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Abstract
Multi-modal Unsupervised Domain Adaptation (MM-UDA) for
large-scale 3D semantic segmentation involves adapting 2D and
3D models to a target domain without labels, which significantly
reduces the labor-intensive annotations. Existing MM-UDA meth-
ods have often attempted to mitigate the domain discrepancy by
aligning features between the source and target data. However, this
implementation falls short when applied to image perception due
to the susceptibility of images to environmental changes compared
to point clouds. To mitigate this limitation, in this work, we ex-
plore the potentials of an off-the-shelf Contrastive Language-Image
Pre-training (CLIP) model with rich whilst heterogeneous knowl-
edge. To make CLIP task-specific, we propose a top-performing
method, dubbed CLIP2UDA, which makes frozen CLIP reward
unsupervised domain adaptation in 3D semantic segmentation.
Specifically, CLIP2UDA alternates between two steps during adap-
tation: (a) Learning task-specific prompt. 2D features response from
the visual encoder are employed to initiate the learning of adap-
tive text prompt of each domain, and (b) Learning multi-modal
domain-invariant representations. These representations interact
hierarchically in the shared decoder to obtain unified 2D visual
predictions. This enhancement allows for effective alignment be-
tween the modality-specific 3D and unified feature space via cross-
modal mutual learning. Extensive experimental results demonstrate
that our method outperforms state-of-the-art competitors in sev-
eral widely-recognized adaptation scenarios. Code is available at:
https://github.com/Barcaaaa/CLIP2UDA.
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1 Introduction
3D scene understanding is the foundation for many real-world
applications, such as robotics [33], autonomous driving [40], and
augmented reality [19]. Based on the LiDAR point cloud, 3D seman-
tic segmentation is a critical task for scene understanding, which
requires assigning semantic labels for each point. However, an-
notating large-scale datasets for training every new scenario is
labor-intensive and time-consuming [38], especially for the tasks
demanding point-wise annotations.

Currently, Multi-modal Unsupervised Domain Adaptation (MM-
UDA) has been investigated in 3D semantic segmentation, which
seeks to adapt 2D and 3D models to a target domain without labels.
MM-UDA liberates the annotation of pair-wise 2D and 3D data
in the target domain. The core idea of the recent MM-UDA meth-
ods [4, 13, 20, 26, 37, 41, 48] usually reinforces the complementation
between images and point clouds via mutual learning, to mitigate
the discrepancy in data distribution between the source and target
domains (See Fig. 1). Albeit successful, these methods usually make
the model under-adapted when applied to image perception due to
the susceptibility of images to environmental changes compared to
point clouds. Particularly with light changes, images lose plentiful
context information at night. In this condition, allowing 3D predic-
tion to mimic 2D prediction potentially degrades the performance.

https://github.com/Barcaaaa/CLIP2UDA
https://doi.org/10.1145/3664647.3680582
https://doi.org/10.1145/3664647.3680582
https://doi.org/10.1145/3664647.3680582
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Figure 1: Unsupervised domain adaptation in 3D seman-
tic segmentation. Top: Existing MM-UDA methods train on
paired images and point clouds via mutual learning. Bot-
tom: CLIP2UDA incorporates a learnable text prompt derived
from the CLIP and inherent 3D attributes derived from the
LiDAR sensor, i.e., sparse depth and intensity information, to
more robustly adapt 2D and 3D models to the target domain.

Generally, the scarcity of pre-training data hinders training a gen-
eralizable 3D model. Vision-Language Models (VLMs) [18, 27, 34]
have emerged as the de-facto feature extractor in image classifi-
cation, captioning, and segmentation nowadays. Such VLMs are
trained on massive raw web-curated image-text pairs, achieving
promising open-vocabulary recognition. Considering the text de-
scription as a domain-invariant prompt, this paper is committed
to leveraging rich whilst heterogeneous knowledge from CLIP,
allowing us to learn disentangled domain and category representa-
tion while avoiding the loss of context information. However, in
earlier exploration, simply inheriting the pre-training weights of
CLIP and training MM-UDA in a fine-tuning fashion would bring
performance degradation. We found it is of utmost importance to
avoid any unnecessary attempts to manipulate the visual represen-
tations in the space of CLIP. Such a combination may overfit source
distribution and potentially lose pre-existing target information.

To this end, two intuitive questions need to be solved: (i) How to
borrow prior knowledge from frozen CLIP? and (ii) How to harness
prior knowledge to boost 3D semantic segmentation for MM-UDA? To
begin with, for issue (i), considering prompt learning is a popular
practice in applying VLMs, we consider designing a task-specific
text prompt to be well-tailored for describing domains. Moreover,
inspired by MaskCLIP [50], instead of deploying the visual encoder
of CLIP as a task network, we serve it as a generalizable auxiliary
network without updating its parameters, avoiding introducing
additional domain gaps. After that, for issue (ii), we consider in-
troducing inherent 3D attributes derived from LiDAR sensor, i.e.,
sparse depth and intensity information. Both of them contain spa-
tial structure information and are less influenced by domain shift.
By incorporating them in 2D shapes (perspective projection), we
aim to learn vision-language-structure correlation to alleviate 3D
performance degradation caused by substantial 2D domain shift.

Accordingly, in this paper, we dig deeper into CLIP and propose
a top-performing method, dubbed CLIP2UDA (See Fig. 1), which

makes frozen CLIP reward unsupervised domain adaptation in 3D
semantic segmentation. CLIP2UDA preserves the pre-existing tar-
get information from the CLIP model by alternating between two
steps during adaptation: (a) Learning task-specific prompts and
(b) Learning multi-modal domain-invariant representations. Con-
cretely, for step (a), we introduce Visual-driven Prompt Adaptation
(VisPA), using semantic names as the class token to make the data in
the source and target domains as close to the label as possible. Mean-
while, to learn the visual distributions in the semantic space and ob-
tain a distribution of prompts per class, VisPA leverages 2D features
response from the visual encoder to initiate learning of task-specific
text prompts, incorporating domain-specific and image-specific to-
kens. Nevertheless, relying solely on vision-language correlation is
not enough to alleviate the limitation of unstable image perception
in environmental changes. Thereupon, for step (b), we propose Text-
guided Context Interaction (TexCI), which conducts class-aware
fusion and semantic-aware fusion across decoder layers to obtain
the text-guided visual feature. This feature is then fused with image
and attribute features, and interacts hierarchically in the shared
decoder, resulting in unified 2D visual predictions. To summarize,
CLIP2UDA tightly associates 3D features with point-wise unified
2D features, enhancing the performing capability of multi-modal
domain-invariant representations in 3D scenes that benefit from
vision-language-structure correlation.

The main contributions of this paper are as follows:
• We present CLIP2UDA, which exploits prompt learning to
transfer the generalization capability of the CLIP model to
MM-UDA. It preserves the pre-existing target information
from CLIP and learns vision-language-structure correlation.
• VisPA is introduced to leverage 2D features response from
the visual encoder to initiate learning of task-specific text
prompts. TexCI is introduced to learn multi-modal domain-
invariant representation in the shared decoder and obtains
unified 2D visual predictions.
• Extensive experimental results demonstrate that our method
outperforms state-of-the-art competitors in several widely-
recognized adaptation scenarios.

2 Related Work
2.1 UDA for 3D Semantic Segmentation
UDA methods for 3D semantic segmentation can be grouped as
uni-modality cases [16, 31, 39, 43–45, 49] and multi-modality cases
[3, 4, 13, 20, 23, 26, 37, 41, 48]. For uni-modality, early methods [39,
49] exploit the generative adversarial network to mitigate domain
shift caused by appearance and sparsity differences. Later on, Yuan
et al. [44, 45] propose the adversarial network based on category-
level and prototype-level alignments to address the mismatch of
sampling patterns. Complete&Label [43] resolves UDA from the
view of the 3D surface completion task. CosMix [31] and ConDA
[16] construct an intermediate domain by utilizing joint supervision
signals from both the source and target domains for self-training.

Compared to uni-modal cases, multi-modal cases exploit the
exclusive information of paired images and point clouds to comple-
ment each other. xMUDA [13] first provides a cross-modal mutual
learning method for 3D semantic segmentation in UDA. To facil-
itate learning domain-robust dependencies, several multi-modal
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methods extend 2D techniques to learn the domain-invariant rep-
resentations, such as adversarial learning [23, 26, 48], contrastive
learning [41], and style transfer [20]. Based on these dependencies,
SSE [48] presents a self-supervised exclusive learning mechanism
from plane-to-spatial and discrete-to-textured. BFtD [37] employs
cross-modal fusion representation to address imbalanced modality
adaptability. Differently, we focus on how to leverage rich whilst
heterogeneous knowledge from CLIP [27] to alleviate the 3D per-
formance degradation caused by substantial 2D domain shifts.

2.2 Prompt Learning
Vision-Language Models (VLMs) integrate visual and textual in-
puts to achieve a more comprehensive understanding of the real
world, leading to better performance in various tasks. Some of the
popular VLMs are CLIP-based models [14, 51, 52] for classification.
Recently, several studies have explored the use of prompt learning
for dense predictions, which are for the topic of open-vocabulary
segmentation in an annotation-free manner [24, 50], supervised
segmentation [17, 28] and weakly-supervised segmentation [22, 42].

For 3D scene understanding, there is limited research dedicated
to employing prompt learning. Several works [7, 12, 46, 47] align
3D space with open-world language representation, facilitating
zero-shot transfer in indoor and outdoor scenes. CLIP2Scene [6]
first explores how to establish connections between point and text
through self-supervised pre-training, which benefits fine-tuning for
3D downstream tasks. Chen et al. [5] leverage the strengths of CLIP
and SAM [15] to supervise 2D and 3D networks simultaneously by
introducing cross-modality noisy supervision.

Nevertheless, none of the works explore CLIP for UDA in 3D
semantic segmentation. To the best of our knowledge, our method
is groundbreaking in exploiting CLIP to learn domain-invariant
representation for MM-UDA.

3 Approach
3.1 Preliminary
3.1.1 Problem Definition. Given a source domain D𝑆 = {(𝑋 2𝐷,𝑆

𝑖
,

𝑋
3𝐷,𝑆
𝑖

, 𝑌
3𝐷,𝑆
𝑖
)}𝑛𝑠
𝑖=1 with 𝑛𝑠 unlabeled 2D images and labeled 3D

point clouds, and a target domain D𝑇 = {(𝑋 2𝐷,𝑇
𝑖

, 𝑋
3𝐷,𝑇
𝑖
)}𝑛𝑡
𝑖=1 with

𝑛𝑡 unlabeled 2D images and 3D point clouds under the condition
that the source and target data distributions are not equal. The
source and target domains share the same label space and only the
source point cloud has annotation 𝑌 3𝐷,𝑆 belonging to 𝐶 classes for
each 3D point. The task is to learn a model 𝑓 : 𝑋 2𝐷,𝑇 , 𝑋 3𝐷,𝑇 →
𝑌 3𝐷,𝑇 that could predict the target 3D labels.

3.1.2 Revisiting CoOp. Generally, CoOp [52] consists of a visual
encoder F𝑉 (·) and a text encoder F𝑇 (·) based on CLIP, both jointly
trained to map the image and text into a unified representation
space. The learnable prompt given to F𝑇 (·) is designed with the
following form:

𝑡 = [𝑉 ]1 [𝑉 ]2 ...[𝑉 ]𝑀 [𝐶𝐿𝑆], (1)

where each [𝑉 ]𝑚 (𝑚 ∈ {1, ..., 𝑀}) is a learnable vector with the
same dimension 𝐷 as textual embedding, 𝑀 is a hyperparameter
that specifies the length of context tokens, and [𝐶𝐿𝑆] is the class

token, which is converted into a low-cased byte pair encoding rep-
resentation [32]. After that, textual embedding can be represented
as 𝑒𝑡 = F𝑇 (𝑡), where 𝑒𝑡 ∈ R𝐶×𝐷 is the embedding for 𝐶 classes.

Meanwhile, take ResNet [11] for example, there are 4 stages in
total and we denote the feature maps as {𝑓𝑖 }4𝑖=1. Different from
the original ResNet, a multi-head self-attention (MHSA) layer is
performed to concatenate visual features

[
𝑓4, 𝑓4

]
of the last layer,

where 𝑓4 is the global features after global average pooling of 𝑓4. Af-
ter that, the global and local visual embeddings can be represented
as

[
𝑧𝑔, 𝑧𝑙

]
= MHSA(

[
𝑓4, 𝑓4

]
), where 𝑧𝑔 ∈ R1×𝐷 and 𝑧𝑙 ∈ R𝐻4𝑊4×𝐷 ,

𝐻4,𝑊4 are the height and width of the feature map from the 4-th
stage of the backbone, respectively.

3.2 Overview
The overall framework of CLIP2UDA is depicted in Fig. 2, which
training alternately between two steps during adaptation: Visual-
driven Prompt Adaptation (VisPA) and Text-guided Context Interac-
tion (TexCI). Firstly, in VisPA, images 𝑋 2𝐷 are input to CLIP visual
encoder F𝑉 (·) to initiate learning of a task-specific text prompt, and
then generate visual-driven text embedding via CLIP text encoder
F𝑇 (·) and Transformer decoder G𝑇 (·, ·). For the unified branch, the
2D segmentation task involves three types of visual inputs: image
𝑋 2𝐷 , sparse depth𝑋𝐷𝑒𝑝 , and intensity𝑋 𝐼𝑛𝑡 . The former input is fed
into the 2D encoder F𝐼 (·). In contrast, the latter two inputs 𝑋𝐷𝑒𝑝
and 𝑋 𝐼𝑛𝑡 are fed into the attribute encoder F𝐴 (·) for acquiring a
compact representation of 3D attributes in 2D space. Afterward,
TexCI is introduced to learn multi-modal domain-invariant repre-
sentation in the shared decoder G𝐼 (·, ·, ·) and obtains point-wise
unified features. Finally, after extracting 3D features output from
the 3D network G𝑃 (F𝑃 (·)), we can bridge the cross-domain gaps by
mutually learning between unified predictions and 3D predictions.

3.3 Visual-driven Prompt Adaptation
Improving sentence structure through visual descriptions of natural
objects helps reduce the disparity between textual and visual cues.
Additionally, this principle holds in the context of autonomous
driving scenarios. For instance, “A yellow car driving in the night
scene.” is more exact. However, incorporating rich text into the
manual prompts is time-consuming, as it has to be based on trial
and error, and does not guarantee an optimal prompt either. In
this regard, VisPA is introduced to learn prompts for each class
directly from the 2D visual domain to effectively encode the visual
distribution, as opposed to the static prompting technique. To this
end, we denote the prompt for one class with the class token [𝐶𝐿𝑆]
given an image 𝑋 2𝐷 as:

𝑡𝑣𝑖𝑠 = [𝐷]𝑆/𝑇 [�̃� ]1 [�̃� ]2 · · · [�̃� ]𝑀 [𝐶𝐿𝑆], (2)

where [𝐷]𝑆/𝑇 and [�̃� ]𝑚 denote the Domain-specific Token (D-
Token) and the Image-specific Token (I-Token), respectively. Both
of them are dedicated to capturing visual context using a parameter-
efficient design, to boost the adaptability of text prompts.

3.3.1 D-Token. To capture domain-specific information, we sam-
ple a feature vector from the semantic distribution of multi-layer
features as domain-specific vectors and subsequently map it onto
[𝐷]𝑆/𝑇 . The first and second-order batch-wise feature statistics are
considered indicators of domain style: [𝜇, 𝜌]. Then, a lightweight
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Figure 2: The framework of CLIP2UDA. CLIP serves as a generalizable auxiliary network without updating its parameters.

neural network, called Style-Net ℎ𝜙 parameterized by 𝜙 , calculates
{(𝜇𝑖 , 𝜌𝑖 )}4𝑖=1 from four layers of F𝑉 . In this work, ℎ𝜙 is built with
two linear layers corresponding to the output of an encoder layer
that reduces the input dimension to the same as textual embedding.

3.3.2 I-Token. On top of the learnable vectors [𝑉 ]𝑚 , we further
learn another lightweight neural network, called Meta-Net, to gen-
erate a conditional token for each input, which is then combined
with the context prompt. In this work, the Meta-Net is built with
a two-layer bottleneck structure (Linear-ReLU-Linear), with the
hidden layer reducing the input dimension by 16×. Let ℎ𝜃 (·) de-
note the Meta-Net parameterized by 𝜃 , each image-specific token
is obtained by: [�̃� ]𝑚 ← [𝑉 ]𝑚 + 𝛾 , where 𝛾 = ℎ𝜃 (𝑧𝑔).

3.3.3 Visual-driven Textual Embedding. After utilizing the visual
distribution of domain to prompt text tokens, it is crucial to explic-
itly leverage visual features to drive textual embedding for obtaining
more compact representations. Since the attention mechanism can
capture the long-range dependency by using pair-wise affinities
across all positions, we employ a Transformer decoder G𝑇 [35],
which contains 𝑁 (=3 in our case) MHSA layers and multi-head
cross-attention layers. G𝑇 builds the interaction between visual em-
bedding 𝑒𝑣 = 𝑧𝑔 ⊎𝑧𝑙 and textual embedding 𝑒𝑡 = F𝑇 (𝑡𝑣𝑖𝑠 ), and then
generates refined textual embedding, where ⊎ is the concatenate
operation. This implementation is written as:

𝑒𝑡 = G𝑇 (𝑒𝑡 , 𝑒𝑣), (3)

where 𝑒𝑡 encourages textual embedding to mine the most correlated
visual cues. Finally, we can obtain visual-driven textual embedding
via a skip residual connection:

𝑒𝑣→𝑡 = 𝑒𝑡 + 𝛿𝑒𝑡 , (4)

where 𝛿 is a learnable parameter, which is initialized with a small
value (𝑖 .𝑒 ., 10−4) to maximally preserve the language priors from
the textual embedding.

3.4 Text-guided Context Interaction
Failing the fine-tuning attempt with CLIP pre-trained weights, we
turn to a solution that avoids overfit source distribution and poten-
tially loses pre-existing target information. To this end, we relax
from this constraint and benefit from more flexible architectures
tailored for multi-modal semantic segmentation. That is, we employ
the CLIP-based model as an auxiliary network, whose pre-trained
parameters are frozen, and only update the learnable prompts 𝑡𝑣𝑖𝑠
in VisPA. Specifically, as depicted in Fig. 3, we devise TexCI for
hierarchical multi-modal fusion in the shared decoder, which con-
ducts class-aware fusion (C-Fus) and semantic-aware fusion (S-Fus)
across decoder layers.

3.4.1 C-Fus. Visual embeddings encompass global semantics about
the entire image. We consider that they also carry the dense se-
mantics of multiple objects, as the features of each pixel aggregate
information from all other pixels in forwarding. Ideally, we hope
to extract local features from CLIP to tightly associate with objects
in a 3D scene. Specifically, the visual embedding 𝑒𝑣 is leveraged to
compute the pixel-text matching map with visual-driven textual
embedding 𝑒𝑣→𝑡 , which is defined as follows:

𝑆 = 𝑒𝑣𝑒
⊤
𝑣→𝑡 , 𝑆 ∈ R𝐻4𝑊4×𝐶 , (5)

where 𝑒𝑣 and 𝑒𝑣→𝑡 are the 𝑙2 normalized version of 𝑒𝑣 and 𝑒𝑣→𝑡
along the channel dimension.
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Figure 3: Architecture of Text-guided Context Interaction in
the shared decoder G𝐼 . Each layer 𝐿𝑖 implements deconvolu-
tion with image feature 𝑓 2𝐷

𝑖
and attribute feature 𝑓 𝐴𝑡𝑡

𝑖
.

3.4.2 S-Fus. To further explicitly mine the complementary pecu-
liarities of multi-modality, it is essential to align the pixel and point
representations of the scene across layers. Given the input {𝑓𝑖 }4𝑖=1
and 𝑒𝑣→𝑡 , S-Fus performs hierarchical multi-modal fusion by using
visual embedding 𝑓𝑖 as the Query and textual embedding 𝑒𝑣→𝑡 as
the Key and Value.

Firstly, at each spatial location, S-Fus aggregates 𝑒𝑣→𝑡 across
the text dimension to generate a joint-modal affinity matrix 𝐽𝑖 ∈
R𝐶×𝐻𝑖𝑊𝑖 via dot-product, which collects textual information most
relevant to pixels of the current layer.

𝐽𝑖 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

(
𝜔𝑘𝑒𝑣→𝑡 ⊗ 𝜔𝑞 𝑓 ⊤𝑖√

𝐷𝑖

)
. (6)

where ⊗ means matrix multiplication. Secondly, leveraging the
affinity matrix 𝐽𝑖 , we can preliminarily estimate a set of text-guided
visual feature 𝑉𝑖 ∈ R𝐻𝑖𝑊𝑖×𝐷𝑖 of each layer using the equation:

𝑉𝑖 = 𝜔𝑜
(
𝐽⊤𝑖 𝜔𝑣𝑒𝑣→𝑡

)
⊙ 𝜔𝑤 𝑓𝑖 , (7)

where ⊙ means element-wise multiplication, 𝜔𝑞 , 𝜔𝑘 , 𝜔𝑣 , 𝜔𝑤 , and
𝜔𝑜 are linear functions with trainable parameters.

3.4.3 Shared Visual Decoding. After that, we adopt the UNet-like
decoder [29] as the shared decoder G𝐼 in the unified branch. Due
to the sparsity of LiDAR point clouds, in multi-modal interaction
between points and pixels, low-resolution matching maps cannot
establish effective one-to-one relationships with corresponding
point labels. Hence, considering that the matching map retains the
available vision-language prior knowledge, we simply concatenate
upsampled 𝑆𝑖 and 𝑉𝑖 to the 𝑖-th image feature 𝑓 2𝐷

𝑖
and attribute

feature map 𝑓 𝐴𝑡𝑡
𝑖

output from 𝑖-th layers of F𝐼 and F𝐴 respectively,
explicitly incorporating language prior:

𝑓 𝑢𝑛𝑖𝑖 =

[
𝑓 2𝐷
𝑖 ⊎ 𝑓 𝐴𝑡𝑡𝑖 ⊎ 𝑆𝑖 ⊎𝑉𝑖

]
, (8)

where 𝑓 𝑢𝑛𝑖
𝑖

characterizes the multi-scale fusion feature, joint em-
bedding during visual decoding. Consequently, by jointly learning
multi-modal domain-invariant representations in G𝐼 , a point-wise
unified prediction P𝑈𝑛𝑖 can be defined to handle task and categories
characteristics via the 2D classifier.

3.5 Unified Cross-modal Learning
The point-wise supervised segmentation loss of the source domain
is formulated as follows:

L𝑠𝑒𝑔 = −
1

𝑁 ×𝐶

𝑁∑︁
𝑛=1

𝐶∑︁
𝑐=1

𝑌
3𝐷,𝑆
(𝑛,𝑐 ) logP𝑆(𝑛,𝑐 ) , (9)

where main prediction P𝑆 is either P𝑈𝑛𝑖,𝑆 or P3𝐷,𝑆 .
The goal of unsupervised learning across modalities is twofold.

Firstly, we want to transfer knowledge from the unified modality to
the 3D modality on the target-domain dataset. Secondly, we devise
mutual learning on source and target domains, where the task is
to estimate the prediction of other modalities. Same to xMUDA
[13], we choose the Kullback-Leibler divergence 𝐷𝐾𝐿 (·| |·) for the
cross-modal loss L𝑥𝑀 and define it as follows:

L𝑥𝑀 = 𝐷𝐾𝐿 (P𝑈𝑛𝑖 | |P3𝐷 ↦→𝑈𝑛𝑖 ) + 𝐷𝐾𝐿 (P3𝐷 | |P𝑈𝑛𝑖 ↦→3𝐷 ), (10)

where P𝑈𝑛𝑖 and P3𝐷 is to be estimated by the mimicking P3𝐷 ↦→𝑈𝑛𝑖

and P𝑈𝑛𝑖 ↦→3𝐷 from auxiliary classifier, respectively. Note that for
convenience, we disregard the domain notation 𝑆/𝑇 of superscript
in prediction. Finally, the overall loss function is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑠𝑒𝑔+𝜆𝑆L𝑥𝑀 (𝑋 2𝐷,𝑆 , 𝑋 3𝐷,𝑆 , 𝑋𝐷𝑒𝑝,𝑆 , 𝑋 𝐼𝑛𝑡,𝑆 )+

𝜆𝑇L𝑥𝑀 (𝑋 2𝐷,𝑇 , 𝑋 3𝐷,𝑇 , 𝑋𝐷𝑒𝑝,𝑇 , 𝑋 𝐼𝑛𝑡,𝑇 ),
(11)

where 𝜆𝑆 and 𝜆𝑇 are weights trading off L𝑥𝑀 on source domain
and target domain inputs, respectively.

4 Experiments
4.1 Datasets
For evaluation, we use four public autonomous driving datasets,
including three real scenarios: nuScenes [2], SemanticKITTI [1],
A2D2 [9] and one synthetic scenario: VirtualKITTI [8]. For all real
datasets, LiDAR and RGB cameras are synchronized and calibrated,
allowing 2D-to-3D projection, and for the synthetic dataset, Virtu-
alKITTI provides depth maps so we simulate LiDAR scanning via
uniform point sampling. Furthermore, following [13], we only use
the front camera image and the corresponding LiDAR points.

Our experimental scenarios cover typical real-to-real domain
adaptation challenges like lighting changes (nuScenes:Day→Night),
scene layout of country (nuScenes: USA→ Singapore), and sensor
setups (A2D2 → SemanticKITTI ). For the first two scenarios, we
choose 6 merged classes while for the last scenario, we select 10
shared classes between two datasets. In addition, the synthetic-
to-real domain adaptation challenge also be considered (Virtu-
alKITTI→SemanticKITTI, simulated depth, and RGB to real LiDAR
and camera, with 6 merged classes). Details are provided in supple-
mentary materials.

4.2 Implementation Details
For the 2D backbone, we use a modified version of U-Net [29],
which consists of a dual-branch ResNet-34 [11] as the 2D encoder
and Attribute encoder and transposed convolutions with skip con-
nections as the Shared decoder. It is worth noting that ResNet for
the 2D encoder is pre-trained on ImageNet [30], while the Attribute
encoder is trained from scratch. Meanwhile, depth and intensity in-
formation are 3D attributes derived from LiDAR sensors. Therefore,
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Table 1: Quantitative results (mIoU, %) on four settings. The best value of “2D+3D” is marked in red, and the second best value
is marked in blue. “†” indicates the reproduced results. “𝑃𝐿” denotes retraining with pseudo labels.

Info Method nuScenes: Day→Night nuScenes: USA→Sing. Virt.KITTI→Sem.KITTI A2D2→Sem.KITTI
2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D

Lower bound Source-only 47.8 68.8 63.3 58.4 62.8 68.2 26.8 42.0 42.2 34.2 35.9 40.4

Uni-modal
Deep logCORAL [25] 47.7 68.7 63.7 64.4 63.2 69.4 41.4 36.8 47.0 35.1 41.0 42.2

MinEnt [36] 47.1 68.8 63.6 57.6 61.5 66.0 39.2 43.3 47.1 37.8 39.6 42.6
BDL𝑃𝐿 [21] 47.0 69.6 63.0 62.0 64.8 70.4 21.5 44.3 35.6 34.7 41.7 45.2

Multi-modal

xMUDA [13] 55.5 69.2 67.4 64.4 63.2 69.4 42.1 46.7 48.2 38.3 46.0 44.0
AUDA† [23] 55.6 69.8 64.8 64.0 64.0 69.2 35.8 37.8 41.3 43.0 43.6 46.8
DsCML† [26] 50.9 49.3 53.2 65.6 56.2 66.1 38.4 38.4 45.5 39.6 45.1 44.5

Dual-Cross† [20] 58.5 69.7 68.0 64.7 58.1 66.5 40.7 35.1 44.2 44.3 46.1 48.6
SSE-xMUDA† [48] 62.8 69.0 68.9 64.9 63.9 69.2 45.9 40.0 49.6 44.5 46.8 48.4
BFtD-xMUDA† [37] 57.1 70.4 68.3 63.7 62.2 69.4 41.5 45.5 51.5 40.5 44.4 48.7
CLIP2UDA (Ours) 73.1 71.5 74.1 71.6 68.3 74.0 57.8 53.0 60.4 45.4 45.5 50.0

△𝐺𝑎𝑖𝑛 ↑ 10.3 ↑ 1.1 ↑ 5.8 ↑ 6.7 ↑ 4.4 ↑ 4.6 ↑ 11.9 ↑ 6.3 ↑ 8.9 ↑ 0.9 ↓ 1.3 ↑ 1.3
xMUDA𝑃𝐿 [13] 57.6 69.6 64.4 67.0 65.4 71.2 45.8 51.4 52.0 41.2 49.8 47.5
AUDA𝑃𝐿†[23] 54.3 69.6 61.1 65.9 65.3 70.6 35.9 45.5 45.9 46.8 48.1 50.6
DsCML𝑃𝐿†[26] 51.4 49.8 53.8 65.6 57.5 66.9 39.6 41.8 42.2 46.8 51.8 52.4

Dual-Cross𝑃𝐿†[20] 59.1 69.0 68.2 66.5 59.8 68.8 43.1 39.4 47.6 44.9 52.8 52.3
SSE-xMUDA𝑃𝐿†[48] 59.1 67.0 66.3 66.9 64.4 70.6 47.2 53.5 55.2 45.9 51.5 52.5
BFtD-xMUDA𝑃𝐿†[37] 60.6 70.0 66.6 65.9 66.0 71.3 48.6 55.4 57.5 42.6 53.7 52.7
CLIP2UDA𝑃𝐿 (Ours) 73.3 71.6 74.2 74.8 69.9 75.8 59.6 55.4 62.9 45.4 50.4 52.7

△𝐺𝑎𝑖𝑛 ↑ 12.7 ↑ 1.6 ↑ 7.6 ↑ 7.8 ↑ 3.9 ↑ 4.5 ↑ 11.0 0.0 ↑ 5.4 ↑ 2.8 ↓ 3.3 0.0
Upper bound Target-only 61.5 69.8 69.2 75.4 76.0 79.6 66.3 78.4 80.1 59.3 71.9 73.6

our method does not introduce extra datasets to ensure fairness in
equal experimental conditions. For the 3D backbone, we use the
official SparseConvNet [10] implementation. The voxel size is set
to 5cm which is small enough to only have one 3D point per voxel.

For the visual encoder of CLIP, all main experiments adopt CLIP-
pretrained ResNet-50, while the text encoder of CLIP is built on top
of a Transformer [35]. Of note, we fix the parameters of text and
visual encoders during training to preserve the natural language
knowledge learned from large-scale pre-training. To reduce the
computational costs, we project both the 2D visual embeddings and
the textual embeddings to a lower dimension (256) before feeding
into the Transformer module.

We employ standard 2D/3D data augmentation and log-smoothed
class weights on point-wise supervised segmentation loss to ad-
dress the class imbalance. The batch size is set to 8. Our model is
trained on real-to-real adaptation for 100k iterations. We utilize an
iteration-based learning schedule where the initial learning rate
is 0.001 and then it is divided by 10 at 80k and 90k iterations. For
synthetic-to-real, the training is performed for 30k iterations, and
the learning rate is divided by 10 at the 25k and 28k iterations.
As regards the hyper-parameters, 𝜆𝑆 and 𝜆𝑇 in cross-modal loss
are set to 1.0 and 0.1 on “Day→Night” and “USA→Sing.”, 0.1 and
0.02 on “Virt.KITTI→Sem.KITTI” and “A2D2→Sem.KITTI” respec-
tively, without performing any fine-tuning on these values. All
experiments are conducted on a single NVIDIA RTX 3090 GPU.

4.3 Quantitative and Qualitative Comparison
We compare our methodwith three typical 2D UDAmethods, which
can be easily extended to multi-modal UDA tasks. Moreover, six

multi-modal UDA methods are discussed and they are roughly
divided into two types: bridging the cross-modality gap, such as
xMUDA [13] and BFtD [37]; and bridging the cross-domain gap,
such as AUDA [23], DsCML [26], Dual-Cross [20], and SSE [48].
The comparison results for 3D semantic segmentation in mean
Intersection over Union (mIoU) on the target testing data are shown
in Tab. 1. Overall, CLIP2UDA achieves the best performance in all
scenarios against the competitors,𝑤.𝑟 .𝑡 . ensemble result “2D+3D”.

The source-only model is the lower bound, which is not domain
adaptation as it is only trained on the source-domain dataset. It is
observed that our method brings a significant adaptation effect on
all scenarios compared to the source-only model, with the gains of
10.8%, 5.8%, 18.2%, and 9.6% in mIoU, respectively. Compared with
the baseline (xMUDA), our method exceeds it by large margins with
gains of 6.7%, 4.6%, 12.2%, and 6.0% in mIoU. Compared to the best
results in all multi-modal learning methods, it is observed that our
method achieves 5.8%, 4.6%, 8.9%, 1.3% mIoU gains over all scenarios.
Of note, our method typically yields a higher score, up to +1∼12%
mIoU on each 2D/3D separate branch (See △𝐺𝑎𝑖𝑛). Especially in
synthetic-to-real scenarios, it has been proven that point clouds
with visual language priors are beneficial for addressing the adapta-
tion problem in domains with significant discrepancy. Furthermore,
cross-modal learning and self-training with pseudo-labels (PL) are
complementary in their combination. When re-trained with PL, our
model still achieves superior performance.

In Fig. 4, we visualize the segmentation results of four settings.
Compared to xMUDA and BFtD, CLIP2UDA avoids erroneous and
mingled predictions in many small (person) and large (sidewalk,
vegetation) regions, showing versatility across all scenarios.
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Figure 4: Qualitative results. We showcase the ensembling result “2D+3D” on the target test set of four adaptation scenarios.
The differences are highlighted with red circles.

Table 2: Ablation study on the effectiveness of significant
components in CLIP2UDA. Attr.: Apply 3D attributes.

Attr. VisPA TexCI USA→Sing. V.K.→S.K.
C-Fus S-Fus 2D 3D 2D+3D 2D 3D 2D+3D

xMUDA 64.4 63.2 69.4 42.1 46.7 48.2
#1 ✓ 70.7 67.2 72.8 54.7 48.0 56.4
#2 ✓ ✓ ✓ 71.1 68.2 73.2 56.3 48.8 58.1
#3 ✓ ✓ ✓ 72.2 67.6 73.6 56.3 49.7 58.7
#4 ✓ ✓ ✓ 71.4 68.2 73.3 55.7 49.9 56.9
#5 ✓ ✓ ✓ ✓ 71.6 68.3 74.0 57.8 53.0 60.4

4.4 Ablation Study
In this subsection, we perform an in-depth analysis of CLIP2UDA
with ablation studies on each component to highlight its strengths.

4.4.1 Effectiveness of Different Components. As shown in Tab. 2,
we train five models for two scenarios, including #1 means that
performing attribute encoder in the segmentation task by feeding
depth and intensity maps; #2 and #3 mean performing VisPA in #1
and engaging in multi-modal interaction via C-Fus and S-Fus as the
connection, respectively; #4 means that using both C-Fus and S-Fus
without VisPA to implement multi-modal interaction; #5 combines
all of our components.

Starting from #1, introducing an attribute encoder leads to a sig-
nificant mIoU boost (69.4%→72.8%, 48.2%→ 56.4%). This highlights
the robustness of the 3D attributes in MM-UDA. In addition, #2 and
#3 outperform #1 by large margins, demonstrating that learnable
prompts with visual cues can encourage the model to learn domain-
invariant representations (increasing from 72.8%→73.2%/73.6%,
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Figure 5: Intra-modal combinations of 3D attributes.

56.4%→58.1%/58.7%). Without VisPA, #5 still outperforms #2 by
0.8% and 0.5% in mIoU due to the densely integration of linguis-
tic features and visual features. Ultimately, #6 combines all of our
components to reach peak value.

4.4.2 Intra-modal Combinations of 3D Attributes. As shown in
Fig. 5, we elaborate on the effectiveness of 3D attributes and their
combinations (line graph), as well as the effectiveness of 3D at-
tributes for multi-modal interaction under the guidance of the CLIP
model (bar graph). Firstly, we investigate whether unified features
constructed solely based on 3D attributes would enhance perfor-
mance. Experimental results indicate that feeding 3D attributes into
a 2D network enhances the robustness of distribution changes be-
tween source and target domains of multi-modality. Subsequently,
to combine the visual features extracted from depth and intensity
maps, we design two feature-level fusion strategies: 1) F-Level:
Independent data inputs to two attribute encoders, followed by
concatenation of the output features; 2) D-Level: Input the fused
data into a single attribute encoder, resulting in the output of multi-
attribute hybrid features. Compared to the former strategy, the
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Figure 7: Confidence maps on “Virt.KITTI→Sem.KITTI”.

improvement of “2D+3D” in the latter is remarked as less memory-
consuming and performance-boosted, which obtains the mIoU gain
of 0.5%/0.6% and 0.5%/1.0%, respectively. This phenomenon shows
that while striving to maintain the strengths of each modality, it is
also essential to consider the intra-modality correlation.

4.4.3 Variety of Prompt Setting. In this part, we illustrate the im-
pact of prompt setting on the overall 2D performance of our method.
As shown in Fig. 6, the results demonstrate a consistent upward
trend, indicating that incorporating different learnable prompts to
extract visual-driven textual embeddings improves performance.
This observation suggests that the model benefits from incorporat-
ing visual information from multiple layers, enabling it to capture
more nuanced and discriminative features. The reason we specu-
late is that the class prompts are independent of domains and are
shared across all images and point clouds, while the image and
domain prompts are independent of classes and represent specific
visual information. In Fig. 7, we visualize confidence maps with
and without appending prompts to demonstrate their effectiveness.

4.4.4 Roles of CLIP. In Tab. 3, we present results using the weights
pre-trained CLIP model with fine-tuned and frozen strategy. In
the fine-tuning stage, all models are utilized as 2D encoder F𝐼 .
Among them, “Ours w/ finetune” achieves text-guided visual fea-
tures in place of image features in the shared decoder. Compared to
this setup, “Ours w/ frozen” (𝑖 .𝑒 ., CLIP2UDA) provides significant
improvements of 1.1% mIoU on Day→Night and 1.5% mIoU on
USA→Sing. We believe that our method inherently embeds local
image semantics in its features as it learns to associate pixel and

Table 3: Performance (mIoU, %) of different roles of CLIP in
fine-tuned and frozen manner.

Role Model Day→Night USA→Sing.
2D 3D 2D+3D 2D 3D 2D+3D

Finetune
CLIP-R50 69.2 71.0 71.2 67.4 65.1 69.6

DenseCLIP-R50 69.9 71.3 72.5 68.9 67.3 72.2
Ours-R50 71.0 71.4 73.0 69.8 67.5 72.5

Frozen Ours-R50 73.1 71.5 74.1 71.6 68.3 74.0
Ours-ViT-B-16 73.4 71.5 74.2 72.2 68.4 74.3

Table 4: Performance (mIoU, %) of opposite domain adapta-
tion on nuScenes.

Method Night→Day Sing.→USA
2D 3D 2D+3D 2D 3D 2D+3D

Source-only 55.1 70.3 64.7 62.2 68.4 71.3
xMUDA 67.4 71.1 71.9 69.2 70.0 73.5

CLIP2UDA 76.9 75.5 78.2 74.8 72.1 76.2
△Gain ↑9.5 ↑4.4 ↑6.3 ↑5.6 ↑2.1 ↑2.7

xMUDA𝑃𝐿 68.9 72.6 73.5 70.8 73.0 74.8
CLIP2UDA𝑃𝐿 78.4 76.0 79.7 75.4 72.7 76.8
△Gain ↑9.5 ↑3.4 ↑6.2 ↑4.6 ↓0.3 ↑2.0

point contents with natural language descriptions, indicating real
benefit to feature transfer from language-compatible 2D features
to 3D features.

4.4.5 Opposite Adaptation. To further test if our proposed method
also works in the opposite adaptation direction, we run the experi-
ments for “source-only”, “xMUDA”, “xMUDA𝑃𝐿”, and our methods
“CLIP2UDA” and “CLIP2UDA𝑃𝐿” on nuScenes: Night→Day and
nuScenes: Singapore→USA. As shown in Tab. 4, the experimen-
tal results come as no surprise. Remarkably, compared to the 3D
branch, CLIP2UDA effectively alleviates the performance degra-
dation caused by 2D domain shift. Meanwhile, when comparing
2D+3D results our CLIP2UDA improves mIoU by +6.3%/+2.7% with
respect to xMUDA, and +6.2%/+2.0% with extra pseudo-label super-
vision. This demonstrates that regardless of what target domain
is given, CLIP2UDA can harness the frozen CLIP to uncover its
pre-existing domain recognition capabilities.

5 Conclusion
In this work, we delve into the challenges faced by perceptual
multi-models in the robustness of domain shifts in 3D scene un-
derstanding. To this end, we propose a top-performing method,
dubbed CLIP2UDA, which makes frozen CLIP reward unsuper-
vised domain adaptation in 3D semantic segmentation. Building
upon CLIP, we introduce VisPA to leverage 2D feature response
from the visual encoder to initiate learning of task-specific text
prompts. Besides, we introduce TexCI to learn multi-modal domain-
invariant representation in the shared decoder and obtain unified
2D visual predictions. We evaluate and discuss a comprehensive
set of methods from related fields and study their adaptation across
day-to-night, country-to-country, synthetic-to-real, and device-to-
device datasets. Our findings underscore the need for more effective
solutions in this region.
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