.16 (Upper bounding the number of houses). If m � ⌦(n2k/3), then with probability at
least 9/10 over the randomness of w1, . . . , wm, there are at most O(k5k ·m5 · n�4k+2) houses in
M.

Proof. Define
Z ,

X

i,j1,...j4 distinct,j1<j4

1 [(i; j1, . . . , j4) is a house] .

By linearity of expectation, E[Z] is equal to m ·
�
m�1
4

�
 m

5 times the probability that (1; 2, 3, 4, 5)
is a house. Note that the only way for (1; 2, 3, 4, 5) to be a house is if there are disjoint subsets
S1, S � 2, T ✓ [n] of size 2, 2, and k � 2 respectively such that w1 is supported on S [T

and each of w2, . . . , w5 is supported on {s1, s2} [T where s1 2 S1, s2 2 S2. There are

21

Under review as a conference paper at ICLR 2021

O

⇣�
n

k�2

�
·
�
n

2

�2⌘  n
k+2 such choices of (S1, S2, T), and for each is an O(

�
n

k

��5
) chance that

the supports of w1, . . . , w5 correspond to a given (S1, S2, T), so we conclude that

E[Z] = O

m

5 · nk+2 ·
✓
n

k

◆�5
!
 O(k5k ·m5 · n�4k+2).

We now upper bound E[Z2]. Consider a pair of distinct summands (i; j1, . . . , j4) and
(i0; j01, . . . , j

0
4). Recall that they correspond to some (S1, S2, T) and (S0

1, S
0
2, T

0) respectively. Note
that if these tuples overlap in any index (e.g. (1; 2, 3, 4, 5) and (6; 1, 7, 8, 9)), then |(S1 [S2 [T) \
(S0

1 [S
0
2 [T

0)| � k. There are at most

O

✓✓
n

k

◆
·
✓
n� k

2

◆
·
✓
n� k � 2

2

◆
+

✓
n

k + 1

◆
·
✓
n� k

1

◆
·
✓
n� k � 1

1

◆
+

✓
n

k + 2

◆◆
 O(nk+4)

pairs of sets U,U 0 ✓ [n] of size k + 2 with intersection of size at least k, and given a set U of size
k + 2, there are O

⇣�
k+2
k�2

�⌘
 poly(k) ways of partitioning U into three disjoint sets of size 2, 2,

and k � 2 respectively. We conclude that any pair of distinct summands in the expansion of E[Z2]

altogether contributes at most poly(k) · O(nk+4) ·
�
n

k

��b  k
10k · n�(b�1)k+4, where 6  b  10

is the number of distinct indices within the tuples (i; j1, . . . , j4) and (i0; j01, . . . , j
0
4). For any b, there

are
�
m

5

�
·
�
m�5
b�5

�
 m

b such pairs of tuples.

In the special case where b = 6, we will use a slightly sharper bound by noting that then, it must be
that S1 [S2 [T and S

0
1 [S

0
2 [T

0 are identical, in which case we can improve the above bound of
O(nk+4) for the number of pairs U,U 0 to O(nk+2).

We conclude that

E[Z2]  E[Z] + k
10k

m
6 · n�5k+2 +

10X

b=7

m
b · n�(b�1)k+4  O(k10k ·m10 · n�8k+4).

where in the last step we used the fact that m � O(n2k/3) and k � 2 to bound the summands
corresponding to b = 6 and b = 7. Finally, by our bounds on E[Z] and E[Z2], we conclude by
Chebyshev’s that with probability at least 9/10, there are most 2E[Z]  O(k5k · m5 · n�4k+2)
houses in M.

Lemma B.17 (Finding a floral submatrix). Suppose m = ⌦(nk� 2
k+1). With probability at least 3/4,

FINDFLORALSUBMATRIX(M) runs in time O(n2k� 4
k+1 ·exp(poly(k))) and outputs

�
k+2
k

�
⇥
�
k+2
k

�
-

sized subset I ✓ [m] indexing a principal submatrix of M which is floral, together with a function
F : I ! Ck

[k+2] such that Mj,j0 = |F (j) \ F (j0)| for all j, j0 2 I.

Proof. The proof of correctness essentially follows immediately from the proof of Lemma B.11,
while the runtime analysis will depend crucially on the sparsity of the underlying weighted graph
defined by M, as guaranteed by Lemmas B.14 and B.16. Henceforth, condition on the events of
those lemmas holding, which will happen with probability at least 3/4.

First note that if one reaches as far as Step 20 in FINDFLORALSUBMATRIX, then by the proof of
Lemma B.11, the I produced in Step 22 indexes a principal submatrix of M which is floral. The
recursive call in Step 24 is applied to a submatrix of M whose size is independent of n, and it is
evident that the time expended past that point is no worse than some exp(poly(k)), and inductively
we know that the resulting F produced in Step 25 when the recursion is complete correctly maps
indices j 2 [m] to subsets in Ck

[k+2] such that Mj,j0 = |F (j) \ F (j0)| for all j, j0 2 I.

To carry out the rest of the runtime analysis, it suffices to bound the time expended leading up to
the recursive call. Consider any house (i0; j1, j2, j3, j4) encountered in Step 5. First note that one
can compute

T4
a=1 N

k�1
ja

with a basic hash table, so because the first part of Lemma B.14 tells
us that with high probability, |N k�1

ja
|  O(m · kk+1 · n1�k) for all a 2 [4], Step 5 only requires

O(m · kk+1 · n1�k) time. Similarly, for each of the O(1) possibilities in the loop in Step 14, it
takes O(m · kk+1 · n1�k) time to enumerate over (k � 1)-neighbors of iz, i↵, i� in Step 15 and, by

22

Under review as a conference paper at ICLR 2021

the second part of Lemma B.14, O(m · kk+2 · n2�k) time to enumerate over (k � 2)-neighbors of
i1�z, i� , i� , and it takes poly(k) to check that the resulting indices i00 are not all (k � 1)-neighbors
of each other. And once more, in Step 20 it takes O(m · kk+2 · n2�k) time to enumerate over all
indices which are (k � 2) neighbors of i0, i1 and of every i

00 2 I 00.

We conclude that for every house (i0; j1, j2, j3, j4), FINDFLORALSUBMATRIX expends at most
O(m · kk+2 · n2�k) time checking whether the house can be expanded into a set of indices corre-
sponding to a floral principal submatrix of M. Note that for any (i0; j1, j2, j3, j4) encountered in
Step 4 which is not a house, the algorithm expends O(1) time. As |N k�1

i0
|  O(m · n1�k · kk+1)

with high probability for any i0, there are most O(m ·m4 ·n4�4k · k4k+4)  O(m5 ·n4�4k · k4k+4)
such tuples which are not houses.

And because Lemma B.16 tells us that with high probability there are O(k5k ·m5 · n�4k+2) houses
in M, FINDFLORALSUBMATRIX outputs None with low probability. In particular, given that any
single house (i0; j1, j2, j3, j4) expends O(m · kk+2 · n2�k) time from Step 9 all the way potentially
to Step 24, we conclude that the houses contribute a total of at most O(k5k ·m5 ·n�4k+2 ·m ·kk+2 ·
n
2�k)  O(m6 · n4�5k · k6k+2) to the runtime.

Putting everything together, we conclude that FINDFLORALSUBMATRIX runs in time

O
�
m

5 · n4�4k · k4k+4 +m
6 · n4�5k · k6k+2

�
= O

⇣
n
k+4� 10

k+1 · kO(k)
⌘
.

Lastly, note that k + 4� 10
k+1  2k � 4

k+1 whenever k � 2, completing the proof.

B.7 PUTTING EVERYTHING TOGETHER

We are now ready to conclude the proof of correctness of our main algorithm, LEARNPRIVATEIM-
AGE.

Proof. By Lemma B.4, the subsets Si computed in Step 3 correctly index the public coordinates of
wi. By Lemma B.7, with high probability over the randomness of X, the matrix M formed from
GRAMEXTRACT in Step 1 of LEARNPRIVATEIMAGE is exactly equal to the Gram matrix WW

>,
so after Step 5 and Step 6, M is equal to the Gram matrix of the vectors [w1]Sc , . . . , [wm]Sc , i.e. the
restrictions of the selection vectors to the private coordinates. We are now in a position to apply the
results of Sections B.3, B.4, B.5, and B.6.

By Lemma B.17, with high probability the output I, F of FINDFLORALSUBMATRIX in Step 7
satisfies that 1) the principal submatrix of M indexed by I, a set of indices of size

�
kpriv+2
kpriv

�
, is

floral, and 2) the function F : I ! Ckpriv

[kpriv+2] satisfies that |F (i) \ F (j)| = Mi,j for all i, j 2 I.
By Lemma B.11, because the principal submatrix indexed by I is floral, there exists some subset
U ✓ [n] of size kpriv + 2 for which the supports of the mixup vectors wj for j 2 I are all the
subsets of U of size kpriv. Finally, by Lemma B.10 and the fact that the entries of X are independent
Gaussians, for every pixel index ` 2 [d], the solution {ex(`)

i
} to the system in Step 8 satisfies that

there is some column x of the original private image matrix X such that for every i 2 [kpriv + 2],
ex(`)
i

is, up to signs, equal to the `-th pixel of x.

Note that the runtime of LEARNPRIVATEIMAGE is dominated by the operations of forming the
matrix M and running FINDFLORALSUBMATRIX, which take time O(m2) by Lemma B.17.

B.8 EXAMPLE OF A FLORAL SUBMATRIX

Example B.18. For k = 2, the following 6⇥ 6 matrix, after dividing every entry by k, is floral:
{1, 3} {2, 4} {1, 4} {1, 2} {3, 4} {2, 3}

{1, 3} 2 0 1 1 1 1
{2, 4} 0 2 1 1 1 1
{1, 4} 1 1 2 1 1 0
{1, 2} 1 1 1 2 0 1
{3, 4} 1 1 1 0 2 1
{2, 3} 1 1 0 1 1 2

23

Under review as a conference paper at ICLR 2021

Algorithm 3: FINDFLORALSUBMATRIX(M, k, r)
Input: Query access to matrix M 2 RM⇥M , sparsity level k
Output:

�
k+2
k

�
⇥
�
k+2
k

�
-sized subset I ✓ [M], function F : I ! Ck

[k+2] (Lemma B.17)
1 Nhouses 0.
2 for i0 2 [M] do
3 F (i0) {1, ..., k}.
4 for j1, . . . , j4 in N k�1

i0
for which j1 < j4 do

5 if (i0; j1, j2, j3, j4) is a house then
6 Nhouses Nhouses + 1.
7 if Nhouses � ⌦(k5k ·M5 · n�4k+2) then
8 return None.
9 I 0 {j1, j2, j3, j4}.

10 if
T4

a=1 N
k�1
ja

\{i0} 6= ; then
11 Let i1 be the (unique) element of

T4
a=1 N

k�1
ja

\{i0}.
12 I 00 ;.
13 F (i1) {3, · · · , k + 2}.
14 for z 2 {0, 1} and distinct ↵,�, �, � 2 [4] for which ↵ < � and i� (resp. i�) is a

(k � 1)-neighbor of i↵ (resp. i�), and for which i0,↵,� are (k � 1)-neighbors
and i1, �, � are (k � 1)-neighbors do

15 if exactly k � 2 choices of i00 which are (k � 1)-neighbors of iz, i↵, i� and
(k � 2)-neighbors of i1�z, i� , i� , and which are not all (k � 1)-neighbors
of each other then

16 Add to I 00 all such i
00.

17 if |I 00| = 4k � 8 then
18 If z = 0, set F (i↵) {1, 3, . . . , k, k + 1},

F (i�) {2, 3, . . . , k, k + 1}, F (i�) {1, 3, . . . , k, k + 2}, and
F (i�) {2, 3, . . . , k, k + 2}.

19 If z = 1, set F (i↵) {1, 3, . . . , k, k + 1},
F (i�) {1, 3, . . . , k, k + 2}, F (i�0) {2, 3, . . . , k, k + 1} and
F (i�0) {2, 3, . . . , k, k + 2}.

20 if exactly
�
k�2
k�4

�
choices of i000 which are (k � 2)-neighbors of i0, i1, i↵,

i� , i� , and i� , and which are also (k � 1)-neighbors of at least one
i
00 2 I 00 then

21 Let I 000 denote the set of such i
000.

22 I {i0, i1} [I 0 [I 00 [I 000.
23 Let Msub denote the

�
k�2
k�4

�
⇥
�
k�2
k�4

�
submatrix of M given by

restricting to the rows and columns indexed by I 000 and subtracting
4 from every entry.

24 _, G FINDFLORALSUBMATRIX(Msub, k � 2).
25 For every i

000 2 I 000, set F (i000) G(i000) [{1, 2, k + 1, k + 2}.
26 return I, F .

24

Under review as a conference paper at ICLR 2021

Algorithm 4: LEARNPRIVATEIMAGE({yX,wi}i2[m])

Input: InstaHide dataset {yX,wi}i2[m]

Output: Vectors ex1, ..., exk+2 2 Rd equal to k + 2 images (up to signs) from the original
private dataset

1 M 1
kpriv

·GRAMEXTRACT({yX,wi}, 1
2kpub+2kpriv

).
2 for i 2 [m] do
3 Si LEARNPUBLIC({([pj]S , yj)}j2[d]).
4 for i, j 2 [m] do
5 Mi,j Mi,j � 1

kpub
|Si \ Sj |.

6 M kpriv ·M.
7 I, F FINDFLORALSUBMATRIX(M).
8 For every pixel index ` 2 [d], solve the system of equations

���
P

i2F (j) ex
(`)
i

��� = y
X,wj

`
in the

variables {ex(`)
i

}i2[kpriv+2] for all j 2 I.
9 For every image index i 2 [kpriv + 2], let exi 2 Rd denote the image whose `-th pixel is equal to
ex(`)
i

.
10 return ex1, ..., exkpriv+2.

C ADDITIONAL EXPERIMENTAL RESULTS

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6 (g) k = 7 (h) k = 8

Figure 3: Comparing Vanilla, Mixup and Instahide training on Gaussian magnitude dataset with
different k.

25

Under review as a conference paper at ICLR 2021

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

(e) k = 5 (f) k = 6 (g) k = 7 (h) k = 8

Figure 4: Comparing Vanilla, Mixup and Instahide training on Gaussian dataset with different k.

26

