23
24
25
26
27
28
29

39
40
41
42
43
44

ResVR: Joint Rescaling and Viewport Rendering of
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Our main paper has outlined the core techniques of our proposed
ResVR method for the joint Rescaling and Viewport Rendering of
ODIs. It has also demonstrated the efficacy of our methodological
contributions through experiments. This appendix offers further
details on our ResVR in Sec. A, along with additional experimental
results and analyses in Sec. B, which are not included in the main
paper due to space constraints.

A MORE DETAILS OF PROPOSED METHOD

A.1 Preliminaries of Perspective projection and
viewport rendering

Perspective projection. Perspective projection is the gnomonic
projection [4] of a sphere surface onto a flat, rectangular plane
surface. We first show the transformation between spherical coordi-
nates and Cartesian coordinates. Any point on the unit sphere can
be expressed in spherical coordinates with longitude ¢ € [, 7]
and latitude 6 € [-n/2,7/2]. We also define the corresponding
Cartesian coordinate (X, Y, Z). The transformation between spher-
ical coordinate and Cartesian coordinate can be formulated as:

X =cosfsing, Y =sinf, Z = cos B cos ¢. 1)

The corresponding inverse transformation is expressed as:

¢ =tan"! X 0 = tan™! _r (2)
z VX2 + 22
Here we consider the spherical coordinates of the perspective
plane center to be (8., #c) = (0,0) without loss of generality. The
forward projection Fpp : (X,Y,Z) + (xp,yp), which maps any
point of the sphere to the front viewport plane is defined as [2]:

X Y
= — == 3
Xp 7 Yp 7 (3

and the backward projection F i Pl : (xp,yp) = (X, Y, Z) is formu-
lated as:

X = qxp, Y= qYp, Z =gq, (4)
with
[,:2 2
1+ xp+yp+1
1=~ 7.7 ®)
xp+yp+

Viewport rendering. Given the horizontal FoV F,, and the ver-
tical FoV F,, a viewport is actually a 2D image that is rendered
through perspective projection from a region of the sphere. Denote
the height and width of the viewport as h, and wy, respectively.
Given the viewport pixel coordinates (m, n), the coordinates of the
viewport image plane (xp,1p) can be obtained by the following
equations [3]:

Fp\[(m+05 1 Fy\ (1 n+0.5
xp:2tan — - = ,yp:2tan — = - .
2 Wy 2 2 2 hy

The required Cartesian coordinates (X, Y, Z) of the sphere can be
obtained by Eqs. (4) and (5). Note that Egs. (3)-(6) are under the
assumption that the center of the viewport is on the Z-axis, i.e.
(Oc, ¢c) = (0,0). For any viewing direction (0, ¢.), the correspond-
ing sphere coordinates (X’, Y/, Z”) can be obtained by:

X,Y,Z")T =R(X,Y,Z)7, (7

where R is the viewport rotation matrix defined by (6, ¢.).

Stage Building Block Output Size
PixelUnshuffle 4x
3 X 3,64

Input Downsample LeakyReLU H/4x W /4 x 64
ResidualDenseBlock-32

3% 3,128 « 2

Downsampling Block1 LeakyReLU H/8x W /8 x 128

ResidualDenseBlock-64
3 X 3,256 «2

Downsampling Block2 LeakyReLU H/16 x W /16 X 256
ResidualDenseBlock-128
3 X 3,512

. 33,128

Upsampling Block1 LeakyReLU ] X2 H/16 x W /16 x 128
ResidualDenseBlock-128
3 X 3,256

. 3 X 3,64

Upsampling Block2 LeakyReLU ] X2 H/8 X W/8 x 64
ResidualDenseBlock-64

Output layer 33,3 H/4xW/4x3

Table 1: Architectural details of our downsampler.

A.2 Implementation details

Implementation details of ODI downscaling: Given an HR ERP
image IHRERP ¢ R3XHXW 'ap IR representation is firstly gener-
ated through our downsampler, where s is the rescaling factor. The
downsampler is a U-Net [6] with dense blocks [1]. The details of
our downsampler are shown in Tab. 1. "PixelUnshuffule 4x" stands
for the rearrangement of elements [7] which downsamples the HR
image by a factor of 4. "3 X 3, 64, LeakyReLU" represents a 2D-
convolution operation with a kernel size 3, output channel number
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64, followed by a LeakyReLU operation. We follow [1] to use the im-
plementation of the residual dense block, and "ResidualDenseBlock
32" refers to one residual dense block with a minimum channel 32.

Implementation details of JPEG compression: To further
decrease the file size of transmitted LR ERP, according to JPEG
algorithm, T"RERP js firstly converted to the luma-chroma color
space (YCbCr). Then the converted image is split into 8 X 8 pixel
blocks as ILRERP ¢ R3XNX8X8 where N = HXW Then we trans-

64xs% "
form I'RERP ¢ Discrete-Cosine-Transform (DCT) coefficients C €
HxwW
R oaxsz ¥8%8 = (Cy,Ccp, Ccr). Inspired by [5], the quantization

tables Q for each jpeg image are predicted with a quantization pre-
diction module (QPM). The QPM is implemented as two separate
8-layer multilayer perceptrons (MLPs), composed of the luma pre-
dictor MLP; and MLP¢. For block Cy = (Cy x, Cc k), we vectorize
Cy. into a 1D vector and produce its quantization table with QPM.
Thus, we have

2k MLPL(Cy )
L= ————",0c=
ICy i

2k MLPc(Ce k)

, 8)
ICokl

where |- | calculates the number of blocks. The average Q is used as a
quantization table for the whole image to facilitate the conventional
JPEG codec. Then, the luma coefficient Cy and chroma coefficient
Cc = (Ccp, Cor) are quantized separately by predicted Qy and Qc:
Y=7~7C= T
(O] [Qcl

where [-] represents the rounding and truncation function. Note
that the quantization tables [Q] = ([QL], [Qc]) and quantized DCT
coefficients [C] = ([Cy], [Cc]) are also encoded into the JPEG file.
Following the training stage of learned compression, the additive
uniform noise € where each element follows 'LI(—%, % is adopted
to approximate the non-differentiable quantization noise in Eq. (9):

©)

Cc
Qp+e Qc+e

In the testing stage, the standard quantization function in Eq. (9) is
switched back to fit the JPEG APL In a practical scenario, the JPEG
image facilitates faster transmission and costs less storage.
Implementation details of JPEG decompression: After re-
ceiving the JPEG ERP image, the JPEG decoder first extracts [Q],

Cy +eCc = +e, (10)

[C] from the JPEG file for image reconstruction with inverted op-
erations of encoding steps:

Cy = [Cy1[Q1]. Cc = [CcllQcl, (11)

and [LRERP — 1pCT( [@; E‘E]), where IDCT is the inverse opera-
tion of DCT.

Implementation details of VR module: VR module consists
of an encoder &, a local texture estimator h‘/,, and an MLP-based
decoder D. The architecture of the encoder & is shown in Tab. 2.

The local texture estimator contains an amplitude estimator h,
(R* - R?), a frequency estimator hy (R* > R?¥128) and a
phase estimator hy, (R0 > R128). h, and hy are implemented by
3 X 3 convolution layer with 256 channels, and h,, is a single linear
layer with 128 channels. The decoder D is a 4-layer MLP with ReLU
activations, and its hidden dimension is 256.

Anon.
Encoder & Building Block Output Size
Input Convolution 33,24 H/4xW/4x24
3X3,24
Residual Convolution Block 3%x3,24 |X16 H/4xW/4x24
ReLU

Table 2: Architectural details of the encoder of VR module.
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Figure 1: Visualization of an original ERP image and its ten

rendered viewports for evaluation.

A.3 Evaluation Benchmark

For evaluation of the quality of rendered viewports, we choose ten

different view directions, get the ground truth image using bicubic

interpolation, and calculate the average PSNR, SSIM, and LPIPS [8].
Specifically, the view directions {(6, ) } are set to {(0°,0°), (0°,90°),
(0°,180°), (30°,0°), (30°,90°), (30°,180°), (45°,0°), (45°,90°),

(45°,180°), (—=90°,0°)}. An example is shown in Fig. 1.

B MORE EXPERIMENTS AND ANALYSES

B.1 Visualization of sampled pixels

Fig. 2 presents the visualization of sampled regions and pixels in
three examples. Specifically, the left part of Fig. 2 shows randomly
cropped IHR-ERP-Patch (o rectangular), corresponding Xyieqs (blue
points), and randomly sampled Xsqmp (green points). The right
part of Fig. 2 shows some of the sampled pixels through bicubic
interpolation, which is reshaped to 96 x 96 for better visualization.

B.2 Visualization of LR JPEG images

The file size and visual quality of LR JPEG images are also impor-
tant for efficient transmission and user preview. We provide some
visualizations of transmitted JPEG LR ERP images in Fig. 3, together
with their bpp and WS-PSNR. It can be seen that ResVR generates
LR images without compromising HR reconstruction quality.
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Sampled Regions
N

Figure 2: Visualization of sampled regions and pixels through
our proposed discrete pixel sampling strategy in Sec. 3.3 of
our main paper. Left: The red rectangular denotes the area
of cropped patch [MR-ERP-Patch ‘t1¢ blye points denote the el-
ements in Xyjev, and the green points denote some elements
in Xsqmp- Right: Corresponding sampled pixels in Sp;x, which
are reshaped to 96 x 96 for better visualization.
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Ground Truth (.png format) LR from our ResVR (.jpeg format)

bpp / WS-PSNR(dB) 0.2483 / 35.38

bpp / WS-PSNR(dB) 0.2663 / 34.01

bpp / WS-PSNR(dB) 0.2068 / 36.91

Figure 3: Visualizations of the ground truth images and cor-
responding LR JPEG ones downscaled by our ResVR model.
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