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ABSTRACT

Graph Anomaly Detection (GAD) is crucial for identifying abnormal entities
within networks, garnering significant attention across various fields. Traditional
unsupervised methods, which decode encoded latent representations of unlabeled
data with a reconstruction focus, often fail to capture critical discriminative content,
leading to suboptimal anomaly detection. To address these challenges, we present
a Diffusion-based Graph Anomaly Detector (DiffGAD). At the heart of DiffGAD
is a novel latent space learning paradigm, meticulously designed to enhance the
model’s proficiency by guiding it with discriminative content. This innovative
approach leverages diffusion sampling to infuse the latent space with discriminative
content and introduces a content-preservation mechanism that retains valuable
information across different scales, significantly improving the model’s adeptness at
identifying anomalies with limited time and space complexity. Our comprehensive
evaluation of DiffGAD, conducted on six real-world and large-scale datasets with
various metrics, demonstrated its exceptional performance. Our code is available
at: https://anonymous.4open.science/r/DiffGAD-440C/

1 INTRODUCTION

Graph structure has garnered significant attention from both academia (Wang et al., 2018; Gao et al.,
2023c; Roy et al., 2023; 2024; Chen et al., 2023; Gao et al., 2023a) and industry (Breuer et al., 2020;
Li et al., 2023; Yin et al., 2024; Zhong et al., 2020), with its potential to represent relationships and
structures. Among its wide applications, graph anomaly detection (GAD) has evolved as a popular
research topic, aiming to detect abnormal targets (nodes, edges, subgraphs, et al.) from the normal.

Existing research can be categorized into two branches: the semi-supervised learning branch (Dou
et al., 2020; Liu et al., 2021b; Gao et al., 2023b; 2024b) and the unsupervised learning branch (Hamil-
ton et al., 2017; Chen et al., 2020; Li et al., 2017; Peng et al., 2018). Semi-supervised learning
approaches utilize a small subset of labeled data to discern patterns of anomalies, enabling the
prediction of labels for the remaining unlabeled dataset. However, human annotation is often
time-consuming and labor-intensive, which limits the application of semi-supervised methods.

As alternative, unsupervised strategies (Ding et al., 2019; Fan et al., 2020; Sakurada & Yairi, 2014)
directly capture node characteristics and local structures without the need for annotation. Specifically,
these approaches are on the assumption that anomalous entities exhibit more complex distributions
and are significantly more difficult to reconstruct (Ding et al., 2019; Fan et al., 2020; Sakurada
& Yairi, 2014). Consequently, they utilize Autoencoder (AE) to first map the graph data into
latent embeddings (Kingma & Welling, 2014; Kipf & Welling, 2017a; Velickovic et al., 2018) and
then decoding, wherein those exhibiting high reconstruction errors are deemed more likely to be
anomalies. However, these methods grapple with limitations in their discriminative capability, which
results in suboptimal performance. As outlined in (Dou et al., 2020; Liu et al., 2020), abnormal
users often deliberately camouflage themselves among normal users. Consequently, they frequently
exhibit a significant overlap in common attributes (e.g. age, occupation, length and frequency of
reviews, etc.) with normal users. This behavior enables these anomalies to divert the focus of
reconstruction-based models towards overlapping common content, reducing the models’ ability
to discern truly discriminative features (such as transaction information for fraud detection (Dou
et al., 2019)). As a result, anomalous entities are difficult to identify by reconstruction error with
such a trivial framework. As illustrated in Figure 1 (a), all data points in the latent space are equally
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Original Discriminative Multi-Content

(a) (b) (c)

Normal Nodes Abnormal NodesLatent Space

Normal Distribution Abnormal Distribution

Figure 1: Given several normal and abnormal nodes, the data space is constructed by different
methods. Specifically, (a) represents the latent space constructed by current reconstruction-based
methods, (b) denotes the latent space learned by our discriminative guidance, (c) is the latent space
constructed by introducing the preserved general content on (b).

distributed in the learned latent space, without preserving sufficient discriminative content, leading to
the overlapping distribution space.

Furthermore, we find that the latent space constructed by the AE-based method (Ding et al., 2019)
tends to represent all samples for the Books dataset (Sánchez et al., 2013) into the same point, which
is misguided by the huge common content. In addition to the aforementioned issue, the well-known
Variational Autoencoder (VAE) based method (Kipf & Welling, 2016) faces a notable challenge: it
constructs the latent space within a constrained distribution (e.g., the Gaussian distribution), leading
to a uniform latent distribution. This limits the model’s expressive capacity, consequently making it
challenging to distinguish between abnormal and normal samples. To tackle this issue, we propose
to enhance the latent space learning process by incorporating discriminative content. Drawing
inspiration from the potent generative capabilities of Diffusion Models (DMs) (Ho et al., 2020;
Rombach et al., 2022; Nichol et al., 2022; Dhariwal & Nichol, 2021), we introduce a diffusion-based
detection approach, termed DiffGAD. Specifically, our DiffGAD tackles the issue from two aspects:

Discriminative Distillation to distill discriminative content (Section 3.5).
Discriminative content is hard to capture due to the sparsity of anomalies, however, shared content is
much easier to acquire. Hence we implicitly capture this discriminative information: Initially, we
train an unconditional DM to focus on constructing features that encapsulate both discriminative
and common elements, referred to as general content. Subsequently, a second DM is trained by
conditioning on a common feature to learn the latent distribution inclusive of common content, where
the common feature is constructed by adaptively filtering out potential anomalies in the unconditional
DM reconstructed space. By differentiating the general content from this commonality, we isolate the
discriminative content. This content is then integrated into the latent space through the application of
classifier-free guidance across both trained DMs. As illustrated in Figure 1 (b), this process allows
the latent space to segregate normal and abnormal distributions within overlapping areas, thereby
enabling the differentiation between abnormal and normal samples.

General Content Preservation to preserve different scale general content (Section 3.3).
Given that anomaly detection based on reconstruction error fundamentally aligns more with clas-
sification than generation, we introduce slight modifications to the diffusion model to better suit
this task. Specifically, during the sampling stage, rather than initiating from a Gaussian distribution,
we introduce minor corruptions to the given sample x by adding noises for a small timestep t < T ,
and subsequently denoise it to generate a reconstructed sample x̂. Throughout this process, we
argue that the general content could be preserved across different scales (reflecting by timestep t)
to further bolster the model’s discriminative power with confidence. In detail, noise at smaller t
values preserves large-scale general content, whereas larger t values maintain more localized general
content. As illustrated in Figure 1 (c), by preserving this content, the constructed latent space becomes
adept at accurately representing data points. This enhancement effectively widens the distributional
discrepancy between anomalous and normal entities, resulting in a robust and discriminative latent
space that fosters confident representations.
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To summarize, we have the following contributions:

• To the best of our knowledge, we make the first attempt to transfer the diffusion model (DM)
from the generation task to a detector in the GAD task and propose a DM-based Graph Anomaly
Detector, namely DiffGAD.

• Our DiffGAD enhances the discriminative ability from two aspects: a discriminative content-guided
generation paradigm to distill the discriminative content in latent space; and a content-preservation
strategy to enhance the confidence of the guidance process.

• Extensive experiments over six real-world and large-scale datasets demonstrate our effectiveness,
Theoretical and Empirical computational analysis illustrate our efficiency.

2 BACKGROUND

In this section, we revisit some background. Specifically, we first introduce the preliminaries of the
Graph Anomaly Detection (GAD) task and then describe the diffusion model in latent space.

2.1 TASK FORMULATION

In this work, we focus on the unsupervised node-level GAD over static attributed graphs. The goal
is to learn a detection model, which associates each node with an anomaly score, top-ranked nodes
(with large scores) are always indicated as anomalies. In reconstruction-based methods, the anomaly
score is the reconstruction error. Meanwhile, the data structure can be formalized as an attribute
graph G = {V,X,E,A} ∈ G, where V,X,E,A denotes nodes, node attributes, edges, and adjacency
matrix, respectively.

2.2 DIFFUSION MODEL IN LATENT SPACE

The Latent Diffusion Model (Latent DM) is composed of a pair of forward and reverse diffusion
processes based on the unified formulation of Stochastic Differential Equation (SDE) (Song et al.,
2021). Concretely, given a latent variable z, the SDE can be formalized as:

dz = f(z, t)dt+ g(t)dwt, (1)

where f(·) and g(·) are the drift and diffusion functions, respectively, and f(·) can also be expressed
in the form of f(z, t) = f(t)z. Then we define the forward, backward, and training process as:

Forward Process. Given the latent variable z, the forward process transforms z with noises to
construct a sequence of step-dependent variables {zt}Tt=0, where z0 = z is the initial point of this
process. Specifically, with SDE, the diffusion kernel is denoted as a conditional distribution of zt:

p (zt | z0) = N (s(t)z0, s
2(t)σ2(t)I), (2)

where s(t) and σ(t) are step-dependent to control the noise level. We follow an efficient design (Karras
et al., 2022; Zhang et al., 2023a) to simplify the diffusion kernel, where we set s(t) = 1 and σ(t) = t
in this work. Therefore, the forward process can be formulated as:

zt = z0 + σ(t)ε,where ε ∼ N (0, I) . (3)

Reverse Process. The reverse process reconstructs the latent variable z by predicting and removing
the added noises. Specifically, with SDE and our diffusion kernel simplification (Karras et al., 2022),
the reverse process can be derived as:

dz = −2σ̇(t)σ(t)∇z log pt(z)dt+
√

2σ̇(t)σ(t)dωt, (4)

where ∇z log pt(z) is the score function of z, and σ̇(t) is the first order derivative of σ(t).

Training Process. The training process matches the noises in the forward and reverse processes,
which can be achieved by denoising score matching (Song et al., 2021) as:

LDM = Ez0∼p(z)Ezt∼p(zt|z0) ∥ϵθ (zt, t)− ε∥22 , (5)

where ϵθ is the neural network. After training, the diffusion model can be applied for further
generation by the reverse process with the score function as ∇z log pt(z) = −ϵθ/σ(t) in Eq. 4.
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Figure 2: An overview of DiffGAD. Given a graph, we first encode it into latent space, and we then
reconstruct it with both unconditioned and conditioned diffusion models to distill the discriminative
content. Finally, we decode the reconstructed latent embedding for anomaly detection.

3 METHODOLOGY

In this section, we illustrate DiffGAD in detail.

3.1 OVERVIEW

Figure 2 overviews our proposed DiffGAD, which functions primarily within the latent space. Upon
receiving a graph, our methodology initiates by mapping it into the latent space, as detailed in §3.2.
Within this transformed domain, we employ a dual Diffusion Model (DM) approach. The first
DM is tasked with encapsulating the general content, as elaborated in §3.3, while the second DM
targets the extraction of common content, described in §3.4. Herein, the discriminative content is
identified by the disparities between these two DM-captured representations. Inspired by (Ho &
Salimans, 2022), the concurrent sampling of the two DMs can be enabled by controlling a simple
hyper-parameter. It is worth noting that our model’s foundation is rooted in a well-established
hypothesis, supported by works such as (Ding et al., 2019; Fan et al., 2020; Sakurada & Yairi, 2014),
which posits that anomalous entities exhibit more complex distributions and are significantly more
difficult to reconstruct. Consequently, nodes with higher reconstruction error are more likely to be
anomalies. To facilitate this detection mechanism, our framework requires the original samples with
their respective reconstructed counterparts, a process systematically described in §3.3.

3.2 LATENT SPACE PROJECTION

In this work, we leverage an encoder to map graph features into a latent representation space, a pivotal
step that precedes the detailed exposition of diffusion models in our work. Thus, it is essential to first
delineate the methodology employed in projecting graph characteristics into this latent space.

More formally, for a given graph G, we utilize the Graph Autoencoder (AE) framework as delineated
in (Ding et al., 2019) to facilitate its transformation into the latent space. The architecture of the
Graph AE comprises two primary components: an encoder, denoted as Φ, and a decoder, denoted
as Ψ. The encoder function, Φ, is designed to process the node feature matrix X ∈ Rn×d and the
adjacency matrix A ∈ Rn×n, thereby yielding latent feature embedding z, computed as:

z = Φ(X,A), (6)

wherein Φ incorporates a Graph Convolutional Network (GCN) (Kipf & Welling, 2017a) as its
underlying mechanism for aggregating information from node features X into latent embedding z,
with z ∈ Rn×k and k representing the dimensionality of the latent space.
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Algorithm 1 The training and inference procedure of DiffGAD.

Input: An attribute graph G = {V,X,E,A},
Output: The detection scores of each node in G.

1: Train Graph AE {Φ,Ψ} by Eq. 12.
2: Extract latent embedding z by Eq. 6.
3: Initialize common feature c0 as the mean of z and set ccurrent = c0.
4: while Training unconditional DM ϵθ(zt, t) do
5: Update ϵθ(zt, t) by Eq. 5,
6: Update common feature cnext by Eq. 9 and Eq. 10,
7: Set ccurrent = cnext.
8: end while
9: Set c = cnext,

10: Train conditional DM ϵθ(zt, c, t) by Eq. 13.
11: Add t-step noises to latent embedding z by Eq. 3.
12: Reconstruct the noisy embedding with the modified score in Eq. 11.
13: Decode the reconstructed embedding by Eq. 7.
14: Calculate detection scores between G and the decoded graph by Eq. 12.

Subsequently, the decoder component is tasked with the reconstruction of the node feature matrix
and adjacency matrix from the latent embedding z, expressed through the equations:{

X̂ = Ψfeat(z,A),

Â = Ψstru(zz
T ),

(7)

in which Ψfeat and Ψstru are specifically designed for the prediction of node features and graph
structure (edges), respectively. This meticulous elaboration of the latent space projection methodology
set the stage for a comprehensive understanding of our novel DiffGAD framework.

3.3 GENERAL CONTENT PRESERVATION

Once the latent space is ready, the reconstruction error by DM acts as a proxy of the anomaly score
associated with individual nodes. To achieve this, pairs of original and reconstructed samples are
necessary (Gao et al., 2024a). Our general content preservation aims to adapt the DM architecture
to the reconstruction error-based anomaly detection task. Unlike traditional DMs, which samples
random Gaussian noise to generate ẑ0, our approach perturbs original latent embedding z0 by mixing
random noises from different scales as the initial points for sampling. Concretely, following the work
in Ho et al. (2020), we categorize the noises into 500 different scales, and we add noises at each scale
by the following equation:

zt =
t

T
z0 +

T − t

T
ϵ (8)

where ϵ is a random noise, and ϵ ∈ N (0, 1), this corrupted embedding zt is then used to generate
reconstructed sample ẑ0 with the aim of preserving the general content. The benefit of this process
are threefolds: (1) It facilitates the computation of reconstruction error by aligning original and
reconstructed sample; (2) By modulating t, the extent of preserved general content can be controlled;
a lower t value results in a reconstruction that is closer to the original content, thereby retaining more
of the general content. (3) As the DM functions without explicit conditioning, it inherently associates
with the general content, which lays the groundwork for the introduction of discriminative content.

3.4 COMMON FEATURE CONSTRUCTION

In this study, we treat divergence of unconditional and conditional DMs as the discriminative
content of interest. Besides unconditional DM, our approach also necessitates the incorporation of a
conditional DM. This subsection is dedicated to elucidating the conditioning mechanism construction.

Consider the latent embedding z = {zv}nv=1, where each zv ∈ Rk denotes the embedding of the
v-th node. We initialize the common feature c0 as the mean value over all latent node embeddings,
capturing a global perspective of the node distribution and setting a prior for their generative process.

5
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This feature acts as the conditioning and is not fixed during the training of DM, next we demonstrate
the adaptive refinement of this feature in depth.

During the training phase of the unconditional DM, which we represent as ϵθ(zt, t), the conditioning
undergoes iterative updates. To illustrate, we identify the common feature conditioning at any training
iteration as ccurrent. The feature update is governed by:

cnext =
∑
v∈V

ωv · ẑv, (9)

where cnext is the updated common feature for the next training iteration, and ωv is the weighting
vector to control the update process. We obtain ωv by similarity calculation between the reconstructed
node embedding ẑv and current common feature ccurrent, which can be formalized as:

ωv =
exp(ω̄v/τ)∑
exp(ω̄v/τ)

,where ω̄v = cos ⟨ẑv, ccurrent⟩ , (10)

where τ is the temperature parameter to control the smoothness of weights, cos ⟨•, •⟩ denotes the
cosine similarity. The update of the common feature involves aggregating the contribution of all
nodes, weighted by their respective ωv values. A larger ωv indicates a more significant contribution
of the current ẑv to the update process. Notably, nodes that significantly deviate from the current
common feature, ccurrent, are assigned with lower weights during the update. The underlying rationale
is to mitigate the impact of potential anomalies and to derive a comprehensive common feature.
Upon completing this iteration, cnext is designated as the new current common feature ccurrent for the
forthcoming update cycle. Furthermore, we establish the final common feature c which corresponds
to cnext from the last training iteration. This finalized feature remains static during the detection phase.
This approach ensures that the common feature is reflective of the dataset’s core attributes, which
leads us to the discriminative content calculation.

3.5 DISCRIMINATIVE CONTENT DISTILLATION

Leveraging the unconditional DM, ϵθ(zt, t), and the common feature c, our approach is able to
extract the discriminative content through discriminative content distillation. Specifically, we first
train a conditional DM as ϵθ(zt, c, t), which aims to learn the common knowledge by reconstructing
latent embedding z = {zv}nv=1 with common feature c as conditional information.

Inspired by the idea of classifier-free guidance (Ho & Salimans, 2022), we distill the discriminative
content by performing a linear combination of the unconditional and conditional DMs. Differently,
our unconditional DM ϵθ(zt, t) contains both discriminative and common content, and the conditional
DM ϵθ(zt, c, t) captures the common content, which describes that "what most of the reconstructed
nodes focus on". Thus, the discriminative content is achieved by subtracting the general content
from the common content learned from the unconditional DM and conditional DM, respectively.
Specifically, the modified score can be denoted as:

ϵ̃θ (zt, c, t) = (1+λ)ϵθ (zt, t)− λϵθ (zt, c, t) ,

∇z log pt(z) = −ϵ̃θ (zt, c, t) /σ(t),
(11)

where λ is the hyperparameter to regulate the strength. By utilizing the modified score for the
sampling process, we distill the discriminative content into the latent space, and then obtain the
discriminative latent embeddings.

3.6 TRAINING AND INFERENCE

Training Stage. In the training stage, given an attribute graph G = {V,X,E,A}, we firstly train the
Graph AE by the following objective:

LAE = α · ||X − X̂||2 + (1− α) · ||A − Â||2, (12)

where || · ||2 denotes the L2 norm, and α is a hyper-parameter to balance the effect of feature and
structural reconstruction. Then we train the unconditional DM ϵθ (zt, t) by the training objective

6
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Figure 3: The ROC-AUC performance of 3 representative datasets under the different scale of the
control of λ, where x axis represents the variance of λ, and y axis is the ROC-AUC results.

as in Eq. 5, meanwhile, we obtain the common feature c. Finally, we train the conditional DM
ϵθ (zt, c, t) by the following equation:

LCond = Ez0∼p(z)Ezt∼p(zt|z0,c) ∥ϵθ (zt, c, t)− ε∥22 . (13)

Inference Stage. In the inference stage, given attribute graph G, we first transform it into latent space
by well-trained encoder Φ. Second, we add t-step noises (t < T ) on the extracted latent embedding to
preserve the general content. Then, we discriminatively sample from both unconditional DM ϵθ (zt, t)
and conditional DM ϵθ (zt, c, t) with Eq. 11 as scores. Finally, we transform the reconstructed
embedding into graph space by decoder Ψ for reconstruction error calculation.

4 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of our DiffGAD. Specifically,
we first introduce the experimental settings, and next, we analyze the ablation studies, finally, we
describe the comparison results with the state-of-the-art methods.

4.1 EXPERIMENTAL SETTINGS

Datasets. Following the work in (Liu et al., 2022b) we employ 13 baselines as benchmarks on
6 real-world datasets (Weibo (Zhao et al., 2020), Reddit (Kumar et al., 2019; Wang et al., 2021),
Disney (Sánchez et al., 2013), Books (Sánchez et al., 2013), Enron (Sánchez et al., 2013)), including
a large-scale dataset Dgraph (Huang et al., 2022) for evaluation.
Metrics. Following the extensive literature in GAD (Liu et al., 2022b; Ding et al., 2019; Kipf &
Welling, 2016), we compressively evaluate the performance of DiffGAD with the representative ROC-
AUC (Receiver Operating Characteristic Area Under Curve), AP (Average Precision), Recall@k, and
the AUPRC (Area Under the Precision and Recall Curve) metrics.
Comparisons. Following the work in (Liu et al., 2022b), we report the average performance with
std results over 20 trials for a fair comparison. Moreover, we re-implement current methods for all
datasets with (Liu et al., 2022a), and observe a large performance gap for the ROC-AUC in Enron,
while other datasets are similar (as the official GitHub issue mentioned in 1). Therefore, to prevent
ambiguity, we use the re-implemented ROC-AUC results on the Enron dataset and follow the results
of other datasets and metrics in (Liu et al., 2022b).

4.2 ABLATION STUDIES

The effects of discriminative content distillation. We conduct experiments over various λ in Eq. 11,
and the experimental results are shown in Figure 3. Specifically, we list the AUC performance with
the conditional DM ϵθ (zt, c, t) as λ = −1.0 (only common content), with the unconditional DM
ϵθ (zt, t) as λ = 0.0 (only general content), and with different values of λ ranging from 0.2 to 2.0
over the Books, Disney, and Enron datasets. From Figure 3, we find that different datasets have
distinct sensitivities of λ, and the performance on Books and Enron are sensitive to the various λ.
Moreover, we can observe that the best results are achieved with large λ (λ = 2.0) for all 3 datasets,

1https://github.com/pygod-team/pygod
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Table 1: The ROC-AUC performance with different components of our method.

Method Weibo Reddit Disney Books Enron Avg
AE 92.0 ± 0.1 56.1 ± 0.0 40.3 ± 6.7 59.1 ± 2.5 59.1 ± 1.6 61.3 ± 2.2
Diff 91.6 ± 0.5 55.8 ± 0.1 49.1 ± 0.3 58.3 ± 2.5 57.7 ± 1.8 62.5 ± 1.0
Cond-Diff 91.4 ± 0.5 55.9 ± 0.1 49.2 ± 0.4 58.8 ± 1.8 57.6 ± 1.9 62.6 ± 0.9
DiffGAD 93.4 ± 0.3 56.3 ± 0.1 54.5 ± 0.2 66.4 ± 1.8 71.6 ± 7.0 68.4 ± 1.9
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Figure 4: The ROC-AUC performance of different timesteps t over 3 representative datasets, where x
axis represents different timesteps t, and y axis is the ROC-AUC results.

which not only demonstrates the effectiveness of our discriminative content distillation but also shows
that the discriminative content is hard to mine for those datasets.

The influences of general content preservation. We conduct experiments over various timestep t in
Sec. 3.3 to preserve general content from different scales, and the experimental results are illustrated
in Figure 4. Specifically, we list the AUC performance with timestep varies from 1 to 500 over the
Books, Disney, and Weibo datasets. The full diffusion timestep is 500, where t = 1 means sampling
from large-scale general content, and t = 500 implies sampling from the noise. Specifically, from
Figure 4, we can find that (1) general content from different scales is required for different datasets,
where Weibo requires more general content (small t), and less general content is needed for Books
and Disney (large t), and (2) compared with sampling from the noises (t = 500), our general content
preservation improves over all datasets (various t), which demonstrates our effectiveness.
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Figure 5: Average ROC-AUC performance
over 5 datasets, where the color represents
the average AUC, and the central line is the
median (Many methods for Dgraph encounter
OOM and TLM restriction, thus Dgraph is
omitted).

The effects of different components. We conduct
experiments with different components such as the
Autoencoder (“AE”), the unconditional DM (“Diff”),
and the conditional DM (“Cond-Diff”), the experi-
mental results are shown in Table 1, where “DiffGAD”
is our method. Specifically, we can find that: (1) ap-
plying the DM over the AE model achieves marginal
performance gains (“Diff” vs “AE”), which demon-
strates that simply utilizing DM can’t tackle the lack
of discriminative content issue. (2) the conditional
DM and the unconditional DM obtain similar results
(“Diff” vs “Cond-Diff”), which proves our hypoth-
esis, that in the general content, the huge common
content prioritizes the discriminative. (3) our method
attains significant improvements over different com-
ponents (“DiffGAD” vs others), this proves our ef-
fectiveness, which could distill the discriminative
content and further boost the detection performance.
Moreover, we also visualize the reconstructed distribution by different components in Appendix B.

4.3 COMPARISON WITH SOTA METHODS.

In this subsection, we comprehensively compare our method with various state-of-the-art algorithms,
ranging from graph-agnostic algorithms LOF (Breunig et al., 2000), MLPAE (Sakurada & Yairi, 2014),
IF (Liu et al., 2012), and classical algorithms Rador (Li et al., 2017), ANOMALOUS (Peng et al.,
2018), SCAN (Xu et al., 2007), to deep algorithms GAAN (Chen et al., 2020), DOMINANT (Ding
et al., 2019), GCNAE (Kipf & Welling, 2016), DONE (Bandyopadhyay et al., 2020), CONAD (Xu
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Table 2: Performance comparison (ROC-AUC) among 13 algorithms on 6 datasets, where we show
the avg perf. ± the std of perf. of each method. The best results of all methods are indicated in
boldface, and the second best results are underlined. OOM refers to out-of-memory with CPU. TLE
denotes time limit of 24 hours exceeded. We list the Avg result over 5 datasets, due to the unavailable
Dgraph results with OOM and TLE for many methods, we omit Dgraph.

Algorithm Weibo Reddit Disney Books Enron Avg Dgraph
graph-agnostic
LOF 56.5 ± 0.0 57.2 ± 0.0 47.9 ± 0.0 36.5 ± 0.0 46.4 ± 0.0 48.9 ± 0.0 TLE
IF 53.5 ± 2.8 45.2 ± 1.7 57.6 ± 2.9 43.0 ± 1.8 40.1 ± 1.4 47.9 ± 2.1 60.9 ± 0.7
MLPAE 82.1 ± 3.6 50.6 ± 0.0 49.2 ± 5.7 42.5 ± 5.6 44.6 ± 7.1 53.8 ± 4.4 37.0 ± 1.9
classical algorithms
SCAN 63.7 ± 5.6 49.9 ± 0.3 50.5 ± 4.0 49.8 ± 1.7 52.8 ± 3.4 53.3 ± 3.0 TLE
Radar 98.9 ± 0.1 54.9 ± 1.2 51.8 ± 0.0 52.8 ± 0.0 54.1 ± 10.1 62.5 ± 2.3 OOM
ANOMALOUS 98.9 ± 0.1 54.9 ± 5.6 51.8 ± 0.0 52.8 ± 0.0 55.0 ± 9.8 62.7± 3.1 OOM
deep algorithms
GCNAE 90.8 ± 1.2 50.6 ± 0.0 42.2 ± 7.9 50.0 ± 4.5 38.2 ± 6.5 54.4 ± 4.0 40.9 ± 0.5
DOMINANT 85.0 ± 14.6 56.0 ± 0.2 47.1 ± 4.5 50.1 ± 5.0 53.7 ± 4.2 58.4 ± 5.7 OOM
DONE 85.3 ± 4.1 53.9 ± 2.9 41.7 ± 6.2 43.2 ± 4.0 46.7 ± 6.1 54.2 ± 4.7 OOM
AdONE 84.6 ± 2.2 50.4 ± 4.5 48.8 ± 5.1 53.6 ± 2.0 44.5 ± 2.9 56.4 ± 3.3 OOM
AnomalyDAE 91.5 ± 1.2 55.7 ± 0.4 48.8 ± 2.2 62.2 ± 8.1 54.3 ± 11.2 62.5 ± 4.6 OOM
GAAN 92.5 ± 0.0 55.4 ± 0.4 48.0 ± 0.0 54.9 ± 5.0 59.3 ± 0.2 62.0 ± 1.1 OOM
CONAD 85.4 ± 14.3 56.1 ± 0.1 48.0 ± 3.5 52.2 ± 6.9 51.6 ± 4.3 58.7 ± 5.8 34.7 ± 1.2
DiffGAD 93.4 ± 0.3 56.3 ± 0.1 54.5 ± 0.2 66.4 ± 1.8 71.6 ± 7.0 68.4 ± 1.9 52.4 ± 0.0

et al., 2022), and the comparison results are reported in Table 2. Moreover, we also show the average
of AUC results with standard deviation ( denoted as “Avg”) in the table, and then present a box chart
to show the average AUC results of 5 datasets in Figure 5.

Specifically, we draw the following observations: (1) DiffGAD achieves “an outlier node detection
method that works universally well on all datasets”. It obtains top-2 AUC results over all datasets and
significantly outperforms current methods with a large margin in average AUC with more than 9%
average AUC (compared with the second Average AUC results in ANOMALOUS). (2) DiffGAD
demonstrates robustness and stability across different datasets, it attains small std results over different
datasets. (3) DiffGAD outperforms other deep-based algorithms by a large margin. Specially, the
best improvement is for the Enron dataset, compared with the GAAN method, our DiffGAD attains
more than 20.7% AUC gains. These achieved performances are significant, and this can be attributed
to the enhancement of discriminative ability. More detailed analysis is in Appendix C.1.

5 TIME AND COMPUTATIONAL ANALYSIS

In this study, we analyze the time and computational analysis from theoretical and empirical views.

5.1 THEORETICAL ANALYSIS

(1) Graph AutoEncoder. We analyze the complexity according to (Liu et al., 2022b). Specifically,
we utilize the Graph convolutional network as our backbone, whose complexity is linear to the edge
numbers. For each layer, the convolution operation is D̃− 1

2 ÃD̃− 1
2XW , and thus the complexity

is O(mdh) (Kipf & Welling, 2017b), where ÃX can be implemented efficiently with sparse-dense
matrix multiplication. For O(mdh), m is the number of non-zero elements in matrix A, d is the
feature dimensions for the attributed network, and h is the number of feature maps of the weight
matrix. Moreover, to capture graph topological content, we devise a link prediction layer to reconstruct
the original topological structure, and thus the overall complexity is O(mdH + n2), where H is the
summation of all feature maps across different layers, and n is the number of nodes.
(2) Latent Diffusion Models. We employ an MLP as the denoising function by following (Karras
et al., 2022; Zhang et al., 2023a). Specifically, during the training phase, a random timestep is
sampled for each epoch to train the latent node embeddings. The time complexity of this process is
O(end′H ′), where e denotes the number of training epochs, H ′ is the number of feature maps for
MLP, d′ is the input dimension for DM, which is also the feature map dimension of AE, since we
adopt the output of AE as the input of DM. During the inference phase, similarly, the time complexity

9
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Table 3: Wall-clock running time (s) among
deep algorithms on five different numbers of
epochs, where the experiments are conducted on
the gen_time dataset by BOND (Liu et al., 2022b).

Algorithm 10 100 200 300 400
GCNAE 0.27 2.40 4.46 6.80 10.95
DOMINANT 0.10 0.59 1.35 1.90 2.40
DONE 0.11 0.75 1.61 2.26 3.18
AdONE 0.14 1.11 2.55 4.12 5.30
AnomalyDAE 0.11 0.70 1.12 1.71 2.04
GAAN 0.09 0.61 1.17 1.44 1.89
CONAD 0.17 1.23 2.40 3.49 4.59
DiffGAD (AE α ̸= 1) 0.07 0.65 1.26 1.91 2.55
DiffGAD (AE α = 1) 0.07 0.51 0.97 1.48 1.96
DiffGAD(Diff) 0.03 0.42 0.81 1.21 1.63
DiffGAD(Cond-Diff) 0.03 0.45 0.91 1.35 1.80
DiffGAD(Sample) 0.17

Table 4: GPU Memory Consumption (MB)
among deep algorithms on five different graph
sizes (nodes), where the experiments are con-
ducted on the gen dataset by BOND (Liu et al.,
2022b).

Algorithm 100 500 1000 5000 10000
GCNAE 180 200 200 200 262
DOMINANT 218 224 240 750 2194
DONE 218 226 264 900 2610
AdONE 220 260 292 904 2592
AnomalyDAE 218 228 262 1032 3756
GAAN 220 228 270 1032 3358
CONAD 218 226 246 864 2578
DiffGAD 220 228 246 830 2532

is O(tnd′H ′), where t represents the number of sampling timesteps in the denoising process. The
combined time complexity of both training and inference phases remains O((e+ t)nd′H ′).

5.2 EMPIRICAL DISCUSSION

Following (Liu et al., 2022b), we employ the Wall-Clock time and GPU memory for empirical
comparisons, and the experimental results are listed in Table 3 and Table 4, respectively. The whole
testing is conducted on a Linux server with a 2.90GHz Intel(R) Xeon(R) Platinum 8268 CPU, 1T
RAM, and 1 Nvidia 2080 Ti GPU with 11GB memory.

We can observe that DiffGAD is efficient in terms of both time and memory usage. Specifically,
benefitting from the advancements in diffusion acceleration, we adopt a more efficient EDM sam-
pler (Karras et al., 2022) within latent space and utilize 50 sampling steps. From Table 4, we can
observe that the sampling time of DiffGAD is quite short, only 0.17 seconds. Moreover, we also list
the Autoencoder with α = 1 in Eq. 7, Denoted as DiffGAD (AE α = 1), which omits the topology
reconstruction, and reduces AE costs to O(mdH). We can observe that the running time of AE
α = 1 and diffusion model are comparable.

Furthermore, as the size of the graph scales to real-world proportions, the overall time complexity
of DM simplifies to O(n) as we discuss in 5.1. This indicates that the complexity O(n2) of
AutoEncoder dominates the whole complexity, while the time required for diffusion model who
adding and removing noise in latent space can be neglected.

6 CONCLUSION

In this work, we make the first effort to transfer the diffusion model from generation task to a detector
and propose a diffusion-based unsupervised graph anomaly detector, namely DiffGAD. Specifically,
(1) a discriminative content-guided generation paradigm is proposed to capture the discriminative
content and then distill it into the latent space, and (2) a content-preservation strategy is designed
to enhance the confidence of the aforementioned guidance process, and (3) extensive experiments
on 6 real-world and large-scale datasets with different metrics demonstrate the effectiveness of our
method, and (4) comprehensive time and computational analysis demonstrate our efficiency.
Limitation and Future Work. The expressiveness of latent embeddings might be limited by graph
encoder, we will explore some encoder-free strategies in the future.

7 CODE OF ETHICS AND REPRODUCIBILITY STATEMENT

Code of Ethics. We do not foresee any direct, immediate, or negative societal impacts stemming
from the outcomes of our research.
Reproducibility Statement. All results presented in this work are fully reproducible. We provide our
code using the anonymous GitHub link. The optimal hyperparameters are detailed in Appendix D.
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A RELATED WORKS

In this section, we introduce notable prior works on graph anomaly detection, list the related diffusion
model-based methods, and enumerate the differences between DiffGAD and related methods.

Graph Anomaly Detection (GAD) aims to detect abnormal targets from a huge number of normal
samples. In the semi-supervised branch, Graph Neural Networks (GNNs) (Gao et al., 2024b; Wang
et al., 2019; Liu et al., 2021a; He et al., 2024; Zhang et al., 2024; Chen et al., 2024b;a) have
achieved remarkable success in detecting graph anomalies across various domains for its excellent
representation capabilities for modeling complex relationships. Specially, CapsGI (Zheng et al., 2024)
combines capsules with self-supervised learning (SSL) to overcome the inconsistency of anomaly
detection on graphs. PMP (Zhuo et al., 2024) introduces Partitioning Message Passing to adaptively
adjust the information aggregated from its heterophilic and homophilic neighbors. RQGNN (Dong
et al., 2024) proves that the accumulated spectral energy of the graph signal can be represented by its
Rayleigh Quotient, and proposes Rayleigh Quotient Graph Neural Network for graph-level anomaly
detection.

To tackle the issue of limited labeled data, recent methods (Fan et al., 2020; Kipf & Welling, 2016;
Bandyopadhyay et al., 2020; Yuan et al., 2021; Xu et al., 2022) propose unsupervised approaches
over the large-scale unlabeled data, where the anomaly score is calculated as the reconstruction error.
For example, the representative work in (Ding et al., 2019) uses GCN (Kipf & Welling, 2017a) and
AE (Kingma & Welling, 2014) to encode the graph into a high-dimensional latent space, decodes the
structure and attributes separately using the decoder, and then utilizes the weighted reconstruction
error of node feature and structure as the anomaly score.

Diffusion Models (DMs) have garnered widespread attention for their remarkable advances in
generating high-quality images and videos. Representative models like DDPM (Ho et al., 2020;
Sohl-Dickstein et al., 2015), SMG (Song & Ermon, 2019; 2020), and SDE (Song et al., 2021) have
been widely adapted to various domains (Xie et al., 2023; Zhao et al., 2023; Anciukevicius et al.,
2023; Bar-Tal et al., 2023; Zhou et al., 2023). For instance, within the scope of GNNs, researchers
explore to employ DMs to enhance molecular graph modeling (Huang et al., 2023b;a; Morehead
& Cheng, 2023), protein design (Zhang et al., 2023b; Gruver et al., 2023; Wu et al., 2024), drug
discovery (Guan et al., 2023; Schneuing et al., 2022), material design (Xie et al., 2022), etc, and
achieve significant improvement. There also has been an exploration in GAD, Diga (Li et al., 2023)
proposes a semi-supervised DM to detect money laundering, where the DM is guided by labeled
anomalies for subgraph recovery. GODM (Liu et al., 2023) introduces a plug-and-play package to
adopt a variational encoder and diffusion model to generate effective negative samples to solve the
class imbalance.

Compared with GODM (Liu et al., 2023), which aims to utilize the powerful generative ability of
DMs to generate sufficient negative samples to enhance the performance of current GAD methods, we
directly employ DMs to detect the abnormal targets as an end-to-end model with careful designation.

B VISUALIZATION

In this section, we visualize the distribution of the reconstructed representations by using t-
SNE (Van der Maaten & Hinton, 2008). For a fair demonstration, we select the smaller-scale Books
and the larger-scale Weibo dataset and illustrate the results in Figure 6 and Figure 7, respectively.
Moreover, for clearer demonstration, we refine the visualization of Books in Figure 8.

Specifically, we visualize the t-SNE results of the reconstructed general, common, and discriminative
content with small timestep (t=100) and large timestep (t=400). Additionally, we compare these
outcomes against the learned representations derived from the SOTA reconstruction-based method,
DOMINANT, and can draw several observations:

(1) Current reconstruction-based methods tend to produce highly condensed clusters of learned
representations, thereby constraining the discriminative information inherent between distinct nodes.
While DM significantly enhances the ability to capture the distribution patterns of samples.
(2) Compared to the general content, the common content emphasizes the shared attributes across
disparate samples, leading to a clustering effect. Conversely, discriminative content mines the
differences, making a more discernible distribution of samples.
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General Content Common Content Discriminative Content

Graph Auto Encoder

Small t (t = 100)

General Content Common Content Discriminative Content

Large t (t = 400)

Normal Nodes

Abnormal Nodes

Figure 6: Visualization results of the learned representations by (1) reconstruct-based method (e.g.
Dominant), and (2) different components of DiffGAD on the Books dataset.Variances of points in
Graph Auto Encoder: [6.066866e-22, 3.768135e-35], very close to 0.

General Content Common Content Discriminative Content

Graph Auto Encoder

Small t (t = 100)

General Content Common Content Discriminative Content

Large t (t = 400)

Normal Nodes

Abnormal Nodes

Figure 7: Visualization results of the latent space constructed by (1) reconstruct-based method (e.g.
Dominant), and (2) different components of DiffGAD on the Weibo dataset.

(3) Discriminative Content exhibits superior performance in identifying anomalous samples, with
them distributed at the boundary of the data distributions. This contrasts with the more even
distribution of other content categories.

C MORE EXPERIMENTAL DETAILS

C.1 DETAILED EXPERIMENTAL ANALYSIS

In this subsection, we analyze the experimental results of DiffGAD over the achieved sub-optimal
datasets.
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General Content Common Content Discriminative Content

(a) (b) (c)

(d) (e) (f)

Figure 8: Visualization results of the learned representations by different components of DiffGAD
on the Books dataset, for clear illustration, we construct the boundary by connecting neighbors and
highlight the abnormal samples. Where (a), (b), (c) are with small t (t=100), and (d), (e), (f) are with
large t (t=400), please zoom in for clearer observation.

Weibo. The success of most methods on Weibo is because the outliers in Weibo exhibit the properties
of both structural and contextual outliers. Specifically, in Weibo, the average clustering coefficient of
the outliers is higher than that of inliers (0.400 vs. 0.301), meaning that these outliers correspond to
structural outliers. Meanwhile, the average neighbor feature similarity of the outliers is far lower than
that of inliers (0.004 vs. 0.993), so the outliers also correspond to contextual outliers.

The two classical algorithms Radar and ANOMALOUS employ graph-based features to extract the
anomalous signals from graphs to more flexibly encode graph information to spot outlier nodes,
which helps them perform best on Weibo. As they constraint on graph/node types or prior knowledge,
they can not generalize well on other datasets.

Reddit & Dgraph. In contrast, the outliers in the Reddit and DGraph datasets have similar average
neighbor feature similarities and clustering coefficients for outliers and inliers. Therefore, their
abnormalities rely more on outlier annotations with domain knowledge.

Non-graph algorithm LOF (Local Outlier Factor) identifies local outliers based on density while IF
(Isolation Forest) builds an ensemble of base trees to isolate the data points and defines the decision
boundary as the closeness of an individual instance to the root of the tree. Both of them solely use
node attributes thus avoiding the influence of structures.

Disney. DiffGAD and most of the deep algorithms do not work particularly well on Disney compared
to classical baselines. The reason is that Disney has small graphs in terms of ‘Nodes’, ‘Edges’, and
‘Features’ (See Table 5 ). The small amount of data could make it difficult for the deep learning
methods to encode the inlier distribution well and could also possibly lead to overfitting issues.

C.2 DETAILED DATASET DESCRIPTIONS

The detailed statistics of the datasets are shown in Table 5.
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Table 5: The statistics of datasets.

Dataset #Nodes #Edges #Features Avg.Degree Ratio
Weibo 8405 407963 400 48.5 10.3%
Reddit 10984 168016 64 15.3 3.3%
Disney 124 335 28 2.7 4.8%
Books 1418 3695 21 2.6 2.0%
Enron 13533 176987 18 13.1 0.4%
Dgraph 3700550 4300999 17 1.2 0.4%

Weibo (Zhao et al., 2020): Weibo describes the relationship between users, posts, and hashtags on
the social platform Tencen-Weibo, where the hashtags serve as the edges, the post’s information and
the text’s bag-of-word vectors make up for the node features. Temporal information is used to label
data and the users are suspicious if they post as frequently as bots.

Reddit (Kumar et al., 2019; Wang et al., 2021): Reddit consists of the user posts on subreddits
within one month, and the text of each post is transferred to a feature vector to represent the LIWC
categories (Pennebaker et al., 2001). The features of users and subreddits are derived by summing
the features of their respective posts, where the banned users on the platform are considered to be
anomalous.

Disney and Books (Sánchez et al., 2013): Disney and Books are co-purchase networks of movies
and books from Amazon co-purchase networks respectively (Leskovec et al., 2007). Whose node
features both include prices, ratings, number of reviews, etc. The ground truth labels of Disney are
manually annotated according to the majority vote of high school students and those of Books are
derived from amazonfail tag information.

Enron (Sánchez et al., 2013): Enron denotes the email network extracted from (Klimt & Yang,
2004), where the email addresses having spam messages are regarded as anomalies. The nodes
are composed of emails, whose features describe the average number of recipients, the time range
between two emails, and so on.

Dgraph (Huang et al., 2022): Dgraph is a large-scale attributed graph with 3M nodes, 4M dynamic
edges, and 1M ground-truth nodes. A node represents a financial user, and an edge from one user
to another means that the user regards the other user as the emergency contact person. Users who
exhibit at least one fraud activity, such as not repaying the loans a long time after the due date and
ignoring the platform’s repeated reminders, are defined as anomalies/fraudsters.

C.3 MORE EXPERIMENTAL COMPARISONS

In this subsection, we show more experimental metrics, including Average Precision (AP), Recall@k,
and Area Under the Precision and Recall Curve (AUPRC), and the experimental results are listed
in Table 6, Table 7, and Table 8, respectively. Specifically, we can observe that our DiffGAD
achieves favorable performances with small std results around all benchmarks, which demonstrates
our effectiveness.

C.4 MORE ABLATION RESULTS

In this subsection, we provide more ablation results to validate our method. Specifically, we empir-
ically explore the validity of the generated common feature cnext, and show the distance between
cnext with the reconstructed Abnormal and Normal features statistically, the L2 distances is shown in
Table 9, and the Standardized cosine distances in depicted in Table 10. We can observe that cnext
is more similar to the normal samples from both results, which shows that normal samples contain
more common attributes.

Furthermore, we show more experimental results with different λ in Figure 9. We can observe that
both the Reddit and Weibo datasets are not sensitive with different λ (λ < 2), but the performance of
both datasets drops with λ = 2, borrowing from the classifier-free guidance (Ho & Salimans, 2022),
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Table 6: Performance comparison (Average Precision, AP) among 13 algorithms on 6 datasets, where
we show the avg perf. ± the std of perf. of each method. The best results of all methods are indicated
in boldface, and the second best results are underlined. OOM refers to out-of-memory with CPU.
TLE denotes time limit of 24 hours exceeded.

Algorithm Weibo Reddit Disney Books Enron Dgraph
graph-agnostic
LOF 15.8 ± 0.0 4.2 ± 0.0 5.2 ± 0.0 1.5 ± 0.0 0.0 ± 0.0 TLE
IF 12.9 ± 2.6 2.8 ± 0.1 10.1 ± 4.5 1.9 ± 0.2 0.1 ± 0.0 1.8 ± 0.0
MLPAE 52.8 ± 9.9 3.4 ± 0.0 5.9 ± 0.8 1.8 ± 0.3 0.1 ± 0.0 0.9 ± 0.0
classical algorithms
SCAN 17.3 ± 3.4 3.3 ± 0.0 5.0 ± 0.3 2.0 ± 0.1 0.0 ± 0.0 TLE
Radar 92.1 ± 0.7 3.6 ± 0.2 7.2 ± 0.0 2.2 ± 0.0 0.2 ± 0.0 OOM
ANOMALOUS 92.1 ± 0.7 4.0 ± 0.6 7.2 ± 0.0 2.2 ± 0.0 0.2 ± 0.0 OOM
deep algorithms
GCNAE 70.8 ± 5.0 3.4 ± 0.0 4.8 ± 0.7 2.1 ± 0.4 0.1 ± 0.0 1.0 ± 0.0
DOMINANT 18.0 ± 10.2 3.7 ± 0.0 7.6 ± 5.0 2.2 ± 0.6 0.1 ± 0.1 OOM
DONE 65.5 ± 13.4 3.7 ± 0.4 5.0 ± 0.7 1.8 ± 0.3 0.1 ± 0.0 OOM
AdONE 62.9 ± 9.5 3.3 ± 0.4 6.1 ± 1.5 2.5 ± 0.3 0.1 ± 0.0 OOM
AnomalyDAE 38.5 ± 22.5 3.7 ± 0.1 5.7 ± 0.2 3.5 ± 1.4 0.1 ± 0.0 OOM
GAAN 80.3 ± 0.2 3.7 ± 0.1 5.6 ± 0.0 2.6 ± 0.8 0.1 ± 0.0 OOM
CONAD 15.6 ± 6.9 3.7 ± 0.3 6.0 ± 1.4 2.5 ± 0.8 0.1 ± 0.0 0.9 ± 0.0
DiffGAD 80.9 ± 1.7 3.8 ± 0.0 6.2 ± 0.0 8.1 ± 2.8 1.7 ± 4.7 57.5 ± 0.0

Table 7: Performance comparison (Recall@k%) among 13 algorithms on 6 datasets, where we show
the avg perf. ± the std of perf. of each method. The best results of all methods are indicated in
boldface, and the second best results are underlined. OOM refers to out-of-memory with CPU. TLE
denotes time limit of 24 hours exceeded.

Algorithm Weibo Reddit Disney Books Enron Dgraph
graph-agnostic
LOF 22.0 ± 0.0 4.4 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 TLE
IF 13.8 ± 6.4 0.1 ± 0.1 9.2 ± 8.3 1.1 ± 1.6 0.0 ± 0.0 0.1 ± 0.1
MLPAE 48.9 ± 11.0 3.0 ± 0.0 0.0 ± 0.0 0.9 ± 1.6 0.0 ± 0.0 0.5 ± 0.1
classical algorithms
SCAN 23.8 ± 7.0 2.7 ± 0.3 7.5 ± 11.2 0.7 ± 1.4 0.0 ± 0.0 TLE
Radar 86.4 ± 0.8 2.1 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 OOM
ANOMALOUS 86.4 ± 0.8 4.0 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 OOM
deep algorithms
GCNAE 67.6 ± 5.2 3.0 ± 0.0 0.0 ± 0.0 0.7 ± 1.8 0.0 ± 0.0 0.4 ± 0.0
DOMINANT 19.7 ± 13.8 0.9 ± 0.4 3.3 ± 6.7 1.6 ± 3.1 0.0 ± 0.0 OOM
DONE 65.4 ± 12.4 2.8 ± 1.6 0.0 ± 0.0 1.1 ± 1.6 0.0 ± 0.0 OOM
AdONE 64.3 ± 7.6 1.0 ± 1.2 1.7 ± 5.0 3.0 ± 1.7 0.0 ± 0.0 OOM
AnomalyDAE 42.2 ± 23.7 0.9 ± 0.5 0.0 ± 0.0 2.7 ± 2.2 0.0 ± 0.0 OOM
GAAN 77.1 ± 0.2 1.1 ± 0.4 0.0 ± 0.0 1.8 ± 1.8 0.0 ± 0.0 OOM
CONAD 20.3 ± 13.3 1.3 ± 1.6 0.8 ± 3.6 1.7 ± 2.9 0.0 ± 0.0 0.4 ± 0.1
DiffGAD 77.1 ± 0.5 2.3 ± 1.2 0.0 ± 0.0 13.8 ± 2.9 3.0 ± 7.3 57.3 ± 0.0

we believe that λ serves as a trading factor, where Reddit needs discriminative content from λ = 0.8,
and λ = 1.0 works better for Weibo.

Moreover, we also supplement more experimental results with different timestep t in Figure 10. We
can observe that Reddit is not sensitive to different t (values from the y axis), and small-scale general
content works better for the Enron dataset.

C.5 ADAPTATION WITH DIFFERENT BACKBONES.

In this subsection, we evaluate the adaptation ability of DiffGAD with different backbones, Specifi-
cally, we utilize 4 different encoder & decoder architectures, including VGAE, MLP, VAE, Graph
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Table 8: Performance comparison (Area under Precision Recall Curve, AUPRC) among deep learning
based algorithms on 5 datasets, where we show the avg perf. ± the std of perf. of each method. The
best results of all methods are indicated in boldface, and the second best results are underlined.

Algorithm Weibo Reddit Disney Books Enron
GCNAE 76.5 ± 6.9 3.4 ± 0.0 4.0 ± 0.5 1.9 ± 0.2 0.0 ± 0.0
DOMINANT 55.6 ± 9.4 3.7 ± 0.0 6.0 ± 0.7 1.6 ± 0.1 0.1 ± 0.0
DONE 64.9 ± 1.9 3.7 ± 0.0 3.7 ± 0.0 1.5 ± 0.0 0.0 ± 0.0
AdONE 67.7 ± 0.9 3.4 ± 0.0 4.2 ± 0.0 2.5 ± 0.0 0.1 ± 0.0
AnomalyDAE 72.2 ± 10.8 3.7 ± 0.0 4.8 ± 0.9 11.6 ± 17.2 0.1 ± 0.0
CONAD 61.0 ± 27.4 3.7 ± 0.0 5.4 ± 3.7 2.2 ± 0.5 0.1 ± 0.0
DiffGAD 80.9 ± 1.7 3.7 ± 0.0 5.0 ± 0.0 7.8 ± 2.3 1.4 ± 4.5

Table 9: L2 distance (↓) of cnext to the reconstructed abnormal and normal samples, respectively.
The distance is calculated as the mean of all timesteps.

L2 Dis (↓) Weibo Reddit Disney Books Enron
Abnormal 295.16 0.4223 2611.96 0.9888 0.0718
Normal 18.05 0.4209 2372.6 0.9886 0.0704

Transformer, and evaluate the ROC-AUC result. The experimental results on the backbones are listed
in Table 11, and results on DiffGAD with different backbones are shown in Table 12. From the
experimental results, we can draw following observations:

1. GAE and DiffGAD(GAE) consistently exhibit superior performance compared to different
encoder & decoder architectures across different datasets in terms of ROC-AUC. Such
results underscore the robustness of GAE and the generalization ability of DiffGAD.

2. Without encoding graph structure, the DiffGAD(MLP) achieves notable results on the Enron
dataset, this indicates that the graph structure can lead to a loss of discriminative information,
as MLPs rely solely on node features as input.

3. The different performance of GAE, VAE, and VGAE reflects the impact of different en-
coder and decoder architectures. However, the architecture of Graph Transformer may be
somewhat excessive for this task, as it exhibits a relatively high complexity, but without
demonstrating any performance improvement.

To sum up: we find that (1) DiffGAD achieves robust performance gains over different architectures,
which demonstrates its adaptation ability, and (2) a simple architecture (i.e. GAE) is enough for latent
space construction over current datasets, which preserves sufficient discriminative information, and
further works with this latent space can boost the detection performance.

C.6 CHOICES ABOUT λ.

In this subsection, we describe the selection of the key hyper-parameter λ. Specifically, we statistic
the heterophily of the Abnormal samples over different dataset, and the results are listed in Table 13.
We observe that on the dataset with larger anomaly heterophily, such as Enron, Disney, and Books,
larger λ works well, while on the dataset with smaller anomaly heterophily, like Weibo and Reddit,
smaller λ works well. To summarize, we draw the following conclusion:

1. Larger λ works better on the datasets where anomaly samples has larger heterophily, and
we recommend using λ larger than 1 on such data. Larger heterophily for anomaly samples
means they are hidden within normal samples, and thus they are harder to detect.

2. Smaller λ works well on the datasets where anomaly samples has smaller heterophily, and
we recommend using λ smaller than 1 on such data. Smaller heterophily for anomaly
samples means they are clustered together, and thus they are easier to detect.
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Table 10: Standardized Cosine distance (↑) of cnext to the reconstructed abnormal and normal
samples, respectively. The distance is calculated as the mean of all timesteps.

Cos Dis (↑) Weibo Reddit Disney Books Enron
Abnormal 0.1828 0.4947 0.3424 0.5006 0.4987
Normal 0.4347 0.4949 0.4214 0.5008 0.4998
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(b) Weibo

Figure 9: The ROC-AUC performance of another 2 datasets under the different scale of the control of
λ, where x axis represents the variance of λ, and y axis is the ROC-AUC results.

C.7 DETAILED BASELINE DESCRIPTION

LOF (Breunig et al., 2000): Local Outlier Factor (LOF) calculates the extent to which the node is
anomalous according to how isolated it is compared to its neighborhood. It is worth noting that LOF
only uses node features, and the neighborhood is chosen by k-nearest-neighbors (KNN).

IF (Liu et al., 2012): Isolation Forest (IF) is a well-established tree ensemble technique employed in
anomaly detection, where it constructs an ensemble of base trees to isolate data points. The decision
boundary is established based on the proximity of individual instances to the root of each tree. IF
only utilizes the node features of the data.

MLPAE (Sakurada & Yairi, 2014): MLPAE utilizes the Multilayer Perceptron (MLP) as both
the encoder and decoder to reconstruct node features. Specifically, the encoder processes the node
features to learn their low-dimensional embedding, and the decoder reconstructs the input node
features from these embedding, employing the reconstruction loss of the node features as the anomaly
score for each node.

SCAN (Xu et al., 2007) The Structural Clustering Algorithm for Networks (SCAN) is a method
designed to detect clusters, hub nodes, and outlier nodes in a graph using only the graph’s structural
information. SCAN identifies structural anomalies by detecting clusters and considering the nodes
within these clusters as potential outliers. Since structural outliers exhibit distinct clustering patterns,
SCAN is particularly effective for this purpose.

Radar (Li et al., 2017): Radar is an anomaly detection framework for attributed graphs that utilizes
both graph structure and node features as inputs. It identifies outlier nodes whose behaviors deviate
significantly from the majority in terms of the residuals of feature information and coherence with
network structure. The anomaly score is determined by the norm of reconstruction residuals.

ANOMALOUS (Peng et al., 2018): ANOMALOUS performs both anomaly detection and attribute
selection on attributed graphs using CUR decomposition and residual analysis. Similar to Radar, the
anomaly score is also determined by the norm of its reconstruction residuals.

GCNAE (Kipf & Welling, 2016): GCNAE is an AE framework that employs GCN as both the
encoder and decoder. The encoder takes graph structure and node features as inputs to aggregate
information from a node’s neighbors to learn its latent representation and the decoder uses the GCN
to reconstruct the node features and graph structure from the embedding. The anomaly score for each
node is determined by the reconstruction error of the decoder.

DOMINANT (Ding et al., 2019): DOMINANT is one of the pioneering works that leverages GCN
and AE for anomaly detection. It follows an encoder-decoder architecture with a two-layer GCN. The
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Figure 10: The ROC-AUC performance of different timesteps t over another 2 representative datasets,
where x axis represents different timesteps t, and y axis is the ROC-AUC results.

Table 11: ROC-AUC result of different encoder-encoder architectures on 5 datasets, where we show
the avg perf. ± the std of perf. of each method. The best results of all methods are indicated in
boldface.

Backbone Weibo Reddit Disney Books Enron Avg.
MLP 85.5 ± 0.3 50.6 ± 0.0 48.1 ± 0.1 49.3 ± 5.9 41.3 ± 14.1 55.0 ± 4.1
VAE 84.4 ± 0.2 50.6 ± 0.0 48.0 ± 0.1 50.5 ± 5.4 42.9 ± 8.2 55.3 ± 2.8
VGAE 92.5 ± 0.0 55.8 ± 0.1 47.8 ± 3.3 48.4 ± 4.2 56.8 ± 0.7 60.3 ± 1.7
GTrans 90.9 ± 0.4 56.1 ± 0.0 31.0 ± 7.0 32.5 ± 12.3 55.5 ± 0.6 53.2 ± 4.1
GAE 92.0 ± 0.1 56.1 ± 0.0 40.3 ± 6.7 59.1 ± 2.5 59.1 ± 1.6 61.3 ± 2.2

node feature decoder is also a two-layer GCN, while the graph structure is decoded by a one-layer
GCN and dot product. The anomaly score for each node is determined by the weighted sum of both
decoders.

DONE (Bandyopadhyay et al., 2020): DONE leverages an MLP-based encoder-decoder architecture
to reconstruct both the adjacency matrix and node features. It employs separate AEs for structural
and feature information. The optimization of node embeddings and anomaly scores is performed
simultaneously using a unified loss function.

AdONE (Bandyopadhyay et al., 2020): AdONE is an extension of DONE, incorporating an
additional discriminator to differentiate between the learned structural and feature embedding of a
node. This adversarial training strategy aims to achieve better alignment of two distinct embeddings
within the latent space.

AnomalyDAE (Fan et al., 2020): AnomalyDAE employs both a structural AE and an attribute AE to
detect outlier nodes. The encoder encodes adjacency matrix and node features respectively to obtain
two embeddings, while the attribute decoder reconstructs the node features using both structural and
attribute embeddings.

GAAN (Chen et al., 2020): GAAN is a GAN-based method for outlier node detection utilizing an
MLP-based generator to create fake graphs and an MLP-based encoder to encode graph information.
A discriminator is then trained to distinguish between real and fake graphs. The anomaly score is
determined by combining the node reconstruction error and the confidence in identifying real nodes.

CONAD (Xu et al., 2022): CONAD leverages graph augmentation and cognitive learning techniques
to detect outlier nodes. It generates augmented graphs to impose prior knowledge of anomalies. The
graph encoder is optimized through a contrastive learning loss. Similar to DOMINANT, the outlier
score is determined by the weighted sum of two different decoders.

D IMPLEMENTATION DETAILS

Environment. The key libraries and their versions used in the experiment are as follows: Python=3.11,
CUDA_version=11.8, torch=2.0.1, pytorch_geometric=2.4.0, pygod=0.4.0, numpy=1.25.0
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Table 12: ROC-AUC result of DiffGAD with different encoder-encoder architectures on 5 datasets,
where we show the avg perf. ± the std of perf. of each method. The best results of all methods are
indicated in boldface.

Method Weibo Reddit Disney Books Enron Avg.
DiffGAD(MLP) 90.0 ± 1.1 50.6 ± 0.0 49.1 ± 0.2 50.0 ± 0.0 81.9 ± 5.2 64.3 ± 1.3
DiffGAD(VAE) 90.5 ± 0.6 50.6 ± 0.0 48.5 ± 0.2 67.1 ± 2.9 66.0 ± 1.8 64.5 ± 1.1
DiffGAD(VGAE) 92.5 ± 0.0 56.1 ± 0.0 52.1 ± 3.2 51.0 ± 1.1 57.8 ± 0.2 61.9 ± 0.5
DiffGAD(GTrans) 93.0 ± 0.7 56.2 ± 0.1 51.4 ± 0.6 51.5 ± 0.5 65.7 ± 4.9 63.6 ± 1.4
DiffGAD(GAE) 93.4 ± 0.3 56.3 ± 0.1 54.5 ± 0.2 66.4 ± 1.8 71.6 ± 7.0 68.4 ± 1.9

Table 13: The homophily and heterophily of anomalies on 5 datasets.

Weibo Reddit Disney Books Enron
Homophily 0.87 0.18 0.01 0.00 1.00
Heterophily 0.13 0.82 0.99 1.00 0.00

Hardware configuration. All the experiments were performed on a Linux server with a 3.00GHz
Intel Xeon Gold 6248R CPU,1T RAM, and 1 NVIDIA A40 GPU with 45GB memory.

Model Architectures. The architectural details of DiffGAD are listed here for easier reproduction.
The Graph AE, which is optimized by Adam, uses a two-layer GCN as the encoder and a two-layer
GCN decoder to reconstruct the node attribute. The structural decoder utilizes a one-layer GCN and
dot product to reconstruct the graph adjacency matrix. As for the DM, the denoising function is a
multi-layer MLP with SiLU activations. More details can be found in our code.

Hyper-parameters. The hyper-parameters are listed in Table 14, our unconditional DM and condi-
tional DM share the same parameters.

Table 14: Hyper-parameter for different datasets.

Hyper-paramter Type Weibo Reddit Disney Books Enron Dgraph
Batch size AE FULL BATCH 8192
Epochs AE 300
Early stop AE No
Dropout AE 0.3 0.3 0.3 0.1 0.1 0.3
Learning Rate AE 0.01 0.05 0.01 0.1 0.01 0.1
α AE 0.8 0.8 1.0 0.5 0.0 1.0
dimension AE 128 32 8 8 8 8
Batch size DM FULL BATCH 8192
Epochs DM 800
Early stop DM Yes
Learning Rate DM 0.005
dimension DM 256 64 16 16 16 16
λ DM 1.0 0.8 2.0 2.0 2.0 1.0
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