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Figure S1: Estimated Networks 1 & 3 from linear factor models of DS (Top) and Granger causality
(Bottom) for simulated data experiment. Each panel shows a grid of DS or Granger causality (GC)
features associated with the indicated network estimate. Within each grid, a plot corresponds to signal
that is being transmitted from the channel listed on the left to the channel listed at the top. See Fig. 1
for a description of the true networks.
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Figure S2: Two example networks from local field potential experiment. Each subplot represents
the DS from the region listed on the left to the region listed on top. Brain region key: Acb_Core =
Nucleus Accumbens Core; Acb_Sh = Nucleus Accumbens; BLA = Basolateral Amygdala; IL_Cx =
Infralimbic Cortex; Md_Thal = Mediodorsal nucleus of the Thalamus; PrL_Cx = Prelimbic Cortex;
VTA = Ventral Tegmental Area; lDHip = lateral Dorsal Hippocampus; lSNC = lateral Substantia
Nigra Pars Compacta; mDHip = medial Dorsal Hippocampus; mSNC = medial Substantia Nigra Pars
Compacta
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A The power spectrum is linear with respect to underlying brain networks

Power spectra are reasonable to model using a linear factor model because they satisfy Definition 1
under reasonable assumptions. We will use Scc(ω) to refer to the spectral power of the signal vc(t)
at frequency ω, and ṽc(ω) to refer to the frequency domain representation of vc(t) at ω. This gives
the relationship,

Scc(ω) ≡ E[|ṽc(ω)|2]. (16)
Using this definition, we show that Assumption 1 and 2 are sufficient to have the power spectrum be
linear with respect to the same networks,

Scc(ω) = E [ṽc(ω)∗ṽc(ω)] (17)

= E

 J∑
j=1

ṽ(j)
c (ω)

∗( L∑
l=1

ṽ(l)
c (ω)

) (18)

= E

 J∑
j=1

ṽ(j)
c (ω)

∗
ṽ(j)
c (ω)

 (19)

=
J∑
j=1

Z(j)S(j)
cc (ω), (20)

where S(j)
cc (ω) is the power spectrum of the signal that would be generated if only the jth network were

present with an activation score of 1. The equality in (18) follows from (12) and (13). Assumption 1
gives (19). Finally, the network model outlined by (4) gives (20). For notational convenience we have
dropped the sample index n. This result implies that it is completely reasonable to model spectral
power and DS features jointly in the same linear factor model.

B Vector autoregressive models

A very common assumption when dealing with neural timeseries recordings is that the recorded
signal within each window n is approximately stationary, and is appropriately modeled as a VAR
process [24, 29, 34, 35]. For local field potential and electroencephalogram (EEG) recordings, it
has been shown that this assumption is reasonable as long as the duration of the samples is relatively
short, normally on the order of a few seconds or less [14, 51].

Vector autoregressive (VAR) models are a very common and effective way to understand the spa-
tiotemporal properties of a stationary multivariate timeseries. A VAR model of the vector timeseries
v1,v2, . . . ,vT represents the vector signal at each time point, vt, as a sum of components determined
by past values of the time series and an innovation component,

vt =

p∑
τ=1

Aτvt−τ + σt. (21)

In (21), p is referred to as the model order, and defines the number of previous time points that directly
contribute to vt. The autoregressive matrices, A1, A2, . . . , Ap, define the how the previous signal
values influence vt. The innovation term, σt, represents the component of vt that is not accounted for
by the past p time points, and is assumed to be independent and identically distributed (iid) for each
time point. It is typically assumed that the innovations σt are generated by a zero-mean Gaussian
process with covariance Σ, σt ∼ N (0,Σ).

Another value that is important for understanding the properties of a given VAR model is the transfer
matrix, H(ω), which is fully defined by the autoregressive matrices,

H(ω) ≡

(
I −

p∑
τ=1

Aτe
−iτω

)−1

, 0 ≤ ω ≤ 2π. (22)

The transfer matrix describes how the innovations give rise to the observed signal in the frequency
domain.

ṽ(ω) = H(ω)σ̃(ω). (23)

For further reference on vector autoregressive models see [29].
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C Relationship between the Directed Spectrum and the cross-spectral
matrix

The cross-spectral matrix is an important descriptor used in the analysis of vector timeseries [25, 52].
It is defined as the expectation of the outer product of the frequency representation of a signal with
itself,

Sv(ω) ≡ E
[
ṽ(ω)ṽ(ω)

∗]
. (24)

The relationship in (23) implies that the cross-spectral matrix associated with ṽ(ω) can be decomposed
into a quadratic expression involving H(ω) and Σ.

Sv(ω) = H(ω)ΣH∗(ω) (25)

We drop the ω parameter from Σ because the covariance matrix does not depend on frequency under
the assumption that the signal is generated by a vector autoregressive process and σt are iid Gaussian
terms. This quadratic term describes how the innovation signal, σt, propagates to create the spectral
properties of the signal vt. The cross-spectral matrix can be factorized into a unique set of VAR
parameters H(ω) and Σ [53]. If there are groups within the vector ṽ(ω) this factorization of the
cross-spectral can be partitioned following the scheme given in Section 3.2,Sbb(ω) Sbc(ω) Sbd(ω)

Scb(ω) Scc(ω) Scd(ω) · · ·
Sdb(ω) Sdc(ω) Sdd(ω)

...

 =

Hbb(ω) Hbc(ω) Hbd(ω)
Hcb(ω) Hcc(ω) Hcd(ω) · · ·
Hdb(ω) Hdc(ω) Hdd(ω)

...




Σbb Σbc Σbd

ΣT
bc Σcc Σcd · · ·

ΣT
bd ΣT

cd Σdd

...


Hbb(ω)∗ Hcb(ω)∗ Hdb(ω)∗

Hbc(ω)∗ Hcc(ω)∗ Hdc(ω)∗ · · ·
Hbd(ω)∗ Hcd(ω)∗ Hdd(ω)∗

...

 .
(26)

To simplify our initial exploration of the relationship between the Directed Spectrum and the cross-
spectral matrix, we assume that the innovation terms for each group are independent, which causes
the off-diagonal blocks of the innovation covariance matrix in (26) to be zero. In doing so, we get
that the power spectral density (Scc(ω)) can be split into a separate term for the innovation associated
with each group,

Scc(ω) = Hcc(ω)Σcc(ω)Hcc(ω)∗ +Hcb(ω)Σbb(ω)Hcb(ω)∗ +Hcd(ω)Σdd(ω)Hcd(ω)∗ + · · ·
(27)

The first term may be interpreted as the intrinsic component of the power spectrum in c. The second
term may be interpreted as the component of power in c that is predicted by the innovations in b. In
this case where the innovations terms for each group are independent, that second term is equivalent
to the Directed Spectrum from b to c.

C.1 Correlated innovation terms

When the innovation terms are correlated, it is conceptually the same as the previous derivation after a
rotation. Regardless, we include the derivation here on two channels for completeness. Multi-channel
extensions are straightforward.

Spectral factorization allows us to decompose the CPSD into a special quadratic expression [53],[
Scc(ω) Scb(ω)
S∗cb(ω) Sbb(ω)

]
=

[
Hcc(ω) Hcb(ω)
Hbc(ω) Hbb(ω)

] [
Σcc Σcb
ΣTcb Σbb

] [
H∗cc(ω) H∗bc(ω)
H∗cb(ω) H∗bb(ω)

]
. (28)

From this, we see that the power spectral density (Scc(ω)) can be split into multiple terms.

Scc(ω) = Hcc(ω)ΣccH
∗
cc(ω) +Hcb(ω)ΣbbH

∗
cb(ω) + 2<(Hcc(ω)ΣcbH

∗
cb(ω)). (29)

As before, the first term may be interpreted as the intrinsic component of the power in c. If the
innovations are uncorrelated, the third term would drop out and the second term may be interpreted
as the component of power in c that is due to the innovations in b according to the VAR model. If
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the innovations are correlated, we may still find a separation of Scc(ω) into intrinsic and causal
components by first applying a linear transformation,[

ct
b̃t

]
= U

[
ct
bt

]
, U =

[
1 0

−ΣbcΣ
−1
cc 1

]
. (30)

In this new space, Σcb̃ = 0, and we can split Scc(ω) into intrinsic and causal components that can
still be defined in terms of the original signals c and b,

Scc(ω) = Hcc(ω)ΣccH
∗
cc(ω) +Hcb̃(ω)Σb̃b̃H

∗
cb̃

(ω), (31)

= Hcc(ω)ΣccH
∗
cc(ω) +Hcb(ω)Σb|cH

∗
cb(ω), (32)

Σb|c = Σbb − ΣbcΣ
−1
cc Σ∗bc. (33)

The causal component of power (Hcb(ω)Σb|cH
∗
cb) is exactly the Directed Spectrum as defined in

Section 3.3.

D The Directed Spectrum is a linear function of latent brain networks

Theorem S1. The Directed Spectrum is a linear function of latent brain networks.

Proof. We show that the Directed Spectrum is a linear function of the latent brain networks defined
in Section 3 by starting with the definition from (14),

DSb→c(ω) = E [T Sb→c(ω)T Sb→c
∗(ω)] , (34)

= E

 J∑
j=1

T S(j)
b→c(ω)

 J∑
j′=1

T S∗(j
′)

b→c(ω)

 , (35)

= E

[ J∑
j=1

H
(j)
cb (ω)

(
σ̃

(j)
b (ω)− Σ

(j)
bc Σ(j)

cc

−1
σ̃(j)
c (ω)

)
 J∑
j′=1

(
σ̃

(j′)
b (ω)− Σ

(j′)
bc Σ(j′)

cc

−1
σ̃(j′)
c (ω)

)∗
H

(j′)
cb

∗
(ω)

],
(36)

=

J∑
j=1

H
(j)
cb (ω)E

[(
σ̃

(j)
b (ω)− Σ

(j)
bc Σ(j)

cc

−1
σ̃(j)
c (ω)

)
(
σ̃

(j)
b (ω)− Σ

(j)
bc Σ(j)

cc

−1
σ̃(j)
c (ω)

)∗ ]
H

(j)
cb

∗
(ω),

(37)

=

J∑
j=1

H
(j)
cb (ω)

(
Z(j)Σ

(j)
b|c

)
H

(j)
cb

∗
(ω), (38)

=

J∑
j=1

Z(j)
(
H

(j)
cb (ω)Σ

(j)
b|cH

(j)
cb

∗
(ω)
)
, (39)

=

J∑
j=1

Z(j)DS(j)
b→c(ω). (40)

Assumption 2 gives us (35). Substituting the definition of transmitted signal for networks in (11)
gives (36). Assumption 1 then gives (37). The definitions of variance and the conditional variance
matrix are then applied to give (38). We define the Directed Spectrum associated with the jth network
in a homologous manner to (14).

DS(j)
b→c(ω) ≡ H(j)

cb (ω)Σ
(j)
b|cH

(j)
cb

∗
(ω) (41)

This creates an equivalency between (34) and (40) in a way that satisfies Definition 1, completing our
proof. �
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E Established measures of directed communication are not linear functions
of latent brain networks

E.1 Phase slope index

The phase slope index (PSI) was introduced as a measure for estimating the flow of information
between channels in vector timeseries [33]. It is defined as

Ψ̃bc = I

∑
f∈F

C∗bc(ω)Cbc(ω + δω)

 , (42)

where I(·) represent the imaginary component of the expression in parentheses, F is a group of
sequential frequencies for which the PSI is being calculated, and δω is the frequency resolution of
the recording. Cbc(ω) is the coherency for the channels b and c at frequency ω,

Cbc(ω) =
Sbc(ω)√

Sbb(ω)Scc(ω)
, (43)

where Sbc(ω) is an element of the cross-spectral matrix (see Supplemental Section C). PSI is an
approximate estimate of the change in the phase of the frequency domain representation of the data
as a function of frequency. A positive value of Ψ̃bc indicates that information predominantly flows
from channel b to c, while a negative value indicates information flows from c to b. In this way PSI is
symmetric, Ψ̃bc = −Ψ̃cb.

It has been shown that the phase-slope index does not accurately model bidirectional flow of infor-
mation [36]. This precludes it from being able to accurately represent many real brain networks in
practice. In theory, PSI is also not a linear function of latent brain networks as outlined by Definition 1
and Section 3. To see this, consider the case where only the jth latent network is present. We note
that the power spectrum and other elements of the cross-spectral matrix should both scale linearly
with the network activation Z(j) (for more details see Supplemental Section A). This means the
coherency Cbc(ω), and therefore also the PSI Ψ̃bc, would be invariant to changes in Z(j), so they
cannot be linear functions of Z(j).

E.2 Directed transfer function and partial directed coherence

The directed transfer function was developed to measure information flow in multichannel electroen-
cephalogram (EEG) recordings [35]. It is defined in terms of the transfer matrix for a VAR model of
the observed data,

DT Fbc(ω) =
Hbc(ω)√∑
g∈G |Hbg(ω)|2

, (44)

where G represents the set of all channels in the dataset. The partial directed coherence is a comple-
mentary measure of information flow [34],

PDCbc(ω) =
Ābc(ω)√∑
g∈G

∣∣Āgc(ω)
∣∣2 , (45)

Ābc(ω) = Hbc(ω)−1 =

(
I −

pj∑
τ=1

A(j)
τ e−iτω

)
. (46)

Both the directed transfer function and partial directed coherence do not account for the innovation
term σ̃(ω) in the VAR model model of the observed data. This rules both measures out of being
linear functions of the latent brain networks defined in Section 3, since they do not scale with the
strength of the network.

E.3 Spectral Granger causality

Spectral Granger causality measures the degree to which one group of signals c helps to predict
oscillatory patterns in another group of signals d, over a range of frequencies [17]. It is derived from
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the theory of vector autoregressive (VAR) models (see Section B). Specifically, spectral Granger
causality takes advantage of the relationship between the cross-power spectral density and the VAR
model for the corresponding data that was defined by Wilson [53],

fc→d(ω) ≡ ln

(
|Sdd(ω)|∣∣Sdd(ω)−Hdc(ω)Σc|dHdc(ω)∗

∣∣
)
. (47)

Here fc→d(ω) represents the spectral Granger causality from c to d at frequency ω.

Spectral Granger causality is related to the standard time-domain definition of Granger causality as,

1

2π

∫ 2π

0

fc→d(ω) dω ≤ Fc→d, (48)

with equality when
∣∣Acc(ω)− ΣcdΣ−1

ddAdc(ω)
∣∣ 6= 0 is satisfied in the range 0 < ω ≤ 2π [17]. In

this way, one can think of fc→d(ω) as the spectral decomposition of the standard Granger causality
Fc→d.

There is a conditional definition of spectral Granger causality that accounts for the effects of another
group of recordings g before evaluating the impact of c on the prediction of d [17]. In this case, the
effects of the recordings g are considered using a VAR model.(

dt
gt

)
=

p∑
τ=1

(
Add,τ Adg,τ

Agd,τ Agg,τ

)(
dt−τ
gt−τ

)
+

(
d†t
g†t

)
(49)

The conditional spectral Granger causality fc→d|g(ω) is then defined as an unconditional spectral
Granger causality for a different pair of variables.

fc→d|g(ω) ≡ fc⊕g†→d†(ω) (50)

with ct ⊕ g†t ≡
(
ct
g†t

)
. Just as in the unconditional case, the conditional spectral Granger causality

can be considered the spectral decomposition of time-domain conditional Granger causality.

1

2π

∫ 2π

0

fc→d|g(ω) dω ≤ Fc→d|g (51)

In Section 4, we discussed why all these forms of Granger causality can not be linear functions of
latent brain networks.

E.4 Other measures

A full review of all the available measures of directed communication is beyond the scope of this work.
We refer readers to reviews by Bastos and Schoffelen [25] and Wang et al. [54] for such information.
We have chosen measures for comparison here that we believe provide a good representation of the
most important measures of directed communication used in neuroscience.

F Detailed methods

F.1 Estimation of the Directed Spectrum

The directed spectrum can be estimated for a pair of channels within time window by a simple
application of (14) once H(ω) and Σ are known. Two well defined methods for estimating H(ω) and
Σ from multi-channel timeseries data are spectral factorization [30, 31] and directly modeling the
timeseries as a VAR process [24]. For the purpose of this work we followed the spectral factorization
method of Wilson [30] to estimate H(ω) and Σ.

The first step in the estimation process calculates an estimate of the cross-power spectral density
matrix associated with each window. This was done in MATLAB with the CPSD function, which
uses Welch’s method [55] of averaging multiple shorter time windows to estimate the cross-power
spectral density matrix. In both experiments, we used 0.2 s long rectangular windows with 0.175
s of overlap to generate our estimates. Wilson’s spectral factorization is an iterative algorithm for
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factorizing a cross-power spectral density into the quadratic term HΣH∗ [30]. The algorithm has
quadratic convergence properties. In this manner, H(ω) and Σ were estimated once for each time
window, then the Directed Spectrum was calculated for each directed pair of channel groups in the
dataset.

To estimate the Pairwise Directed Spectrum for all directed pairs of channel groups, we first estimated
a separate cross-power spectral density for each (undirected) pair of channel groups. We then applied
Wilson’s factorization to each individual cross-power spectral density, resulting in a separate estimate
of H(ω) and Σ for each pair of channel groups. Those values of H(ω) and Σ were then applied in
(14) to calculate the Pairwise Directed Spectrum for the corresponding pair. Code for performing
these calculations in MATLAB is provided in the supplemental material and in Python is provided at
https://github.com/neil-gallagher/directed-spectrum.

F.2 Simulated data generation

Each of the three networks underlying the simulated dataset is defined by a VAR process over the
five regions. The parameters of each VAR process are designed to induce oscillations in the regions
indicated by Figure 1 at the associated frequencies by setting a single pair of complex conjugate
poles for the process. Signals were transmitted between the indicated regions by adding a scaled
copy of signal in the sending region to signal in the receiving region at a fixed delay that was
specific to each network. The innovations covariance associated with each network was defined by
Σ(j) = I + (R(j) + R(j)T )/10, where the elements of R(j) ∈ R5×5 are random samples from a
standard normal distribution.

Table S1: Simulated network VAR parameters.
Network intra-region poles inter-region delay (ms) inter-region signal scaling

1 0.98e±i2π
5

500 20 0.003
2 0.9e±i2π

30
500 6 0.02

3 0.98e±i2π
5

500 20 0.003

For each simulated recording three activation scores were sampled from a uniform [0, 1] distribution
for the networks. The innovation covariance matrix of each network was scaled by the corresponding
activation score before sampling a series from the associated VAR model. The three series for each
recording were then added together to produce the simulated data for that recording. Code for
simulating this data and carrying out the rest of the experiment outlined in Section 5 is provided with
the supplemental material for this work.

F.3 Model training setup

After calculating all of the features listed in Tables 1 and 2 for each dataset, we trained a separate
non-negative matrix factorization (NMF) model to represent each set of features. The Directed
Spectrum and Pairwise Directed Spectrum features were normalized by the associated frequency to
account for differences in spectral across frequencies in local field potential data [56]. The other
features tested are invariant to changes in scale, and therefore did not require such normalization.
Each NMF model was trained using the NMF function from scikit-learn’s DECOMPOSITION module.
All models were initialized using nonnegative double singular value decomposition, with zeros filled
in with small random values, and were trained using a multiplicative update solver.

F.3.1 Simulated data experiment

All NMF models were trained with three components, with an L1 regularization strength of 0.1
applied to the components of the model. The KL divergence loss was used to train the NMF model of
the phase slope index and Granger causality differences due to increased sparsity in those features.
All other models were trained using the Itakura-Saito divergence loss [22].
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F.3.2 Local field potential experiment

For the local field potential dataset, we evaluated each set of features based on decoding performance
via a nested cross validation strategy. The mice in the dataset were divided evenly into five splits. For
each set of features and split, a final NMF model was trained on the remaining four splits, followed
by a multinomial logistic regression classifier trained to classify behavioral context from the latent
factor scores from the NMF model of those four splits. The performance for decoding behavioral
context was evaluated on the remaining split, giving five total one-vs-all “area under the receiver
operating characteristic curve” (AUC) values for each behavioral context and feature set.

All NMF models were trained with L1 regularization on all elements of the model. NMF models
trained in the “inner” cross validation loop had a lower tolerance on the stopping condition (1e-3),
compared to the tolerance of 1e-4 used in training the final NMF model for each testing split. Each
logistic regression model was trained via a SAGA solver with L1 regularization on the model weights.

F.4 Compute resources

Computational tasks described above were run on a consumer desktop machine with an Intel i9-
7980XE CPU and 64GB of RAM. Estimating the Directed Spectrum from a single vector timeseries
sample that was 1s in duration required 0.5-1.5 s of wallclock time to compute. Each non-negative
matrix factorization model in the simulated data experiment required approximately 1 minute of
wallclock time to train. The NMF models in the local field potential experiment required between
2-20 minutes to train.

G The Directed Spectrum is robust to violations of its model assumptions

In order to evaluate whether the Directed Spectrum is robust to violations of Assumptions 1 and 2,
we repeated the experiments described in Section 5 with alterations to the data simulation process.
We first tested the impact of violations to Assumption 1 by adjusting the underlying VAR models so
that the innovations within a given channel are correlated across all latent networks. We simulated
five different covariances between networks, ranging from 0 (no correlation) to 1. (A covariance of 1
is the maximum possible covariance between channels within a network).

The Spearman’s correlations between the true and estimated network scores for each model are
reported in Table S2. At all covariance levels, the DS models performed better than every comparison
method by a large margin. As expected, violations of Assumption 1 reduced the efficacy of the
DS+LFM approach for recovering the true latent networks. But this reduction was not as severe as
might be expected, with the DS model at a covariance of 1 still outperforming the best comparison
method. Hence, violations of Assumption 1 do not change our recommendation of the Directed
Spectrum as the optimal metric for use with LFMs to model directed communication in latent brain
networks.

We performed two additional tests to measure the impact of violations to Assumption 2 on latent
network recovery. In the first test, a cube root function (x1/3) was applied to the raw timeseries data
before calculating directed communication features, causing timeseries values to have a non-linear
relationship with the underlying networks. This function was chosen because it is a nonlinear function
that maintains sign, is monotonic, and is concave for positive values. We also tested mixtures of
the original and nonlinear timeseries to measure the impact of weaker levels of nonlinearity. In the
second test, we subtracted products between each of the network outputs from the original linear
timeseries to produce nonlinear data. This results in a time series that only has nonlinear relationships
to the networks when more than one network is active. The products between each network output
were scaled by a factor λ to observe the impact of this type of nonlinearity at different intensities. In
this way, the timeseries data (Y) would be represented as

y = x1 + x2 + x3 − λ(x1x2 + x2x3 + x3x1), (52)

where xi is the output of the ith network.

Tables S3 and S4 present the Spearman correlation between true and estimated latent network scores
for these datasets. As expected, violations of Assumption 2 reduce the accuracy of model recovery.
But in both tests, we see that the directed spectrum models outperform all comparison methods at
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Table S2: Spearman’s correlation between latent network activation estimates and true activation
scores when Assumption 1 is violated. Each column is associated with a different covariance for
innovations between networks. GC: unconditional Granger causality; PSI: phase slope index; DTF:
directed transfer function; PDC: partial directed coherence; DS: Directed Spectrum.

Covariance 0.00 0.25 0.50 0.75 1.00

GC Network 1 0.511 0.179 0.130 0.051 0.102
GC Network 2 0.205 0.138 0.130 0.100 0.043
GC Network 3 0.123 0.195 -0.073 0.015 -0.055

PSI Network 1 0.405 0.074 -0.005 -0.035 0.001
PSI Network 2 0.170 -0.059 0.026 0.028 0.026
PSI Network 3 0.238 0.165 0.128 0.099 0.063

DTF Network 1 0.614 0.478 0.321 0.243 0.167
DTF Network 2 0.371 0.082 0.035 0.008 0.009
DTF Network 3 0.265 0.138 0.233 0.122 0.077

PDC Network 1 0.590 0.333 0.068 0.030 0.095
PDC Network 2 0.382 0.017 -0.000 0.002 0.006
PDC Network 3 0.245 0.335 0.254 0.199 0.176

DS Network 1 0.952 0.714 0.679 0.769 0.702
DS Network 2 0.933 0.436 0.322 0.417 0.373
DS Network 3 0.932 0.637 0.607 0.725 0.671

all levels of non-linearity. These results further justify the directed spectrum as the best available
method for integrating measures of directed communication into LFMs.

Table S3: Spearman’s correlation between latent network activation estimates and true activation
scores when Assumption 2 is violated by applying a x1/3 transform. Each column is associated with
a different level of mixture between the linear and 3rd root data. A mixture value of 0 represents the
orignal data; 1 represents the 3rd root data. GC: unconditional Granger causality; PSI: phase slope
index; DTF: directed transfer function; PDC: partial directed coherence; DS: Directed Spectrum.

Mix. Level 0.00 0.25 0.50 0.75 1.00

GC Network 1 0.513 0.395 0.418 0.378 0.293
GC Network 2 0.499 0.401 0.461 0.541 0.597
GC Network 3 0.275 0.097 0.190 0.244 0.267

PSI Network 1 0.387 0.389 0.396 0.412 0.431
PSI Network 2 0.136 0.224 0.365 0.440 0.459
PSI Network 3 0.252 0.269 0.300 0.339 0.348

DTF Network 1 0.596 0.633 0.537 0.520 0.531
DTF Network 2 0.253 0.572 0.416 0.423 0.430
DTF Network 3 0.427 0.467 0.242 0.226 0.219

PDC Network 1 0.329 0.619 0.539 0.517 0.522
PDC Network 2 0.234 0.556 0.384 0.385 0.388
PDC Network 3 0.510 0.453 0.233 0.196 0.177

DS Network 1 0.949 0.919 0.871 0.828 0.800
DS Network 2 0.934 0.913 0.862 0.813 0.762
DS Network 3 0.936 0.893 0.802 0.661 0.734

H The Directed Spectrum is robust to shorter window lengths

In order to investigate the impact of window length on the results reported in Section 5, we repeated
those experiments with different simulated recording window lengths. Window lengths of 0.5, 1, 2,
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Table S4: Spearman’s correlation between latent network activation estimates and true activation
scores when Assumption 2 is violated by subtracting pairwise products of the network outputs from
the original data. GC: unconditional Granger causality; PSI: phase slope index; DTF: directed transfer
function; PDC: partial directed coherence; DS: Directed Spectrum.

Scale Factor λ 0.00 0.25 0.50 0.75 1.00

GC Network 1 0.515 0.109 0.055 0.012 0.000
GC Network 2 0.516 0.503 0.480 0.292 0.240
GC Network 3 0.340 0.003 0.056 0.064 0.037

PSI Network 1 0.387 0.057 -0.011 -0.002 0.001
PSI Network 2 0.136 0.093 0.039 0.039 0.030
PSI Network 3 0.252 0.009 0.030 0.028 0.028

DTF Network 1 0.596 0.589 0.351 0.337 0.341
DTF Network 2 0.255 0.093 0.039 0.030 0.026
DTF Network 3 0.429 0.481 0.447 0.428 0.424

PDC Network 1 0.327 0.368 0.588 0.585 0.583
PDC Network 2 0.233 0.036 0.145 0.146 0.146
PDC Network 3 0.508 0.466 0.136 0.199 0.256

DS Network 1 0.949 0.674 0.705 0.693 0.690
DS Network 2 0.934 0.620 0.649 0.648 0.651
DS Network 3 0.936 0.610 0.707 0.682 0.676

10, and 20 seconds were each used to simulate 1000 independent recordings. DS and comparison
measures were calculated for each set of simulated recordings, and those data were used as inputs to
a non-negative matrix factorization model as described in Section 5. The correlations between the
estimated and true network scores are reported for each window length in Table S5. We found that
estimates of phase slope index, directed transfer function, and partial directed coherence suffered from
numerical instability issues at the shortest windows lengths; those data are omitted from the table.
Increasing the window length improves network recovery for models based on both Directed Spectrum
measures. At all window lengths the DS model performs markedly better than the comparison models.

I Fourier transform comparison

In applications where the primary goal is decoding accuracy and characterizing directed commu-
nication within networks is unimportant, there are a number of undirected measures that could be
used in a LFM to model latent brain networks. One of the most straightforward of these is to simply
represent data in the frequency domain via a Fourier transform. In order to evaluate whether the
additional effort of calculating the Directed Spectrum is worth it in such cases, we repeated the
modeling procedures outlined in Sections 5 and 6 with the absolute value of the Fourier transform
of the raw timeseries data as an additional set of comparison measures. Those results are reported
as “FFT” in Tables S6 and S7, along with the already reported performance of the DS models. The
FFT models did not perform significantly better or worse than the DS models. This is unsurprising.
Given our assumptions, the raw FFT features are also linear functions of brain networks and may still
work perfectly well in applications where the identification of directed communication between brain
regions in latent networks is not desired.

J Potential negative societal impacts

We are not aware of major concerns in the brain network modeling applications described in this
work, as most human brain recordings occur in relatively secure healthcare settings and such data is
likely of limited value to nefarious actors. If pressed, the main long-term area where this work could
have negative impacts is in privacy. If at some point internet-connected non-invasive consumer-grade
brain recording devices become more common, it is possible that the models described here could be
used by undesired third parties to obtain information about an individual’s neural state. Outside of
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Table S5: Spearman’s correlation between latent network activation estimates and true activation
scores for varied window lengths. *10000 samples were generated for 5s windows; 1000 samples
were generated for all other window lengths. Measure estimates for phase slope index, directed
transfer function, and partial directed coherence suffered from stability issues for window lengths of
0.5 s. GC: unconditional Granger causality; PSI: phase slope index; DTF: directed transfer function;
PDC: partial directed coherence; DS: Directed Spectrum; PDS: Pairwise Directed Spectrum.

Window Length 0.5 s 1 s 2 s 5 s∗ 10 s 20 s

GC Network 1 0.089 0.113 0.457 0.485 0.510 0.685
GC Network 2 0.345 0.419 0.487 0.442 0.443 0.585
GC Network 3 0.090 0.167 0.426 0.281 0.200 0.509

PSI Network 1 - 0.028 0.162 0.387 0.509 0.600
PSI Network 2 - 0.014 0.020 0.135 0.232 0.253
PSI Network 3 - 0.013 0.138 0.248 0.549 0.581

DTF Network 1 - 0.550 0.535 0.426 0.707 0.570
DTF Network 2 - 0.151 0.173 0.131 0.608 0.318
DTF Network 3 - 0.459 0.263 0.542 0.612 0.364

PDC Network 1 - 0.359 0.329 0.560 0.474 0.563
PDC Network 2 - 0.138 0.131 0.154 0.186 0.304
PDC Network 3 - 0.534 0.541 0.445 0.478 0.410

DS Network 1 0.763 0.886 0.929 0.920 0.958 0.964
DS Network 2 0.602 0.868 0.907 0.905 0.944 0.945
DS Network 3 0.449 0.897 0.921 0.927 0.932 0.928

PDS Network 1 0.803 0.863 0.883 0.908 0.920 0.938
PDS Network 2 0.728 0.879 0.891 0.917 0.925 0.925
PDS Network 3 0.796 0.857 0.888 0.916 0.917 0.915

Table S6: Spearman’s correlation between FFT model latent network activation estimates and true
activation scores. FFT: fast Fourier transform; DS: directed spectrum; PDS: pairwise directed
spectrum. Values in [brackets] represent the 95% confidence interval [45].

Measure Network 1 Network 2 Network 3

FFT 0.889 [0.883, 0.893] 0.939 [0.936, 0.941] 0.921 [0.917, 0.924]
DS 0.920 [0.916, 0.923] 0.905 [0.901, 0.909] 0.927 [0.924, 0.930]
PDS 0.908 [0.904, 0.912] 0.917 [0.913, 0.920] 0.916 [0.913, 0.920]

that potential future possibility, there may be other applications beyond the scope of this work where
the ability to identify latent networks states could lead to privacy concerns. These concerns, at this
stage, appear minimal and are not unique to this work.
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Table S7: Behavioral Context Decoding Performance for FFT models. The columns ‘HC AUC’, ‘OF
AUC’, and ‘TS AUC’ report the mean and standard error of the one-vs-all AUC across 5 splits for
the homecage, open field, and tail suspension behavioral contexts, respectively. The ‘Mean AUC’
column reports the average across the mean AUCs reported for each behavioral context.

Measure Mean AUC HC AUC OF AUC TS AUC

FFT 0.913 0.893± 0.018 0.922± 0.014 0.924± 0.006
DS 0.908 0.894± 0.016 0.916± 0.012 0.915± 0.007
PDS 0.919 0.909± 0.014 0.915± 0.014 0.932± 0.005
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