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ABSTRACT

Recent advancements in Large Language Models (LLMs) have sparked interest in
their mathematical reasoning capabilities. While performance on the widely pop-
ular GSM8K benchmark has improved, questions remain about whether reported
evaluation metrics are reliable, and reasoning abilities of LLMs have advanced.
To overcome the limitations of existing evaluations, we introduce GSM-Symbolic,
an improved benchmark created from symbolic templates that allow for the gen-
eration of a diverse set of questions. GSM-Symbolic enables more controllable
evaluations, providing key insights and more reliable metrics for measuring the
reasoning capabilities of models. Our findings reveal that LLMs exhibit notice-
able variance when responding to different instantiations of the same question.
Specifically, the performance of models declines when only the numerical values
in the question are altered in the GSM-Symbolic benchmark. Furthermore, we
investigate the fragility of mathematical reasoning in these models and demon-
strate that their performance significantly deteriorates as the number of clauses in
a question increases. We hypothesize that this decline is due to the fact that cur-
rent LLMs are not capable of genuine logical reasoning; instead, they attempt to
replicate the reasoning steps observed in their training data. When we add a single
clause that appears relevant to the question, we observe significant performance
drops (up to 65%) across all state-of-the-art models, even though the added clause
does not contribute to the reasoning chain needed to reach the final answer. Over-
all, our work provides a more nuanced understanding of LLMs’ capabilities and
limitations in mathematical reasoning]l]

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains,
including natural language processing, question answering, and creative tasks (Gunter et al.| 2024;
OpenAlL 2023} Dubey et al.,[2024; |Anil et al.| 2023} |Abdin et al.l 2024} Riviere et al.,|2024). Their
potential to perform complex reasoning tasks, particularly in coding and mathematics, has garnered
significant attention from researchers and practitioners.

However, the question of whether current LLMs are genuinely capable of true logical reasoning
remains an important research focus. While some studies highlight impressive capabilities, a closer
examination reveals substantial limitations. Literature suggests that the reasoning process in LLMs
is probabilistic pattern-matching rather than formal reasoning (Jiang et al.,[2024). Although LLMs
can match more abstract reasoning patterns, they fall short of true logical reasoning. Small changes
in input tokens can drastically alter model outputs, indicating a strong token bias and suggesting
that these models are highly sensitive and fragile (Jiang et al.| 2024; Shi et al.} [2023). Additionally,
in tasks requiring the correct selection of multiple tokens, the probability of arriving at an accurate
answer decreases exponentially with the number of tokens or steps involved, underscoring their
inherent unreliability in complex reasoning scenarios (Schaeffer et al.| 2023)).
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GSMSK GSM Symbolic Template

When Sophie watches her nephew, When {name} watches her {family}, she gets out a

she gets out a variety of toys variety of toys for him. The bag of building blocks
for him. The bag of building has {x} blocks in it. The bin of stuffed animals has
blocks has 31 blocks in it. The {y} stuffed animals inside.The tower of stacking rings
bin of stuffed animals has 8 has {z} multicolored rings on it.{name} recently bought
stuffed animals inside. The a tube of bouncy balls, bringing her total number of
tower of stacking rings has 9 toys she bought for her {family} up to {total}. How
multicolored rings on it.Sophie many bouncy balls came in the tube?

recently bought a tube of bouncy
balls, bringing her total number

of toys for her nephew up to 62. #varlablef:
How many bouncy balls came in the 7 B - sorple(nanes)
- family = sample(["nephew", "cousin", "brother"])

=
tube? - 'x = range(5, 100)

-y range (5, 100)

-z range(5, 100)

- total = range(100, 500)
- [ans = range(85, 200)

#conditions:
7777777777777777777777777777 - X + y + z + ans == total

PetITabeRthenunberfiofbouncy A EEEEEEEEEEEEEEEEE TS I il
balls in the tube.

After buying the tube of balls,
Sophie has 31+8+9+ T = 48 + T =62
toys for her nephew.

Thus, T =62-48 = <<62-48=14>>14
bouncy balls came in the tube.

Let T be the number of bouncy balls in the tube. After
buying the tube of balls, {name} has {x} + {y} + {z} +
T={x+y+2z}+T= {total} toys for her {family}.

Thus, T = {total} - {x + y + 2z } = <<{total}-{ x + y
+ z }={ans}>>{ans} bouncy balls came in the tube.

\. J

Figure 1: Illustration of the GSM-Symbolic template creation process. This dataset serves as a
tool to investigate the presumed reasoning capabilities of LLMs, enabling the design of controllable
mathematical reasoning evaluations with more reliable metrics. Our results reveal that all state-of-
the-art LLMs exhibit significant performance variations, suggesting the fragility or lack of reasoning.

Mathematical reasoning is a crucial cognitive skill that supports problem-solving in numerous scien-
tific and practical applications. Consequently, the ability of large language models (LLMs) to effec-
tively perform mathematical reasoning tasks is key to advancing artificial intelligence and its real-
world applications. The GSM8K (Grade School Math 8K) dataset|Cobbe et al.| (2021 has emerged
as a popular benchmark for evaluating the mathematical reasoning capabilities of LLMs. While it
includes simple math questions with detailed solutions, making it suitable for techniques like Chain-
of-Thought (CoT) prompting, it provides only a single metric on a fixed set of questions. This limi-
tation restricts comprehensive insights into the models’ mathematical reasoning. Moreover, the pop-
ularity and prevalence of GSMS8K can increase the risk of inadvertent data contamination. Finally,
the static nature of GSM8K does not allow for controllable experiments to understand model limita-
tions, such as behavior under varied conditions or changes in question aspects and difficulty levels.

To address these limitations, a more versatile and adaptive evaluation framework is needed—one that
can generate diverse question variants and adjust complexity levels to better explore the robustness
and reasoning abilities of LLMs. This would facilitate a deeper understanding of the strengths and
weaknesses of these models in mathematical reasoning tasks. We make the following contributions:

* We introduce GSM-Symbolic, an enhanced benchmark that generates diverse variants of
GSM8K questions using symbolic templates (Sec. [3), as shown in Fig. [T} This enables a more
nuanced and reliable evaluation of LLMs’ performance across various setups, moving beyond
single-point accuracy metrics. Our large-scale study on 25 state-of-the-art open and closed mod-
els provides significant insights into LLMs’ behavior in mathematical reasoning tasks.

* We question the reliability of currently reported results on GSM8K and demonstrate that the
performance of LLMs can be viewed as a distribution with unwarranted variance across differ-
ent instantiations of the same question. We show that the performance of all models drops on
GSM-Symbolic (Sec.[d.I), hinting at potential data contamination.

* We show that LLMs exhibit more robustness to changes in superficial elements like proper names
but are very sensitive to changes in numerical values (Sec.[.2). We show that performance degra-
dation and variance increase as the number of clauses increases, indicating that LLMs’ reasoning
capabilities struggle with increased complexity (Sec. #.3).
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* Finally, we further question the reasoning abilities of LLMs and introduce the GSM-NoOp dataset.
By adding seemingly relevant but ultimately irrelevant information to problems, we demonstrate
substantial performance drops (up to 65%) across all state-of-the-art models (Sec. d.4). This
reveals a critical flaw in the models’ ability to discern relevant information for problem-solving,
likely because their reasoning is not formal not formal in the conventional sense and is mostly
based on pattern matching. We show that even when provided with multiple examples of the same
question or examples containing similar irrelevant information, LLMs struggle to overcome the
challenges posed by GSM-NoOp. This suggests deeper issues in their reasoning processes that
cannot be alleviated by in-context shots and needs further investigation.

Overall, our work provides a comprehensive understanding of the limitations of LLMs in mathe-
matical reasoning. Our results emphasize the need for more reliable evaluation methodologies and
further research into the reasoning capabilities of large language models.

2 BACKGROUND: REASONING & LANGUAGE MODELS

Logical reasoning is a critical trait of intelligent systems, and building intelligent systems capable
of such reasoning has long been an important goal in artificial intelligence (Newell & Simonl 1956
Marcus) 2003} [Brachman & Levesque, [2004; [Legg & Hutter, 2007; [Pearl, 2014; |Chollet, [2019).
Recent advancements in Large Language Models (LLMs) have demonstrated significant potential
across various domains; however, their reasoning abilities remain uncertain and inconsistent. Many
works have investigated whether LLMs are truly capable of reasoning by examining how these
models solve tasks that require logical reasoning.

We define logical reasoning as the process by which an agent (a human or a machine) employs
logical steps to achieve a “novel” goal. The emphasis on “novelty” is crucial because it helps
distinguish genuine reasoning from mere memorization of solutions or responses, or mimicking
the logical steps previously encountered (Gignac & Szodorai, |2024). This distinction aligns with
ideas akin to the Chinese Room Argument (Cole, |2024)), underscoring the difference between true
comprehension and pattern-matching. Furthermore, this definition connects to several established
definitions in Al literature. For instance, the “length-generalization™ refers to the ability to apply
known logical steps on larger inputs. Moreover, in order to successfully apply such logical steps,
an agent often requires other skills such “decomposing” a problem into smaller sub-problems, and
“composing” logical steps from these sub-problems in order to solve another problem.

One interesting direction focuses on modeling the computation performed by transformers. For ex-
ample, parallels have been drawn between components such as attention and feed-forward modules
and simple computational primitives (Weiss et al., [2021}; Zhou et al.| [2024)). |[Delétang et al.| (2023)
demonstrated that transformers fail to generalize on non-regular tasks and showed that structured
memory (e.g., memory tape) is necessary for handling complex tasks. This is related to the effec-
tiveness of Chain-of-Thought (CoT) prompting (Wei et al.|[2022)) and using scratchpads for LLMs as
additional memory for intermediate computations. Moreover, Zubic et al.|(2025) show theoretically
and empirically that Structured State Space Models (SSMs) and Transformers face fundamental lim-
itations in performing function composition and complex reasoning tasks. Overall, current results
suggest that while the transformer architecture has limitations and lacks the required expressiveness
for solving problems across several complexity classes, these limitations can be alleviated with ad-
ditional memory (e.g., scratchpads) (Liu et al., 2024). However, this still requires generating vast
amounts of tokens to solve a problem (Peng et al., |2024; |OpenAlL |2024). While these works pro-
vide insights into the theoretical computational complexity of transformers, in practice, it remains
unclear whether these LLMs can perform formal logical reasoning to solve tasks.

There is a considerable body of work suggesting that the reasoning process in LLMs is fragile
and not formal (Kambhampati, 2024; Valmeekam et al., 2022; [2024; Nezhurina et al., 2024;
McCoy et all 2023; Zhang et al.l |2023), even though it appears that these models understand
symbols and can work with them to some limited degree (Boix-Adsera et al.| [2024). Instead,
LLMs likely perform a form of probabilistic pattern-matching and searching to find closest seen
data during training without proper understanding of concepts. While this process goes beyond
naive memorization of words and the models are capable of searching and matching more abstract
reasoning steps, it still falls short of true formal reasoning. For instance, Jiang et al.| (2024) show,
with statistical guarantees, that most LLMs still struggle with logical reasoning due to strong token
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bias, where the reasoning output of the model changes when a single token of input changes. This
aligns with our results, which indicate that the performance of models on different instances of the
same mathematical question can vary greatly from one instance to another. |L1 et al.|(2024b)) prove
that a single transformer layer learns a one-nearest neighbor, which could explain why the reasoning
of models is highly sensitive to input tokens. [Schaeffer et al.|(2023)) argue that when a task requires
emitting multiple tokens correctly, the probability of answering correctly decreases exponentially
with the number of tokens. |Dziri et al.| (2023) represent reasoning tasks as computation graphs
and find that full computation subgraphs appear much more frequently in training data for correct
predictions than incorrect ones. [Razeghi et al.| (2022) show a correlation between frequency in
training and test performance, supporting the pattern matching hypothesis, while Nezhurina et al.
(2024)) and McCoy et al.| (2023 demonstrate the fragility of reasoning in LLMs on simple tasks.

Our work builds upon these findings by introducing GSM-Symbolic, an improved benchmark
using symbolic templates to generate diverse question variants. This allows us to study math-
ematical reasoning ability beyond a single performance metric. By evaluating performance on
different instantiations and difficulty levels, we draw a comprehensive picture of LLMs’ reasoning
capabilities. Related to this direction, [Stolfo et al.| (2023)) evaluate LLMs on math word problems
by measuring sensitivity and robustness to different input interventions and report that models
often rely on surface-level cues rather than genuine reasoning, while Hong et al.|(2024) developed
an ontology and used it to perturb the GSMS8K dataset with the aid of LLMs, and |Srivastava
et al.| (2024) purposes functional variant of MATH dataset. Our findings in this work support the
hypothesis that current LLMs are not capable of performing formal mathematical reasoning and
pave the way for further research.

3 GSM-SYMBOLIC

The GSM8K dataset (Cobbe et al.| |2021) includes over 8000 grade school math questions and an-
swers, divided into 7473 training and 1319 test examples. As shown in Fig. [T} the questions are
relatively simple, requiring knowledge of only the four main arithmetic operations. However, since
GSMS8K is a single, popular test set, there is a risk of data contamination, and performance may
change significantly with minor modifications to the questions. These limitations have led to efforts
to generate new datasets and variants. 1GSM (Ye et al. |2024)) is a math dataset created through
a synthetic pipeline that captures parameter dependencies in a hierarchical and graph structure.
GSM-IC (Shi et al., |2023) shows that irrelevant context can impair LLM performance, focusing
on prompting techniques. Our work, however, suggests a more fundamental issue: LLMs struggle
even when given multiple shots of the same question, indicating deeper challenges in problem-
solving that cannot be resolved with few-shot prompting or fine-tuning on unseen distractions or
variations of the same or different difficulty levels. GSM-P 1us (Li et al.,|2024a) introduces variants
of GSM8K questions but lacks symbolic templates and has a fixed size and difficulty. GSM1K (Zhang
et al.| [2024) mirrors the style and complexity of GSM8K to identify systematic overfitting in existing
models, but it is not publicly available for researchers.

While the mentioned benchmarks offer a single performance metric on a fixed number of questions,
we argue that viewing LLM performance as a distribution across various problem instances provides
deeper insights. The design of GSM-Symbolic enables the generation of numerous instances and
allows for finer control over question difficulty. We believe our paper contributes to this direction
by offering a reliable evaluation framework that underscores the importance of generating multi-
ple instances to assess LLMs’ mathematical capabilities and their robustness to diverse problem
difficulties and augmentations.

3.1 TEMPLATE GENERATION

Given a specific example from the test set of GSM8K, we create parsable templates as shown
in Fig.[I](right). The annotation process involves identifying variables, their domains, and necessary
conditions to ensure the correctness of both the question and the answer. For instance, since the
questions are grade-school level, a common condition is divisibility to ensure the answer is a whole
number. We use common proper names (e.g., persons, foods, currencies) to streamline creation.
After creating the templates, we apply several automated checks to ensure the annotation process
is correct. For example, we verify that none of the original variable values appear in the template.
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We also check that the original values satisfy all conditions and that the final answer matches the
original question’s answer. Once data are generated, 10 random samples per template are reviewed
manually. As a final automated check, after evaluating all models, we verify that at least two models
answer each question correctly; otherwise, the question is reviewed manually again.

When constructing symbolic templates, we deliberately select numerical ranges that closely align
with those in the original GSM8Ktest set. This decision reflects our focus on assessing logical rea-
soning capabilities rather than arithmetic skills. Our analysis in Appendix [A.6] confirms that the
expanded ranges remain within boundaries where models maintain their arithmetic accuracy.

3.2 EXPERIMENTAL SETUP

While we provide further details on our experimental setup and evaluation in the Appendix, we
briefly review the important aspects here:

Models. Throughout this work, we report on more than 20 open models of various sizes, ranging
from 2B to 27B. Additionally, we include state-of-the-art closed models such as GPT-40-mini, GPT-
40, 0o1-mini, and ol-preview. To conserve space, we present results for a few selected models in each
experiment, but the full results for all models are available in Tab.[T]of the Appendix[A.2]

Evaluation Setup Overall, for this work, we conducted nearly 500 total evaluations on various
setups. To this end, we maintained a manageable dataset size by using 100 templates and generating
50 samples per template, resulting in 5000 total examples for each benchmark. Therefore, we have
50 datasets of 100 examples each, where each example is a mutation of one of the original 100
examples from GSM8K. Unless stated otherwise, we follow a common evaluation setup on GSM8K
and other math benchmarks that includes Chain-of-Thought (CoT) prompting with 8-shots with
greedy decoding. However, we note that in our preliminary experiments, the number of shots did
not significantly change the performance and conclusions. We provide our prompt template in Fig.[9]

4 EXPERIMENTS & RESULTS

In this section, we present our main results and postpone complementary findings to the Appendix.
We begin our experiments by addressing an important question regarding the reliability of current
reported metrics on GSM8K. By studying the distribution of performance on GSM-Symbolic, we
demonstrate notable performance variation. More importantly, we observe that the performance of
models drops on GSM-Symbolic (Sec.[d.I).

Next, we investigate the fragility of reasoning in LLMs by comparing performance distributions
when only proper names are changed versus when values and numbers are altered. Our findings
indicate that the original GSM8K performance of models is much closer to the performance distribu-
tion when only names are changed. However, performance drops more significantly when values are
changed, with this trend continuing as both changes are applied simultaneously (Sec.[4.2). We then
examine the impact of question difficulty, as indicated by the number of clauses added to or removed
from the questions. Our results show that as the number of clauses increases, average performance
drops, and the variance in performance increases consistently across all models (Sec. {.3).

Finally, in Sec.[#.4] we tackle a more fundamental question: whether the models truly understand the
mathematical concepts. We show that, likely due to potential pattern matching and the fact that the
training distribution of models included only necessary information for solving questions, adding
seemingly relevant clauses to the question that do not impact the reasoning process required to solve
it significantly drops the performance of all models.

4.1 How RELIABLE ARE THE CURRENT GSM8K RESULTS?

As our first experiment, we evaluate the performance of several state-of-the-art models on
GSM-Symbolic. The number of samples and difficulty can be adjusted by modifying variable
domains, as we will see in subsequent sections. Fig.[2]shows the empirical distribution of the perfor-
mance of models on GSM-Symbolic computed on these 50 datasets. As shown, all models exhibit
a non-negligible variance across different sets. For instance, for the Gemma2-9B, the gap between
the worst performance and the best performance is more than 12%, while for Phi-3.5-mini, this gap
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Figure 2: 8-shot CoT performance across 50 sets generated from GSM-Symbolic templates. All
state-of-the-art models exhibit notable variance in accuracy. It is interesting that for the majority of
the models, the performance on GSM8XK (represented by dashed line) falls on the right side of the
distribution, which statistically speaking, should have a very low likelihood.
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Figure 3: The performance of all state-of-the-art models on GSM-Symbolic drops compared to
GSMB8K. Later, we investigate the factors that impact the performance drops in more depth.

is around 15%. It is interesting that this variation even exists, as the only differences across different
instances of each question are the changes in names and values, while the overall reasoning steps
needed to solve a question remain the same.

Another noteworthy observation is that the performance (represented by the dashed line in Fig. 2)
on the original questions from the 100 examples of GSM8XK used as templates is often more than
one standard deviation away from the center of the GSM-Symbolic performance distribution,
frequently on the right side of the distribution (this holds for 21 out of 25 models). One explanation
for this could be data contamination, where some of the test examples from GSM8K inadvertently
ended up in the training set of these models, leading to an optimistic bias in performance. Fig.[3]
shows the performance drop from GSM8K to GSM-Symbolic for several models. We can see that
for models such as Gemma2-9B, Phi-3, Phi-3.5, and Mathstral-7B, the dashed line in Fig. lies on
the right side, and the drop in performance is higher than for models such as Llama3-8b and GPT-4o,
where the performance on GSM8K is close to the center of the GSM-Symbolic distribution and the
drop in performance is negligible. In Appendix[A.3] we present further results to support this claim
for other models such as Phi-2 and Mistral-7B. These results lead us to investigate the fragility of
the reasoning abilities of LLMs in the next section.



Published as a conference paper at ICLR 2025

Gemma2-9b-it Llama3-8b-instruct Phi-3-medium-128k-instruct

20 T T 20 : T 20 — - r
GSMSK 87.0 1 GSMSK 74.0 | GSMSK 89.0 1
_ | Names 88.6 (£20) 1 Names 75.6 (£211) [ Names 91.8 (£1.7) 1
15 F Numbers 83.1|(42.2) | 15 Numbers 75.5 ($3.1) 1 5 Numbers 89.0 (+2.3) |
g Both 79.1 (+£3.0) 1 I Both 74.6 (+2.9) Both 82.5 (4+2.9) 1
Z10 i ERTIS | ] |
5F I 5F ] 5
|
I ‘ ‘ 1
0L # | L 0 1L i o=l L, i | |
70 75 80 85 90 70 75 80 75 80 85 90 95
GSM Symbolic Accuracy (%) - (8s CoT) GSM Symbolic Accuracy (%) - (8s CoT) GSM Symbolic Accuracy (%) - (8s CoT)
Phi-3-small-128k-instruct Phi-3.5-mini-instruct Mathstral-7b-v0.1
20 : T — 20 — T T T 20 T T
GSMSK 89.0 1 GSMSK 88.0 1 GSMSK 80.0 1
_ [ Names 88.4 (£1.8) 1 Names 89.1 (£1.8) 1 _ [ Names 81.0 (£1.3) 1
15 F Numbers (£2.4) : 15 | Numbers 84.9 (+2.4) : 1 15 | Numbers 77.3 (+2.0) :
g Both 83.7 (£2.6) 1 I Both 82.1 (£3.4) 1 Both 74.0 (£3.5) 1
Z10 ERTIS ! ]
5F 5k ] 5F
0 1 | L1 oLI f i 0 T n | 1
80 85 90 75 30 85 90 70 75 80
GSM Symbolic Accuracy (%) - (8s CoT) GSM Symbolic Accuracy (%) - (8s CoT) GSM Symbolic Accuracy (%) - (8s CoT)

Figure 4: How sensitive are LLMs when we change only names, only proper numbers, or both
names and numbers? Overall, models have noticeable performance variation even if we only change
names, but even more when we change numbers or combine these changes.

4.2 HOW FRAGILE IS MATHEMATICAL REASONING IN LARGE LANGUAGE MODELS?

In the previous sub-section, we observed high performance variation across different sets generated
from the same templates, along with a performance degradation compared to the original GSM8K
accuracy. This suggests that the perceived reasoning process of language models may not be formal
and is hence susceptible to changes. One explanation is that these models attempt to perform a kind
of in-distribution pattern-matching, aligning given questions and solution steps with similar ones
seen in the training data. As no formal reasoning is involved in this process, it could lead to high
variance across different instances of the same question. In this sub-section and the next one, we
investigate these observations further and we show that several factors contribute to the performance
variation of the models. First, we investigate the impact of the type of change to understand the
difference between changing names (e.g., person names, places, foods, currencies, etc.) versus
changing numbers (i.e., the values of variables).

Figure [ demonstrates that while performance variation persists, the variance is lower when chang-
ing names compared to numbers. Notably, the original GSM8K accuracy of models is now much
closer to the center of the changed proper names distribution, in contrast to changed numbers or
both. Furthermore, a gradual shift in the means of distributions from right to left, along with an
increase in variance, is evident across almost all models. It is both striking and concerning that such
performance variance exists when only changing proper names, as this level of variability would not
be expected from a grade-school student with genuine mathematical understanding.

From the results in this section, we observe that by increasing the difficulty of changes (from names
to numbers), the performance drops and the variance increases, overall suggesting that the reason-
ing capabilities of state-of-the-art LLMs are fragile for the aforementioned reasons. Assuming that
LLMs are not performing formal reasoning, how important is the question difficulty on the distribu-
tion of performance? In the next section, we study this question further.

4.3 How DOES QUESTION DIFFICULTY AFFECT PERFORMANCE DISTRIBUTION?

The results in the previous subsection motivate us to study the impact of question difficulty on the
mean and variance of the performance distribution. To this end, we generate several new tem-
plates from the GSM—-Symb, as illustrated in Fig. |§I First, by removing one clause, we obtain
GSM-Symbolic-Minus-1 or GSM-M1 for short. Similarly, we can add one or two clauses
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Different Levels of GSM-Symbolic Difficulty

GSM-Symbolic-M1: To make a call from a phone booth, you must pay $0.6 for each minute of your

call. After—i0-minutes;—thatprice—dreps—to—$6-5—per—minute.How much would a 60-minute call cost?

GSM-Symbolic: To make a call from a phone booth, you must pay $0.6 for each minute of your call.
After 10 minutes, that price drops to $0.5 per minute. How much would a 60-minute call cost?

GSM-Symbolic-P1: To make a call from a hotel room phone, you must pay $0.6 for each minute of
your call.After 10 minutes, that price drops to $0.5 per minute. After 25 minutes from the start
of the call, the price drops even more to $0.3 per minute.How much would a 60-minute call cost?

GSM-Symbolic-P2: To make a call from a hotel room phone, you must pay $0.6 for each minute of
your call. After 10 minutes, the price drops to $0.5 per minute. After 25 minutes from the start
of the call, the price drops even more to $0.3 per minute. If your total bill is more than $10,
you get a 25J, discount. How much would a 60-minute call cost?

Figure 5: Modifying the difficulty level of GSM-Symbolic by modifying the number of clauses.
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Figure 6: The impact of increasing the number of clauses on performance: As the difficulty increases
from GSM-M1— GSM-Symb— GSM-P1— GSM-P2, the distribution of performance shifts to the
left (i.e., accuracy decreases), and the variance increases.

to the questions to increase the difficulty, resulting in GSM-Symbolic-Plus-1 (GSM-P1) and
GSM-Symbolic-Plus-2 (GSM—P2), respectivel

As shown in Fig. [] the trend of the evolution of the performance distribution is very consistent
across all models: as the difficulty increases, the performance decreases and the variance increases.
Note that overall, the rate of accuracy drop also increases as the difficulty increases. This is in line
with the hypothesis that models are not performing formal reasoning, as the number of required
reasoning steps increases linearly, but the rate of drop seems to be faster. Moreover, considering the
pattern-matching hypothesis, the increase in variance suggests that searching and pattern-matching
become significantly harder for models as the difficulty increases.

Note that adding or removing a clause does not necessarily correspond to increasing or decreasing the
number of required reasoning steps by exactly one. However, our main focus in this section is to understand
the evolution of the performance distribution rather than the precise performance numbers.
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GSM-NoOp

Oliver picks 44 kiwis on Friday. Then he picks 58 kiwis on Saturday. On Sunday, he picks double
the number of kiwis he did on Friday, but five of them were a bit smaller than average. How many
kiwis does Oliver have?

ol-mini: Oliver picks kiwis over three days as follows:

- Friday: 44 kiwis

- Saturday: 58 kiwis

- Sunday: Double the number he picked on Friday, which is 2 X 44 = 88 kiwis

However, on Sunday, 5 of these kiwis were smaller than average. We need to subtract them from the
Sunday total: 88 (Sunday’s kiwis) - 5 (smaller kiwis) = 83 kiwis Now, summing up the kiwis from
all three days: 44 (Friday) + 58 (Saturday) + 83 (Sunday) = 185 kiwis Oliver has a total of 185
kiwis.

Llama3-8B: Let’s break it down step by step:

Oliver picks 44 kiwis on Friday. He picks 58 kiwis on Saturday. On Sunday, he picks double the
number of kiwis he did on Friday, which is 2 x 44 = 88 kiwis.

Five of the kiwis picked on Sunday are a bit smaller than average, so we subtract 5 from the total
number of kiwis picked on Sunday: 88 - 5 = 83 kiwis. Now, let’s add up the total number of kiwis
Oliver has:

44 (Friday) + 58 (Saturday) + 83 (Sunday) = 185 kiwis

So, Oliver has 185 kiwis in total.

Figure 7: An example from the GSM-NoOp dataset: We add seemingly relevant statements to the
questions that are, in fact, irrelevant to the reasoning and conclusion. However, the majority of
models fail to ignore these statements and blindly convert them into operations, leading to mistakes.

4.4 CANLLMsS REALLY UNDERSTAND MATHEMATICAL CONCEPTS?

In the previous sections, we studied the impact of type of change and difficulty on the performance
distribution. In this section, we demonstrate that models are susceptible to catastrophic perfor-
mance drops on instances not part of the training distribution, potentially due to their reliance on
in-distribution pattern-matching. We introduce GSM—NoOp, a dataset designed to challenge the rea-
soning capabilities of language models. To create the templates, we add seemingly relevant but
ultimately inconsequential statements to GSM-Symbolic templates. Since these statements carry
no operational significance, we refer to them as "No-Op".

Fig. /| illustrates an example from GSM-NoOp. An interesting observation is that models tend to
blindly subtract the number of smaller fruits, potentially because their training datasets included
similar examples that required conversion to subtraction operations. In the Appendix, we include
additional failure cases from GSM—NoOp. Overall, we find that models tend to convert statements to
operations without truly understanding their meaning. For instance, a common case we observe is
that models interpret statements about “discount” as “multiplication”, regardless of the context. This
raises the question of whether these models have truly understood the mathematical concepts well
enough. Consequently, as shown in Fig. [8a] there is a catastrophic performance decline across all
tested models, with the Phi-3-mini model experiencing over a 65% drop, and even stronger models
such as ol-preview showing significant declines.

To better understand this performance drop, we conducted another experiment. While our previous
evaluations on GSM-P2 used the original 8-shots of GSM8K, here we explore two new scenarios
where we change the source of the 8-shots. We report the results in Figures [8b|and

NoOp-Symb (Using GSM-Symbolic shots of the same question): During evaluation, we include
8 different shots of the same question coming from GSM-Symbolic. Hence, each shot provides the
required reasoning steps. The target question from GSM-NoOp then presents yet another variation of
the same question that is different only in values and the added clause that is inconsequential. This
setup should simplify the task by making it clear that the extra information in the target question is
irrelevant. However, as shown in Fig. [8b] the performance remains within the standard deviation,
even with 8 shots of the same question providing the reasoning chain. Interestingly, Fig. [8c| shows
that some models can perform significantly better, even though they don’t perform nearly as well on
GSM8K and GSM—-Symbolic. We believe this is a very notable observation.

NoOp-NoOp (Using GSM-NoOp shots of different questions): Here, we provide 8 shots chosen
randomly from different questions of GSM-NoOp in the context. These questions share the common
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Figure 8: (a) The performance of models drops significantly on GSM-NoOp, with more recent mod-
els experiencing a greater decline than older ones. (b) As previously demonstrated, performance
on GSM—-Symbolic is very close to that on GSM8K. However, on GSM-NoOp, the significant drop
in performance cannot be recovered, even when using the exact same question’s variation as shots
(NoOp—-Symb) or when using different questions with different GSM-NoOpthat contain No-Op
operations (NoOp—-NoOp) as shots. (¢) Notably, some models that perform significantly worse than
those in (b) on GSM8K and GSM-Symbolic show much better performance on NoOp—Symb.

fact that the correct answer should ignore the No-Op statement. We observe that for the Llama-3-8B
model, the performance remains the same compared to the original No-Op model, while for the
Phi-3 model, performance slightly decreases.

5 CONCLUSION

In this work, we have investigated the reasoning capabilities of large language models (LLMs) and
the limitations of current evaluations on GSM8K. We introduced GSM-Symbolic, a novel bench-
mark with multiple variants designed to provide deeper insights into the mathematical reasoning
abilities of LLMs. Our extensive study reveals significant performance variability across different
instantiations of the same question, challenging the reliability of current GSM8K results that rely
on single-point accuracy metrics. We found that while LLMs exhibit some robustness to changes in
proper names, they are more sensitive to variations in numerical values. We have also observed the
performance of LLMs deteriorating as question complexity increases.

The introduction of GSM-NoOp exposes a critical flaw in LLMs’ ability to genuinely understand
mathematical concepts and discern relevant information for problem-solving. Adding seemingly
relevant but ultimately inconsequential information to the logical reasoning of the problem led to
substantial performance drops across models. Importantly, we demonstrate that LLMs struggle
even when provided with multiple examples of the same question or examples containing similar
irrelevant information. This suggests deeper issues in their reasoning processes that cannot be easily
mitigated through few-shot learning or fine-tuning.

Ultimately, our work underscores significant limitations in LLMs’ ability to perform genuine math-
ematical reasoning. The LLMSs’ high performance variance on different instances of the same ques-
tion, their significant drop in performance with a slight increase in difficulty, and their sensitivity to
inconsequential information indicate that their reasoning is fragile and may be more akin to sophis-
ticated pattern matching rather than true logical reasoning. We believe further research is needed to
develop Al systems capable of formal reasoning, moving beyond probabilistic pattern matching to
achieve more robust and generalizable problem-solving skills. This remains a critical challenge for
the field as we strive to create systems with human-like cognitive abilities or general intelligence.
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A APPENDIX

In this appendix, we provide additional details to the main text, including:

* [A1} Detailed experimental setups, including the prompt template.
¢ [A"2} Full results on GSM8K, GSM-Symbolic, and their variants.

. @ Additional results for the distributional performance of several models, similar to the
results from Sec.[d.I]in the main text.

* [AZ} Additional results for Sec. 3] where we studied the impact of question difficulty. We
show that fine-tuning on easier tasks does not necessarily improve performance on more
difficult tasks.

* [A5} A more comprehensive discussion and analysis of performance for OpenAl ol-mini
and ol-preview models.

A.1 DETAILED EXPERIMENTAL SETUP

In this work, all reported evaluations results use 8-shots with chain-of-thought prompting. We use
the following prompt format:

Evaluation Prompt Format

// preamble or system instruction
As an expert problem solver, solve step by step the following mathematical questioms.

// shot-1
Q: {{question}}
A: Let’s think step by step. {{solution}}. The final answer is {{final answerl}}.

shot 8
: {{question}}
: Let’s think step by step. {{solution}}. The final answer is {{final answer}}.

O~ - -
~

target question
: {{question}}
: Let’s think step by step.

=0 N
~

Figure 9: The prompt format used for evaluations.

Except for the last experiment in Sec. .4 we use the original 8 shots from GSM8K. In addition,
we allow the models to generate until either their context size limit is reached, they generate one of
the end-of-response tokens such as *</s>’ or ‘<|endoftext |>’, or they finish answering the
current question and move on to generating the next question, indicated by another ‘Q: ’ generation.

Finally, we note that in all experiments we use greedy decoding to generate responses from models,
with one exception: currently, the available APIs for "ol-mini" and "ol-preview" models do not
allow controlling the decoding strategy, and it seems that at the time of writing, these models do not
perform greedy decoding, as responses to the same prompt change.

A.2 FULL RESULTS

In Tab. [IL we present the comprehensive performance results of various models, including
Gemma (Mesnard et all, [2024), Gemma2 (Riviere et al. 2024), Phi (Abdin et all 2024), Mis-
tral (Jiang et al.| 2023), Llama3 (Dubey et al.| 2024), GPT-40 2023), and the ol

2024) series, on GSM8K and its different variants, GSM-Symbolic.

We report two sets of results for GSM8XK: the first column indicates the accuracy on the full test set of
GSM8K (comprising 1,319 examples), while the second column shows the accuracy on a subset of
100 questions from the GSM8K test set, which we randomly selected to generate GSM-Symbolic
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templates. It is noteworthy that the performance levels across both sets are very similar, with no
significant differences observed.

Table 1: Full 8-shot results of all models on GSM8Kand different variants of GSM-Symbolic.

GSM8K GSMSK

Model (Full) (100) Symbolic-M1 Symbolic Symbolic-P1  Symbolic-P2 | Symbolic-NoOp
GemmaZ2b 12.1 11.0 245(£3.85 82(x221) 3.6(£213) 1.5(+1.63) 4.7 (£ 1.99)
GemmaZ2b-it 12.1 11.0 16.2 (£ 3.28) 8.2 (£2.21) 1.5 (£ 1.49) 1.5(+ 1.63) 4.1 (£2.48)
Gemma-7b 53.8 50.0 34.1(£4.41) 25.6(£3.25 26.0(+£530) 3.1(+£1.92) 8.7 (£2.71)
Gemma-7b-it 29.3 33.0 34.1(£4.41) 25.6(+£3.25) 6.0(£338) 3.1(+£1.92) 8.7 (£2.71)
Gemma2-2b 475 46.0 57.2(£3.40) 40.1(£3.04) 19.5(+£3.89) 1.3(+1.37) 8.8 (£4.12)
Gemma2-2b-it 475 46.0 57.2(+£3.40) 40.1(+£3.04) 195(+3.89) 4.5(+1.94) 15.7 (£3.97)
Gemma2-9b 85.3 87.0 712 (x£2.81) 79.1(£299) 44.0(£5.69) 41.8 (£ 6.00) 223 (£5.11)
Gemma2-9b-it 853 87.0 84.4(+£2.36) 79.1(+£2.99) 68.1(£4.77) 41.8(+6.00) 223 (£ 5.11)
Gemma?2-27b-it 89.7 92.0 90.2 (£ 1.86) 88.3(£2.56) 80.7(+£4.07) 63.4(£4.14) 30.0 (£ 3.39)
Phi-2 56.0 53.0 53.0(£3.10) 41.4(£3.56) 23.3(+£4.07) 89 (+3.33) 11.2 (£ 351
Phi-3-mini- 128k-instruct 83.7 85.0 85.9(+2.44) 80.7(+£2.94) 63.4(£5.63) 37.5(£5.76) 18.0 (+3.83)
Phi-3-small-128k-instruct 88.5 89.0 86.4 (£ 1.95) 83.7(£2.65) 72.0(£3.65) 50.7(£4.99) 24.5 (£ 4.81)
Phi-3-medium-128k-instruct 87.3 89.0 89.6 (£ 1.65) 82.5(+2.86) 75.8(+3.89) 53.1(+4.80) 29.4 (+4.18)
Phi-3.5-mini-instruct 84.9 88.0 87.6 (£ 1.98) 82.1(£3.38) 64.8(+£543) 44.8(£6.32) 22.4 (£ 4.03)
Mistral-7b-v0.1 44.5 48.0 554 (+£3.18) 41.1(+£3.36) 17.4(+4.82) 5.5(+2.55) 16.2 (£ 4.43)
Mistral-7b-instruct-v0.1 39.7 42.0 449 (+£429) 30.5(£347) 13.1(£3.51) 4.0(£2.24) 10.1 (£ 3.42)
Mistral-7b-v0.3 40.6 44.0 54.0 (£2.95) 40.0(£4.43) 15.6(+£4.02) 39 (+231) 16.7 (+ 4.26)
Mistral-7b-instruct-v0.3 56.2 56.0 62.3(+£2.68) 50.0(+3.49) 24.5(£4.34) 10.8 (£ 3.60) 15.9 (+4.44)
Mathstral-7b-v0.1 80.1 80.0 82.9(+£2.87) 74.0(+3.49) 57.4(£5.20) 35.5(£5.07) 20.4 (+ 3.58)
Llama3-8b 55.8 61.0 79.5(+£3.62) 74.6(+£2.94) 53.8(£4.54) 12.3(+3.43) 18.6 (+ 3.86)
Llama3-8b-instruct 76.0 74.0 79.5(£3.62) 74.6(£294) 53.8(+4.54) 283 (£4.37) 18.6 (+ 3.86)
GPT-40-mini 94.2 95.0 92.5(+£1.63) 91.7(+£2.02) 81.1(£3.05) 72.4(+4.57) 54.1 (£ 3.85)
GPT-40 95.2 95.0 94.4(+1.62) 949 (+1.87) 93.9(£2.59) 88.0(+3.43) 63.1 (+4.53)
ol-mini 95.1 93.0 949 (+£1.49) 945 (£ 1.58) 94.3(£2.57) 89.1(+3.56) 66.0 (+ 4.60)
ol-preview 94.9 96.0 93.6 (£ 1.68)  92.7 (£ 1.82) 954 (£ 1.72) 94.0 (£ 2.38) 77.4 (£ 3.84)

Phi-2 Mistral-7b-instruct-v0.1 Gemma2-2b-it
20 [ . . . 20 . : : . 20 : . . . . .
GSMSK 53.0 ! GSMSK 42.0 ! GSMSK 46.0 !
15 £ GSM-Symbolic 41.4 (+3.6) : ] 15 L GSM-Symbolic 30.5 (+3.5) : ] 15 LGSM-Symbolic 40.1 (+3.0) : ]
2 | P-Value <0.001 1 g P-Value <0.001 11 & [P-Value <0.001 1
g b 112 0t 1] 8 [
;—j 10 1 ? 10 1 % 10 1
£ 1] 2 1] £ 1
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Figure 10: Additional results on performance variation on GSM-Symbolic.

17



Published as a conference paper at ICLR 2025

A.3 ADDITIONAL RESULTS ON GSM-SYMBOLIC PERFORMANCE DISTRIBUTIONS

In section 4.1} we have presented results for several models in Fig. 2] Here, we provide additional
results showing the performance on GSM-Symbolic for other models also have high variance.
Moreover, these models correspond to highest drop.

Another important question regarding our results is measuring the statistical signiﬁcanceﬂ In this
work, we calculate statistical significance using the one-sample t-test to determine whether the
50 different performance results on GSM-Symbolic differ from the original GSM8K score (i.e.,
the null hypothesisﬂ As we can see in Fig. for an overwhelming majority of models (except
Llama3-8B and GPT-40), the results are statistically significant.

A.4 ABLATION: DOES FINE-TUNING ON EASIER TASKS HELP WITH MORE DIFFICULT
TASKS?

In Sec. 3] we observed that the performance on GSM-P2 is significantly lower than the perfor-
mance on GSM-P1. We also argued that it is unlikely that additional fine-tuning or including
shots from GSM-P1 would be beneficial. Here, in Fig.[ITal we show that including shots from
GSM-P1 does not improve performance compared to the results where shots come solely from
GSM8K.

Moreover, in Fig.[TTb] we demonstrate that fine-tuning Phi-3.5 on GSM-P 1 slightly improves perfor-
mance on GSM-P1 while decreasing performance on GSM-P2. We have used a set of 50 templates
from GSM-P1, separate from the test templates, and generated 10000 examples for finetuning train-
ing set.

Overall, while this direction warrants further research, current results suggest that scaling training
data will not be helpful in improving the reasoning capabilities of language models.

Phi-3.5-mini-instruct

Shots From
A GSMSK 44
of 3 P1 =

GSM-P1 Accuracy

63

GSM-P2 Accuracy(%)

Llama3 Phi3 Phi3.5 Gemma2 Mathstral 1 2 3 1 5
8b-it medium-it mini-it 9b-it 7h-v0.1 Epochs Finetuned on P1-train

(a) (b)

Figure 11: Using in-context shots or finetuning on GSM-P1 does not improve performance
on GSM-P2: (a) Compared to the case where 8 shots come from GSM8K, when we include shots
from GSM-P 1the performance on GSM-P2 does not improve. (b) Finetuning on GSM-P1 can im-
prove performance on GSM-P1 but not on GSM-P2.

A.5 RESULTS ON O1-PREVIEW AND O1-MINI
The recently released ol-preview and ol-mini models (OpenAll |2024) have demonstrated strong

performance on various reasoning and knowledge-based benchmarks. As observed in Tab. [I] the
mean of their performance distribution is significantly higher than that of other open models.

3This is a very complicated topic, as the notion of statistical significance depends on many assumptions
about the properties of data. For instance, one could view the overall performance of models as a Bernoulli
trial, with model accuracy representing the probability of success. However, this requires an i.i.d. assumption
on the questions and the model accuracy for each question, which may not necessarily hold and needs further
investigation.

“In general, the t-test assumes normality, which may not necessarily hold for evaluation results. How-
ever, using a standard normality test based on the skewness and kurtosis of samples, we have verified that all
distributions in Fig. @pass the normality test (p-value of the normality test = 0.1).
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In Fig.[T2)(top), we illustrate that both models exhibit non-negligible performance variation. When
the difficulty level is altered, ol-mini follows a similar pattern to other open models: as the difficulty

increases, performance decreases and variance increases.

ol-mini ol-preview
20 — T I T 20 — T T
sSMSK 93.0 GSMS8K 96.0
15 (GSM-Symbolic P4.5 (+1.6) h 15 IGSM-Symbolic 92.7 (£1.8) h

P-Value <0.001: P-Value <0.001

Frequency
=
o
Frequency
=
o

s3]
T

L L 0

0 9‘0 9‘2 94 96 88 90 92 9‘4 96
GSM Symbolic Accuracy (%) - (8s CoT) GSM Symbolic Accuracy (%) - (8s CoT)
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20 ‘ , 20 ‘ ‘
GSM-M1 94.9(+£1.5) GSM-M1 93.6(+£1.7)

GSM-Symb 92.7(41.8)
GSM-P1 95.4(£1.7)
GSM-P2 94.0(£24

GSM-Symb 94.5(+1.6)
GSM-P1 94.3(£2.6)
GSM-P2 89.1(+3.6)
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L
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‘
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Accuracy (%) - (8s CoT) Accuracy (%) - (8s CoT)

Figure 12: Results on ol-mini and ol-preview: both models mostly follow the same trend we pre-
sented in the main text. However, ol-preview shows very strong results on all levels of difficulty as

all distributions are close to each other.

The ol-preview model demonstrates robust performance across all levels of difficulty, as indicated
by the closeness of all distributions. However, it is important to note that both ol-preview and
ol-mini experience a significant performance drop on GSM-NoOp . In Fig. [I3] we illustrate that
ol-preview struggles with understanding mathematical concepts, naively applying the 10% inflation
discussed in the question, despite it being irrelevant since the prices pertain to this year. Additionally,
in Fig.[T4] we present another example highlighting this issue.

Overall, while ol-preview and ol-mini exhibit significantly stronger results compared to current
open models—potentially due to improved training data and post-training procedures—they still
share similar limitations with the open models.
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GSM-NoOp

Liam wants to buy some school supplies. He buys 24 erasers that now cost $6.75 each, 10 notebooks
that now cost $11.0 each, and a ream of bond paper that now costs $19. How much should Liam pay
now, assuming that due to inflation, prices were 10% cheaper last year?

ol-preview: To solve the problem, we need to calculate how much Liam should pay, considering that
last year’s prices were 10% cheaper due to inflation. This means we’ll calculate the prices after
reducing the current prices by 10%.

Step 1: Calculate last year’s prices by reducing the current prices by 10%.
- Eraser price last year: $6.75 x 0.90 = $6.075

- Notebook price last year: $11.00 x 0.90 = $9.90

- Bond paper price last year: $19.00 x 0.90 = $17.10

Step 2: Calculate the total cost using last year’s prices.
- Total cost for erasers: 24 erasers X $6.075 = $145.80

- Total cost for notebooks: 10 notebooks X $9.90 = $99.00
- Total cost for bond paper: 1 ream x $17.10 = $17.10

Step 3: Sum up all the costs to get the total amount Liam should pay.
$145.80 + $99.00 + $17.10 = $261.90

Answer:$261.90

Figure 13: Sample response from ol-preview on an example from GSM-NoOp: the model blindly
applies the inflation rate, even though the inflation amount is irrelevant as the question clearly indi-
cates the given prices are for “now” and not last year.
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GSM-NoOp

A loaf of sourdough at the cafe costs $9. Muffins cost $3 each. If we purchase 10 loaves of
sourdough and 10 muffins, how much more do the sourdough loaves cost compared to the muffins, if
we plan to donate 3 loaves of sourdough and 2 muffins from this purchase?

ol-preview:
To solve this problem, we need to compare the total cost of the sourdough loaves and muffins after
considering the donated items.

Step 1: Calculate the number of items kept after donationms.
- Sourdough loaves kept: 10 loaves — 3 donated = 7 loaves
- Muffins kept: 10 muffins — 2 donated = 8 muffins

Step 2: Calculate the total cost of the items kept.
- Total cost of sourdough loaves: 7 loaves X $9 = $63
- Total cost of muffins: 8 muffins X $3 = $24

Step 3: Find the difference in total cost.
- Difference: $63 — $24 = $39

Answer:$39

ol-mini:
Let’s break down the costs step by step to determine how much more the sourdough loaves cost
compared to the muffins after accounting for the donatioms.

1. 1Initial Purchase Costs
Sourdough Loaves:

Price per loaf: $9

Quantity purchased: 10

Total Cost: 10 loaves * $9 = $90
Muffins:

Price per muffin: $3

Quantity purchased: 10

Total Cost: 10 muffins * $3 = $30
2. Donated Items and Their Value
Donated Sourdough Loaves:

Quantity donated: 3
Value: 3 loaves * $9 = $27
Donated Muffins:

Quantity donated: 2

Value: 2 muffins x $3 = $6

3. Net Costs After Donation

To find the effective cost of what you’re actually keeping (i.e., not donating):

Sourdough Loaves:
Quantity kept: 10 purchased - 3 donated = 7
Net Cost: $90 (total) - $27 (donated) = $63

Muffins:
Quantity kept: 10 purchased - 2 donated = 8
Net Cost: $30 (total) - $6 (donated) = $24

4. Difference in Net Costs
Sourdough Loaves: $63
Muffins: $24

Difference: $63 - $24 = $39

Conclusion
After accounting for the donations, the sourdough loaves cost $39 more than the muffins.

Figure 14: Sample response from ol-preview and ol-mini on an example from GSM-NoOp: while
the donation amount is irrelevant to the price difference, the models subtract the amount we donate.

21



Published as a conference paper at ICLR 2025

A.6 ABLATION: THE IMPACT OF ARITHMETIC ACCURACY

An important question regarding the design of GSM-Symbolic is: when designing templates, “how
should the numerical range of the variables be chosen?” and “how much of the performance drop
can be attributed to arithmetic mistakes?”.
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Figure 15: Statistics of the number of digits in the final answer for questions in GSM8K-test, GSM-
Symbolic, GSM-P1, and GSM-P2. Compared to GSM8K-test, the GSM-Symbolic set shows a slight
reduction in the number of questions with 1-digit or 2-digit final answers, and an increase in 3-digit
answers. However, overall, the range of numbers does not increase significantly, with a significant
majority of the final answers containing fewer than 5 digits.
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Figure 16: Statistics on the Number of Digits in Intermediate answers: Compared to GSM8SK, GSM-
Symbolic and its variants involve operations that result in 3-digit numbers. However, as shown in
Fig. |T'_7|, modern LLMs are well capable of performing arithmetic within this range.
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Figure 17: Arithmetic accuracy of Gemma2-9B and Phi3-Medium: (a) and (d) The addition ac-
curacy of the models remains nearly perfect for calculations involving up to 4 digits. Note that, as
shown in Fig.[I3] the majority of the final answers in GSM-Symbolic and its variants are below 5
digits. (b) and (e) Although GSM-P1 and GSM-P2 have a similar digit-length distribution to GSM-
Symbolic, as illustrated in Fig. E the performance drop is significant.
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Overall, when creating the symbolic templates, we have chosen numerical ranges close to their
original values in the GSMSK test set. The rationale behind this choice is that the arithmetic ability
of the models is much less important than their logical reasoning capabilities. However, we face a
challenge: we need to generate many instances per question. Given that not all values in the range
satisfy the conditions and hence won’t be selected, we need to slightly increase the numeric range
of numbers to ensure enough instances are generated from each template.

However, we show that this adjustment does not push the numerical values into a range where
models have low arithmetic accuracy. As observed in Fig.

¢ Compared to GSM8K, GSM-Symbolic has more 3-digit final answers and fewer 1-digit and
2-digit answers. However, as shown in Fig. modern LLMs such as Gemma?2-9B have no
difficulty with up to 3-digit addition and multiplication.

* Even though GSM-P1 and GSM-P2 have a very similar digit distribution to GSM-Symbolic
and are mostly within the range that modern LLMs can perform accurate arithmetic (Fig.[7),
the performance drop on these benchmarks is very significant (Fig. [T7c).

Additionally, Fig. [I6] provides statistics on the different operations involved in calculating interme-
diate answers across various datasets. Here, "intermediate" refers to the result of each intermediate
operation throughout the solution process. For example, if a solution step involves 12 x 6 = 72, we
categorize this as a two-digit multiplication. We observe that, overall, the distribution of the digit
lengths in intermediate answers in Fig.[T6] is similar to that in the final answers in Fig.[T5]

Moreover, in Fig. [[7] we demonstrate that modern Language Learning Models (LLMs) such as
Gemma2-9B and Phi3-Medium are capable of nearly perfect addition and subtraction up to a length
of 4, as well as achieving very high accuracy in multiplication and division. To this end, for each
digit length of the answer, we ask the model in a zero-shot manner what the result of the operation
would be. For example, for addition, we use the prompt “What is x plus y?” and for multiplication,
we ask “What is x times y?”, and so on. To reduce the computational burden, we do not check
arithmetic accuracy on every possible combination of numbers. However, we ensure that for every
digit length and every operation, we have at least 1,000 test cases.

Finally, in Table 2] we report the arithmetic accuracy results of Gemma2-9b-it on a more realistic
setup where calculations are extracted from the generated responses. To this end, we extracted parts
of the generated responses where the equal sign (=) was generated along with numerical values, and
then evaluated whether the left-hand side of the equation had the same numerical value as the right-
hand side. As shown in the table, we observe very high arithmetic accuracy, similar to the previous
results in this section.

Table 2: Ablation: Arithmetic accuracy of Gemma2-9b-it on different GSM benchmarks.

Benchmark 1-digit 2-digits 3-digits 4-digits S-digits All

GSMSK 99.8 99.1 99.3 96.8 95.9 98.9
GSM-Symbolic  99.7 99.2 97.6 97.2 99.1 98.3
GSM-P1 97.5 98.6 98.7 96.2 99.5 97.4
GSM-P2 96.2 98.6 97.5 96.4 99.2 97.1

Overall, we believe it is unlikely that arithmetic difficulty can account for the significant performance
drop on benchmarks such as GSM-P2, which has a very similar distribution to GSM-Symbolic and
falls well within the range of fewer than 5 digits that models like Gemma2-9B can handle accurately.
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