Appendix

In this appendix, we provide more details of VideoMAE from the following aspects:

* The detailed architecture illustration is in § A.
* The implementation details are in § B.

» Experimental results are in § C where there are ablation studies on the Something-Something
V2 and Kinectics-400 datasets, and a downstream evaluation task (i.e., action detection).
More comparisons with state-of-the-art methods on the UCF101 and HMDBS51 datasets are
included as well.

* Results analysis is in § D.
* Visualization of reconstructed samples is in § E.

¢ License of the datasets is in § F.

A Architectures

We use an asymmetric encoder-decoder architecture for video self-supervised pre-training and discard
the decoder during the fine-tuning phase. We take the 16-frame vanilla ViT-Base for example, and
the specific architectural design for the encoder and decoder is shown in Table 8. We adopt the
joint space-time attention [3, 38] to better capture the high-level spatio-temporal information in the
remaining tokens.

Stage |Vision Transformer (Base) Output Sizes
stride 4x 1x 1 on K400
data stride 2x 1x 1 on SSV2 IXT6X224x224
2x16x16, 768
? Q
cube stride 2x 16 16 768 x8%x196
mask tube mask 768 x8x[196x (1-)]
mask ratio =
MHA(768)
encoder MLP(3072) x12 768 x8x[196x(1-p)]
. MLP(384) & o
projector concat learnable tokens IBAXEX196
MHA(384)
decoder MLP(1536) x4 384x8x196
projector MLP(1536) 1536 x8x196
reshape | from 1536 to 3x2x16x 16| 3x16x224x224

Table 8: Architectures details of VideoMAE. We take 16-frame vanilla ViT-Base for example.
“MHA” here denotes the joint space-time self-attention. The output sizes are denoted by {C'xT'x.S}
for channel, temporal and spatial sizes.

B Implementation Details

We conduct the experiments with 64 GPUs for both pre-training and fine-tuning on the Something-
Something V2 and Kinetics-400 datasets. The experiments on the smaller UCF101 and HMDBS51
datasets are trained with 8 GPUs. The experiments on the AVA dataset are conducted with 32 GPUs.
We linearly scale the base learning rate w.r.t. the overall batch size, Ir = base learning rate x
batch size / 256. We adopt the PyTorch [46] and DeepSpeed” frameworks for faster training. We
have made the code® and pre-trained models* public to facilitate future research in self-supervised
video pre-training.

Something-Something V2. Our VideoMAE is pre-trained for 800 epochs on Something-Something
V2 by default. During the fine-tuning phase, we perform the uniform sampling following TSN [75].
For evaluation, all models share the same inference protocol, i.e., 2 clips x 3 crops. The default

*https://github.com/microsoft/DeepSpeed
*https://github.com/MCG-NJU/VideoMAE
*https://github.com/MCG-NJU/VideoMAE/blob/main/MODEL_Z00 . md
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config Sth-Sth V2 Kinetics-400

optimizer AdamW

base learning rate 1.5e-4

weight decay 0.05

optimizer momentum 581, £2=0.9,0.95 [11]

batch size 1024

learning rate schedule cosine decay [41]

warmup epochs 40

flip augmentation no yes

augmentation MultiScaleCrop [75]

Table 9: Pre-training setting.

config Sth-Sth V2 Kinetics-400
optimizer AdamW
base learning rate le-3(S), Se-4(B,L) le-3
weight decay 0.05
optimizer momentum B1, 82=0.9,0.999
batch size 512 512
learning rate schedule cosine decay [41]
warmup epochs 5
training epochs 40 (S,B), 30 (L) 150 (S), 75 (B), 50 (L,H)
repeated augmentation 2 2
flip augmentation no yes
RandAug [15] 9,0.5) 9,0.5)
label smoothing [63] 0.1 0.1
mixup [86] 0.8 0.8
cutmix [85] 1.0 1.0
drop path 0.1(S,B), 0.2 (L,H)
dropout 0.5 (L) 0.5 (L,H)

layer-wise Ir decay [4]

0.7 (S),0.75 (B,L)

0.7 (S),0.75 (B,L,H)

Table 10: End-to-end fine-tuning setting in Table 6 and Table 7.

config Sth-Sth V2
optimizer SGD

base learning rate 0.1
weight decay 0
optimizer momentum 0.9

batch size 1024
learning rate schedule cosine decay
warmup epochs 10
training epochs 100
augmentation MultiScaleCrop

Table 11: Linear probing setting.

settings of pre-training, fine-tuning, and linear probing are shown in Table 9, Table 12, and Table 11.
For supervised training, we follow the recipe in [21] and train from scratch for 100 epochs. Note
that we use no flip augmentation during both the pre-training and fine-tuning phase. We additionally
adopt the repeated augmentation [31] during the fine-tuning phase in Table 6, which can further
increase the Top-1 accuracy by 0.1% - 0.3%.

Kinetics-400. Our VideoMAE is pre-trained for 800 epochs on Kinetics-400 by default. During the
fine-tuning phase, we perform the dense sampling following Slowfast [22]. For evaluation, all models
share the same inference protocol, i.e., 5 clips x 3 crops. The default settings of pre-training and
fine-tuning are shown in Table 9 and Table 12. For supervised training from scratch, we follow the
recipe in [21] and train the model for 200 epochs. Note that we adopt the repeated augmentation [31]
during the fine-tuning phase in Table 7, which can further increase the Top-1 accuracy by 0.8% - 1.0%.
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config AVA v2.2

additional fine-tuning on Kinetics X v
optimizer AdamW

base learning rate le-3 (S), 2.5e-4 (B, L), 5e-4 (H) Se-4
weight decay 0.05

optimizer momentum 51, 82=0.9,0.999

batch size 128

learning rate schedule cosine decay [41]

warmup epochs 5

training epochs 30 (S, B, L), 20 (H) 30 (S, B) 20 (L, H)
repeated augmentation no

flip augmentation yes

drop path 0.2

layer-wise Ir decay [4] 0.6 (S), 0.75 (B, L), 0.8 (H) 0.6 (S), 0.75 (B), 0.8 (L, H)

Table 12: End-to-end fine-tuning setting in Table 5.

UCF101. We follow a similar recipe on Kinetics for pre-training. Our VideoMAE is pre-trained
with a masking ratio of 75% for 3200 epochs. The batch size and base learning rate are set to 192
and 3e-4, respectively. Here, 16 frames with a temporal stride of 4 are sampled. For fine-tuning, the
model is trained with repeated augmentation [31] and a batch size of 128 for 100 epochs. The base
learning rate, layer decay and drop path are set to 5e-4, 0.7 and 0.2, respectively. For evaluation, we
adopt the inference protocol of 5 clips x 3 crops.

HMDBS51. Our VideoMAE is pre-trained with a masking ratio of 75% for 4800 epochs. The batch
size and base learning rate are set to 192 and 3e-4, respectively. Here, 16 frames with a temporal
stride of 2 are sampled. For fine-tuning, the model is trained with repeated augmentation [31] and a
batch size of 128 for 50 epochs. The base learning rate, layer decay and drop path are set to 1e-3, 0.7
and 0.2, respectively. For evaluation, we adopt the inference protocol of 10 clips x 3 crops.

AVA. We follow the action detection architecture in Slowfast [22] and use the detected person boxes
from AIA [65]. The default settings of fine-tuning are shown in Table 12. For data augmentations, we
resize the short side of the input frames to 256 pixels. We apply a random crop of the input frames to
224 %224 pixels and random flip during training. We use only ground-truth person boxes for training
and the detected boxes with confidence >0.8 for inference.

C Additional Results

C.1 Training schedule

Figure 5 shows the influence of the longer pre-training schedule on the Something-Something V2 and
Kinetics-400 datasets. We find that a longer pre-training schedule brings slight gains to both datasets.
In the main paper, our VideoMAE is pre-trained for 800 epochs by default.

C.2 Comparison with the state-of-the-art methods

We present the detailed comparison with the state-of-the-art on UCF101 and HMDBS51 in Table 13.
Figure 6 additionally shows that our VideoMAE is a data-efficient learner that allows us to effectively
train video transformers only from limited video data (e.g., 9.5k clips in UCF101, and 3.5k clips in
HMDB51) without any ImageNet pre-training. VideoMAE significantly outperforms training from
scratch, MoCo v3 pre-training [14], and the previous best performance from Vi2CLR [18] without
extra data on these small-scale video datasets. Compared with those large-scale video datasets, these
two small datasets are more proper to verify the effectiveness of VideoMAE, as training large ViT
models is more challenging on small datasets.

D Model result analysis

In this section, we add the analysis of model results. As shown in Figure 7 and Figure 8, our
VideoMAE bring significant gain for most categories on SSV2, which implies that our VideoMAE
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Figure 5: The effect of training schedules on (a) Something-Something V2 and (b) Kinetics-400.
Here each point is a full training schedule. Our default ViT-B backbone is described in Table 8.
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Figure 6: Comparison with VideoMAE, MoCo v3 [14], and Vi2CLR [18] on UCF101 and HMDBS5I.

can capture more spatiotemporal structure representations than ImageMAE and ImageNet-21k
supervised pre-trained model. On the other hand, we also notice that our VideoMAE performs
slightly worse than other two models on some categories. To better understand how the model works,
we select several examples from validation set. The examples are shown in Figure 9. For the example
in the 1st row, we find our VideoMAE might not capture the motion information from very small
object. We suspect that tokens containing the small motion might all be masked due to our extremely
high masking ratio, so our VideoMAE could hardly reconstruct the masked small motion pattern. For
the example in the 2nd row, we find our VideoMAE could capture the deformation of objects and
movement from the squeeze of the hand, while this cannot be discriminated by image pre-training.
We leave more detailed analysis of our VideoMAE for future work.

E Visualization

We show several examples of reconstruction in Figure 10 and Figure 11. Videos are all randomly
chosen from the validation set. We can see that even under an extremely high masking ratio,
VideoMAE can produce satisfying reconstructed results. These examples imply that our VideoMAE
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Method Backbone Extra data | Frames | Param | Modality | UCF101 | HMDB51
OPN [35] VGG UCF101 N/A N/A v 59.6 23.8
VCOP [82] R(Q2+1)D UCF101 N/A N/A v 72.4 30.9
CoCLR [29] S3D-G UCF101 32 M \% 81.4 52.1
Vi2CLR [18] S3D UCF101 32 M \% 82.8 52.9
VideoMAE ViT-B no external data 16 8™ v 91.3 62.6
SpeedNet [5] S3D-G Kinetics-400 64 M \'% 81.1 48.8
VTHCL [84] SlowOnly-R50 | Kinetics-400 8 32M v 82.1 49.2
Pace [73] R(2+1)D Kinetics-400 16 15M A% 77.1 36.6
MemDPC [28] R-2D3D Kinetics-400 40 32M v 86.1 54.5
CoCLR [29] S3D-G Kinetics-400 32 M v 87.9 54.6
RSPNet [12] S3D-G Kinetics-400 64 IM \% 93.7 64.7
VideoMoCo [45] R(2+1)D Kinetics-400 16 15M v 78.7 49.2
Vi2CLR [18] S3D Kinetics-400 32 M v 89.1 55.7
CVRL [53] SlowOnly-R50 | Kinetics-400 32 32M A% 92.9 67.9
CVRL [53] SlowOnly-R50 | Kinetics-600 32 32M v 93.6 69.4
CVRL [53] Slow-R152 (2x) | Kinetics-600 32 328M v 94.4 70.6
CORPy; [32] SlowOnly-R50 | Kinetics-400 32 32M v 93.5 68.0
pSIMCLR ,—3 [23]| SlowOnly-R50 | Kinetics-400 8 32M \Y 88.9 N/A
PSWAV ;5 [23] SlowOnly-R50 | Kinetics-400 8 32M \% 87.3 N/A
pMoCo,—2 [23] SlowOnly-R50 | Kinetics-400 8 32M v 91.0 N/A
pBYOL ,—2 [23] SlowOnly-R50 | Kinetics-400 8 32M v 92.7 N/A
pBYOL ,—4 [23] SlowOnly-R50 | Kinetics-400 8 32M v 94.2 72.1
MIL-NCE [43] S3D HowTol100M 32 M V+T 91.3 61.0
MMV [1] S3D-G AS+HTM 32 oM V+A+T 92.5 69.6
CPD [36] ResNet50 IG300k 16 N/A V+T 92.8 63.8
ELO [51] R(2+1)D YoutubeS§M-2 N/A N/A V+A 93.8 67.4
XDC [2] R(2+1)D Kinetics-400 32 15M V+A 84.2 47.1
XDC [2] R(2+1)D IG65M 32 15M V+A 94.2 67.1
GDT [49] R(2+1)D Kinetics-400 32 15M V+A 89.3 60.0
GDT [49] R(2+1)D IG65M 32 15M V+A 95.2 72.8
VideoMAE ViT-B Kinetics-400 16 8™ v 96.1 73.3

Table 13: Comparison with the state-of-the-art methods on UCF101 and HMDB51. Our
VideoMAE reconstructs normalized cube pixels and is pre-trained with a masking ratio of 75% for
3200 epochs on UCF101 and 4800 epochs on HMDBS51, respectively. We report fine-tuning accuracy
for evaluation. “V’ refers to visual only, ‘A’ is audio, ‘T’ is text narration. “N/A” indicates the
numbers are not available for us.

is able to learn more representative features that capture the holistic spatiotemporal structure in
videos.

F License of Data

All the datasets we used are commonly used datasets for academic purpose. The license of the
Something-Something V2° and UCF101° datasets is custom. The license of the Kinetics-4007,
HMDB51° and AVA” datasets is CC BY-NC 4.0'°.

SURL: https://developer.qualcomm.com/software/ai-datasets/something- something
SURL: https://www.crcv.ucf.edu/data/UCF101. php

"URL: https://www.deepmind. com/open-source/kinetics

8URL: https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
YURL: https://research.google.com/ava/index . html

URL: https://creativecommons.org/licenses/by/4.0
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(a) Categories that VideoMAE outperforms ImageMAE. We only show those gain larger than 10%.
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Figure 7: ImageMAE (64.8%) vs. VideoMAE (69.6%) on Something-Something V2.
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(b) Categories that ImageNet-21k supervised pre-trained model outperforms VideoMAE.

ImageNet-21k supervised pre-trained model (61.8%) vs. VideoMAE (69.6%) on Something-

Figure 8

Something V2.
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GT: Something falling like a rock
ImageMAE pred: Something falling like a rock (v'), VideoMAE pred: Throwing something (X’

" EELE L EERE

GT: Squeezing something
ImageMAE pred: Sprinkling something onto something (X), VideoMAE pred: Squeezing something (v

o T e e

GT: Folding something

ImageNet-21k sup. pred: Folding something (v'), VideoMAE pred: Closing something (X

al ] el als

GT: Tearing something just a little bit
ImageNet-21k sup. pred: Tearing something into two pieces (X), VideoMAE pred: Tearing something just a little bit (v')

Figure 9: Prediction examples of different models on Something-Something V2. For each example
drawn from the validation dataset, the predictions with blue text indicating a correct prediction and
red indicating an incorrect one. “GT” indicates the ground truth of the example.
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Figure 10: Uncurated random videos on Kinetics-400 validation set. We show the original video
squence and reconstructions with different masking ratios. Reconstructions of videos are predicted
by our VideoMAE pre-trained with a masking ratio of 90%.
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Figure 11: Uncurated random videos on Something-Something V2 validation set. We show the
original video squence and reconstructions with different masking ratios. Reconstructions of videos
are all predicted by our VideoMAE pre-trained with a masking ratio of 90%.



