
Supplementary Material:
Posterior Meta-Replay for Continual Learning
Christian Henning*, Maria R. Cervera*, Francesco D’Angelo, Johannes von Oswald, Regina
Traber, Benjamin Ehret, Seijin Kobayashi, Benjamin F. Grewe, João Sacramento

Table of Contents
A Acronyms 2

B Summary of Notation 2

C Algorithms 3
C.1 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
C.2 Task-conditioned hypernetworks . . . . . . . . . . . . . . . . . . . . . . . . . 3
C.3 Posterior-Replay with explicit parametric distributions . . . . . . . . . . . . . . 5
C.4 Posterior-Replay with implicit distributions . . . . . . . . . . . . . . . . . . . . 7
C.5 Prior-Focused Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . . 11
C.6 Task inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.7 Posterior-Replay CL with Coreset Fine-Tuning . . . . . . . . . . . . . . . . . . 16
C.8 Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Supplementary Experiments and Results 17
D.1 1D Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D.2 2D Mode Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
D.3 SplitMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
D.4 PermutedMNIST-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.5 PermutedMNIST-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.6 SplitCIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
D.7 SplitCIFAR-100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.8 Task boundary detection during training . . . . . . . . . . . . . . . . . . . . . . 31

E Experimental Details 32
E.1 1D Polynomial Regression Dataset . . . . . . . . . . . . . . . . . . . . . . . . 32
E.2 2D Mode Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 32
E.3 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F Further Discussion and Remarks 34
F.1 On Posterior Meta-Replay as a Bayesian method . . . . . . . . . . . . . . . . . 34
F.2 Runtime and storage complexity . . . . . . . . . . . . . . . . . . . . . . . . . 35
F.3 Continual learning regularization in distribution space . . . . . . . . . . . . . . 37
F.4 Optimization considerations in Posterior-Replay . . . . . . . . . . . . . . . . . 38
F.5 Deep Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
F.6 Continual learning in function space . . . . . . . . . . . . . . . . . . . . . . . 39
F.7 Graceful forgetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



A Acronyms

For clarity, we provide a list of acronyms used throughout the paper in Table S1.

Table S1: List of acronyms.

ML Machine learning
CL Continual learning
MLP Multilayer perceptron
SEM Standard error of the mean
SD Standard deviation
MSE Mean-squared error
NLL Negative log-likelihood

BNN Bayesian neural network
VI Variational inference
ELBO Evidence lower-bound
RKL/FKL Reverse/Forward Kullback-Leibler divergence
W2 2-Wasserstein distance
MC Monte Carlo
AVB Adversarial variational Bayes
BBB Bayes-by-Backprop
EWC Elastic weight consolidation
SSGE Spectral Stein gradient estimator
VCL Variational continual learning
PF Prior-focused

PR Posterior meta-replay
M Main network
WG Weight generator
TC Task-conditioning network
BW Task inference using batches
CS Final fine-tuning using coresets
SP Separate posteriors per task

OOD Out of distribution
TGIVEN Task identity is given
TINFER Task identity is inferred
ENT Task inference via minimum entropy
CONF Task inference via maximum confidence
AGREE Task inference via maximum model agreement

B Summary of Notation

We summarize here the mathematical notation used throughout the paper and reintroduce the role of
important variables. Whenever applicable, we denote random variables by capital letters, random
variates by lowercase letters and sample spaces using calligraphic font, e.g., the prior density of
w ∈ W is p(W = w). In general, sets use calligraphic font. Vectors are assumed to be column
vectors and highlighted as bold symbols. Indexing is performed using subscripts, e.g., xi is the i-th
component of x ∈ X . Superscripts are used to disambiguate external factors such as task identity.
Matrices also use capital letters, and it is clearly stated whenever a variable has to be interpreted as
matrix, e.g., the Fisher information matrix F .

In this study, we distinguish between three different networks with clearly defined roles (plus a
discriminator network when using AVB). The main network (M), ŷ = fM(x,w), processes inputs x
to generate predictions ŷ using trainable parameters w. This notation is chosen for mathematical
convenience, but it should be noted that in most cases fM(·) represents a likelihood function. For
instance, in the case of a C-way classification with labels y ∈ Y = {1, . . . , C}, the output of the
main network is an element of the probability simplex ∆(Y), and in regression fM(·) represents the
mean of a normal distribution N

(
fM(·), σ2

ll

)
with variance σ2

ll . The task-conditioned hypernetwork
(TC), θ(t) = fTC(e(t),ψ), has parameters ψ and processes task embeddings e(t) to generate the
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parameters θ(t) of the weight generator (WG). In the deterministic case (e.g., PosteriorReplay-Dirac),
the weight generator simply reduces to w(t) ≡ θ(t) = fWG(·,θ(t)). In all other cases, it transforms
noise samples z ∼ p(Z) into main network parameter configurations.

A dataset is a set of input-output tuples D = {(x(n),y(n))}Nn=1. If not noted otherwise, a dataset is
considered an i.i.d. sample from some unknown data-generating process D i.i.d.∼ p(X)p(Y | X).

We consider a Bayesian treatment of main network parameters w to incorporate parameter uncertainty
[56]. The prior is denoted by p(W), the likelihood by p(D |W) ≡

∏N
n=1 p(y

(n) |W; x(n)), the
posterior parameter distribution by p(W | D) and the posterior predictive distribution for an unseen
input x̃ by p(Y | D; x̃). We consider families of distributions parametrized by θ to approximate
the posterior parameter distribution qθ(W) ≈ p(W | D), e.g., for the deterministic case we have
qθ(W) = δ(θ −W), where δ(·) denotes the Dirac delta function.

C Algorithms

In this section we provide details about the different algorithms used throughout the paper. We start
by quickly reviewing variational inference, and explain how it can be applied to task-conditioned
hypernetworks in the context of CL in order to obtain task-specific approximate posterior distributions.
Then, we present several variational algorithms that we employed to obtain the approximate posteriors,
either based on a predefined function (explicit posterior) or based on a parametrization by an auxiliary
network (implicit posterior). We also explain how prior-focused CL can be achieved within our
framework, and how it can be rendered more flexible by allowing the parameter posteriors to
be approximated by implicit distributions, and by incorporating a set of task-specific parameters
alongside the shared ones. Because task-specific solutions require having access to the identity of the
task, we explain how task identity can be inferred via predictive uncertainty for both prior-focused
and posterior meta-replay approaches. Finally, we explain how coresets can be used in our framework
to perform a fine-tuning stage after training which mitigates forgetting and facilitates task inference.

C.1 Variational inference

Whenever confronted with unseen inputs x̃, we aspire to obtain predictions via the posterior predictive
distribution: p(y | D; x̃) =

∫
W
p(y |W; x̃)p(W|D) dW. Unfortunately, the posterior parameter

distribution p(W|D) is in general intractable. Furthermore, since sampling cannot be efficiently
performed and would require high storage demands, we need to approximate this distribution in order
to evaluate the posterior predictive distribution. For this purpose, we apply variational inference (VI),
a standard approximate probabilistic inference technique (see e.g., Blei et al. [5]) where we look
for approximations qθ(W) within a certain family of distributions Q, referred to as the variational
family, with members parametrized by θ ∈ Θ. In VI, this problem is solved by optimizing for
nearest approximations within Q according to some divergence, most often the Kullback-Leibler
(KL) divergence: KL(qθ(W) || p(W | D)). The choice of the reverse KL allows rewriting the above
expression such that it does not contain the intractable posterior. The resulting expression (known
as the evidence lower bound; ELBO) is therefore a suitable optimization objective that needs to be
maximized:

Eqθ(W)

[
log p(D |W)

]
− KL(qθ(W) || p(W)) ≡ −Ltask(D) (3)

where the first term corresponds to minimizing the negative log-likelihood (NLL) of the data D (cf.
SM C.3.1), and the second term can be seen as a regularization that aims to match the approximation
qθ(W) to the prior p(W), and is referred to as prior-matching term. Finding an optimal approxima-
tion within the variational family amounts to optimizing the parameters θ. Since in our framework
these are task-specific and their optimization depends only on the corresponding dataset D(t) we
write from here on qθ(t)(W).

C.2 Task-conditioned hypernetworks

Task-conditioned hypernetworks, which generate task-specific weights for a main network, have
recently been proposed as an effective method to continually learn several tasks [91]. The outputs of
the hypernetwork are made task-specific by providing low-dimensional task embeddings e(t) as input,
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which are learned continually alongside the hypernetwork’s parameters ψ. Catastrophic forgetting
at this meta level can be prevented using a simple L2 regularizer (cf. Eq. 2 in the main text) which
makes sure that the outputs of the hypernetwork for previously learned tasks do not change. When
learning task t the loss thus becomes:

L(t)(ψ, E ,D(t)) = Ltask(ψ, e(t),D(t)) + β
∑
t′<t

‖fTC(e(t′,∗),ψ∗)− fTC(e(t′),ψ)‖2 (4)

Notably, shifting CL to the meta-level simplifies the problem considerably, because only a single
input-output mapping per task needs to be fixed.

Chunking. Here we consider hypernetworks that parameterize target models in a compressed form
using a simple but effective technique called chunking: the hypernetwork is iteratively invoked using
an additional input c at each step, which addresses a distinct subset of parameters (e.g., a distinct
layer of the target neural network). To be precise, chunk embeddings c(l), l = 1..L, are unconditional
parameters (i.e., not task-specific). Thus, the hypernetwork parameters ψ can be split into a set of
chunk embeddings {c(l)}Ll=1 and a set of weights ψ̃, which are the actual weights of the network that
produces individual chunks. This introduces soft weight sharing, as the entire set of target model
parameters w depends on ψ̃. Note, that modern graphics hardware allows the parallel generation
of all chunks (batch-processing). For more details, please refer to von Oswald et al. [91] and Ehret
et al. [15]. For all experiments other than the low-dimensional toy problems, we apply the chunking
strategy to the TC and WG networks. Low-dimensional problems utilize MLP hypernetworks, where
w is directly the output of the network. Both task and chunk embeddings are initialized according to
a normal distribution with zero mean, whose variance is considered a hyperparameter.

Probabilistic extension of task-conditioned hypernetworks. In their original formulation, hyper-
networks for CL provide a single main network weight configuration per task (PosteriorReplay-Dirac).
Here, we extend this deterministic approach to a probabilistic setting and aim to model task-specific
distributions over main network weights instead. Therefore, the outputs of the hypernetwork can no
longer be interpreted as the weights w of the main network, but rather as parameters θ(t) defining
the approximate distribution qθ(t)(W), from which weights w for the main network can be sampled.
In practice, qθ(t)(W) is given by a function fWG(z,θ(t)), which also depends on a base distribution
p(Z) from which inputs z for the hypernetwork are sampled.

Meta-regularizing in distribution space. Crucially, in this probabilistic setting, catastrophic forget-
ting is avoided via a regularizer that prevents the distributions qθ(t)(W) of previously learned tasks
to change, hence our naming posterior meta-replay. Whenever the utilized variational family for
approximate posteriors has an analytic expression for a divergence measure, this can be achieved by
turning the original hypernetwork regularizer into a divergence measure between the distributions (cf.
Eq. 1) before and after any given task is being learned. However divergence measures cannot always
be analytically evaluated, for example if the distributions are implicit, in which case other solutions
are necessary. One option is to use a sample-based distance estimate between the distributions
[21, 53], which would act upon the output of the WG network (i.e., the weight samples). However,
due to the high dimensionality of w, meaningful distance estimates in distribution space might be
prohibitively expensive since the regularizer has to be evaluated in every training iteration. For this
reason, whenever no analytic divergence measure is available, we resort to the use of a mean-squared
error (MSE) regularizer at the output of the TC network (Eq. 2), as done in the deterministic case
considered by von Oswald et al. [91]. Therefore, rather than ensuring that a distribution does not
change, we ensure that the parameters of a distribution do not change. Note however, that this
treatment forces an interpretation onto the TC network as encoding a Gaussian likelihood with
isotropic variance.

While in our experiments forgetting is not a prevailing issue and we therefore were not urged to
improve upon this simple regularization, we would still like to comment on potential improvements
that can be considered by future work. One option would be to assign importance values to individual
outputs of the TC network and thus transform the isotropic regularization of Eq. 2 into a weighted
sum per previous task. Such importance values could incorporate the curvature of the loss landscape.
As the task-specific loss is data-dependent, the importance values would need to be computed at the
end of the training of each task, where data is still accessible. In our case, the task-specific loss is
the ELBO (Eq. 3), which embodies the KL to the posterior p(D |W). Thus, if importance values
reflect the Hessian of the ELBO with respect to the outputs of the TC network, the CL regularization
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Figure S1: Differences between prior-focused and posterior-replay CL approaches when using
Gaussian posterior approximations with diagonal covariance. In this case, the proposed posterior
meta-replay framework can capture one mode of each task-specific posterior via qθ(1)(W) and
qθ(2)(W). In contrast, a prior-focused method with this type of approximation (e.g., EWC [38] or
VCL [65]) has to assume that the currently found mode qθ(1:2)(W) also contains admissible solutions
for upcoming tasks.

would target our posterior approximation criterion (i.e., the ELBO) directly, ensuring that parameter
changes are only tolerated if the ELBO remains stable. In SM. F.3 we further elaborate on how
importance values could be constructed such that this simple type of regularization can be interpreted
as preserving distances in distribution space. Nonetheless, an imminent drawback of this procedure is
the need to store the importance values of each previous task.5 However, the memory implications
of this shortcoming can be alleviated by using compression schemes for importance values or by
distilling them into an auxiliary network [28].

C.3 Posterior-Replay with explicit parametric distributions

We now present the algorithms that can be used to obtain what we refer to as explicit approximate
posterior distributions, i.e., simple posterior approximations qθ(t)(W) that can be sampled from
according to a predefined function (cf. Eq. 5 and Eq. 12). Although in the main text only results
obtained for BbB are reported (noted PosteriorReplay-Exp), we consider here additional explicit
methods and therefore denote each individual method as PosteriorReplay-<method>.

C.3.1 Bayes-by-Backprop

Blundell et al. [6] present Bayes-by-Backprop (BbB), a VI algorithm that uses a mean-field Gaussian
approximation, i.e., qθ(W) =

∏
iN (Wi;µi, σ

2
i ), where θ consists of vectors µ and σ2 containing a

mean and variance for each weight. To be able to optimize these two vectors, the authors make use of
the reparametrization trick [36], which allows gradient computation with respect to µ and σ through
the stochastic sampling process of qθ(W). Specifically, samples w are obtained via:

w = µ+ σ � ε (5)

where ε ∼ N (0, I).

Recall, that optimizing the ELBO (cf. Eq. 3) requires estimating the NLL −Eqθ(W)[log p(D |W)],
which in practice is achieved via a Monte-Carlo (MC) estimate of K samples w(k) ∼ qθ(W):

NLL ≈ − 1

K

K∑
k=1

log p(D |W = w(k)) (6)

As a full summation log p(D |W) =
∑N
n=1 log p(y(n) |W; x(n)) over the whole dataset at every

training iteration is prohibitively expensive, this term is approximated via mini-batches B of size
Nmb, which requires a corrective scaling:

NLL ≈ − 1

K

K∑
k=1

N

Nmb

∑
(x,y)∈B

log p(y | w(k); x) (7)

5Note, that also the original EWC formulation required the storage of one Fisher matrix per task [38].
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How to compute the term log p(y | w; x) depends on the problem at hand. In regression tasks, it is
common to model the likelihood as a Gaussian distribution. For simplicity, we only consider 1D
regression and a model likelihood with fixed variance σ2

ll such that:

log p(y | w;x) = const− 1

2σ2
ll

(
fM(x,w)− y

)2
(8)

Dropping all constant terms that do not affect the optimization, the NLL can be written as a properly
scaled ( N

2σ2
ll

) MSE loss inside an MC estimate:

NLL ≈ N

2KNmbσ2
ll

K∑
k=1

∑
(x,y)∈B

(
fM(x,w(k))− y

)2
(9)

In C-way classification problems, the likelihood of class c is computed as:

p(Y = c | w; x) = sm
(
fM(x,w)

)
c

(10)

where sm(·) refers to the softmax, assuming the main network produces unnormalized logits for
mathematical convenience. Under this notation, the NLL for classification problems can be estimated
as follows:

NLL ≈ − N

KNmb

K∑
k=1

∑
(x,y)∈B

log
(

sm
(
fM(x,w(k))

)
y

)

=
N

KNmb

K∑
k=1

∑
(x,y)∈B

(

−
C∑
c=1

[c = y] log
(

sm
(
fM(x,w(k))

)
c︸ ︷︷ ︸

cross-entropy loss with 1-hot targets

))
(11)

where [·] denotes the Iverson bracket. The second term in the ELBO, i.e., the prior-matching term,
can be analytically evaluated if a Gaussian prior is used.

We adapt the BbB algorithm to our posterior meta-replay framework by having a task-conditioned
(TC) network that generates task-specific µ(t) and σ(t) (Fig. S1), an approach we denote
PosteriorReplay-BbB (PosteriorReplay-Exp in the main text). Since outputs of the TC network are
real-valued, variances σ(t) are obtained through a softplus transformation of the network’s outputs.
The current task’s loss Ltask(ψ, e(t),D(t)) corresponds to the negative ELBO and can be estimated
as described above, where we use the analytic expression for the prior-matching term.

Since approximate posteriors in BbB correspond to Gaussian distributions, the CL regularizer can
take the form of an explicit divergence measure in distribution space computed solely based on
the TC network’s output. We experiment with the forward (FKL) and reverse KL (RKL), and the
2-Wasserstein distance (W2). The loss when learning task t therefore becomes Eq. 1, where D(·||·)
corresponds to one of the above mentioned divergence measures. In practice, we do not observe a
notable difference between any of these divergence measures and the L2 regularization in Eq. 2.

As a variance reduction trick to improve training stability, we also experiment with the local
reparametrization trick [37] whenever the main network has an MLP architecture. Whether or
not this trick is used is determined by a hyperparameter and therefore selected by the hyperparameter
search of each experiment conducted with BbB or VCL (cf. SM C.5.1).

C.3.2 Radial Posteriors

As an alternative method to obtain explicit posterior approximations we also experimented with radial
posteriors [18], which we briefly describe below.
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Intuitively, one would expect that the probability mass of a Gaussian lies around the mean. This
is however not the case in high dimensions, where the probability mass is clustered in a thin
hyper-annulus far away from the mean. This happens because a sample point from an isotropic, high-
dimensional Gaussian distribution can be interpreted as many sample points from the corresponding
1D Gaussian distribution, therewith representing with high probability an element of the typical set.
Farquhar et al. [18] argues that training BNNs with a mean-field Gaussian approximation (as in
BbB), can lead to gradient estimates with high variance and impaired training stability due to the
effects that arise due to typicality in isotropic, high-dimensional Gaussian distributions. Based on
this insight, Farquhar et al. [18] propose the following corrective normalization to Eq. 5, and argue it
helps recover the intuitive behavior of Gaussian distributions in low dimensions:

w = µ+ σ � ε

‖ε‖
· r (12)

where r ∼ N (0, 1) and ε ∼ N (0, I). Here, we apply the corrective normalization layer-wise, but
treating weights and biases separately, such that the dimensions of I correspond to the number of
weights or biases in a given layer.

When computing the prior-matching term between a radial approximation and a Gaussian prior
p(W), we use the following expression for the negative entropy of a radial distribution (cf. Eq. 5 in
Farquhar et al. [18]): ∫

qθ(W) log qθ(W)dW = −
∑
i

log σi + const (13)

The cross-entropy term is approximated via an MC estimate with samples from the radial posterior.
Note, that the log-density of the Gaussian prior can be computed analytically.

We use radial posteriors within our framework (PosteriorReplay-Radial), where task-specific means
µ and "variances" σ2 are generated by a TC hypernetwork, whose outputs need to be regularized to
prevent forgetting (cf. SM C.3.1). Because an analytic expression for a divergence between radial
distributions is unknown, we resort to the L2 hypernetwork regularizer (Eq. 2) when working with
radial distributions.

C.4 Posterior-Replay with implicit distributions

We also explore the use of implicit qθ(t)(W) distributions as approximate posteriors. In our frame-
work, these are parametrized by an auxiliary WG network, that has parameters θ(t) and receives
samples from an arbitrary base distribution p(Z) as inputs. In our experiments, we always consider a
Gaussian base distribution with zero mean, and experiment with different variances.

The use of implicit posterior approximations introduces a challenge when optimizing the prior-
matching term of the ELBO, since we do not have access to the analytic expression of the density,
nor to its entropy. This problem can be avoided when the change-of-variables formula is applicable,
i.e., when using an invertible architecture for the weight-generator network WG with tractable base
distribution p(Z) (cf. normalizing flows [70]). In this case, the ELBO objective can be approximated
via an MC estimate and optimized via automatic differentiation.

Alternative approaches sidestep the need to have invertible networks, and aim to find other estimates
that allow optimizing the ELBO objective. Multiple studies have already investigated the use of
weight generators for BNNs [14, 27, 34, 35, 40], ranging from sample-based estimates of the prior-
matching term [73] to the use of normalizing flows with shared influence on a set of weights for
improved scalability [55]. Within the deep learning community, generative adversarial networks
(GANs, Goodfellow et al. [19]) represent the most successful use case of implicit distributions.
This approach is purely sample-based and requires an auxiliary network that engages in a minimax
optimization. A wide range of loss functions can be used to approximately optimize different kinds of
divergences or distances, including the KL required for the prior-matching term, [67] as done in AVB
(cf. SM C.4.1). However, as training corresponds to playing a non-convex game and an inner-loop
optimization is required, optimization difficulties arise when applying GAN-like approaches to high-
dimensional problems. We experienced these difficulties and therefore also explore alternative ways
to train implicit distributions, e.g., methods based on Stein’s identity such as SSGE (cf. SM C.4.2).
Although in the main text only results obtained using SSGE are reported (noted PosteriorReplay-
Imp), we consider here additional implicit methods and therefore denote each individual method as
PosteriorReplay-<method>.
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In practice, approaches that do not require invertible networks are used with architectures that have a
support of measure zero in weight spaceW , which causes the KL to be ill-defined. We comment on
this issue in SM C.4.3.

C.4.1 Adversarial Variational Bayes

Adversarial variational Bayes (AVB, Mescheder et al. [61]) was introduced as a method to estimate the
log-density ratio of the prior-matching term by using the GAN framework. We denote using AVB to
find approximate implicit posteriors within our posterior meta-replay framework as PosteriorReplay-
AVB.

Given that the prior-matching term (Eq. 3) can be rewritten as Eqθ(W)

[
log qθ(W) − log p(W)

]
,

AVB introduces an auxiliary discriminator network (D) that, within each training iteration, learns
to approximate log qθ(W) − log p(W). Mescheder et al. [61] show that this is achieved for a
discriminator that maximizes the following expression:

Eqθ(W)[log σ(fD(W))] + Ep(W) [log(1− σ(fD(W)))] (14)

where σ(·) denotes the logistic sigmoid function and fD the function performed by the discriminator.
Having the optimal discriminator f∗D(w), the prior-matching term can be approximated via an MC
sample:

Eqθ(W)

[
log

qθ(W)

p(W)

]
= Eqθ(W)

[
f∗D(W)

]
≈ 1

K

K∑
k=1

f∗D(w(k)) (15)

This means that at every training iteration of θ (or in our case ψ) the parameters of the discriminator
should be trained to optimality. In practice, however, discriminator weights are only fine-tuned for a
few iterations in the inner loop.

Note that training requires access to ∇θEqθ(W)

[
f∗D(W)

]
, and that the optimal parameter configura-

tion of the discriminator might also depend on θ as it is an outcome of the optimization procedure
described in Eq. 14. Fortunately, as shown in Mescheder et al. [61], the term Eqθ(W)

[
∇θf

∗
D(W)

]
vanishes and no backpropagation through the discriminator is required.

We also employ a trick suggested in Mescheder et al. [61], termed adaptive contrast, which can be
used whenever analytic access to the prior density is guaranteed (which is not the case when using
AVB in a prior-focused setting, PriorFocused-AVB, except for the first task). The incentive for the
trick is the fact that a density ratio, especially in high-dimensions, has high variance. Therefore, an
auxiliary Gaussian distribution rα(W) is introduced, whose mean and variance parameters are set to
the empirical mean and variance of qθ(W), assuming that the ratio when involving such rα(W) is
"easier" to estimate. The ELBO is then rewritten in the following way to include rα(W):

Eqθ(W)

[
log p(D |W)

]
− KL(qθ(W) || p(W))

=Eqθ(W)

[
log p(D |W)− log qθ(W) + log rα(W)

− log rα(W) + log p(W)
]

=Eqθ(W)

[
log p(D |W)− log rα(W) + log p(W)

− f̃∗D(W)
]

(16)

where now f̃∗D(w) is trained to approximate the log-density ratio log qθ(W)− log rα(W).

Because of this minimax optimization, AVB suffers in our experiments from scalability issues,6
and we therefore only experimented with it for low-dimensional problems, where it turns out to be
in general the best method, both in terms of performance of individual runs and in ease of finding
suitable hyperparameters.

An interesting question regarding AVB is the choice of the discriminator’s architecture, which
processes complete weight samples w to determine whether they originate from the prior or from the

6Note, also Pawlowski et al. [73] reports difficulties when applying AVB to BNNs.
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approximate posterior distribution. For low-dimensional problems, we use MLP architectures since
the dimensionality of w is only in the order of 100 weights. For high-dimensional problems, where
using a plain MLP is infeasible, we experimented with a chunking approach. Specifically, we used
one MLP to reduce the dimensionality of individual weight chunks, which are then concatenated
and fed as input to a second MLP that generates the actual output of the discriminator. However, we
did not succeed with this approach, and leave the scaling of AVB to large main networks as an open
problem for future work.

C.4.2 Spectral Stein Gradient Estimator

Stein’s identity and the related Stein discrepancy have also been investigated to develop training
methods for implicit distributions [30]. Li and Turner [51] and Shi et al. [79] observed that the
training of implicit distributions (e.g., via VI) often only requires access to∇w log qθ(w), a quantity
that appears in Stein’s identity. Notably, both approaches do no require an auxiliary network nor an
inner-loop optimization.

Li and Turner [51] uses an MC estimate of Stein’s identity in combination with ridge regression
to obtain ∇w log qθ(w) estimates. Unfortunately, their method can only be used to estimate this
quantity for sample points retrieved from qθ(w). When requiring an estimate for sample points
obtained from a different distribution, as it is the case for the cross-entropy term appearing in a
prior-focused setting, this method is not applicable.

Therefore, we consider an alternative, the spectral Stein gradient estimator (SSGE, Shi et al. [79]),
referred to as PosteriorReplay-SSGE (PosteriorReplay-Imp in the main text) within our posterior
meta-replay framework. For completeness, we sketch below the inner workings of SSGE.

Recall that our ultimate goal is to find the parameters θ that maximize the ELBO, and we therefore
need to evaluate the following expression:

∇θELBO = ∇θEqθ(W)

[
log p(D |W)

]
(17)

−∇θEqθ(W)

[
log qθ(W)

]
+∇θEqθ(W)

[
log p(W)

]
Thus, the gradient acts on three distinct terms, the first term simply corresponds to the NLL when
learning on the dataD, and we refer to the other two terms as the entropy and the cross-entropy. In this
specific case, the NLL and cross-entropy term can be approximated using an MC estimate, and their
gradient computation through individual samples becomes feasible by using the reparametrization
trick. However, as explained previously, the entropy term is difficult to compute since we do not have
access to the density of qθ(W). This term can be rewritten as follows:

∇θEqθ(W)

[
log qθ(W)

]
= ∇θ

∫
w

qθ(w) log qθ(w)dw

= ∇θ

∫
z

p(z) log q
(
fWG(z,θ),θ

)
dz

=

∫
z

p(z)∇θ log q
(
fWG(z,θ),θ

)
dz

= Ep(Z)

[
∇θ log q

(
fWG(Z,θ),θ

)]
= Ep(Z)

[
∇θ log q

(
fWG(Z,θ), θ̂

)∣∣∣
θ̂=θ

]
= Ep(Z)

[
∇w log q(W,θ)

∣∣∣
W=fWG(Z,θ)

∇θfWG(Z,θ)
]

(18)

where to get the second line we have used the following reparametrization w = fWG(z,θ) and
z ∼ p(Z), and rewritten qθ(W) as q(W,θ) for clarity. Furthermore, to obtain the fifth line we
computed the total derivative, and directly used the fact that Ep(Z)

[
∇θ log q(W,θ)

∣∣
w=fWG(z,θ)

]
9



cancels out. Here is the derivation for completeness:

Ep(Z)

[
∇θ log q(W,θ)

∣∣
W=fWG(Z,θ)

]
= Eqθ(W)

[
∇θ log q(W,θ)

]
=

∫
w

qθ(w)∇θ log q(w,θ)dw

=

∫
w

qθ(w)
1

qθ(w)
∇θq(w,θ)dw

= ∇θ

∫
w

q(w,θ)dw = ∇θ1 = 0 (19)

Coming back to Eq. 18, we see that two gradients need to be computed within the expectation. The
second term∇θfWG(z,θ) is simply the gradient of the output of the weight-generator hypernetwork
with respect to its own parameters, and can therefore be easily obtained using automatic differentiation.
The expression ∇w log qθ(w) is not accessible for implicit distributions, and needs to be estimated.

SSGE provides a way to estimate∇w log qθ(w) by considering a spectral decomposition:

∇wi log qθ(w) =

∞∑
j=1

γijϕj(w) (20)

where ϕ are the eigenfunctions of a covariance kernel k(wi,wj) with respect to qθ(w) and γij
are the coefficients of the spectral series. Both need to be estimated. The Nyström method is used
to approximate the eigenfunctions. For this, SSGE considers the following eigenvalue problem
Ku ≈ λu, where K ∈ RS×S is the Gram matrix: Kij = k(wi,wj), S is the number of samples
used for the gradient estimation. We only consider the radial basis function (RBF) kernel in this
work. The J eigenvectors u1 . . .uJ with the J largest eigenvalues λ1 ≥ . . . ≥ λJ are computed and
later will be selected to approximate the spectral series. We discuss below how to set J . The j-th
eigenfunction can now be estimated based on the Nyström method with:

ϕj(w) =

√
S

λj

S∑
s=1

ujsk(w,ws) (21)

where ujs denotes the s-th element of the j-th eigenvector. Finally, Stein’s identity allows finding the
following expression for the coefficients γ:

γij = − 1√
Sλj

S∑
n=1

S∑
s=1

∇wni k(wn,ws)ujs (22)

The estimated eigenfunctions and the corresponding coefficients can then be inserted back into a finite
form of Eq. 20 to estimate∇w log qθ(w), and multiplied by the gradient of fWG with respect to θ that
we obtain via automatic differentation. Finally, taking the expectation over the base distribution p(Z)
allows obtaining an estimate for the gradient of the entropy term in the ELBO (Eq. 18). Note, that if
θ is the output of a TC network, then the gradient estimate ∇θEqθ(W)

[
qθ(W)

]
has to be further

backpropagated to the parameters of the TC network, where it is accumulated with the gradient of the
remaining loss terms, all of which have been automatically computed via automatic differentiation.

The use of SSGE introduces three extra hyperparameters that need to be tuned: the width of the
RBF kernel, the number of samples S used for the eigenvalue decomposition, and the number J of
eigenfunctions. For the kernel width, we explored setting it to some arbitrary small value or to the
median of pairwise distances between all samples, as described in the original paper [79]. In our
results, this choice did not considerably impact performance. For the number of eigenfunctions, we
experimented with directly setting J to some fixed value or, as suggested in the original paper, with
setting it based on a certain ratio τ of cumulative eigenvalues (i.e., select the minimum number of

eigenfunctions J such that
∑J
j=1 λj∑S
j=1 λj

> τ ).

10



PriorFocused PosteriorReplay

ex
pl

ic
it

im
pl

ic
it

PriorFocused-AVB
PriorFocused-SSGE (Imp)

PosteriorReplay-AVB
PosteriorReplay-SSGE (Imp)

PosteriorReplay-BbB (Exp)
PosteriorReplay-RadialEWC

VCL (PriorFocused-BbB)

Figure S2: Summary of the different algorithms used to train BNNs, and how they fit into the described
framework. We distinguish between approaches that learn a single shared posterior across tasks
(PriorFocused) and approaches that learn task-specific posteriors (PosteriorReplay). We consider
both explicit and implicit posterior approximations. Red indicates the parameters that are learned in
each scenario.

C.4.3 Support of implicit approximate posterior distributions

Special attention needs to be payed to the support of the approximate posterior distribution when
it is parametrized by an auxiliary network. Indeed, when using a WG architecture for which the
output size is larger than the input size, or that contains some bottleneck layer, the support of qθ(W)
will be limited to a set of measure zero (cf. Lemma 1 in Arjovsky and Bottou [3]). This causes
the prior-matching term of the ELBO to be ill-defined as the KL definition requires qθ(W) to be
absolutely continuous with respect to p(W). To overcome this limitation, we injected small noise
perturbations to the outputs of the WG, e.g.,

w ∼ qθ(W)⇔ w = fWG(z,θ) + u (23)

with z ∼ p(Z) and u ∼ p(U), where p(U) is an additional noise distribution. Note, when using the
reparametrization trick to rewrite expected values with respect to qθ(W), one now has to integrate
over the joint of Z and U.

Due to practical considerations, we use the following simplification in our implementation:

w ∼ qθ(W)⇔ w = fWG(z:nz ,θ) + σnoisez (24)

where z:nz refers to the first nz elements of the vector z, and both σnoise and nz are hyperparameters.

C.5 Prior-Focused Continual Learning

Prior-focused CL [17] is an alternative Bayesian approach to CL that is commonly used in the
literature. As opposed to posterior meta-replay, a single set of shared parameters is recursively
updated, and finding suitable solutions therefore relies on the existence of trade-off solutions across
tasks. We first describe VCL and EWC, two existing algorithms that use a Gaussian approximation
for the shared posterior, and then discuss how our framework can be used to render prior-focused
methods more flexible through the use of implicit distributions. Note that prior-focused approaches
can be implemented within our framework (denoted PriorFocused) by directly learning a single set
of parameters θ that define the shared posterior distribution, which is recursively instantiated as prior.
Since θ is not task-specific, no TC network is required. An overview of how PriorFocused and
PosteriorReplay approaches fit in our proposed framework is given in Fig. S2.

C.5.1 Variational Continual Learning

Variational continual learning (VCL, Nguyen et al. [65], Swaroop et al. [83]) was introduced as a way
to continually learn a single mean-field Gaussian posterior approximation across tasks by doing a
recursive Bayesian update via VI. More specifically, VCL aims to learn a single approximate posterior
qθ(1:T )(W) by recursively considering the posterior of the previous task as the prior for the new task:

qθ(1:T )(W) ∝ p(D(T ) |W)qθ(1:T−1)(W) (25)
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where qθ(1:T−1)(W) is an approximation to the previous posterior p(W | D(1:T−1)). Importantly,
the CL requirements are not violated since only data from the current task D(T ) is required for
the update. To learn the approximate posteriors, VCL uses BbB, and learns a mean-field Gaussian
approximation parametrized by a mean and variance per weight, which are optimized by using the
reparametrization trick (Eq. 5). An interesting contribution of this method is the mathematically
sound posterior update based on coresets (i.e., a small set of samples stored from each task, [75, 4])
within their Bayesian framework. Importantly, the role of coresets in their approach is to help mitigate
catastrophic forgetting. In contrast, in this work we mainly use coresets to facilitate task inference in
a task-agnostic setting (see SM C.7 for details).

In our framework, VCL is realized via a main network and a simple WG function with parameters θ
as depicted in Fig. 2 for BbB. Conceptual differences between using BbB in a prior-focused setting
(VCL), and using BbB using a posterior meta-replay approach (PosteriorReplay-BbB) are illustrated
in Figure S1. We study this method in a multihead setting (VCL-multihead), where each head is
task-specific and leads to a task-specific approximate posterior that induces epistemic uncertainty.
Therefore, the predictive uncertainty of each head has a task-specific influence that we exploit for task
inference. An interesting extension of this multihead setting (i.e., task-specific output parameters)
could be CLAW [1] which builds on top of VCL and utilizes a set of task-specific neuronal parameters.
Thus task-specific parameters are distributed throughout the whole network (not just the outputs),
which might be beneficial for uncertainty-based task-inference. We also consider VCL with a growing
head (VCL-growing), as described in SM C.5.2. Note, as we often apply likelihood-tempering in
practice (SM D) for scalability reasons, our VCL version is often related to GVCL [54].

C.5.2 Elastic Weight Consolidation

Kirkpatrick et al. [38] propose elastic weight consolidation (EWC), a CL algorithm that limits the
plasticity of weights that are considered important for solving previous tasks, and therefore mitigates
forgetting. In contrast to VCL, the algorithm is based on a Laplace approximation of the posterior
[56] where approximations are restricted to diagonal covariance matrices.7 For completeness, we
detail here the derivation of this algorithm, specifically of its more mathematically sound variant
Online EWC [32, 78], which we simply refer to as EWC in the tables for brevity. Afterwards, we
explain how this algorithm is commonly used in the literature in a task-agnostic setting, and propose
an alternative solution based on a combination of shared and task-specific parameters that leads to
improved performance.

Online EWC. The core idea of EWC (and of prior-focused methods in general) simply consists in
performing a recursive Bayesian update of a single posterior distribution as new tasks arrive:

p(W | D(1:T )) =
p(D(T ) |W)p(W | D(1:T−1))

p(D(T ) | D(1:T−1))
(26)

where we have used the fact that D(1:T−1) and D(T ) are conditionally independent given W. For
simplicity, we start by considering T = 2:

p(W | D(1:2)) =
p(D(2) |W)p(W | D(1))

p(D(2) | D(1))
(27)

This is almost identical to the original formulation (cf. Eq 2. in Kirkpatrick et al. [38]), except
that the denominator contains p(D(2) | D(1)) and not simply p(D(2)), since the datasets are only
conditionally independent, as noted by Huszár [32]. Optimizing the parameters W corresponds to
finding their most probable value given the data:

arg min
W

{
− log p(W | D(1:2))

}
⇔ (28)

arg min
W

{
− log p(D(2) |W)− log p(W | D(1))

}
where we have dropped constant terms. Notice that − log p(D(2) |W) is simply the NLL and can
easily be computed. The second term, log p(W | D(1)) is generally intractable, and for this reason

7An interesting extension with non-diagonal covariance matrices is described in Ritter et al. [76].
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we consider a second order Taylor approximation around the minimum that was found after learning
the first task w

(1)
MAP, corresponding to the maximum a posteriori (MAP) estimate. First order terms

vanish around the minimum and we obtain the following expression:

log p(W | D(1)) ≈ const+ (29)
1

2
(W −w

(1)
MAP)THlog p(w|D(1))

∣∣∣
w=w

(1)
MAP

(W −w
(1)
MAP)

whereHlog p(W|D(1)) denotes the Hessian of log p(W | D(1)), which can be rewritten as:

Hlog p(W|D(1)) = Hlog p(D(1)|W) +Hlog p(W)

= ∇w∇Tw
[ N∑
n=1

log p(y(1,n) |W,x(1,n))

− 1

2σ2
prior

‖W‖22
]

=

N∑
n=1

Hlog p(y(1,n)|W,x(1,n)) −
1

σ2
prior

I (30)

where x(1,n) denotes the n-th sample of the first task and where we have used the fact that all
N samples are independent given w. Furthermore, we have assumed a Gaussian prior such that
p(W) = N (0, Iσ2

prior), where I is the identity matrix. Recall the relationship between the Hessian
and the Fisher information matrix F (e.g., cf. Eq. 3/4 in Martens [59]):

F = −Ep(y|W,x)

[
Hlog(y|W,x)

]
(31)

Note that so far we have considered x fixed, but the model should perform well with respect to the
input distribution p(x):

Ep(x)
[
− F

]
= Ep(x)p(y|W,x)

[
Hlog p(y|W,x)

]
(32)

≈ 1

N

N∑
n=1

Hlog p(ỹ(n)|W,x(n))

where the approximation in the last line comes from an MC estimate using N samples drawn from
the joint p(y |W,x)p(x). Assuming w has been trained to optimality, i.e., p(y |W,x) ≈ p(y | x)
for x ∼ p(x), the samples used in Eq. 30 and Eq. 32 are essentially from the same joint distribution
and we can write:

1

N

N∑
n=1

Hlog p(y(n)|W,x(n)) ≈
1

N

N∑
n=1

Hlog p(ỹ(n)|W,x(n)) (33)

to obtain the following expression:

Hlog p(W|D(1)) ≈ −NFemp −
1

σ2
prior

I (34)

where we have introduced the empirical Fisher, which is obtained using the sample points from
the actual dataset D, but given the optimality assumption above here it simply corresponds to
Femp = Ep(x)

[
F
]
.8 Plugging this result into Eq. 29, while using a diagonal approximation of the

empirical Fisher matrix, and extending it to an arbitrary number of tasks by iteratively computing the
posterior, we obtain the following expression (cf. Eq. 11 in Huszár [32]):

log p(W | D(1:T )) ≈ const+ log p(D(T ) |W)− (35)
1

2

∑
i

(∑
t<T

N (t)F
emp

(t)
i

+
1

σ2
prior

)
(wi − w(T−1)

MAP,i )2

8Note, that for mathematical convenience we include the expectation over p(x) in the definition of the
empirical Fisher.
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where N (t) denotes the size of D(t). Thus, per weight wi there is a scalar importance value∑
t<T N

(t)F
emp

(t)
i

+ 1
σ2
prior

which can be computed online such that there is no need to main-
tain the empirical Fisher matrices of individual tasks. This is in contrast to the original EWC
formulation Kirkpatrick et al. [38], where each Fisher matrix had to be maintained in memory.

Crucially, in order to relate the sum over Hessians in Eq. 30 to the Fisher information matrix, we
have to assume that p(y |W,x) and p(y | x) are identical for x ∼ p(x). In this case, the empirical
Fisher and the (expected) Fisher are also identical and it mathematically does not matter which of the
two is used for the algorithm.

Multihead EWC. When EWC is used in a task-agnostic inference setting, it is often trained with
an output softmax that grows as new tasks are trained (e.g., van de Ven et al. [88]), which we refer
to as EWC-growing. In this setting, where EWC performs poorly, the Bayesian assumption that the
model class contains the ground-truth model is violated, since the model-class changes whenever
the softmax changes in size. A simple way to overcome this issue when the number of tasks is
known in advance, is to use a shared softmax that spans the outputs of all tasks from the beginning of
training, which we refer to as EWC-shared. However, as we will show, this approach still performs
poorly. We hypothesize this is due to the fact that the role played by output connections for their
corresponding task is in conflict with that played for all other tasks (i.e., because the shared softmax
pushes the weights of future heads to be highly negative). As a solution, we propose the use of a
multihead when applying EWC to a task-agnostic inference setting (referred to as EWC-multihead).
This results in a hybrid prior-focused approach, where the learned parameters w consist of a set
of shared weights φ and a set of task-specific output heads with weights {ξ(t)}Tt=1. Now, Eq. 27
becomes:

p(φ, ξ(1:2) | D(1:2)) (36)

=
p(D(2) | φ, ξ(2))p(φ, ξ(1) | D(1))p(ξ(2))

p(D(2) | D(1))

Repeating the procedure in the original derivation, i.e. considering a Taylor approximation around
optimal parameters and recursively computing the posterior, we obtain the following expression:

logp(φ, ξ(1:T ) | D(1:T )) ≈ const (37)

+ log p(D(T ) | φ, ξ(T )) + log p(ξ(T ))

− 1

2

∑
i

(∑
t<T

N (t)F
emp

(t)
i

+
1

σ2
prior

)
(wi − w(T−1)

MAP,i )2

where we have assumed that all parameters w = [φ, ξ(1), . . . , ξ(T )] share the same prior. Importantly,
for any t, Femp(t) is a square diagonal matrix of dimension dim(w), where all entries related to
weights ξ(s) for s 6= t are zero.

Recall, that the EWC importance values are reminiscent of the entries of a precision matrix of
a multivariate Gaussian with diagonal covariance matrix. Together with the final MAP estimate
w

(T )
MAP of p(W | D(1:T )) we can explicitly construct the following approximate posterior in (Online)

multihead EWC:

logp(φ, ξ(1:T ) | D(1:T )) = (38)

N
(

w
(T )
MAP,

[
1

σ2
prior

I +

T∑
t=1

N (t)Femp(t)

]−1)
This posterior induces predictive uncertainty at each output head, which can be used for task inference
in task-agnostic inference settings.

C.5.3 Prior-focused CL with implicit distributions

Both VCL and EWC use a Gaussian approximation for the shared posterior. This means that, not only
a trade-off solution across tasks needs to be found, but also that the expressivity of this posterior with
respect to unknown future tasks is limited. To overcome this limitation, we explore prior-focused

14



methods with a more flexible variational family, a family of implicit distributions parametrized by
a neural network. Although this approach does not overcome the need to find trade-off solutions
across tasks, it can make better use of the existing overlaps by capturing, for example, multi-modality.
Within our framework, PriorFocused methods with an implicit posterior distribution can be realised
by directly learning the parameters θ of a WG hypernetwork. This can be achieved using algorithms
for learning with implicit distributions, such as AVB or SSGE, and we therefore refer to these methods
as PriorFocused-AVB and PriorFocused-SSGE.

If not noted otherwise, we consider a hybrid approach with task-specific weights introduced by a
multihead main network, such that task inference through task-specific predictive uncertainty is
possible.

C.6 Task inference

When confronted with an unseen input x̃, algorithms that maintain task-specific solutions, such as
our posterior meta-replay framework, first have to explicitly assign the input to a certain task. In
this work, we exclusively consider inferring task identity via predictive uncertainty, and explore four
different ways of quantifying uncertainty as outlined below.

The Ent criterion, only considered in classification tasks, can be computed directly from the posterior
predictive distribution p(y | D(t); x̃) =

∫
W
p(y | W; x̃)p(W|D(t)) dW. Due to intractability of

this integral, we resort to an MC estimate using K = 100 models drawn from the approximate
posterior parameter distribution qθ(t)(W) of each task:

p(y | D(t); x̃) ≈ 1

K

K∑
k=1

p(y | w(t,k); x̃) (39)

with w(t,k) ∼ qθ(t)(W). Note that for deterministic approaches such as PosteriorReplay-Dirac, only
K = 1 is applicable. In the Ent criterion, the task leading to the lowest entropy is selected:

tEnt = arg min
t∈1..T

H
{
p(y | D(t); x̃)

}
(40)

whereH{} denotes the entropy functional.

Similarly, in the Conf criterion [26], also only considered for classification problems, the task leading
to the highest confidence is selected:

tConf = arg max
t∈1..T

max
y∈Y

p(y | D(t); x̃) (41)

where Y denotes the set of class labels, which indeed could be task-specific.

These two criteria intuitively correspond to choosing the model with the most peaky predictive
distribution, i.e. the highest certainty in the predicted class. However, uncertainty in the predictive
distribution can also arise in-distribution due to noisy data, i.e., aleatoric uncertainty. In order to
quantify epistemic uncertainty only, we additionally study model agreement as uncertainty measure.
Note that, in regions where sufficient data has been observed, models drawn from the posterior
parameter distribution should converge towards the data-generating distribution p(Y | X) and should
therefore agree among each other. Conversely, regions where those models disagree have not observed
enough data and can be considered OOD, assuming a rich enough prior in function space [11]. This
intuition should be captured in Agree, where the task leading to the strongest agreement between
models is selected. For C-way classification, we compute this quantity as the average standard
deviation of predicted likelihood values for K models w(t,k) ∼ qθ(t)(W) [81]:

tAgree = arg min
t∈1..T

1

C

C∑
c=1

SD
{
p(Y = c | w(t,k); x̃) ∀k

}
(42)

where SD(·) refers to the standard deviation of the given set of values.

Alternatively, Depeweg et al. [13] propose a neat decomposition of the entropy into two terms:

H
{
p(y | D(t); x̃)

}
= Ep(W|D(t))H

{
p(y |W; x̃)

}
+ I(y,W) (43)
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where I(y,W) denotes the mutual information between y and W, given by:

I(y,W) = KL
(
p(y,W | D; x̃)||p(W|D(t))p(y | D(t); x̃)

)
(44)

The two terms on the RHS of Eq. 43 are interpreted as aleatoric and epistemic uncertainty. Following
the terminology from Malinin et al. [58], we refer to the mutual information term as knowledge
uncertainty (noted KU). Note, that the remaining terms in Eq. 43 can be estimated via Monte-Carlo
using the approximate posterior qθ(t)(W) instead of p(W|D(t)). Although we are unsure about
whether these terms can be generally interpreted as epistemic and aleatoric uncertainty, we studied
how this knowledge uncertainty estimate performs in practice in SplitMNIST-10 experiments.

Note, that choosing to use predictive uncertainty for task inference is a heuristic choice and, to the
best of our knowledge, there is no guarantee that predictive uncertainty can lead to principled OOD
detection in general [11]. However, except when exploring hybrid approaches, practitioners have to
trade-off pros and cons when selecting a CL method that can be deployed in a task-agnostic setting.
As discussed in the main text, if task identity can be inferred from inputs alone, in theory it seems
reasonable to perform task inference directly on approximations of the unknown input distributions
p(t)(x), e.g., via tractable density access [46]. While in practice this approach still seems to be out of
reach for high-dimensional problems [64], generative models for data replay have been successfully
applied to CL [80, 86, 91]. In this case, when a new task is trained, generated data from past tasks
is replayed to train in a pseudo-i.i.d. setting. Because of the pseudo-parallel training on all tasks,
task inference does not have to be handled explicitly anymore. Note, however, that a conceptual
disadvantage exists when using replay approaches, i.e., the problem of training with non-i.i.d. data is
not directly addressed and rather side-stepped completely for the target network by shifting CL to
the generative model. Finally, we want to stress again that the task identity can also be externally
provided to the TC, e.g., by an auxiliary system that processes context data (different than the main
network’s input) [24, 91].

C.7 Posterior-Replay CL with Coreset Fine-Tuning

As opposed to the deterministic setting, already acquired knowledge can be updated in a principled
way when using a Bayesian perspective. When continually learning a sequence of tasks, this allows
approximate posteriors to be revisited as new data comes in. This can be used in our posterior
meta-replay framework to mitigate forgetting by storing task-specific coresets and using them to
refresh all task-specific posteriors in a small fine-tuning stage at the end of training.

Specifically, we consider a dataset split per task D(t) \ C(t) ∪ C(t), where D(t) \ C(t) is used for the
initial CL training phase, and C(t) is maintained in memory for the fine-tuning stage. More explicitly,
when continually learning our meta-model we approximate the following posteriors:

qθ̃(t)(W) ≈ p(W | D(t) \ C(t)) (45)

after which D(t) \ C(t) can be discarded, and only a small-sized coreset C(t) needs to be maintained
in memory until all tasks are learned.

The fine-tuning stage at the end of training is then performed in a multitask fashion on the stored
coresets, which are all simultaneously available. To see how this final update can be performed we
write our posterior distribution as follows:

p(W | D(t)) =
p(W)p(D(t) |W)

p(D(t))
=
p(W)p(D(t) \ C(t) |W)p(C(t) |W)

p(D(t) \ C(t), C(t))
(46)

∝ p(W)p(D(t) \ C(t) |W)p(C(t) |W)

p(D(t) \ C(t))
= p(W | D(t) \ C(t))p(C(t) |W)

where we have used the fact that D(t) \ C(t) and C(t) are conditionally independent given W. Eq.
47 shows that the desired posteriors p(W | D(t)) can be obtained via a Bayesian update of the
continually learned posteriors p(W | D(t) \ C(t)) by using the task-specific coreset C(t). Recall that
in VI, we approximate this posterior with a distribution qθ(t)(W) by minimizing KL(qθ(t)(W) ||
p(W | D(t))). Based on our dataset split, the expression to be minimized can be rewritten as
KL(qθ(t)(W) || ζp(W | D(t) \ C(t))p(C(t) |W)), where ζ is a normalization constant that accounts
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for the fact that we dropped C(t) from the denominator. Replacing p(W | D(t) \ C(t)) by the
approximations qθ̃(t)(W) learned continually, we obtain the following VI objective:

arg min
θ(t)

KL
(
qθ(t)(W) || ζqθ̃(t)(W)p(C(t) |W)

)
(47)

= arg min
θ(t)

[
KL
(
qθ(t)(W) || qθ̃(t)(W)

)
− Eq

θ(t)

[
log p(C(t) |W)

]]
Note that the second term corresponds to integrating the evidence from the coreset into the new
posterior, and therefore simply corresponds to minimizing the NLL on the coreset C(t), while the
first term ensures that the posterior does not change much, preventing forgetting. Notably, the KL
term is now between two distributions from the same variational family, reminiscent of prior-focused
learning as discussed in SM C.5. Therefore, it can be analytically evaluated for PosteriorReplay-BbB
while other methods require estimation, e.g., using AVB or SSGE.

Crucially, having coresets available at the end of training can also be used to facilitate task inference
based on predictive uncertainty (refer to SM C.6 for details). To do this, we perform the final update
on a set of modified coresets, which encourage the prediction of a task-specific model on OOD data
(i.e., on a coreset from another task) to be highly uncertain. More specifically, we use the modified
coresets:

C̃(t) = C(t) ∪
⋃

s∈{1,...,T}\{t}

Ĉ(s) (48)

where Ĉ(s) is constructed from the same inputs contained in C(s) but the labels are replaced by high
uncertainty labels. We consider per-task coresets of size 100 and enforce high uncertainty in OOD
inputs by either setting high-entropy softmax labels (i.e., uniform distribution; eg., [45]), or by using
different random labels per mini-batch.

Intriguingly, when training with data from other tasks, this data becomes in-distribution and cannot be
considered OOD anymore. Therefore, we expect our task inference criterion Agree, which is designed
to capture only epistemic uncertainty, to become less reliable. In other terms, what was previously
OOD data, that could have been detected via epistemic uncertainty, now became in-distribution data
with high aleatoric uncertainty due to the way we design training targets. This intuition is reflected in
our empirical observations (cf. SM D).

C.8 Experience Replay

Experience replay [52] refers to the idea of using a replay buffer (or coresets) to store current
experiences that can later be replayed in order to mitigate forgetting. Implementations of this method
might slightly differ in how coresets are assembled and how replayed data is incorporated into the loss
[e.g., 2, 7, 9]. Our implementation of experience replay (Exp-Replay) is designed to be comparable
to our proposed coreset fine-tuning (SM C.7). Therefore, we use task-specific coresets of size 100
(coresets are build using a random subset of a task’s training set). A coreset only contains input
samples, and a checkpointed model from the previous task is used to generate distillation targets [28].
Thus, a distillation loss is added to the overall loss. This distillation loss uses a mini-batch that is
created by randomly sampling from all available coresets in a stratified manner.

D Supplementary Experiments and Results

In this section, we extend the results presented in the main text, and provide a more detailed discussion.
Furthermore, we report additional baselines and supplementary experiments such as PermutedMNIST
(cf. SM D.4).

Baselines. In addition to the methods and baselines that have already been introduced, we consider
the following variations. To investigate the role played by the shared meta-model, we consider
independently trained models per task (SeparatePosteriors); a baseline that by design is not affected
by catastrophic interference, and therefore leads to identical TGiven-During and TGiven-Final scores.
In this setting, task-specific solutions cannot benefit from knowledge transfer, but they are also less
limited because the capacity of the meta-model is not shared with previous tasks.

We distinguish two cases for this baseline. In the first case, there is no TC network and θ is trained
directly (denoted SeparatePosteriors-<method>, e.g., SeparatePosteriors-BbB). However, one has
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to keep in mind that the underlying architecture in combination with the chosen weight prior defines
a prior in function space that will affect predictive uncertainty (cf. Sec. 3 and [93]), and it is therefore
unclear how comparable task inference scores based on predictive uncertainty are in this case, e.g.,
between SeparatePosteriors-BbB and PosteriorReplay-BbB. For this reason, we include a second
SeparatePosteriors baseline where the TC network remains but has no dedicated functional purpose
(denoted SeparatePosteriors-TC-<method>, e.g., SeparatePosteriors-TC-BbB). Note that for this
baseline, one TC network with a single task embedding is learned per task.

As a potential upper-bound we also consider Fine-Tuning, which simply refers to the continuous
deterministic training of a main network without undertaking any measures against catastrophic
forgetting. Thus, the achieved TGiven-During score can benefit from transfer while not being
restricted to finding any trade-off that accommodates past tasks. In this case, the hyperparameter
configuration is selected based on the best TGiven-During score. We only searched hyperparameters
for this baseline in the PermutedMNIST and SplitCIFAR experiments, because the TGiven-During
scores of other experiments are often maxed out. Importantly, whenever applicable and unless noted
otherwise, all hyperparameter configurations have been selected based on the TInfer-Final (Ent)
criterion. Hence, reported task-given (TGiven) scores do not necessarily reflect the ability of a method
to combat forgetting. However, in most cases, forgetting does not seem to be a major challenge in the
experiments we consider, and the reported TGiven-During and TGiven-Final scores are often very
close. Please refer to SM E for details on the experimental setup and hyperparameter searches.

Tempering. All results involving Bayesian methods use a standard Gaussian prior p(W) = N (0, I).
For high-dimensional problems and for methods trained with variational inference, we explore
tempering the posterior to increase training stability (cf. SM E.3). Specifically, we downscale the
prior-matching term, which effectively increases the emphasis on matching the data well (cf. SM E
in Wenzel et al. [92]). Note, no such posterior tempering is used when studying the low-dimensional
problems in SM D.1 and SM D.2.

D.1 1D Polynomial Regression

Table S2: Mean-squared-error (MSE) values for the 1D polynomial regression experiments. TInfer
refers to the MSE when making predictions using the task embedding leading to lowest uncertainty
for the given input. The column ACC-inference reports the accuracy for how often the correct
task-embedding was chosen for (in-distribution) test inputs. All methods use a singlehead. Note, that
singlehead PriorFocused methods do not require task inference, and thus the distinction between
TGiven and TInfer does not apply (Mean ± SEM, ACC-inference in %, n = 10). PR refers to
PosteriorReplay and PF to PriorFocused methods.

TGiven-During TGiven-Final TInfer-Final ACC-inference

PR-Dirac 0.01007 ± 0.00170 0.01037 ± 0.00162 N/A N/A
PR-BbB 0.01036 ± 0.00112 0.01037 ± 0.00121 0.01175 ± 0.00103 98.07 ± 0.53
PR-Radial 0.01238 ± 0.00184 0.01108 ± 0.00090 0.03996 ± 0.02377 96.19 ± 1.77
PR-AVB 0.00504 ± 0.00061 0.00712 ± 0.00181 0.00712 ± 0.00181 100.00 ± 0.00
PR-SSGE 0.00236 ± 0.00016 0.00251 ± 0.00020 0.00476 ± 0.00208 99.80 ± 0.13

EWC 0.08004 ± 0.02444 2.55570 ± 1.07003 N/A N/A
VCL 0.09787 ± 0.00982 0.23889 ± 0.06711 N/A N/A
PF-AVB 0.24125 ± 0.00315 0.46187 ± 0.07851 N/A N/A
PF-SSGE 0.01546 ± 0.00082 2.09433 ± 0.78611 N/A N/A

In this section we expand on the discussion from Sec. 4.1 on continually learning a set of low-
dimensional regression tasks. Details about the dataset can be found in SM E.1. Quantitative results
for a ReLU MLP-10,10 main network can be found in Table S2.

PosteriorReplay methods are all able to fit the polynomials well and do not seem to be affected by
catastrophic interference. Notably, due to the choice of Gaussian likelihood with fixed variance
(cf. Eq. 9), the likelihood function is not able to represent x-dependent (aleatoric) uncertainty.
Therefore, all x-dependent uncertainty corresponds to parameter uncertainty, which is not captured by
PosteriorReplay-Dirac. Interestingly, the reported PosteriorReplay-AVB run is always able to pick the
right task embedding in a random-seed robust way, such that TGiven-Final and TInfer-Final scores
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are identical. All reported PriorFocused methods use a singlehead main network and therefore do not
require task inference. Instead, they have to learn a single posterior continually that captures well
all data across tasks. Here, we observe that these methods greatly suffer from the stability-plasticity
dilemma [71]: having enough plasticity to accommodate new tasks causes catastrophic interference
with existing knowledge, while excessive protection of the existing shared posterior does not give the
flexibility required to fit new data.

Supplementary qualitative plots showing the final approximate posteriors found by the PosteriorRe-
play methods are depicted in Fig. S3. While these plots convey the intuition behind uncertainty-based
task inference, it should be noted that the ground-truth posterior shape is unknown, and that hyperpa-
rameters have a strong influence on these plots.
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Figure S3: 1D polynomial regression task, where three polynomials need to be learned consecutively.
Different colors represent the task-specific posterior approximations within the final model when
training with different PosteriorReplay algorithms: (a) PosteriorReplay-BbB, (b)PosteriorReplay-
Radial, (c) PosteriorReplay-AVB, (d) PosteriorReplay-SSGE. The illustrations sketch the idea behind
task inference via predictive uncertainty, i.e., for an input point x the posterior with the lowest
predictive uncertainty can be chosen to make predictions. Note, if the input does not lie in the
in-distribution space of any task, predictive uncertainty will be high for all posteriors.

Finally, to highlight a potential advantage of implicit methods, we qualitatively investigate the found
posterior approximations by PosteriorReplay-AVB in Fig. S4. We provide joint density plots (using
kernel density estimation) for random pairs of weights as well as Pearson correlation matrices for a
random subset of weights. Note that these plots are not cherry-picked and are representative of the
found posterior approximations. Weights in the posteriors of all tasks seem to be highly correlated,
which is also to be expected for the unknown ground-truth posterior, since individual weight changes
will affect the behavior of the neural network function and should therefore be coordinated to
maintain stable in-distribution predictions. This is in contrast to mean-field approximations such as
PosteriorReplay-BbB and PosteriorReplay-Radial, which by design are not able to capture weight
correlations. In addition, the joint distribution plots for PosteriorReplay-AVB often exhibit multi-
modality. Presumably, this could be beneficial for OOD detection and thus task inference, since
different modes in the posterior landscape may represent very different functions that exert vastly
different behavior on OOD data and, indeed, when studying low-dimensional problems, we generally
found it easier to find viable hyperparameter configurations with implicit methods than with explicit
ones. However, such argument is purely speculative and should be considered with care given that
single high-dimensional posterior modes might be flat in many directions and thus also be able to
capture a diverse set of functions [29, 68].

D.2 2D Mode Classification

Next, we reconsider the 2D mode classification introduced in Sec. 4.2. All results are obtained with a
ReLU MLP-10,10 main network. Details about this synthetic dataset can be found in SM E.2, and
quantitative results are reported in Table S3.

As reflected in the TGiven-Final scores, forgetting is not a concern in this benchmark. Instead, we
use this experiment to gain insights on how task inference based on predictive uncertainty works in
classification tasks. Recall, that the softmax likelihood function can represent arbitrary x-dependent
discrete distributions, which (in contrast to Sec. 4.1) allows the model to exhibit x-dependent
aleatoric uncertainty. Deterministic approaches such as PosteriorReplay-Dirac only have access to
aleatoric uncertainty, and therefore rely solely on it for task inference. However this has certain
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Figure S4: Example illustrations of weight distributions captured by the final approximate posteriors
when learning the 1D polynomial regression task with PosteriorReplay-AVB. (a)-(c) Joint density plots
of task 1 for three random pairs of weights. (d) Weight correlations in task 1 for a subset of randomly
chosen weights. Same for the approximate posterior of task 2 (e)-(h) and task 3 (i)-(l). Note, that
unlike unimodal mean-field approximations (cf. PosteriorReplay-BbB and PosteriorReplay-Radial),
implicit methods can capture correlations between weights and multi-modality.

Table S3: Accuracies for the 2D mode classification experiments (Mean ± SEM in %, n = 10). PR
refers to PosteriorReplay, PF to PriorFocused methods and SP to SeparatePosteriors.

TGiven-During TGiven-Final TInfer-Final
(Ent)

TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 100.0 ± 0.00 99.78 ± 0.21 44.90 ± 5.74 45.43 ± 5.84 N/A
PR-BbB 100.0 ± 0.00 100.0 ± 0.00 81.07 ± 6.78 81.07 ± 6.78 90.02 ± 3.57
PR-Radial 95.08 ± 2.38 95.08 ± 2.38 54.50 ± 5.01 54.50 ± 5.01 76.33 ± 4.18
PR-AVB 100.0 ± 0.00 100.0 ± 0.00 98.57 ± 1.33 98.57 ± 1.33 99.93 ± 0.06
PR-SSGE 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

SP-Dirac N/A 100.0 ± 0.00 70.92 ± 4.96 74.17 ± 3.78 N/A
SP-BbB N/A 100.0 ± 0.00 85.13 ± 2.58 85.13 ± 2.58 87.92 ± 2.29
SP-AVB N/A 100.0 ± 0.00 95.00 ± 2.09 95.00 ± 2.09 98.62 ± 1.23

VCL-multihead 100.0 ± 0.00 100.0 ± 0.00 45.17 ± 3.80 45.17 ± 3.80 47.13 ± 4.26
PF-AVB-multihead 100.0 ± 0.00 98.17 ± 1.57 64.53 ± 4.99 64.53 ± 4.99 65.40 ± 5.05
PF-SSGE-multihead 100.0 ± 0.00 95.92 ± 1.71 50.00 ± 3.33 49.40 ± 3.06 50.02 ± 3.33

limitations since aleatoric uncertainty is only calibrated in-distribution. For instance, the typical cross-
entropy loss criterion used for classification tasks can be linked to the minimization of the quantity:
Ep(X)

[
KL
(
p(Y | X)||p(Y | W; X)

)]
, where p(X)p(Y | X) denotes the unknown underlying

data-generating process and p(Y |W; X) is the model likelihood. Thus, the behaviour of aleatoric
uncertainty as reflected in p(Y | W; X) for OOD data (e.g., outside the support of p(X)) is not
calibrated and can indeed be harmful for OOD detection (e.g., [25]). This intuition is validated by
our PosteriorReplay-Dirac results, which exhibit rather arbitrary behavior on OOD data (Fig. S6).
This might also explain the notable difference in the results reported for PosteriorReplay-Dirac and
SeparatePosteriors-Dirac in Table S3, while probabilistic PosteriorReplay methods behave similarly.
We provide uncertainty maps for all studied probabilistic PosteriorReplay methods in Fig. S5.

A desirable behavior for good OOD detection would entail having low uncertainty only where the
training data of the corresponding task resides, while having high uncertainty elsewhere. As opposed
to the deterministic case, Bayesian approaches reflect this intuition (cf. Fig. S6), despite not being
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Figure S5: 2D mode classification uncertainty maps for probabilistic PosteriorReplay approaches. (a)
Entropy of the predictive distribution (Ent) of task 1 across the input space covering in-distribution
domains of all tasks, when training with PosteriorReplay-BbB. Dots represent training points and
colors indicate task-affiliation. The dashed line represents the decision boundary for task 1. (b)
Same as (a) but uncertainty here reflects model agreement (Agree). The same uncertainty maps are
produced using the final approximate posteriors for task 2 (c)-(d) and 3 (e)-(f). To show qualitative
results for several probabilistic PosteriorReplay approaches, the uncertainty maps (a)-(f) are repeated
for PosteriorReplay-Radial (g)-(l), PosteriorReplay-AVB (m)-(r) and PosteriorReplay-SSGE (s)-(x).

perfect OOD detectors. Note that, since the uncertainty map of the true Bayesian posterior is unknown,
it remains unclear whether this imperfection originates from the approximate nature of the used
posteriors, or whether it is innate to the real posterior. Importantly, the displayed uncertainty maps
represent aggregated results over many models drawn from the approximate posteriors. Therefore, an
interesting question arises, i.e., whether the depicted uncertainty maps result from models having
high aleatoric uncertainty on OOD data, or from individual models behaving very differently on OOD
data. To answer this question, we plot the softmax entropy maps for individual models drawn from
the posterior of PosteriorReplay-AVB in Fig. S7.

Uncertainty maps from individual models look very different, suggesting that epistemic uncertainty
is crucial for OOD detection in this experiment. This is supported by the fact that the Ent uncertainty
map looks very similar to that obtained with Agree, even though Ent is supposed to capture both
aleatoric and epistemic uncertainty. However, one needs to keep in mind that these are qualitative
results which strongly depend the selected hyperparameter configuration, as can be seen for the
chosen PosteriorReplay-SSGE results.
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Figure S6: 2D mode classification uncertainty maps for PosteriorReplay-Dirac. (a) Entropy of the
predictive distribution (Ent) of task 1 across the input space covering in-distribution domains of all
tasks. Dots represent training points, colors task-affiliation and the dashed line the decision boundary
for task 1. (b) Same as (a) but uncertainty here reflects the confidence of the predictive distribution
(Conf ). Same uncertainty maps with the final approximate posteriors for task 2 (c)-(d) and 3 (e)-(f).

Figure S7: 2D mode classification uncertainty maps of single sample points drawn from the final
approximate posteriors trained with PosteriorReplay-AVB. (a) Entropy of the softmax output for a
sample point w ∼ qθ(1)(W) of task 1 across the input space covering in-distribution domains of
all tasks. (b)-(d) same as (a) for different sample points w ∼ qθ(1)(W). Posterior draws for task 2
using qθ(2)(W) are shown in (e)-(h) and for task 3 using qθ(3)(W) are shown in (i)-(l), respectively.
Intriguingly, individual models tend to be overconfident (similar to Fig. S6), and different models
exhibit very different uncertainty behavior. Thus, the overall uncertainty reflected in the predictive
distribution (cf. Fig. S5) is likely induced through parameter uncertainty.

In this experiment, PriorFocused methods perform worse in uncertainty-based task inference than
PosteriorReplay methods. A reason could be the impaired ability of PriorFocused methods to capture
task-specific epistemic uncertainty. This may be due to the fact that data from all tasks is used to train
a shared body, and thus the posterior models drawn from it should lead to similar hidden activations
(i.e., low epistemic uncertainty) for data from all tasks. Thus, epistemic uncertainty, which we saw
above is crucial for task inference, will mainly be introduced by the task-specific outputs heads which
process those hidden activations. In contrast, the posterior of all weights in PosteriorReplay methods
has only ever seen data from one task and can therefore exhibit high epistemic uncertainty when
computing hidden activations for data from different tasks.

We also experiment with EWC-multihead, for which we obtain chance level predictions. To understand
this effect, let’s recall that EWC relies on the post-hoc construction of the posterior, for which the
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computation of the empirical Fisher information matrix is required in order to approximate the loss
curvature. In our results, we observe that some of the computed Fisher values are zero. Looking at
Eq. 38 one can see that whenever Fisher values are very low for a certain weight, the variance of
the posterior for that weight will be dominated by the variance of the prior, which was set to one
in our experiments. We hypothesize that such high variance for certain weights in the constructed
posterior is the reason for the low performance displayed by EWC-multihead in such a small network.
Note, that the empirical Fisher values are computed as a sum of squared log-likelihood gradients
computed across the whole training set. These gradients are zero for some weights, which might be
due to overfitting; a conceivable problem given the low dataset size. We observed the same issue
when testing EWC-multihead for the 1D regression experiment. Intriguingly, this observation also
implies that the empirical Fisher approximation failed to appropriately approximate the Hessian and
thus capture loss curvature.

D.3 SplitMNIST

Here we provide additional results obtained for the SplitMNIST experiment. In particular, we
compare the different methods for three different main network architectures: Table S4 contains
results obtained with a ReLU MLP with two hidden layers of 100 neurons (MLP-100,100), Table S5
for an MLP-400,400 and Table S6 for a Lenet [44] with a kernel size of 5, 20 resp. 50 feature maps
in the two convolutional layers and 500 units in the penultimate fully-connected layer.

Table S4: Accuracies of SplitMNIST experiments when using an MLP-100,100 (Mean ± SEM in %,
n = 10). Column TInfer-Final represents TInfer-Final (Ent) accuracies if applicable. Otherwise this
column is used to report results of methods that learn a shared softmax across all tasks. PR refers to
PosteriorReplay and PF to PriorFocused methods.

TGiven-During TGiven-Final TInfer-Final TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 99.72 ± 0.01 99.72 ± 0.01 63.41 ± 1.54 48.41 ± 1.02 N/A
PR-BbB 99.75 ± 0.01 99.75 ± 0.01 70.07 ± 0.56 65.34 ± 0.66 70.11 ± 0.54
PR-Radial 99.55 ± 0.06 99.43 ± 0.10 63.00 ± 1.56 64.03 ± 1.19 63.06 ± 1.55
PR-SSGE 99.66 ± 0.02 99.65 ± 0.02 66.15 ± 0.92 47.89 ± 0.67 66.20 ± 0.92
EWC-growing N/A N/A 28.15 ± 0.51 N/A N/A
EWC-shared N/A N/A 29.67 ± 0.86 N/A N/A
EWC-multihead 99.01 ± 0.03 97.79 ± 0.30 46.61 ± 1.26 46.63 ± 1.27 19.97 ± 0.01
VCL-multihead 97.83 ± 0.03 96.05 ± 0.21 51.45 ± 1.11 51.45 ± 1.11 51.02 ± 1.22
PF-SSGE-multihead 99.74 ± 0.01 96.48 ± 0.54 51.26 ± 1.72 49.64 ± 1.72 51.59 ± 1.64

PR-BbB-BW 99.75 ± 0.01 99.75 ± 0.01 99.75 ± 0.01 99.75 ± 0.01 99.75 ± 0.01
PR-BbB-CS 99.41 ± 0.04 98.70 ± 0.05 90.42 ± 0.19 90.42 ± 0.19 59.09 ± 0.64

Exp-Replay N/A N/A 86.84 ± 0.51 N/A N/A

Some general trends can be observed independent of the main network architecture used. Catastrophic
forgetting is not a major issue in this experiment, as illustrated by similar TGiven-During and TGiven-
Final scores across methods. Only prior-focused approaches seem slightly affected by forgetting
and sometimes exhibit a slight drop in TGiven-Final accuracies, which however stay above 96% for
all methods and architectures. Much wider variations can be observed in the task-agnostic setting
where task identity needs to be inferred. Despite the fact that we could improve upon previously
reported results for the PosteriorReplay-Dirac baseline in MLP-400,400 (termed HNET+ENT in von
Oswald et al. [91]), this deterministic solution generally performs worse at inferring task identity
than probabilistic approaches, notably PosteriorReplay-BbB. Interestingly, PosteriorReplay-BbB
consistently outperforms PosteriorReplay-Radial in this experiment by a large extent, which is in
disagreement with the performance gains reported by Farquhar et al. [18] on other datasets. A potential
cause for the differences in performance can be that, as opposed to Farquhar et al. [18], we tempered
the posteriors [92]. This was done because successful training for both PosteriorReplay-Radial and
PosteriorReplay-BbB could only be accomplished when notably reducing the prior influence in the
loss computation. When using implicit posterior distributions via PosteriorReplay-SSGE, performance
gains can be observed over PosteriorReplay-BbB for MLP-400,400 and Lenet main networks. Using
SSGE to learn a single implicit posterior distribution (PriorFocused-SSGE-multihead) leads however
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Table S5: Accuracies of SplitMNIST experiments when using an MLP-400,400 (Mean ± SEM in %,
n = 10). Column TInfer-Final represents final accuracies when task identity is inferred with the Ent
criterion, if applicable. Otherwise this column is used to report results of methods that learn a shared
softmax across all tasks. Results denoted with a * are taken from van de Ven and Tolias [87] and those
denoted with a ** are taken from von Oswald et al. [91]. SI stands for synaptic intelligence [96], and
DGR for deep generative replay Shin et al. [80]. HNET+TIR and HNET+R are CL methods based
on hypernetwork-protected replay proposed in von Oswald et al. [91]. PR refers to PosteriorReplay,
PF to PriorFocused methods and SP to SeparatePosteriors.

TGiven-During TGiven-Final TInfer-Final TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 99.65 ± 0.02 99.65 ± 0.01 70.88 ± 0.61 56.56 ± 0.64 N/A
PR-BbB 99.73 ± 0.01 99.72 ± 0.02 71.73 ± 0.87 67.42 ± 0.68 71.73 ± 0.85
PR-Radial 99.64 ± 0.01 99.64 ± 0.01 66.01 ± 0.92 61.56 ± 0.38 66.22 ± 0.93
PR-SSGE 99.78 ± 0.01 99.77 ± 0.01 71.91 ± 0.79 55.15 ± 0.67 71.43 ± 0.77
EWC-growing N/A N/A 27.32 ± 0.60 N/A N/A
EWC-shared N/A N/A 30.21 ± 0.52 N/A N/A
EWC-multihead 99.70 ± 0.01 96.40 ± 0.62 47.67 ± 1.52 47.67 ± 1.52 47.52 ± 1.48
VCL-multihead 96.66 ± 0.19 96.45 ± 0.13 58.84 ± 0.64 58.84 ± 0.64 56.54 ± 0.94
PF-SSGE-multihead 99.79 ± 0.01 99.02 ± 0.16 62.70 ± 1.32 61.62 ± 1.31 62.76 ± 1.31

PR-Dirac-SR 99.65 ± 0.01 99.64 ± 0.01 71.34 ± 0.49 58.05 ± 0.35 N/A
PR-BbB-SR 99.73 ± 0.02 99.73 ± 0.02 72.38 ± 0.77 66.50 ± 0.76 72.39 ± 0.77

PR-BbB-BW 99.73 ± 0.01 99.72 ± 0.02 99.72 ± 0.02 99.72 ± 0.02 99.72 ± 0.02
PR-BbB-CS 99.34 ± 0.05 98.50 ± 0.09 90.83 ± 0.24 90.83 ± 0.24 59.74 ± 0.59

SP-Dirac N/A 99.77 ± 0.01 70.39 ± 0.27 63.69 ± 0.10 N/A
SP-BbB N/A 99.81 ± 0.00 68.40 ± 0.23 63.37 ± 0.85 68.37 ± 0.24
SP-SSGE N/A 99.76 ± 0.04 71.53 ± 1.34 68.50 ± 0.99 71.36 ± 1.31

SP-TC-Dirac N/A 99.79 ± 0.02 71.84 ± 0.49 50.69 ± 1.23 N/A
SP-TC-BbB N/A 99.77 ± 0.01 72.74 ± 0.45 72.87 ± 0.57 72.79 ± 0.45

Exp-Replay N/A N/A 88.85 ± 0.39 N/A N/A

EWC-growing* N/A N/A 19.96 ± 0.07 N/A N/A
SI-growing* N/A N/A 19.99 ± 0.06 N/A N/A
DGR* N/A N/A 91.79 ± 0.32 N/A N/A
PR-Dirac** N/A N/A 69.48 ± 0.80 N/A N/A
HNET+TIR** N/A N/A 89.59 ± 0.59 N/A N/A
HNET+R** N/A N/A 95.30 ± 0.13 N/A N/A

to a significant drop in performance across architectures, which highlights the potential of a system
that learns task-specific posteriors. Yet, compared to prior-focused approaches that do not use implicit
distributions, PriorFocused-SSGE-multihead generally performs better, illustrating that more flexible
posterior approximations can lead to improved performance when trade-off solutions need to be
found.

When applied with a growing (EWC-growing) or shared softmax (EWC-shared), EWC leads to
very poor results in all architectures, even though we manage to considerably improve upon the
existing EWC-growing* baseline. The use of a multihead significantly improves performance, but
even in this case the performance of EWC remains well below other PriorFocused methods such as
VCL-multihead. A potential cause is the post-hoc construction of the posterior in EWC, as noted in
SM D.2.

Note that, if task inference performance is above chance-level for individual inputs, it can be improved
as a simple statistical effect by looking at multiple samples belonging to the same task. Indeed, in
all three architectures, we observe that performance in a task-agnostic setting can be dramatically
improved when task inference is performed on a set of 100 samples rather than individual ones.
Task inference becomes perfect in all three architectures, leading to identical TGiven-Final and
TInfer-Final accuracies. Even though we only report results for BbB (PosteriorReplay-BbB-BW),
all methods equally benefit from such aggregated task inference. An additional way to considerably
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Table S6: Accuracies of SplitMNIST experiments when using a Lenet (Mean ± SEM in %, n =
10). Column TInfer-Final represents final accuracies when task identity is inferred with the Ent
criterion, if applicable. Otherwise this column is used to report results of methods that learn a shared
softmax across all tasks. PR refers to PosteriorReplay, PF to PriorFocused methods and SP to
SeparatePosteriors.

TGiven-During TGiven-Final TInfer-Final TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 99.92 ± 0.01 99.87 ± 0.04 72.33 ± 2.75 57.22 ± 3.25 N/A
PR-BbB 98.96 ± 0.90 99.20 ± 0.67 74.09 ± 1.38 67.39 ± 1.39 74.13 ± 1.33
PR-Radial 99.85 ± 0.03 99.78 ± 0.05 68.99 ± 2.06 64.63 ± 2.79 69.41 ± 2.12
PR-SSGE 99.89 ± 0.01 99.89 ± 0.01 77.56 ± 1.01 57.29 ± 1.89 77.55 ± 1.02
EWC-growing N/A N/A 27.62 ± 0.55 N/A N/A
EWC-shared N/A N/A 26.01 ± 1.02 N/A N/A
EWC-multihead 98.09 ± 0.75 97.17 ± 0.54 49.78 ± 2.20 49.77 ± 2.20 49.85 ± 2.11
VCL-multihead 98.03 ± 0.07 97.43 ± 0.12 63.05 ± 0.63 63.05 ± 0.63 62.24 ± 0.73
PF-SSGE-multihead 99.94 ± 0.00 99.37 ± 0.10 74.18 ± 1.00 38.15 ± 0.90 74.12 ± 1.01

PR-BbB-BW 98.96 ± 0.90 99.20 ± 0.67 99.20 ± 0.67 99.20 ± 0.67 99.20 ± 0.67
PR-BbB-CS 99.76 ± 0.02 99.62 ± 0.02 95.73 ± 0.05 95.73 ± 0.05 60.69 ± 1.13

SP-Dirac N/A 99.92 ± 0.00 85.50 ± 0.28 70.98 ± 0.34 N/A
SP-BbB N/A 99.93 ± 0.00 85.52 ± 0.45 71.22 ± 1.41 85.47 ± 0.45

SP-TC-Dirac N/A 99.91 ± 0.00 82.85 ± 0.60 55.38 ± 0.25 N/A
SP-TC-BbB N/A 99.92 ± 0.00 84.16 ± 0.42 84.06 ± 0.41 84.04 ± 0.38

improve task inference performance is the use of coresets in a fine-tuning stage at the end of training
(CS). This approach leads to results that are comparable to prior work based on generative replay
(e.g., DGR*, HNET+TIR**). Although this approach leads to lower performance than the use of
batches for inferring the task, the use of coresets does not rely on the assumption that a set of samples
belongs to the same task, and when such an assumption is plausible both tricks can be simultaneously
used to further boost performance.

The relative behavior of the three criteria for quantifying uncertainty is also stable across architectures.
Ent and Agree generally lead to very similar results, while Conf often performs worse, except for
EWC-multihead and VCL-multihead, where all three approaches behave similarly. Interestingly,
when using coresets to facilitate task inference, OOD data becomes in-distribution, and hinders the
ability of the Agree criterion to infer task identity, as shown by our TInfer-Final (Agree) results for
PosteriorReplay-BbB-CS.

Training separate posteriors per task (SeparatePosteriors) controls for the influence of the shared
system on performance and uncertainty-based task inference. Our results for MLP-400,400 indicate
that the CL performance of PosteriorReplay-Dirac and PosteriorReplay-SSGE is very close to
what is achieved when a different model can be allocated per task. To our surprise, however, BbB
exhibits lower performance when used to learn independent posteriors (SeparatePosteriors-BbB),
than when used in a CL setting (PosteriorReplay-BbB). Since PosteriorReplay-SSGE does not
exhibit the same trend, the cause is likely not rooted in Bayesian inference for this model class,
but rather in the particular approximation used. Interestingly, the SeparatePosteriors performance
achieved in the deterministic case and with BbB (SeparatePosteriors-Dirac, SeparatePosteriors-BbB)
improves marginally when the parameters of the approximate posteriors are not learned directly,
but generated by a hypernetwork (SeparatePosteriors-TC-Dirac, SeparatePosteriors-TC-BbB). The
results are somewhat different for a Lenet, where learning separate posteriors leads to a much larger
performance improvement in SeparatePosteriors-Dirac and SeparatePosteriors-BbB compared to the
PosteriorReplay setting. In this case, however, the use of a hypernetwork to generate main network
weights does not lead to increased SeparatePosteriors performance, highlighting the complicated
influence of the architectural setup on uncertainty, and therefore task inference.

For the MLP-400,400 we provide PosteriorReplay results for the case where, in each update, the
CL regularization is only applied to a subset of tasks chosen randomly, denoted as stochastic
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Table S7: Accuracies of SplitMNIST experiments when using an MLP-400,400 (Mean ± SEM in %,
n = 10) using the KU task-inference criterion.

TInfer-Final (KU)

PR-BbB 46.53 ± 1.04
PR-SSGE 53.68 ± 0.43

PR-BbB-CS 42.86 ± 1.31

regularization (SR).9 Thus, the regularization cost does not increase with the number of tasks. For
both PosteriorReplay-Dirac-SR and PosteriorReplay-BbB-SR, the TGiven-Final accuracies are almost
identical to the runs with the full regularizations. But interestingly enough, in a task-agnostic setting,
the stochastic regularization leads to better TInfer-Final accuracies in both methods. We hypothesize
that the reason for this performance increase might be related to the reason why stochastic gradient
descent performs in practice better than gradient descent. Specifically, this stochastic regularization
may make it easier to escape local minima. Overall, this shows that a stochastic CL regularization of
the hypernetwork outputs not only allows to considerably reduce computation, but can also lead to
improved results.

When comparing the behavior of individual methods for different architectures, we generally observe
improved uncertainty-based task inference with increasing main network complexity (i.e., the results
obtained for MLP-100,100 are generally worse than for MLP-400,400, which in turn are worse
than for Lenet). This is especially noticeable for PosteriorReplay-Dirac, PosteriorReplay-SSGE,
VCL-multihead and PriorFocused-SSGE-multihead, whereas the performance of EWC-multihead
in all three considered settings is similar. We speculate that improved performance in increasingly
complex architectures is due to differences in the resulting inductive biases [93]. For example,
compared to an MLP, a convolutional architecture such as Lenet is supposed to have a much better
inductive bias towards data with local structure (e.g., SplitMNIST), and might therefore be better
suited for detecting whether an image belongs to a certain task or not.

For the MLP-400,400 we provide TInfer-Final results using the KU criterion described in SM C.6.
Results can be found in Table S7. Perhaps surprisingly, we observe that this uncertainty estimate
leads to quite poor task-inference results, even lower than the confidence criterion (Conf ), suggesting
that epistemic uncertainty is not properly captured by this metric on OOD data. We also tested
this criterion with our coreset method (PR-BbB-CS), which explicitly calibrates for high aleatoric
uncertainty in the data that was originally OOD (i.e., other tasks) and therefore causes the OOD
data to become in-distribution (cf. SM C.7). Thus, if on in-distribution data aleatoric uncertainty is
properly discounted by the proposed uncertainty estimate, poor task-inference can be expected. We
indeed observe this in our new results (the task-agnostic performance obtained with this estimate is
very low, i.e. 42% vs. 90% for Ent or 60% for Agree).

D.4 PermutedMNIST-10

In this section, we consider the PermutedMNIST benchmark [20], another adaptation of MNIST to
CL, where different tasks are obtained by applying, for each task, a different pixel permutation to
the input digits. The results of learning ten different tasks with an MLP with two hidden layers of
100 neurons (MLP-100,100) are presented in Table S8, and with an MLP with two hidden layers of
1000 neurons (MLP-1000,1000) in Table S9. Note that, for compatibility with previous literature
[87, 91], the experiments with the MLP-1000,1000 are done by padding the original MNIST images
with zeros before applying the permutation, which results in inputs of size 32 × 32 instead of the
original 28× 28 dimensions.

In the MLP-100,100 experiments (Table S8), catastrophic forgetting is successfully prevented by all
PosteriorReplay methods, as indicated by the similar performance in TGiven-During and TGiven-
Final accuracies. Note, that if no explicit CL strategy is applied as in Fine-Tuning, severe catastrophic
interference can be observed for this small network architecture. In a setting where task iden-

9The results reported here have been obtained by selecting one task embedding at random for regularization
at each iteration.
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Table S8: Accuracies of PermutedMNIST-10 experiments when using an MLP-100,100 (Mean ±
SEM in %, n = 10). PR refers to PosteriorReplay.

TGiven-During TGiven-Final TInfer-Final
(Ent)

TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 95.70 ± 0.03 95.05 ± 0.04 75.84 ± 0.51 75.14 ± 0.50 N/A
PR-BbB 95.44 ± 0.04 94.35 ± 0.06 89.90 ± 0.33 88.38 ± 0.33 70.52 ± 0.86
PR-Radial 94.31 ± 0.03 94.30 ± 0.03 81.78 ± 0.36 79.87 ± 0.33 76.73 ± 0.45
PR-SSGE 93.58 ± 0.10 92.88 ± 0.10 78.94 ± 0.73 77.43 ± 0.73 68.93 ± 0.88

Fine-Tuning 97.44 ± 0.01 47.89 ± 0.46 N/A N/A N/A

Table S9: Accuracies of PermutedMNIST-10 experiments when using an MLP-1000,1000 (Mean ±
SEM in %, n = 10). Column TInfer-Final represents final accuracies when task identity is inferred
with the Ent criterion, if applicable. Otherwise this column is used to report results of methods
that learn a shared softmax across all tasks. Results denoted with * are taken from van de Ven and
Tolias [87] and those denoted with ** are taken from von Oswald et al. [91]. SI stands for synaptic
intelligence [96], and DGR for deep generative replay Shin et al. [80]. HNET+TIR and HNET+R are
CL methods based on hypernetwork-protected replay proposed in von Oswald et al. [91]. PR refers
to PosteriorReplay.

TGiven-During TGiven-Final TInfer-Final TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac 96.78 ± 0.03 96.73 ± 0.03 94.15 ± 0.18 93.41 ± 0.16 N/A
PR-BbB 96.33 ± 0.02 96.21 ± 0.03 96.14 ± 0.03 95.86 ± 0.05 85.92 ± 0.32
PR-Radial 97.19 ± 0.02 97.19 ± 0.02 92.92 ± 0.20 92.68 ± 0.19 92.26 ± 0.19
PR-SSGE 97.57 ± 0.02 97.39 ± 0.02 93.58 ± 0.13 93.39 ± 0.12 93.02 ± 0.10
EWC-multihead 96.87 ± 0.02 94.73 ± 0.11 81.12 ± 0.62 79.32 ± 0.59 79.46 ± 0.57
VCL-multihead 95.15 ± 0.02 89.72 ± 0.24 85.40 ± 0.49 81.66 ± 0.56 79.80 ± 0.86

Fine-Tuning 98.13 ± 0.01 90.08 ± 0.45 N/A N/A N/A

EWC-growing* N/A N/A 33.88 ± 0.49 N/A N/A
SI-growing* N/A N/A 29.31 ± 0.62 N/A N/A
DGR* N/A N/A 96.38 ± 0.03 N/A N/A
PR-Dirac** N/A N/A 91.75 ± 0.21 N/A N/A
HNET+TIR** N/A N/A 97.59 ± 0.01 N/A N/A
HNET+R** N/A N/A 97.76 ± 0.76 N/A N/A

tity is given (TGiven), all methods perform similarly, except for PosteriorReplay-SSGE which
exhibits slightly lower performance. However, whenever task identity needs to be inferred, all three
probabilistic methods outperform PosteriorReplay-Dirac, highlighting the advantages of using a
Bayesian approach for inferring task identity via predictive uncertainty. In agreement with our
SplitMNIST results, PosteriorReplay-BbB performs considerably better than PosteriorReplay-Radial.
PosteriorReplay-SSGE, despite using more flexible implicit distributions, performs poorly compared
to PosteriorReplay-BbB. Note that, here, individual tasks are more difficult than in SplitMNIST,
and a method as complex as SSGE might be disproportionately affected by an increase in task
difficulty. As opposed to our SplitMNIST results, when comparing different methods to quantify
uncertainty for task inference one can observe that Ent systematically yields the best results, closely
followed by Conf. However, when applicable, accuracies based on the Agree criterion lead to lower
performance. A potential reason could be that all employed approximate inference methods lead to
poor approximations that do not capture the space of admissible solutions well.

Similar trends can be observed for the MLP-1000,1000 (Table S9). Catastrophic forgetting only
seems to be an issue for the prior-focused methods EWC-multihead and VCL-multihead. Interest-
ingly, the Fine-Tuning baseline shows that, despite not adopting any strategy for CL, catastrophic
interference is also not very severe due to the capacity of this large network. We could not find viable
hyperparameter configurations for an implicit prior-focused method, i.e., PriorFocused-SSGE, and
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therefore do not report results for this method. The deterministic solution PosteriorReplay-Dirac
performs surprisingly well, specially in a task-agnostic setting (TInfer-Final in the Table), for which
we significantly improve upon the previous baseline (PosteriorReplay-Dirac**), and that is only out-
performed by PosteriorReplay-BbB and methods based on replay. Interestingly, despite having similar
performance when task identity is given (especially EWC-multihead), PriorFocused approaches
perform considerably worse than PosteriorReplay approaches whenever task identity needs to be
inferred. The performance we obtain for EWC-multihead in a task-agnostic setting is, however, vastly
superior to that reported by prior work (EWC-growing* and SI-growing*), highlighting the benefits
of using a multihead architecture in prior-focused CL. Again, when task identity needs to be inferred,
Ent results in the best performance, but as opposed to the MLP-100,100 case, Agree often leads to
comparable results. While results reported by prior work when using generative replay methods
(DGR, HNET+TIR and HNET+R) perform best, the gap with PosteriorReplay-BbB, which does not
use generative models, is small.

When comparing the results obtained with both architectures, as expected, performance is slightly
higher for the larger MLP when task identity is given. This gap in performance is much more
noticeable when task identity needs to be inferred. However, this could also be explained by the fact
that for the larger MLP, the dimensionality of the input images is considerably larger due to padding,
which might render task inference easier.

D.5 PermutedMNIST-100

To study whether our posterior meta-replay approach scales to longer task sequences, we also
experimented with PosteriorReplay-BbB in PermutedMNIST with 100 tasks. Results for an MLP-
1000,1000 are reported in Table S10. The results are obtained using the stochastic regularization SR
in order to avoid a linear runtime increase with the number of tasks.

Table S10: Accuracies of PermutedMNIST-100 experiments when using an MLP-1000,1000 (Mean
± SEM in %, n = 5). PR refers to PosteriorReplay.

TGiven-During TGiven-Final TInfer-Final
(Ent)

TInfer-Final
(Conf)

TInfer-Final
(Agree)

PR-Dirac-SR 96.73 ± 0.02 95.90 ± 0.06 70.08 ± 0.52 69.82 ± 0.51 N/A
PR-BbB-SR 96.92 ± 0.05 96.84 ± 0.05 85.84 ± 0.31 84.35 ± 0.31 81.33 ± 0.52

We observe that, even though task inference becomes considerably more difficult (as shown by lower
TInfer-Final compared to PermutedMNIST-10), accuracy when task identity is provided is high.
For the considered methods almost no forgetting occurs despite the large number of tasks (similar
TGiven-During and TGiven-Final). Notably, we see a substantially better task inference performance
of PosteriorReplay-BbB compared to PosteriorReplay-Dirac, emphasizing the importance of using
principled uncertainties. The same experiment was conducted in von Oswald et al. [91], also
considering a task-agnostic inference setting (termed CL3, cf. Fig. A4b in von Oswald et al. [91]).
They observe that common replay methods such as DGR [80] drop to chance level because the
underlying generative model is retrained on its own data, causing a drift that accumulates over
many tasks. Only the proposed method HNET+R performs well with TInfer-Final 96.00 ± 0.03.
This method is based on task-conditioned replay models that are regularized via Eq. 4. While this
performance may appear vastly superior to the performance of PosteriorReplay, it should be noted
that the underlying MNIST data can be easily learned with simple generative models. In general,
however, the generative task of learning p(X) is more difficult than the discriminative one p(Y | X),
which is why we hypothesize the performance gap will shrink or even reverse for more complicated
input data (e.g., natural images). However, investigating this question by scaling generative models
to natural images is beyond the scope of this study.

D.6 SplitCIFAR-10

Our results from the SplitCIFAR-10 experiment (cf. Sec. 4.4) conducted with a Resnet-32 as main
network [23] are reported in Table S11. We use batch normalization in all convolutional layers.
The batch normalization weights are part of the trainable weights captured by the WG system. The
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Table S11: Accuracies of SplitCIFAR-10 experiments on a Resnet-32 (Mean ± SEM in %, n = 10).
PR refers to PosteriorReplay and SP to SeparatePosteriors.

TGiven-During TGiven-Final TInfer-Final TInfer-Final (Conf) TInfer-Final (Agree)

PR-Dirac 94.59 ± 0.10 93.77 ± 0.31 54.83 ± 0.79 54.83 ± 0.79 N/A
PR-BbB 95.59 ± 0.08 95.43 ± 0.11 61.90 ± 0.66 61.90 ± 0.64 61.36 ± 0.71
PR-Radial 94.82 ± 0.12 94.67 ± 0.15 52.89 ± 1.19 52.89 ± 1.19 50.92 ± 1.50
PR-SSGE 94.25 ± 0.07 92.83 ± 0.16 51.95 ± 0.53 51.93 ± 0.52 51.81 ± 0.48

PR-BbB-BW 95.59 ± 0.08 95.43 ± 0.11 92.94 ± 1.04 91.34 ± 1.45 93.57 ± 0.83
PR-BbB-CS 95.15 ± 0.11 92.48 ± 0.13 64.76 ± 0.34 64.76 ± 0.34 41.21 ± 0.85

SP-Dirac N/A 95.42 ± 0.13 58.67 ± 0.94 58.62 ± 0.93 N/A
SP-BbB N/A 96.06 ± 0.06 61.35 ± 0.91 61.36 ± 0.91 59.24 ± 1.05

EWC-growing N/A N/A 20.40 ± 0.95 N/A N/A
VCL-growing N/A N/A 19.84 ± 0.53 N/A N/A
VCL-multihead 95.78 ± 0.09 61.09 ± 0.54 15.97 ± 1.91 15.86 ± 1.90 15.86 ± 1.88

EWC-Dirac 82.50 ± 0.27 82.50 ± 0.26 25.46 ± 0.52 25.46 ± 0.52 –

Exp-Replay N/A N/A 41.38 ± 2.80 N/A N/A

Fine-Tuning 96.59 ± 0.03 60.25 ± 0.77 N/A N/A N/A

batchnorm statistics are checkpointed and stored at the end of training for each task. Specifically, in
the final model, each task embedding has an associated set of batchnorm statistics that will be loaded
into the main network when the task embedding is selected.

In this experiment, PosteriorReplay-BbB performs best, followed by PosteriorReplay-Dirac. As for
PermutedMNIST, PosteriorReplay-SSGE struggles, potentially due to the increased task difficulty.
All three task inference criteria perform similarly, with Ent usually leading to the best results. The
Fine-Tuning baseline reveals that PosteriorReplay methods slightly suffer from a stability-plasticity
dilemma, and the use of a shared meta-model seems to affect TGiven-During accuracies. Also here
we see that when using batches of samples for task inference as in PosteriorReplay-BbB-BW, one
can almost match task-given (TGiven) and task-inferred (TInfer) scores. Note, that this is just a
statistical accumulation effect based on the fact that we choose the correct task identity for individual
sample points above chance level, and therefore the improvements due to batch-wise inference are
not directly linked to the task-difficulty. We also observe improvements in TInfer-Final (Ent) when
fine-tuning on coresets (PosteriorReplay-BbB-CS). However, these improvements are not as large
as for SplitMNIST (cf. Table S5). In addition, the small coresets interfere with the TGiven-Final
accuracy, suggesting that this coreset size is not sufficient to capture the richness and diversity of the
data from a task.

VCL-multihead performs poorly in this benchmark. The correct task identity is chosen below chance
level, which indicates that inducing task-specific uncertainty through the output head only is not
sufficient for this challenging benchmark. We also experimented with EWC-multihead but observed
instabilities similar to those reported in SM D.2. In particular, some weights had very low Fisher
values, which led to high variance in the predictions made by the post-hoc constructed posterior, even
in-distribution. We therefore consider a heuristic modification of EWC-multihead, where the proper
post-hoc posterior construction is omitted (cf. Eq. 38), and a Dirac posterior based on the current
MAP solution is used, called EWC-Dirac. In this case, there is still task-specific aleatoric uncertainty
(similar to PosteriorReplay-Dirac), but no epistemic uncertainty and therewith no instability issues
arising from the posterior construction using the EWC importance values. In the growing softmax
baselines, EWC-growing and VCL-growing, only instances from the last task are correctly classified.

As consistently observed in all our experiments, PosteriorReplay-Radial underperforms
PosteriorReplay-BbB. While this is in disagreement with the superior performance obtained with
radial posteriors in [18], their results were obtained for a medical dataset, and are therefore not
comparable to the experiments that we consider. We leave it open for future work to investigate under
which scenarios PosteriorReplay-Radial might be a useful replacement for PosteriorReplay-BbB.
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Table S12: Accuracies of SplitCIFAR-10 experiments on a WRN-28-10 (Mean ± SEM in %, n = 5).
PR refers to PosteriorReplay and SR denotes StochasticRegularization on a subset of randomly
selected past tasks.

TGiven-During TGiven-Final TInfer-Final (Ent) TInfer-Final (Conf) TInfer-Final (Agree)

PR-Dirac-SR 96.23 ± 0.12 95.75 ± 0.20 57.50 ± 2.42 54.09 ± 2.43 N/A
PR-BbB-SR 93.77 ± 0.51 92.24 ± 0.93 50.23 ± 3.96 50.20 ± 3.96 49.95 ± 3.68

To study whether the posterior meta-replay approach can scale to even more complex architectures,
we also performed SplitCIFAR-10 experiments with a Wide Resnet [95] (WRN-28-10) containing a
total of 36.5 million weights. The results for PosteriorReplay-Dirac and PosteriorReplay-BbB are
shown in Table S12. Here, the trend starts to reverse and even the mean-field BNN PosteriorReplay-
BbB starts to encounter scalability issues. We hypothesize that these scalability issues can be mitigated
by a more carefully chosen prior, e.g., a mean-field prior that adapts the variance of each weight by
the layer’s fan-in to counteract exploding or vanishing activations as they are particularly harmful in
wide architectures. We again use stochastic regularization (SR) to showcase that even for these very
complex models the full regularization as described by Eq. 1 is not necessary.

Results reported in related work. We are aware of several papers that considered SplitCIFAR-10
to benchmark CL algorithms under varying experimental conditions (such as the used architecture).
The purpose of this paragraph is to give a brief overview over previously reported results, while
appealing to the reader’s experience for comparing numbers obtained under such varying conditions.
For instance, Li et al. [50] consider a class-incremental scenario [87] and report results consistent
with ours for a variety of well established regularization approaches such as EWC-growing. Best
results in this study are achieved when using large random coresets (size 1000), which still perform
below 45% TInfer-Final. Aljundi et al. [2] propose an approach for building coresets with which
they obtain 49% accuracy for an overall coreset size of 1000. Also Mundt et al. [63] studies several
approaches for coreset selection considering various coreset sizes, e.g., they report 53% TInfer-Final
for a coreset of size 1500. De Lange and Tuytelaars [12] use nearest neighbor-based prediction on a
set of continually evolving prototypes, obtaining up to 49% Final accuracy. In addition, some papers
study this benchmark in a domain-incremental setting [87]. In this case, the overall problem is a
binary classification, where objects with labels 0,2,4,6,8 belong to the negative class and objects
with labels 1,3,5,7,9 belong to the positive class. Since in a class-incremental setting the inputs
additionally need to be assigned to the correct task, the domain-incremental setting is simpler. Our
framework can be readily adapted to the domain-incremental evaluation setting by changing the way
the accuracy is computed. Specifically, our TInfer-Final accuracies necessarily become higher in the
domain-incremental setting since, even if the incorrect output head has been chosen, there is still a
50% chance that the correct binary class is predicted. In this domain-incremental setting, Borsos
et al. [7] provide a careful comparison of coreset methods, where all reported domain-incremental
accuracies are below 40%. Chen et al. [10] propose Discriminative Representation Loss, a CL method
based on decreasing gradient diversity, and report a Final accuracy of 40% when training in an
online fashion (i.e., training the model with a single epoch on the training data). Finally, we would
like to mention the work of Prabhu et al. [74], which proposes GDumb where models are trained
from scratch on stored coresets. While this method is not trained on non-i.i.d. data, and thus not
strictly comparable to a CL method, it provides a simple baseline whose performance questions the
effectiveness of all modern CL methods. For instance, they achieve 61.3% TInfer-Final by training
on only 1000 samples from CIFAR-10.

D.7 SplitCIFAR-100

We conducted additional experiments on the more challenging SplitCIFAR-100 benchmark, which
considers the CIFAR-100 dataset split into 10 tasks of 10 classes each. The results of this experiment
conducted with a Resnet-18 as main network [23] (where the first layer has only a kernel size of 3
with stride 1 and the max-pooling is dropped as in Verma et al. [90]) are reported in Table S13.

We again see a minor improvement in performance when using PosteriorReplay-BbB compared to
PosteriorReplay-Dirac. Interestingly, the trend is reversed when considering the SeparatePosteriors
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Table S13: Accuracies of SplitCIFAR-100 experiments on a Resnet-18 (Mean ± SEM in %, n = 10).
PR refers to PosteriorReplay and SP to SeparatePosteriors.

TGiven-During TGiven-Final TInfer-Final (Ent) TInfer-Final (Conf) TInfer-Final (Agree)

PR-DIRAC 85.25 ± 0.34 85.16 ± 0.34 40.35 ± 0.37 39.69 ± 0.35 N/A
PR-BBB 84.97 ± 0.17 84.78 ± 0.19 42.36 ± 0.26 42.00 ± 0.23 41.78 ± 0.25

PR-DIRAC-SR 84.56 ± 0.12 84.57 ± 0.12 40.68 ± 0.09 39.46 ± 0.08 N/A
PR-BBB-SR 86.68 ± 0.09 86.56 ± 0.10 45.22 ± 0.18 44.55 ± 0.21 44.77 ± 0.19

SP-DIRAC N/A 89.52 ± 0.05 50.80 ± 0.16 47.79 ± 0.15 N/A
SP-BBB N/A 82.73 ± 0.10 38.86 ± 0.19 38.52 ± 0.20 38.57 ± 0.20

EWC-DIRAC 66.86 ± 0.25 66.83 ± 0.24 16.96 ± 0.19 17.46 ± 0.18 N/A

FINE-TUNING 91.10 ± 0.05 24.97 ± 0.47 0.98 ± 0.01 0.99 ± 0.01 N/A

baseline. We hypothesize that this result is due to optimization difficulties. In SeparatePosteriors-
BbB, one has to train ten approximate posterior distributions independently per hyperparameter
configuration. For most hyperparameter configurations that were tested, some of these ten posterior
approximations failed in solving the respective task. In contrast, for PosteriorReplay-BbB we observed
that all tasks were successfully learned if the first task could be learned (due to transfer in the meta-
model). To optimally boost the performance among considered prior-focused methods, we again
considered EWC-Dirac (SM D.6), which performs far worse than PosteriorReplay methods.

An overview on how other continual learning methods perform on this benchmark can be found in
concurrent studies [89, 90], where EFT exhibits very similar performance to our method. Note, the
results in van de Ven et al. [89] are based on pretrained models and thus not directly comparable.
Another recent study that considers this benchmark and evaluates the effect of coresets on common
class-incremental methods is Masana et al. [60].

D.8 Task boundary detection during training

So far, we assumed that task identity is known during training. To overcome this constraint, methods
for task boundary detection can be used, and the use of uncertainty for this purpose was already
proposed by Farquhar and Gal [16].

Here we analyze, for PermutedMNIST, the feasibility of task boundary detection based on the
uncertainty computed on a training batch, and compare it to using the loss as a boundary indicator.
We consider the entropy of the predictive distribution as uncertainty measure (Ent). In both cases,
the transitions to new tasks can be detected based on peaks in the evolution of the signals. The
criterion for boundary detection can be implemented as a simple threshold crossing. As both loss and
uncertainty will stay high in the initial phase of training on a new task, the detection algorithm is
paused for a grace period after a detected transition. Furthermore, to improve detection stability, loss
and uncertainty can be considered over a window of several training iterations.

To compare how useful loss and uncertainty values are for detecting task boundaries, we analyze the
sensitivity of the two approaches to the choice of the detection threshold when using a grace period
of 1000 iterations and a detection window of 10 iterations (Fig. S8). The threshold value that detects
task boundaries without errors is bounded from above by the minimum of the values at actual task
boundaries (such that all boundaries are detected), and from below by the maximum value outside
of task boundary periods (such that false positives are avoided). While perfect boundary detection
is possible with both signals, we found that the range of viable thresholds is much larger for the
uncertainty signal (65.80% of the signal range) than for the loss signal (14.11% of the signal range).

These results suggest that task boundary detection based on an uncertainty measure might be a
more robust way to detect task boundaries during training than a loss criterion. Interestingly, using
uncertainty for task boundary detection does not require access to labelled data, as opposed to a
loss-based criterion. However, an uncertainty criterion relies on the assumption that input distributions
of subsequent tasks are sufficiently distinct, which might not always be case. Crucially, both of these
simple threshold criteria assume some sort of continuity for the training of individual tasks.
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Figure S8: Task boundary detection in PermutedMNIST-10. Evolution of (a) the loss and (b) batch
uncertainty when training tasks for 5000 iterations. The detection threshold of a potential task
boundary detection system is bounded by the minimum (red) and maximum (black) values over
10 runs. The gray area indicates the range in which a threshold would successfully detect all task
boundaries without causing false positives or false negatives.

E Experimental Details

In this section, we provide detailed descriptions of the two low-dimensional problems considered
in this paper, and explain how hyperparameter configurations were chosen for all methods and
experiments. The exact hyperparameter choice of all reported experiments can be found in the code
repository accompanying the paper, which also contains the instructions to reproduce all results.

E.1 1D Polynomial Regression Dataset

The 1D polynomial regression dataset consists of three tasks, each defined by a different ground-truth
function g(t)(x) that operates on a specific input domain p(t)(X):

g(1)(x) = (x+ 3)3 p(1)(X) = U(−4,−2) (49)

g(2)(x) = 2x2 − 1 p(2)(X) = U(−1, 1)

g(3)(x) = (x− 3)3 p(3)(X) = U(2, 4)

where U(a, b) denotes a continuous uniform distribution between the bounds a and b. Note that input
domains are non-overlapping, and therefore task identity can be inferred by looking at the inputs
alone.

Twenty noisy training samples are collected from each of these polynomials according to {(x, y) |
y = g(t)(x) + ε with ε ∼ N (0, σ2), x ∼ p(t)(X)}. We set σ = 0.05 in this experiment. We also
scale the NLL properly using σll = 0.05 (cf. Eq. 9) to circumvent model misspecification when
testing Bayesian approaches.

E.2 2D Mode Classification Dataset

The 2D mode classification experiment is comprised of three binary classification tasks. The 2D
inputs x are sampled from a Gaussian mixture model with six modes and uniform mixing coefficients:

p(X) =

6∑
t=1

1

6
N (X;µ(t),Σ(t)) (50)

We set Σ(t) = (0.2)2I for t ∈ {1, .., 6} and equidistantly locate the modes in a circle of radius five
around the origin. Specifically, the angular position of each mode was determined by α(t) = t−0.5

6 2π,
and the corresponding Cartesian coordinates by: µ(t) = [5 sin(α(t)), 5 cos(α(t))]T . The dataset
contains 10 training samples per mode, i.e., 20 training samples per task.
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Table S14: Hyperparameter values scanned across methods in our basic search. Note that these values
were subsequently further tuned for each method and experiment. BNNs refer to all probabilistic
methods (i.e. all considered methods except PosteriorReplay-Dirac). PR refers to all PosteriorReplay
methods, which therefore require a TC network. Implicit refers to all methods using implicit posterior
approximations, which therefore require a WG network.

Methods Hyperparameter Searched values

All learning rate 1e-5, 1e-4, 1e-3, 1e-2
batch size Nmb 32, 64, 128
clip gradient norm None, 100
main network activation function ReLU
optimizer Adam
number of iterations (1D-Regression) 5000, 10000
number of iterations (2D Mode Class.) 2000, 5000
number of iterations (SplitMNIST) 2000, 5000
number of iterations (PermutedMNIST) 5000, 10000
number of epochs (SplitCIFAR-10) 20, 40, 60

BNNs prior variance σ2
prior 1

prior-matching term scaling factor 1e-6, 1e-5, . . . 1e0
(1 for low-dim. experiments)

BNNs (except number of samples for prior-matching term estimation 1, 10, 20
VCL and PR-BbB) number of MC samples for NLL estimation K 1, 10, 20

PR-BbB and VCL CL regularizer MSE, fKL, rKL, W2
local reparametrization trick True (only for MLPs), False

EWC regularization strength 1e-4, 1e-3, . . . , 1e3, 1e4

All PR CL regularizer strength β 1e-3, 1e-2, . . . 1e2, 1e3
TC hidden layers None, 10-10, 50-50, 100-100
TC activation function ReLU, sigmoid
size of task embeddings e(t) 16, 32, 64
initial SD of task embeddings e(t) 0.1, 1
size of TC chunk embeddings c(l) 16, 32, 64
initial SD of TC chunk embeddings c(l) 0.1, 1

All implicit variance σnoise of WG output perturbation None, 1e-2, 1e-1
dimensionality of the latent vector z 8, 16, 32
initial SD of the latent vector z 0.1, 1
WG hidden layers None, 10-10, 50-50, 100-100
WG activation function ReLU, sigmoid
size of WG chunk embeddings c(l) 16, 32, 64
initial SD of WG chunk embeddings c(l) 0.1, 1

AVB batch size K for D training 1, 10
number of D training steps 1, 5
use batch statistics False, True
D hidden layers 10-10, 100-100

SSGE kernel width 0.1, 1
use heuristic kernel width True, Ralse
number of samples S for gradient estimation 10, 20, 50
threshold τ for eigenvalue ratio of eigenvalues J 1, 5, All

PR-BbB-CS number of iterations for fine-tuning stage 2000, 5000
method for OOD uncertainty increase random labels, high entropy targets
prior-matching term scaling factor during fine-tuning 1e-6, . . . , 1e0

Exp-Replay regularization strength 1e-1, 1e0, 1e1, 1e2
coreset batch size 8, 16, 32, 128
fixed mini-batch size for regularizing True, False
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E.3 Hyperparameter selection

To gather the results, we performed extensive hyperparameter searches for all the methods across all
experiments. Unless noted otherwise, we selected the hyperparameter configurations according to the
best final performance in a task-agnostic setting using the Ent criterion. In Table S14 we describe the
basic grid of hyperparameter values used for all methods. Note that we only report the initial search
grid from which a random subset of 100 calls was generated. The results of this initial search were
thoroughly evaluated and the grid was fine-tuned individually for each method and experiment if
parameter choices appeared inappropriate.

Notably, the network architectures differ considerably across methods and across experiments, and the
lists below are not exhaustive. We use chunked hypernetworks (cf. Sec. C.2) with architectures where
the total number of parameters of the TC system is smaller than dim(w), except for low-dimensional
problems where we only experiment with non-compressive MLP hypernetworks. In addition, we
experiment with principled hypernetwork initializations (e.g., cf. Chang et al. [8]), that we adapted
for chunked hypernetworks. However, we do not find a noticeable influence of the initialization on
the training outcome when using the Adam optimizer.

The hyperparameter searches were performed on the ETH Leonhard scientific compute cluster. For
exact configurations of the reported results, please refer to our list of command line calls provided in
the README files of the accompanying code base.

F Further Discussion and Remarks

F.1 On Posterior Meta-Replay as a Bayesian method

Proper Bayesian inference is intractable and approximations are needed in practice, and our approach
is no exception to this. However, we believe posterior meta-replay can be considered a Bayesian
method and outline in this section why.

First of all, just like Online EWC, our method can be derived through a series of approximations
from a probabilistic graphical model, which additionally assumes the existence of discrete tasks and
therefore has as additional variable the task identifier t (a design choice resulting in high performance
gains). The joint can be written as p(t)(x | t)p(W | t)p(y | W,x) with p(x | t) being the task-
specific input distribution and p(y |W,x) being the likelihood. p(W | t) is a Dirac distribution such
that there is one ground-truth model W(t) per task, allowing each task to be represented by a dataset
D(t) drawn i.i.d. from p(x | t)p(y |W(t),x). This setting naturally induces task-specific posteriors
p(W | D(t)) (cf. Fig. 1). To bring this graphical model to a practical CL method, we apply several
approximations. First, the intractable posteriors p(W | D(t)) are approximated by qθ(t)(W) using
variational inference (where we remain flexible regarding the choice of variational family). Second,
as storing separate posteriors is undesirable from a CL perspective, we entangle all posteriors within
a shared hypernetwork, which is trained continually. Third, in the case of task-agnostic inference
(e.g., class-incremental learning), the task identity t has to be explicitly inferred from the current
input x̃, which requires access to the posterior p(t | x̃) = p(x̃|t)p(t)∑

t′ p(x̃|t′)p(t′)
. Since explicit modelling of

p(x̃ | t) is difficult, we heuristically opt for uncertainty-based task inference.

Second, posterior meta-replay solutions can approximate the true posteriors. Indeed, although the
parameters of the TC system influence both the ELBO and the regularization term, the approximate
posterior of the task being currently learned only appears in the ELBO. Therefore our optimization
objective still aims to learn an approximate posterior using a proper lower bound, and if forgetting
of the learned posteriors is prevented, the final per-task solutions correspond to valid posterior
approximations (indendently of which mechanism is used against forgetting). This is the case in
the non-parametric limit (the TC system being a universal function approximator) if the objective
is optimally minimized; in this case the introduction of the hypernetwork does not impose any
constraints compared to the separate posterior view prescribed by the graphical model. Although in
practice the capacity of the TC system is limited and optimization is not perfect, we empirically show
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that the introduced errors only marginally affect performance.10 This is also the reason why we did
not consider more sophisticated forms of regularization (for instance, as outlined in SM F.3) for our
empirical analysis.

Nevertheless, forgetting is happening in practice and our current approach does not allow such forget-
ting to be reflected in uncertainty estimates, which would be an interesting avenue for future research.
Specifically, distributions outputted by the TC system are always assumed to be approximations to the
task-specific posteriors and forgetting can currently only be detected by having access to a withheld
test set for each past task.

F.2 Runtime and storage complexity

A BNN has an intrinsic runtime disadvantage during inference compared to a deterministic network
due to the incorporation of parameter uncertainty. As in practical scenarios the posterior predictive
distribution cannot be analytically evaluated, it has to be approximated via an MC estimate (cf. Eq.
39). Thus, if the MC estimate incorporates K samples from the approximate parameter posterior,
then inference of every input is approximately K times as expensive as for a deterministic model.

Task inference via predictive uncertainty comes into play as an additional factor during inference,
since the predictive distribution has to be estimated for every task in order to chose the prediction
corresponding to lowest uncertainty. Hence, inference time is additionally increased by a factor T .
Note, this is not the case for the considered multihead PriorFocused methods, where in every forward
pass the output of all T heads is computed anyways. Certainly, proper parallelization on modern
graphics hardware can ensure that these extra demands are not noticeably reflected in the actual
runtime.

During training via variational inference, BNNs require an MC estimate of the NLL term (cf. Eq.
3), which also leads to a linear increase for the loss computation compared to the deterministic case.
However, it should be noted that this hyperparameter KNLL (the MC sample size) is often chosen to
be rather small, e.g., KNLL = 1.

Apart from these general remarks, we also would like to comment on method-specific resource
demands.

BbB and Radial posteriors. Both methods are very similar in their implementation as well as their
resource complexity. A notable difference is that an analytic expression for the prior-matching term
is known for BbB when using certain priors, while the training of radial posteriors requires an MC
estimate of the involved cross-entropy term (cf. SM C.3.2). Compared to the deterministic case, the
number of trainable parameters is doubled (a mean and variance per weight) in both cases.

Implicit methods. Implicit methods, such as AVB and SSGE, require an additional neural network
that in combination with the base distribution forms the approximate posterior. The architecture of this
WG network is a hyperparameter. Note, that the choice of architecture has a considerable influence
on runtime and storage complexity. Every sample drawn from such an approximate posterior requires
a forward pass through the WG network.

AVB requires yet another network during training, the discriminator. Also here, the architecture of the
discriminator is a hyperparameter. In every training iteration, the discriminator is optimized inside an
inner-loop for a predefined number of steps. For loss computation, the prior-matching term has to be
evaluated via an MC sample, where forward passes through the discriminator are required.

SSGE requires an eigendecomposition at every training iteration which has cubic runtime complexity
in the number of samples S used for the construction of the kernel matrix (cf. SM 20). Most of our
results were obtained for S = 10 or S = 20.

Posterior meta-replay. To evaluate whether the use of task-conditioned hypernetworks requires
increased computational and memory resources, we evaluated the runtime and memory usage of
several methods in SplitMNIST runs (Table S15). To enable a fair comparison, we used the same set

10We empirically show this through the SP and SP-TC baselines, e.g. Table S5, where all posteriors are trained
separately (i.e., the objective is only the ELBO) such that the influence of the regularizer (SP-TC baseline) or
both the regularizer and TC-system (SP baseline) can be understood.
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of hyperparameters across all methods. Furthermore, in methods requiring an MC estimate of the
NLL or prior-matching term, we run experiments using a single sample, but note that both runtime
and memory resources will increase with this hyperparameter. For methods using SSGE, we use 10
weight samples to construct the kernel matrix.

Table S15: Resources needed by PosteriorReplay in terms of runtime and memory usage. Results are
reported for SplitMNIST results using an MLP-400,400 and identical hyperparameters (if applicable)
for all methods (Mean ± SD in %, n = 5). PR refers to PosteriorReplay and PF to PriorFocused
methods.

Runtime (s) Memory usage (MiB)

Fine-Tuning 95.51 ± 1.32 389.0
HNET Fine-Tuning 185.7 ± 1.9 397.0
PR-Dirac 426.1 ± 1.9 439.0
PR-Dirac-SR 314.5 ± 2.1 407.1
PR-BbB 542.3 ± 6.6 473.0
PR-SSGE 1201.2 ± 9.6 537.6
PF-SSGE-multihead 834.2 ± 4.8 482.2
VCL-multihead 221.4 ± 4.9 452.6
EWC-multihead 289.0 ± 4.1 392.1

All results are obtained using the same compute hardware and the provided code base. Therefore, the
computational complexity depends on the efficiency of this implementation and does not necessarily
reflect theoretical time or space complexity. We especially want to stress that for the sake of flexibility
and simplicity we use a naive hypernetwork implementation, where we first generate all main network
weights before feeding them into the main network. A more efficient implementation or specialized
hardware may improve the reported runtimes substantially [22].

Compared to Fine-Tuning, where a main network is updated without any CL protection,
PosteriorReplay-Dirac leads to a four-fold increase in runtime, but only a slight increase in memory
usage. To disentangle whether the considerable increase in runtime is linked to the addition of the
hypernetwork or the computation of the CL regularizer, we also evaluated the runtime of a system
consisting of a main network and a task-conditioned hypernetwork, but where no CL protection
is applied (i.e., equivalent to fine-tuning the hypernetwork, denoted HNET Fine-Tuning). Memory
usage is again in the same ballpark, but runtime only constitutes this time a two-fold increase with
respect to the Fine-Tuning baseline that has no hypernetwork. Altogether these results show that,
although memory usage is not noticeably affected by the use of our posterior meta-replay framework,
the introduction of the hypernetwork and the CL regularization each lead to a two-fold increase in the
runtime for this particular experiment.

We show that the runtime of posterior meta-replay experiments can be considerably shortened by
doing a stochastic CL regularization and considering a subset of tasks for computing the regularizer
(noted SR and reported here for a subset of size 1). Indeed, runtime for PosteriorReplay-Dirac-SR
is larger than when no regularizer is computed (HNET Fine-Tuning), but only about 70% of the
runtime when all tasks are regularized upon (PosteriorReplay-Dirac). Compared to the deterministic
PosteriorReplay solution, PosteriorReplay-BbB requires about 20% more memory and 30% longer
runtime, which can partly be explained by the fact that, when the same hyperparameters are used
(including main network size), BbB has to generate twice as many parameters for the main network
parametrization as PosteriorReplay-Dirac (since it generates means and variances, and not weight
values directly). Finally, PriorFocused methods such as VCL-multihead or EWC-multihead again
have similar memory usage, but considerably shorter runtimes than PosteriorReplay-Dirac. However,
compared to the solution with stochastic regularization PosteriorReplay-Dirac-SR, the runtime of
EWC-multihead is only about 8% faster; a negligible amount compared to the gains in performance
that can be achieved. SSGE requires substantially more resources, especially in terms of runtime.
This is to be expected as in every training iteration an estimate of the log-density has to be computed.
It is important to keep in mind that these values will vary substantially for other hyperparameters and
experiments, but we expect the trend across methods to hold.
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F.3 Continual learning regularization in distribution space

The goal of the CL regularization in the posterior meta-replay framework is to ensure that found
posterior approximations do not change when learning new tasks, as discussed in Sec. C.2. This
desideratum can be directly enforced if, for the considered variational family, an analytic expression
for a divergence measure is accessible (e.g., cf. Sec. C.3.1/ Eq. 1). Whenever such divergence
measure is not available, we avoid sample-based regularization, and thus regularize at the level of the
output of the TC system, resorting to an L2 regularization of the distributional parameters (cf. Eq. 2).
In our experiments this L2 regularization is sufficient, as we do not observe that forgetting is a major
problem. A potential reason for the success of this simple regularization could be the discovery of flat
minima as speculated in Ehret et al. [15]. However, a sound application of the posterior meta-replay
framework should regularize towards closeness in distribution space, as the chosen parameterization
of the variational family is arbitrary, and it is unclear how perturbations in parameter space affect the
encoded distributions. Therefore, this section provides guidance for future work on how a simple
regularization acting on the outputs of the TC system can be interpreted as enforcing closeness in
distribution space. Our discussion on this topic is inspired by the derivation of the natural gradient
[72], that allows to cast parameter updates into distribution updates.

Recall that the goal of regularization is to ensure that (cf. Eq. 1):

min
θ(t)

D
(
qθ(t,∗)(W)||qθ(t)(W)

)
(51)

where qθ(t,∗)(W) denotes the approximate posterior of task t obtained from a checkpoint of the TC
network before learning the current task, and D denotes some divergence measure. In particular, we
consider the KL as a choice for the divergence measure, which for small parameter perturbations
behaves like a metric in distribution space.11 Assuming the outputs θ(t,∗) do not change much when
learning task t (i.e. ε = θ(t) − θ(t,∗) is sufficiently small), we consider a Taylor approximation of
Eq. 51 around θ(t,∗). To compute this expression, we use the fact that the KL between identical
distributions is zero, and we compute the first and second order terms of the approximation as follows.
For the first order term we require the first derivative of the KL with respect to θ(t) at θ(t) = θ(t,∗):[

∇θ(t)KL
(
qθ(t,∗)(W)||qθ(t)(W)

)]∣∣∣
θ(t)=θ(t,∗)

(52)

= −
∫
qθ(t,∗)(W)

[
∇θ(t) log qθ(t)(W)

]∣∣∣
θ(t)=θ(t,∗)

dW

= 0

For the second order term we need the respective second derivative:[
∇θ(t)∇Tθ(t)KL

(
qθ(t,∗)(W)||qθ(t)(W)

)]∣∣∣
θ(t)=θ(t,∗)

(53)

= −
∫
qθ(t,∗)(W)[
∇θ(t)∇Tθ(t) log qθ(t)(W)

]∣∣∣
θ(t)=θ(t,∗)

dW

= −
∫
qθ(t,∗)(W)

[
Hlog q

θ(t) (W)

]∣∣∣
θ(t)=θ(t,∗)

dW

= −Eq
θ(t,∗) (W)

[
Hlog q

θ(t,∗) (W)

]
And we therefore obtain the following local approximation of the KL:

KL
(
qθ(t,∗)(W)||qθ(t)(W)

)
(54)

= KL
(
qθ(t,∗)(W)||qθ(t,∗)+ε(W)

)
≈ −1

2
εTEq

θ(t,∗) (W)

[
Hlog q

θ(t,∗) (W)

]
ε

11As we will see below, the KL divergence is for infinitesimal parameter perturbations approximately equal to
the Rao distance [66].
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Thus, regularization in distribution space as demanded by Eq. 51 can be achieved for small ε using the
quadratic form in Eq. 54. We denote the regularization matrix byR(t) ≡ Eq

θ(t,∗) (W)

[
Hlog q

θ(t,∗) (W)

]
to highlight the elegance and computational simplicity of the final CL regularizer:

min
θ(t)

1

2
(θ(t) − θ(t,∗))TR(t)(θ(t) − θ(t,∗)) (55)

Note that R(t) has to be computed once after task t has been trained on,12 and for R(t) = I we
recover the isotropic regularization of Eq. 2.

When interpreting qθ(t,∗)(W) as a likelihood function, it can be seen that R(t) is the corresponding
Fisher information matrix (cf. Eq. 31) and can be computed via:

R(t) =Eq
θ(t,∗) (W)

[(
∇θ(t,∗) log qθ(t,∗)(W)

)
(56)(

∇θ(t,∗) log qθ(t,∗)(W)
)T ]

Note, that the quantity estimated by algorithms such as SSGE (cf. Sec. C.4.2) is∇W log qθ(t)(W)
and not the score function ∇θ(t) log qθ(t)(W). It is therefore not straightforward to see how to
approximate the Fisher information matrix and thus the regularization matrix R(t).

However, as deep learning often benefits from coarse approximations, we propose the following
heuristic to estimate R(t) if the simple regularization of Eq. 2 is not sufficient. Assuming the training
of each task is successful and the variational family contains the correct posterior, we have that
qθ(t,∗)(W) ≈ 1

Z p(D
(t) | W)p(W), where Z is some unknown normalization constant. We can

therefore rewrite the Hessian asHlog q
θ(t,∗) (W) ≈ Hlog p(D(t)|W) +Hlog p(W). The termHlog p(W)

has a simple analytic expression for a Gaussian prior and Hlog p(D(t)|W) can be computed for a
given variate w as long as the data D(t) is available and the model is twice differentiable. If R(t)

is computed right after a task has been learned, it can be safely assumed that D(t) is still available
(similar to the Fisher computation in EWC (cf. Sec. C.5.2)). Hence, R(t) can be approximated
via an MC estimate since sampling from qθ(t,∗)(W) is always possible. Crucially, the actual CL
regularization via Eq. 56 is efficient to compute and does not require sampling from qθ(t,∗)(W).

F.4 Optimization considerations in Posterior-Replay

We discuss here important aspects regarding the ease of optimization of our posterior meta-replay
framework. Chang et al. [8] found that the initialization of the hypernetwork is important for training
stability when optimizing via SGD. We therefore use the Adam optimizer throughout, with which
the choice of initialization does not seem to be crucial. While we do not suffer noticeably from
instabilities (note, that we apply gradient clipping), we do observe that certain hyperparameter
choices are crucial for loss minimization (improper choices might cause the optimizer to plateau
at chance level performance). For instance, as already noted in von Oswald et al. [91], the choice
of hypernetwork architecture strongly influences how easy it is to find suitable hyperparameter
configurations. To the best of our knowledge, there is currently no principled or agreed upon
approach for choosing such architecture and the choice thus solely relies on the experimenter’s
expertise. Interestingly, von Oswald et al. [91] studied the sensitivity of PR-Dirac to changes in the
regularization strength, and found that the accuracies are robust for a wide range of values (Fig. SM
A2 in von Oswald et al. [91]).

F.5 Deep Ensembles

A successful approach for OOD detection are deep ensembles [82], which in the simplest case
correspond to several deterministic networks trained independently, and whose predictions are
aggregated during inference [42]. Due to the non-convexity of the loss landscape and the stochasticity

12In the strict sense, R(t) is specific to the used checkpoint qθ(t,∗) , which can change whenever a new check-
point of the TC system is made and thus whenever a new task arrives. We ignore this detail for computational
simplicity and due to the approximate nature of the proposed regularization.
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innate to maximum-likelihood training, distinct solutions are obtained despite training with the same
dataset. Although, to the best of our knowledge, such an ensemble of models cannot be interpreted as
a sample from the Bayesian posterior, having access to a set of diverse predictions makes it possible
to infer task identity based on model disagreement, which is not possible in the plain deterministic
case. In addition, deep ensembles are just as easy to train as single deterministic solutions, but do
require more training resources. This is in contrast to the increased training difficulty of BNNs, where
continuous weight distributions are sought. However, despite their attractiveness, ensembles lack
some of the advantages that come with a Bayesian approach. These include the ability to drop i.i.d.
assumptions within tasks or the ability to revisit and update existing knowledge.

Analogously to PosteriorReplay-Dirac, our framework can also be adapted to work with ensembles.
In this case, the TC system maintains multiple embeddings per task; one per ensemble member.
Although not in the context of CL, this idea has already been explored by Oswald et al. [68], who
showed improved OOD detection compared to the single model baseline. To combine the advantages
of BNNs and deep ensembles, Wilson and Izmailov [93] proposed to train an ensemble of BNNs.
This is an intriguing future direction for our framework, as the beneficial CL properties of BNNs
are preserved. For instance, a simple and scalable approach such as PosteriorReplay-BbB could be
turned into an ensemble of Gaussian posterior approximations by allowing the use of more than
one embedding vector per task, which may allow to capture multiple modes of the posterior and
ultimately lead to better task inference.

F.6 Continual learning in function space

The focus of this paper is on Bayesian continual learning methods that operate primarily in weight
space. However, especially from a prior-focused perspective (where a single shared solution is
desired), methods like Titsias et al. [84] and Pan et al. [69], which operate in function space, offer
a compelling alternative. This function space view might also be beneficial for PosteriorReplay
methods for several reasons. First of all, Bayesian inference in function space might make it easier to
encode (task-specific) prior information (e.g., via Gaussian processes). Furthermore, the function
space view offers a better interpretability of OOD capabilities [11], which might ultimately be used
for improving uncertainty-based task inference. For those reasons, it might be an interesting future
direction to study PosteriorReplay methods while focusing on the function- rather than weight-space.

F.7 Graceful forgetting

Should a CL algorithm have the built-in ability to forget past knowledge in order to facilitate
learning from new data? This is an intriguing question whose answer depends on the precise
definition of “continual learning". As described in Sec. 1, we focus on supervised learning and
under the term CL study algorithms capable of learning from a stationary unknown data distribution
p(X)p(Y | X) using a non-i.i.d. sample. In our specific case (and in line with the vast majority of
the CL literature), this non-i.i.d. sample is constrained to be a series of i.i.d. samples (called tasks),
e.g., p(X,Y) = 1

T

∑T
t=1 p

(t)(X)p(t)(Y | X).13 Following this strict definition, there is no notion
of temporal valence that we can assign to sample points. Or more specifically, there is no intrinsic
reason why we should trade performance on old tasks (forgetting/stability) for learning new tasks
(plasticity).

On the other hand, some studies consider a different, but related problem, namely learning from
a non-stationary data distribution ([48, 41]). A good example of this scenario is learning from
observations that are subject to sensor drift. The goal here is clearly different from typical CL (as
defined above): the learner should adapt to current observations quickly while overwriting (possibly
conflicting) previously acquired knowledge. The emphasis here is on adapting quickly, which requires
transferring (or generalizing) acquired concepts to new observations. The contrast between these
two types of online learning is clearly highlighted by the different ways in which performance is
computed: in typical CL (as defined above) performance is measured across all data seen so far,
whereas in settings subject to concept drift performance is measured only on the most recent data.

13Note, the overall (unknown) data distribution to be learned is stationary. However, the instantaneous data
distribution that is sampled from may be considered non-stationary with discrete, non-continuous transitions
(task boundaries).
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Since CL algorithms should ideally also have built-in mechanisms for transfer learning, it is well
justified to ask whether they can be modified to gracefully forget past data in order to facilitate new
observations. Prior-focused methods incorporate past knowledge via the prior, which is the posterior
of the previous task. As illustrated in Fig. 1, this prior progressively becomes more confident, which
impedes learning. Therefore, Li et al. [48] suggest to broaden this prior by tempering the current
prior p(W) when task boundaries are detected: pβ(W) ≡ 1

Zβ
p(W)β , with inverse temperature β

and normalization Zβ . Plugging this expression into the prior-matching term of Eq. 3 yields:

−KL
(
qθ(W) || pβ(W)

)
= (57)

− Eqθ(W)

[
log qθ(W)− β log p(W)

]
+ logZβ

Hence, whenever the prior-matching term is estimated via an MC sample, this type of tempering can
be achieved by scaling the log-prior density. Note that this is different from the type of tempering
that we apply (cf. Sec. D), which scales the prior-matching term as a whole.

Also Kurle et al. [41] proposes forgetting mechanisms for prior-focused learning, the first of which is
similar in spirit to the one described above (cf. Eq. 11 in Kurle et al. [41]).

In this context, it is worth stressing that PosteriorReplay methods do not explicitly suffer the same
plasticity (ability to learn new tasks) vs. stability (prevention of forgetting) trade-off. Instead, the
prior of each task can be freely chosen without sacrificing previously acquired knowledge. For
instance, the prior can be a weighted average of an arbitrary prior and previously learned posteriors,
i.e., it can be broad to encourage exploration of solutions that fit upcoming data well while being
biased towards solutions of previous tasks to exploit prior knowledge.

As a final remark, it is important to note that algorithms are always applied to systems with limited
capacity. Therefore, it is natural to ask what happens to a CL algorithm if the system’s capacity is
exceeded but new data still arrives, i.e., what compromise will it find. The CL algorithms discussed in
this paper have no active mechanisms to free up capacity, and therefore their behavior in the limiting
regime can only be partially controlled via the regularization strength. For PriorFocused methods,
the regularization strength can be tuned via tempering. Since PosteriorReplay methods explicitly
regularize all previous tasks when learning on new data, forgetting can be concentrated on a subset of
tasks by choosing task-specific regularization strengths. Therefore, also PosteriorReplay methods can
employ graceful forgetting by discounting the regularization strength depending on the age of a task.
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