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Our main paper has outlined the core techniques of our proposed
ResVR method for the joint Rescaling and Viewport Rendering of
ODIs. It has also demonstrated the efficacy of our methodological
contributions through experiments. This appendix offers further
details on our ResVR in Sec. A, along with additional experimental
results and analyses in Sec. B, which are not included in the main
paper due to space constraints.

A MORE DETAILS OF PROPOSED METHOD
A.1 Preliminaries of Perspective projection and

viewport rendering
Perspective projection. Perspective projection is the gnomonic
projection [4] of a sphere surface onto a flat, rectangular plane
surface. We first show the transformation between spherical coordi-
nates and Cartesian coordinates. Any point on the unit sphere can
be expressed in spherical coordinates with longitude 𝜙 ∈ [−𝜋, 𝜋]
and latitude 𝜃 ∈ [−𝜋/2, 𝜋/2]. We also define the corresponding
Cartesian coordinate (𝑋,𝑌, 𝑍 ). The transformation between spher-
ical coordinate and Cartesian coordinate can be formulated as:

𝑋 = cos𝜃 sin𝜙, 𝑌 = sin𝜃, 𝑍 = cos𝜃 cos𝜙. (1)

The corresponding inverse transformation is expressed as:

𝜙 = tan−1 𝑋
𝑍
, 𝜃 = tan−1 𝑌

√
𝑋 2 + 𝑍 2

. (2)

Here we consider the spherical coordinates of the perspective
plane center to be (𝜃𝑐 , 𝜙𝑐 ) = (0, 0) without loss of generality. The
forward projection 𝐹𝑝𝑝 : (𝑋,𝑌, 𝑍 ) ↦→ (𝑥𝑝 , 𝑦𝑝 ), which maps any
point of the sphere to the front viewport plane is defined as [2]:

𝑥𝑝 =
𝑋

𝑍
, 𝑦𝑝 =

𝑌

𝑍
, (3)

and the backward projection 𝐹−1𝑝𝑝 : (𝑥𝑝 , 𝑦𝑝 ) ↦→ (𝑋,𝑌, 𝑍 ) is formu-
lated as:

𝑋 = 𝑞𝑥𝑝 , 𝑌 = 𝑞𝑦𝑝 , 𝑍 = 𝑞, (4)
with

𝑞 =

1 +
√︃
𝑥2𝑝 + 𝑦2𝑝 + 1

𝑥2𝑝 + 𝑦2𝑝 + 1
. (5)

Viewport rendering. Given the horizontal FoV 𝐹ℎ and the ver-
tical FoV 𝐹𝑣 , a viewport is actually a 2D image that is rendered
through perspective projection from a region of the sphere. Denote
the height and width of the viewport as ℎ𝑣 and 𝑤𝑣 , respectively.
Given the viewport pixel coordinates (𝑚,𝑛), the coordinates of the
viewport image plane (𝑥𝑝 , 𝑦𝑝 ) can be obtained by the following
equations [3]:

𝑥𝑝 = 2 tan
(
𝐹ℎ

2

) (
𝑚 + 0.5
𝑤𝑣

− 1
2

)
, 𝑦𝑝 = 2 tan

(
𝐹𝑣

2

) (
1
2 − 𝑛 + 0.5

ℎ𝑣

)
.

(6)
The required Cartesian coordinates (𝑋,𝑌, 𝑍 ) of the sphere can be
obtained by Eqs. (4) and (5). Note that Eqs. (3)-(6) are under the
assumption that the center of the viewport is on the Z-axis, i.e.
(𝜃𝑐 , 𝜙𝑐 ) = (0, 0). For any viewing direction (𝜃𝑐 , 𝜙𝑐 ), the correspond-
ing sphere coordinates (𝑋 ′, 𝑌 ′, 𝑍 ′) can be obtained by:

(𝑋 ′, 𝑌 ′, 𝑍 ′)⊤ = 𝑅(𝑋,𝑌, 𝑍 )⊤, (7)

where 𝑅 is the viewport rotation matrix defined by (𝜃𝑐 , 𝜙𝑐 ).

Stage Building Block Output Size

Input Downsample

PixelUnshuffle 4×
3 × 3, 64
LeakyReLU
ResidualDenseBlock-32

𝐻/4 ×𝑊 /4 × 64

Downsampling Block1

[
3 × 3, 128
LeakyReLU

]
× 2

ResidualDenseBlock-64
𝐻/8 ×𝑊 /8 × 128

Downsampling Block2

[
3 × 3, 256
LeakyReLU

]
× 2

ResidualDenseBlock-128
𝐻/16 ×𝑊 /16 × 256

Upsampling Block1

3 × 3, 512[
3 × 3, 128
LeakyReLU

]
× 2

ResidualDenseBlock-128

𝐻/16 ×𝑊 /16 × 128

Upsampling Block2

3 × 3, 256[
3 × 3, 64
LeakyReLU

]
× 2

ResidualDenseBlock-64

𝐻/8 ×𝑊 /8 × 64

Output layer 3 × 3, 3 𝐻/4 ×𝑊 /4 × 3

Table 1: Architectural details of our downsampler.

A.2 Implementation details
Implementation details of ODI downscaling: Given an HR ERP
image IHR-ERP ∈ R3×𝐻×𝑊 , an LR representation is firstly gener-
ated through our downsampler, where 𝑠 is the rescaling factor. The
downsampler is a U-Net [6] with dense blocks [1]. The details of
our downsampler are shown in Tab. 1. "PixelUnshuffule 4×" stands
for the rearrangement of elements [7] which downsamples the HR
image by a factor of 4. "3 × 3, 64, LeakyReLU" represents a 2D-
convolution operation with a kernel size 3, output channel number

1
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64, followed by a LeakyReLU operation. We follow [1] to use the im-
plementation of the residual dense block, and "ResidualDenseBlock
32" refers to one residual dense block with a minimum channel 32.

Implementation details of JPEG compression: To further
decrease the file size of transmitted LR ERP, according to JPEG
algorithm, ĨLR-ERP is firstly converted to the luma-chroma color
space (YCbCr). Then the converted image is split into 8 × 8 pixel
blocks as ĨLR-ERP ∈ R3×𝑁×8×8, where 𝑁 = 𝐻×𝑊

64×𝑠2 . Then we trans-
form ĨLR-ERP to Discrete-Cosine-Transform (DCT) coefficients 𝐶 ∈
R
3× 𝐻×𝑊

64×𝑠2 ×8×8 = (𝐶𝑌 ,𝐶𝐶𝑏 ,𝐶𝐶𝑟 ). Inspired by [5], the quantization
tables 𝑄 for each jpeg image are predicted with a quantization pre-
diction module (QPM). The QPM is implemented as two separate
8-layer multilayer perceptrons (MLPs), composed of the luma pre-
dictor MLP𝐿 and MLP𝐶 . For block 𝐶𝑘 = (𝐶𝑌,𝑘 ,𝐶𝐶,𝑘 ), we vectorize
𝐶𝑘 into a 1D vector and produce its quantization table with QPM.
Thus, we have

𝑄𝐿 =

∑
𝑘 MLP𝐿 (𝐶𝑌,𝑘 )

|𝐶𝑌,𝑘 |
, 𝑄𝐶 =

∑
𝑘 MLP𝐶 (𝐶𝐶,𝑘 )

|𝐶𝐶,𝑘 |
, (8)

where | · | calculates the number of blocks. The average𝑄 is used as a
quantization table for the whole image to facilitate the conventional
JPEG codec. Then, the luma coefficient 𝐶𝑌 and chroma coefficient
𝐶𝐶 = (𝐶𝐶𝑏 ,𝐶𝐶𝑟 ) are quantized separately by predicted 𝑄𝐿 and 𝑄𝐶 :

𝐶𝑌 =
𝐶𝑌

[𝑄𝐿]
,𝐶𝐶 =

𝐶𝐶

[𝑄𝐶 ]
, (9)

where [·] represents the rounding and truncation function. Note
that the quantization tables [𝑄] = ( [𝑄𝐿], [𝑄𝐶 ]) and quantized DCT
coefficients [𝐶] = ( [𝐶𝑌 ], [𝐶𝐶 ]) are also encoded into the JPEG file.

Following the training stage of learned compression, the additive
uniform noise 𝜖 where each element followsU(− 1

2 ,
1
2 ) is adopted

to approximate the non-differentiable quantization noise in Eq. (9):

𝐶𝑌 =
𝐶𝑌

𝑄𝐿 + 𝜖
+ 𝜖,𝐶𝐶 =

𝐶𝐶

𝑄𝐶 + 𝜖
+ 𝜖, (10)

In the testing stage, the standard quantization function in Eq. (9) is
switched back to fit the JPEG API. In a practical scenario, the JPEG
image facilitates faster transmission and costs less storage.

Implementation details of JPEG decompression: After re-
ceiving the JPEG ERP image, the JPEG decoder first extracts [𝑄],
[𝐶] from the JPEG file for image reconstruction with inverted op-
erations of encoding steps:

𝐶𝑌 = [𝐶𝑌 ] [𝑄𝐿],𝐶𝐶 = [𝐶𝐶 ] [𝑄𝐶 ], (11)

and ÎLR-ERP = 𝐼𝐷𝐶𝑇 ( [𝐶𝑌 ,𝐶𝐶 ]), where IDCT is the inverse opera-
tion of DCT.

Implementation details of VR module: VR module consists
of an encoder E, a local texture estimator ℎ𝜓 , and an MLP-based
decoder D. The architecture of the encoder E is shown in Tab. 2.

The local texture estimator contains an amplitude estimator ℎ𝑎
(R24 ↦→ R256), a frequency estimator ℎ𝑓 (R24 ↦→ R2×128), and a
phase estimator ℎ𝑝 (R10 ↦→ R128). ℎ𝑎 and ℎ𝑓 are implemented by
3 × 3 convolution layer with 256 channels, and ℎ𝑝 is a single linear
layer with 128 channels. The decoderD is a 4-layer MLP with ReLU
activations, and its hidden dimension is 256.

Encoder E Building Block Output Size

Input Convolution 3 × 3, 24 𝐻/4 ×𝑊 /4 × 24

Residual Convolution Block


3 × 3, 24
3 × 3, 24
ReLU

 × 16 𝐻/4 ×𝑊 /4 × 24

Table 2: Architectural details of the encoder of VR module.

𝜃,𝜙 = (0∘, 0∘) 𝜃, 𝜙 = (−90∘, 0∘) 𝜃, 𝜙 = (0∘, 90∘)𝜃, 𝜙 = (0∘, 180∘)

𝜃, 𝜙 = (30∘, 0∘)

𝜃, 𝜙 = (30∘, 90∘)

𝜃, 𝜙 = (30∘, 180∘)𝜃, 𝜙 = (45∘, 0∘)𝜃, 𝜙 = (45∘, 90∘)𝜃, 𝜙 = (45∘, 180∘)

Figure 1: Visualization of an original ERP image and its ten
rendered viewports for evaluation.

A.3 Evaluation Benchmark
For evaluation of the quality of rendered viewports, we choose ten
different view directions, get the ground truth image using bicubic
interpolation, and calculate the average PSNR, SSIM, and LPIPS [8].
Specifically, the view directions {(𝜃, 𝜙)} are set to {(0◦, 0◦), (0◦, 90◦),
(0◦, 180◦), (30◦, 0◦), (30◦, 90◦), (30◦, 180◦), (45◦, 0◦), (45◦, 90◦),
(45◦, 180◦), (−90◦, 0◦)}. An example is shown in Fig. 1.

B MORE EXPERIMENTS AND ANALYSES
B.1 Visualization of sampled pixels
Fig. 2 presents the visualization of sampled regions and pixels in
three examples. Specifically, the left part of Fig. 2 shows randomly
cropped IHR-ERP-Patch (red rectangular), corresponding 𝑋𝑣𝑖𝑒𝑤 (blue
points), and randomly sampled 𝑋𝑠𝑎𝑚𝑝 (green points). The right
part of Fig. 2 shows some of the sampled pixels through bicubic
interpolation, which is reshaped to 96 × 96 for better visualization.

B.2 Visualization of LR JPEG images
The file size and visual quality of LR JPEG images are also impor-
tant for efficient transmission and user preview. We provide some
visualizations of transmitted JPEG LR ERP images in Fig. 3, together
with their bpp and WS-PSNR. It can be seen that ResVR generates
LR images without compromising HR reconstruction quality.

2
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Sampled Regions Sampled Pixels

Figure 2: Visualization of sampled regions and pixels through
our proposed discrete pixel sampling strategy in Sec. 3.3 of
our main paper. Left: The red rectangular denotes the area
of cropped patch IHR-ERP-Patch, the blue points denote the el-
ements in 𝑋𝑣𝑖𝑒𝑤 , and the green points denote some elements
in𝑋𝑠𝑎𝑚𝑝 . Right: Corresponding sampled pixels in 𝑆𝑝𝑖𝑥 , which
are reshaped to 96 × 96 for better visualization.

Ground Truth (.png format) LR from our ResVR (.jpeg format)

bpp / WS-PSNR(dB) 0.2091 / 35.68

bpp / WS-PSNR(dB) 0.2483 / 35.38

bpp / WS-PSNR(dB) 0.2663 / 34.01

bpp / WS-PSNR(dB) 0.2068 / 36.91

Figure 3: Visualizations of the ground truth images and cor-
responding LR JPEG ones downscaled by our ResVR model.
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